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Tim problem of designing neural networks 
f o r  t h e  Control of d i s c r e t e  manufacturing 
processas  is addreased i n  t h i s  paper. Rather than 
t r e a t i n g  t h e  networks as adaptive black boxes, a 
new a r c h i t e c t u r e  is introduced t h a t  l i n k s  t h e  
weights associated with t h e  nodes and thus  allows 
t h e  r e l a t ionsh ips  and in t e rna l  rtructure t o  be 
t i g h t l y  conrtrainorl. The constrained search space 
g ives  g r e a t e r  confidence i n  t h e  i n t e r n a l  
r ep resen ta t ions  t h a t  have b e e n  induced by t h e  
t r a i n i n g  set and the re fo re  about t h e  co r rec t  
behaviour of t h e  network between t h e  given l i m i t s .  
The method is i l l u s t r a t e d  by i t s  app l i ca t ion  t o  
t h e  dispensing of adhesives.  

The so lu t ion  of t y p i c a l  problems 
encountered i n  manufacturing process con t ro l  a r e  
examined i n  t h i s  paper.  These problems can be 
gene ra l ly  described a s  maintaining t h e  process 
output between set limits and iden t i fy ing  t h e  
a c t i o n s  t o  be taken when the  output approaches or  
exceeds t h e  l i m i t i n g  conditions.  L i m i t s  a r e  
reached e i t h e r  because of process d r i f t  o r  because 
of ca t a s t roph ic  process e r r o r s .  T h e s e  
c h a r a c t e r i s t i c s  a r e  present  i n  many manufacturing 
processes,  fo r  example t h e  dispensing of adhesives 
i n  t h e  manufacture of "mixed technology" p r in t ed  
c i r c u i t  boards (PCB's )  ([l], see below) and metal 
c u t t i n g  1 1 4 1 .  The processes can be cha rac t e r i s ed  
a s  being p a r t i a l l y  understood. Some 
c h a r a c t e r i s t i c s  can be described and modelled 
whereas others ,  such as t h e  i n t e rac t ions  b e t w e e n  
va r ious  process va r i ab le s ,  cannot. 

Representations t h a t  allow c o n t r o l l e r s  t o  
be informed of c e r t a i n  of t h e  process 
c h a r a c t e r i s t i c s  and learn t h e  balance a r e  of 
importance t o  t h e  con t ro l  of s u c h  processes.  
Neural networks provide an a t t r a c t i v e  method of 
l ea rn ing  t h e  unknown c h a r a c t e r i s t i c s  [ 3 1 .  They 
a re ,  however, d i f f i c u l t  t o  configure and j n t e r p r e t  
a f t e r  teaching (see [ 7 ]  and [ll]). The ease  with 
which t h e  internal  representat ions of neural  
networks can be i n t e rp re t ed  is important, 
e s p e c i a l l y  when such c o n t r o l l e r s  a r e  t o  be appl ied 
i n  s a f e t y  c r i t i c a l  app l i ca t io .  S .  Hybrid networks 
designed using r e a d i l y  i n t e r p r e t a b l e  models 
t h e r e f o r e  have considerable  advantages. 

This paper o u t l i n e s  t h e  des .  11 of a novel 
neb  1 network a r c h i t e c t u r e  based upon l ink ing  t h e  
ChaldCtcriStiCS of s eve ra l  nodes. T h e  appl icat ion 

of t h e  network a r c h i t e c t u r e  t o  t h e  accurate  
dispensing of small q u a n t i t i e s  of adhesives is 
then described. The network a rch i t ec tu re  ir 
p a r t i c u l a r l y  a t t r a c t i v e  f o r  t h i s  appl icat ion 
because it allows well understood system l eve l  
control  condi t ions t o  be r ap id ly  included ([SI and 
1211 ,  t h e  r e l a t ionsh ips  between these t o  be 
learned and t h e  system t o  be rapidly modified when 
t h e  ma te r i a l  t o  be dispensed is changed. 

Several  Propert ies  of neural  networks make 
t h e m  ideal f o r  app l i ca t ion  i n  control  processes.  
Their l i n e a r  threshold p rope r t i e s  allow f o r  
h"mdiate  quant isat ion of t h e  system var iables ,  
while t h e i r  Boolean transformation property allows 
f o r  t h e i r  u s e  i n  i n t e l l i g e n t  con t ro l  sys tems.  

These two p rope r t i e s  are discussed fu r the r .  
It  is shown t h a t  a network making use of l inked 
p a r a l l e l  nodes i s  idea l  f o r  modelling con t ro l  
problems and indeed i s  e s s e n t i a l  i f  t h e  behaviour 
of t h e  network is t o  be f u l l y  understood. 

Nodes i n  a neural  network a re  l i n e a r  
threshold devices.  A no& w i t h  a s ing le  input i s  a 
p a r t i c u l a r l y  simple th re sho ld  u n i t  (see f igu re  2). 
Figure 1 shows a v i s u a l  representat ion of t h e  
threshold c '  e r a t i o n .  

Figure 1. Character is ing a s i n g l e  var iable  with a 
s i n g l e  s p l i t  fo r  acceptable  and unacceptable 
dec i s ions .  

The discr iminat ing su r face  is a s ing le  
point  given by t h e  equation: 

Bias + Weight'Input-Variable = 0 

T h e  output is 1 if t h e  left  hand s i d e  is 
grea te r  than 0 and -1 i f  it is le:%': than 0, t h e  
c ros s  ovt  poi ,  . is defii ied by re equation. 
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Figure 3 shows the relevant algorithm. 

Figure 2. The neural net implementation of a 
single threshold. 

The single threshold can be implemented in 
a neural network with a single unit as shown in 
figure 2. The definition of the boundary in one 
dimension merely specifies a point on the 
System-Variable axis which satisfies the equation: 
System-Variable - limit = 0. 

By setting the Bias-Weight to - limit 
(minus limit) and the Input-weight to 1.0, if the 
value of the System-Variable is greater than the 
limit then the negative contribution of the 
Bias-Weight is overcome by the value of the 
System-Variable and the output i .s  deemed 
acceptable. 

Acceptable 
if 

Bias-weight + 
Input-weight "System-Variable 

> o  
Not-Acceptable 

if 
Bias-weight + 
Input-weight*System-Variable 

< o  

Bias-weight = - limit 
Input-weight = 1.0 

Figure 3 .  The equations and weights which could be 
assigned to the network shown in figure 4 to 
implement the decision on a single system 
variable. 

of a 

An important element of control processes 
is to initiate action in a specified region of the 
system control variables. The neural network 
systems are ideal for segmenting areas of the 
system variables. 

The segmentation for a single system 
variable is shown in figure 4. This cannot be 
implemented in a single layer network and requires 
a two layer network as shown in figure 5. The 
inputs to the final single node are in the open 
interval (-1,l) with the majority of  values close 
to the end points. If we employ a simple threshold 
system we are taking values from set (-1,l) and 
can treat any subsequent layers as implementing 
Boolean transformations. 

The resulting network then has two parts, 
the first layer taking the real valued input 
values and separating them into regions, the 
second layer then combining these regions. The 
outr; t. node implements an OR transformation. 

Figure 4. Splitting the system variable into three 
regions, unacceptably low, acceptable and 
unacceptably high. 

Figure 5. The neural net implementation of a 
single system variable that must be kept within 
limits. 

Upper-Limit and Lower-Limit segment the 
system variable into three parallel regions (see 
figure 4 and the equations in figure 6). The 
corresponding nodes denoted Upper-Limit and 
Lower-Limit defined by the equations below (figure 
6,7 and 81, are parallel, since their weight 
values are linearly dependent. 

Upper-Limit - l.O*System-Variable = 0 
-Lower-Limit + l.O*System-Variable = 0 
Figure 6. The equations of the surfaces used to 
separate the regions in figure 4 implemented in 
the network shown in figure 5. 

Acceptable 
if 

- Upper-limit + 
1.0 *System-Variable 

< o  
Not-Acceptdble 

if 
- Upper-Limit + 
l.O*System-Variable 

> o  
Figure 7. The equations and weights which could be 
assigned to the network shown in figure 5 for the 
Upper-Limit node. 

Acceptable 
if 

Lower-limit + 
-1.0 "System-Variable 

< o  
Not-Acceptable 

if 
Lower-Limit + 
-1.0 *System-Variable 

> o  
Figure 8. The equations 
assigned to the network 
Lower-Limit node. 

and weights which could be 
shown in figure 5 for the 
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Hbh 

MM-High 

Law 

The system is not required to give a 
warning for the case error > Hig I as it will be 
taking action at this point. This is an inhibited 
warning. A suitable network architecture 
implementing bimodal warning outputs, making use 
of the parallel segmentation nodes, is shown in 
figure 10. All the nodes, High, Low, Mid-High, 
Mid-Low are parallel, since they segment a single 
process control variable. 

NO Warning 

Warning 

No Warning 

Warning 

No Warnlng 

- - -  - - - - - - - - - 
- - - - - - - - 
- - - -  

Time 4 

n Mid-High 

Syaem-VarWle 

BimOdal 
Warn 

U Low 

Figure 10. A network structure foi implement 
the bimodal warning node. 

ing 

Many control processes are possible when 
considering multiple system variables. The 
variables may interact in nonlinear algebraic ways 
which requires system investigation to discover 
the relevant combination of variables. Since 
implementation of control processes when many 
control variables are present is a difficult 
design task, a suitable methodology is presented. 
Figure 11, shows the three main components 
relevant for designing a neural network control 
process. 

Invest . I  

All complex processes will be influenced by 
sevu a1 system variables. Once the relevant 
procLss variables have been discovered, the 

~ 
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algebraic relationships between them must be 
discovered. 

PdPllneS 

Figure 11. Methodology for designing neural 
network controllers of complex processes. 

This is achieved by an investigation of the 
relevance of the algebraic combinations of process 
variables. This technique has been used before 
( [ 4 1 ,  [121) and is derived from a combination of 
polynomial (p) and adaptive linear neuron 
(adaline), they are known as polynomial adaptive 
linear neuron (padaline). The basic idea is that 
new input nodes can be formed from functions of 
the basic input nodes, if the function being 
modelled is the sum of several elementary 
functions then the padaline can discover the 
coefficients of the separating surface. 

Acceptable 
if 
Bias weight + 
CiInFut-weight (i) *System-Variable (i) 
> o  

Not-Acceptable 
if 
Bias-weight + 

< o  
Input-weight (i) *System-Variable (i) 

Figure 12. Algorithm that defines a threshold r,ode 
with many inputs. 

Once the relevant system variables have 
been discovered by +he padaline layer, the 
quantisation layer acts as either a linear 
thresholdinq layer, see Figure 12, or a 
seqmentation layer. 

Figure 13. Segmentation of a two control variable 
system. 

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 27, 2009 at 04:02 from IEEE Xplore.  Restrictions apply.



A pair of parallel opposite facing nodes in 
the quantisation layer can segment the control 
variables into three regions. See figure 13 for a 
visual representation of the regions when only two 
system variables are present. Similuly more 
regions can be segmented with the use of more 
parallel nodes. 

The final part of the network is the 
Boolean transformation that is applied to the the 
selected region. All control problems require 
specific action to be taken when the process 
system is in a specific state. The controller has 
to provide suitable outputs when the inputs are 
within a specific region. This is the case however 
complex the relationship between the system 
variables. This is shown for a specific two 
variable case in figure 14. The process should 
follow the ideal path to within a given tolerance. 
If the process is within this region no action is 
taken, while for all other regions corrective 
action must be taken. 

\ -  Svstem Variable 1 , -  
I 

Figure 14. Process with two system variables 
showing the ideal path to within a given 
+ olerance. 

The selection of these regions with 
suitable decisions can be made in just one layer, 
(refer to figure lo), since the multivariable case 
is analogous to the single variable case. If we 
are implementing an intelligent controller that 
requires different remedial action given different 
segments of the input space a more general two 
layer n e t w o r k  must be u s e d .  

System Varisble 1 

Figure 15. Process with two system variables 
showing two points that require distinct 
corrective actions. 

~ 
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Referring to figure 15, the point A and the 
point B require corrective action to restore the 
process to the desired region. However, the action 
that must be applied is different in each case 
since they lie in different segments of System 
Variable 1. The Boolean transformation required to 
implement this decision requires two layers 191. 

Beyond the first layer of a network the 
values input to and output from a node are in the 
set (-1,l) and therefore all transformations 
beyond that layer are Boolean. The output of any 
node is a Boolean value and so all the 
quantisation must occur in the first layer. This 
results in real values being turned into ranges 
and so is referred to as the quantisation layer. 

J 
0 

Boolean 
Ourputs 

Figure 16. The control network architecture with 
real valued inputs and interacting quantisations. 

Figure 16 illustrates a composite network 
showing an initial fully connected quantisation 
layer followed by a Boolean transformation layer. 
This would be the form of a standard control 
network that does not exploit the parallelism 
inherent in control processes. 

Simple independent quantisation that 
segments the control parameters provides sets of 
parallel nodes (the quantising nodes themselves) . 
Transformed control parameters, e.g padalines, 
that are quantised (figure 16) with parallel 
regions in higher dimensional spaces also provide 
parallel nodes. Therefore, parallel nodes occur 
naturally and are the ideal representational 
scheme, whether we are considering simple 
quantisation or interconnected quantisation. The 
Boolean transformdtion layer can similarly be 
implemented by pardllel nodes (see 181 and [9]). 
The complete network structure from the 
quantisation layer to the Boolean transformation 
layers can be naturally implemented using parallel 
nodes. 
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T h e  network s t r u c t u r e s  w i t h  t h e s e  spec i f i ed  
r e l a t i o n s h i p s  has much fewer weight va lues  t o  
determine, most of t h e m  being i n t e r r e l a t e d .  T h e r e  
i s  more knowledge a v a i l a b l e  about t h e  topology and 
i n t e r n a l  r e p r e s e n t a t i o n s  of t h e  network s i n c e  
t h e s e  a r e  made e x p l i c i t  by t h e  p a r a l l e l  
r e l a t i o n s h i p s .  Having more knowledge about t h e  
n e t w o r k  a l l o w s  t h e  u n d e r s t a n d i n g  a n d  
i n t e r p r e t a t i o n  of t h e  r ep resen ta t ion  t o  be more 
successful. 

of t h e  Louq.)&oroupb Con- 

- 
Olmrlhatbn 

Panllel 0 
W e a n  
Oulnuta 

Layer 8 nodes 

Figure  1 7 .  A Loughborough c o n t r o l  n e t .  T h e  
a r c h i t e c t u r e  e x p l i c i t l y  shows t h e  nodes t h a t  a r e  
p a r a l l e l .  

The Loughborough Control  Net makes use of 
t h e  property t h a t  p a r a l l e l  nodes can model most 
con t ro l  processes ,  by s t r u c t u r i n g  t h e  a r c h i t e c t u r e  
of t h e  n e t  so  t h a t  t h e  p a r a l l e l  nodes a r e  
e x p l i c i t l y  shown. Figure 1 7  i l l u s t r a t e s  t h i s .  T h e  
connect ion p a t t e r n  i s  dependent on t h e  c o n t r o l  
process t h a t  i s  modelled. I t  i s  constructed by t h e  
ana lys i s  of t h e  con t ro l  problem and by t r a i n i n g  on 
s u i t a b l e  t r a i n i n g  po in t s .  

a Netw- 

O n e  probiem of neural  networks which m u s t  
preclude t h e i r  widespread use i n  s a f e t y  c r i t i c a l  
a r e a s  i s  t h e  lack of knowledge of t h e  i n t e r n a l  
models t h a t  have been formed i n  t h e  ne t .  I f  an 
uns t ruc tu red  network (see f i g u r e  1 6 )  c o r r e c t l y  
r ep resen t s  t h e  t r a i n i n g  s e t ,  i t s  behaviour over 
t h i s  set i s  p e r f e c t l y  p red ic t ab le .  This can not be 
s a i d  about t h e  remaining po jn t s  i n  t h e  space of 
s y s t e m  v a r i a b l e s .  T h e  a c t u a l  t ransformation t h a t  
t h e  network s t r u c t u r e  implements i z  d i f f i c u l t  t o  
discover and so,  i t s  behaviour i s  hard t o  p r e d i c t .  
Making u s e  of t h e  p a r a l l e l  dependencies helps  t o  
a l l e v i a t e  t h i s  problem. I t  a l lows t h e  c o n t r o l  
network's behaviour t o  p r e d i c t e d  p e r f e c t l y  over 
t h e  t o t a l  space of system va r i ab le s .  Therefore t h e  
behaviour of a network can be progrdmmed given a 
s u i t a b l e  methodology and i t s  behaviour  f u l l y  
u n d .  -s tood.  No pa r t  0 1  t h e  networks behaviour i s  
u n d .  ined. 

A network can be eng inee red  t o  have a 
p a r t i c u l a r  c o n s t r a i n e d  topology and weight s e t  
which can t h e n  be tuned appropr i a t e ly  t o  provide 
t h e  required behaviour. All t h e  weights and biases  
w i l l  be  i n t e r r e l a t e d .  T h i s  means t h a t  
understanding t h e  funct ion of one node w i l l  a i d  
t h e  understanding of t h e  corresponding p a r a l l e l  
node. This is a l s o  t h e  ca se  even i f  t h e  network 
has been t r a i n e d  on sample da t a .  

Two p a r a l l e l  and opposi te  nodes e f f e c t i v e l y  
make no con t r ibu t ion  i n  output t o  t h e  region t h a t  
i s  not between t h e  two nodes. T h i s  i s  seen from 
t h e  f a c t  t h a t  t h e  c o n t r i b u t i o n  from t h e  f i r s t  
node, "+1" say, and t h a t  of t h e  second node, "-l", 
e f f e c t i v e l y  cancel when t h e  con t r ibu t ion  a r e  added 
by a node i n  t h e  next l a y e r .  (See [ e ]  f o r  fu r the r  
d i scuss ion )  . Throughout t h i s  d i scuss ion  p a i r s  of 
d i s c r i m i n a t i n g  nodes t h a t  segment a region a r e  
p a r a l l e l  and opposing. Therefore t h e  e f f e c t  of t h e  
t w o  p a r a l l e l  nodes on any p o i n t  o u t s i d e  t h e  
enclosed region i s  cance l l ed .  TtiL enclosed region 
i s  i n t e rp re t ed  a s  an a rea  r f  the input space where 
a s p e c i f i c  output i s  given. The behaviour of t h e  
complete network s t r u c t u r e  i s  e a s i l y  understood, 
s i n c e  t h e  p a r a l l e l  p l anes  t h a t  form t h e  hidden 
l aye r s  can be in t e rp re t ed  independently. 

To i l l u s t r a t e  t h e  a p p l i c a t i o n  of t h e  
network a r c h i t e c t u r e  t o  a r e a l  p rocess ,  t h e  
c h a r a c t e r i s t i c s  of t h e  d ispensing of adhesives i n  
t h e  manufacture of mixed technology PCB's a r e  
ou t l ined  below. E a r l i e r  work i n t o  neural  network 
based con t ro l  of t h e  adhesive dispensing s y s t e m  
1131 addressed t h e  quest ion of t h e  f e a s i b i l i t y  of 
t h i s  t y p e  of c o n t r o l l e r  f o r  t h i s  p a r t i c u l a r  
process .  Since t h e  input  da t a  t o  t h e  network was 
preprocessed,  much of t h e  problem so lv ing  l a y  
ou t s ide  t h e  network. Furthermore there  was no a 
p r i o r i  des ign  of  t h e  t opo logy  and i n t e r n a l  
r ep resen ta t  a n s '  a f u l l y  i n t e rconnec ted  network 
t r a i n e d  w i i n  app ropr i a t e  d a t a  was modified i n  an 
ad hoc manner u n t i l  s a t i s f a c t o r y  convergence was 
obtained. 

I n  t h e  manufacture of mixed technology 
P C B ' s ,  t h e  su r f ace  mount components a r e  secured t o  
the  board, p r i o r  t o  a wave so lde r ing  operat ion,  by 
a sma l l  ( 0 . 0 0 0 2  t o  0 . 0 0 5  c c s  depending on 
cumponent) amount of adhes ive .  T h e  amount of 
adhesive dispensed i s  c r i t i c a l l y  depe dent  upon 
s e v e r a l  p r o c e s s  environment  v a r i a b l e s  ( e . g .  
t e m p e r a t u r e ,  h u m i d i t y ,  e r r a t i c  t h i x o t r o p i c  
behaviour of t h e  adhesive, a i r  bubbles i n  t h e  flow 
and va r i a t ions  i n  t h e  PCB s u b s t r a t e ) .  

T h e  dispensing u n i t  c o n s i s t s  of a syr inge 
of adhesive coupled I O  a pres su re  c o n t r o l  u n i t .  
T h e  u n i t  i s  made up of a solenoid valve,  pressure 
r e g u l a t o r ,  t empera tu re  sen so^ and a p r e s s u r e  
t r ansduce r  t o  monitor t h e  v a r i a t i o n  of p re s su re  
w i t h i n  t h e  svr inge.  3 d '  cnsing u n i t  i s  f ixed 
t o  a SEIKO tr13000 roboL w h  moves t h e  syr inge to 
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locations on the PCB where the adhesive has to be 
dispensed, either for good or bad dispense 
operations. Feedback data collection is carried 
out by an image processing system (Imaging 
Technology IT1 151) coupled to a Pulnix TM-460 CCD 
camera incorporating a magnifying optical system. 

The original system, as reported in [l], 
was developed using the MUSE real time AI toolkit 
and used bang-bang rule based control as the main 
paradigm. MUSE is a hybrid modular system 
supporting a range of knowledge representation 
paradigms; PopTalk, a procedural language with 
object oriented programming extensions, a forward 
chaining rule language, a backward chaining 
language, data directed programming through the 
use of daemons and flexible relation supporting 
general relations between objects. Particular 
support for real time operation included agenda 
based priority scheduling, interrupt handling and 
fast data capture. 

Figure 18. Feedback control loop of the adhesive 
dispensing system. 

Figure 18 illustrates the basic feedback 
control loop of the adhesive dispensing system. By 
varying the height and/or width of the pressure 
pulse applied to the syringe the amount of 
adhesive dispensed can be controlled. Feedback 
data consists of the plan area of the dispensed 
blob. Differences between this and the target size 
required for a particular component provides the 
input for the process controller. Steady state 
control is illustrated in figure 19. 

t - - - -  i- MA" 

I 

I m q m r  4 

Figure 19. Steady State Control of the size of the 
adhesive blob. 

Control consists of maintaining the 
measured area within bands around the target. 
Action is taken whenever the measured area drifts 
outside the + / -  5%.  Figure 10 illustrates the 
network that can be easily configured to provide 
control. 

~ 
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BLOB FALLEN OVER GOOD DISPENSE 
Figure 20. Illustration of good and bad 
dispenses. 

There are several process faults that occur 
i n  the dispensing of blobs of adhesive. These 
faults are generally observed when process 
variables or trends in process variables exceed 
heuristically determined thresholds and thus can 
be monitored using simple networks that implement 
single thresholds (see figure 2). For example (a) 
solder pad contamination can occur when an 
incorrect blob shape is dispensed (figure 20). 
This is usually due to trailing the adhesive blob 
as the dispense head is moved to the next 
location. This "blob fallen over" condition is 
monitored by determining the ratio of the measured 
area of the blob to the area of a box that 
encloses the blob. For a perfect dispense this box 
area ratio (BAR) is -0.8. Solder pad contamination 
occurs at values BAR <0.6 (figure 21). 

BAR I GOOD 
threshold 

I dispenses 

Figure 21. The Box Area Ratio is a good indicator 
of the quality of an adhesive dispense operation. 

risetime \ falltime 

width 

Figure 2 2 .  Parametrisation of the variation of 
pressure within the syringe of adhesive. 

(b) The measured variation of pressure 
within the syringe is shown in figure 22. The 
pressure pulse is characterised by its risetime, 
pulse height, pulse width and falltime. Faults are 
indicated when parameters vary outside their 
allowable range. For example large increases in 
the risetime and falltime have been found to be 
caused by air leaks and sticking solenoid valves 
respectively. 

Figure 23. The increasing size of blob can 
indicate the presence of a bubble. 

(c) voids in the flow of adhesive can lead 
to missed dispenses where a blob is absent. The 
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onset of a "bubble" is characterised by a dramatic 
increase in the in the size of the adhesive blob 
in the absence of a corresponding increase in the 
dispense pressure (figure 23). 

Padillin0 
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A simple neural network solution for the 
adhesive dispensing system is appdrent from the 
above. Using a series of small independent 
networks a simple bang-bang controller and error 
monitor is easily determined. 

auantirtion Bcebatl 
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The interdependence of the individual 
parameters is currently under investigation. 
Figure 24 illustrates the methodology adopted (see 
also figure 11). 

The interdependence is determined from real 
data using a padeline (although standard system 
identification techniques 161 are also under 
investigation). Quantisation leads to a 
determination of the various thresholds and the 
control rules determined in the Boolean part of 
the network [lo]. 
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The paper has addressed the problem of 
designing neural networks rather than treating 
them as adaptive black boxes. The use of 
dependencies in the hidden layers tightly 
constrains the space of possible configurations of 

network. The interdependencies introduced of 
n g  the nodes parallel allows us to be more 
ident about the internal representations that 
induced by the training set. 
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