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DESIGNING NEURAL NETWORKS FOR
MANUFACTURING PROCESS CONTROL SYSTEMS

C. H. Messom and C. J. Hinde,
Department of Computer Studies,

and

A. A. West and D. J, Williams,
Department of Manufacturing Engineering,
Loughborough University of Technology,
Loughborough, Leicestershire, LEl11 3TU, UK.

The problem of designing neural networks
for the control of discrete manufacturing
processes is addressed in this paper. Rather than
treating the networks as adaptive black boxes, a
new architecture is introduced that links the
weights associated with the nodes and thus allows
the relationships and internal structure to be
tightly constrained. The constrained search space

glves greater confidence in the internal
representations that have been induced by the
training set and therefore about the correct

behaviour of the network between the given limits.
The method is illustrated by its application to
the dispensing of adhesives.

Iatroduction

The solution of typical problems
encountered in manufacturing process control are
examined in this paper. These problems can be
generally described as maintaining the process
output between set limits and identifying the
actions to be taken when the output approaches or
exceeds the limiting conditions. Limits are
reached either because of process drift or because
of catastrophic process errors. These
characteristics are present in many manufacturing
processes, for example the dispensing of adhesives
in the manufacture of “mixed technology” printed
circuit boards (PCB’s) ((1], see below) and metal

cutting ({14). The processes can be characterised
as being partially understood. Some
characteristics can be described and modelled

whereas others, such as the interactions between
various process variables, cannot.

Representations that allow controllers to
be informed of certain of the process
characteristics and learn the balance are of
importance to the control of such processes.
Neural networks provide an attractive method of
learning the unknown characteristics {3]. They
are, however, difficult to configure and interpret
after teaching (see [7) and {11]). The ease with
which the internal representations of neural
networks can be interpreted is important,
especially when such controllers are to be applied
in safety critical applicatio.s. Hybrid networks
designed using readlily interpretable models
therefore have considerable advantages.

This paper outlines the des. a of a novel
neu .1 network architecture based upon linking the
characteristics of several nodes. The application

of the network architecture to the accurate

dispensing of small quantities of adhesives is
then described. The network architecture is
particularly attractive for this application

because it allows well understood system level
control conditions to be rapidly included ([5]) and
[2)), the relationships Dbetween these to be
learned and the system to be rapidly modified when
the material to be dispensed is changed.

Neural Netwark TechniqQues

Several Properties of neural networks make
them ideal for application in control processes.
Their linear threshold properties allow for
immediate quantisation of the system variables,
while their Boolean transformation property allows
for their use in intelligent control systems.

These two properties are discussed further.
It is shown that a network making use of linked
parallel nodes is ideal for modelling control
problems and indeed is essential if the behaviour
of the network is to be fully understood.

Simplified Single System Yariable Case

Nodes in a neural network are linear
threshold devices. A node with a single input is a
particularly simple threshold unit (see figure 2).
Figure 1 shows a visual representation of the
threshold ¢ eration.
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Figure 1. Characterising a single variable with a
single split for acceptable and unacceptable
decisions.

The discriminating surface is a single

point given by the equation:
Bias + Weight*Input_Variable = 0
hand side is

than 0, the
e equation.

The output is 1 if the left
greater than 0 and -1 if it is lesx:
Ccross ove poi:. 1is defined by
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Figure 3 shows the relevant algorithm,

System _ Variable O O Limit_Tr

Figure 2. The neural implementation of a
single threshold.

net

The single threshold can be implemented in
a neural network with a single unit as shown in
figure 2.
dimension

The definition of the boundary in one

merely specifies a the
System_Variable axis which satisfies the equation:
System_Variable - limit = 0.

point on

By setting the Bias_Weight to - 1limit
(minus limit) and the Input_weight to 1.0, if the
value of the System_Variable is greater than the

limit then the negative contribution of the
Bias_Weight is overcome by the value of the
System_Variable and the output is deemed
acceptable.
Acceptable
if
Bias_weight +
Input _weight *System Variable
>0
Not_Acceptable
if
Bias_weight +
Input_weight*System Variable
<0

Bias_weight = ~ limit

Input_weight = 1.0
Figure 3. The equations and weights which could be
assigned to the network

shown 'in figure 4 to

implement the decision on a single system
variable.
S . £ Reqi

An important element of control processes
is to initiate action in a specified region of the

system control variables. The neural network
systems are ideal for segmenting areas of the
system variables.

The segmentation for a single system
variable is shown in figure 4. This cannot be

implemented in a single layer network and requires
a two layer network as shown in figure 5. The
inputs to the final single node are in the open
interval (-1,1) with the majority of values close
to the end points. If we employ a simple threshold
system we are taking values from set {-1,1} and
can treat any subsequent layers as implementing
Boolean transformations.

The resulting network then has two parts,

the first layer taking the real valued input
values and separating them into regions, the
second layer then combining these regions. The
outy: . node implements an OR transformation.
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Figure 4. Splitting the system variable into three
regions, unacceptably 1low, acceptable and
unacceptably high.
Upper_Limit
System_Variable High v Low
Lower_Limit
Figure 5. The neural net implementation of a

single system variable that must be kept within
limits.

Upper_Limit and Lower_Limit segment the

system variable into three parallel regions (see
figure 4 and the equations in figure 6). The
corresponding nodes denoted Upper_Limit and

Lower_Limit defined by the equations below (figure
6,7 and 8), are parallel, since their weight
values are linearly dependent.

Upper Limit - 1.0*System Variable = 0
-Lower_Limit + 1.0*System Variable = 0
Figure 6. The equations of the surfaces used to
separate the regions 1in figure 4 implemented in
the network shown in figure 5.

Acceptable
if
- Upper_limit +
1.0 *System Variable
<0
Not_Acceptable
if
- Upper_Limit +
1.0*System Variable
>0
Figure 7. The equations and weights which could be

assigned to the network shown in figure 5 for the
Upper_Limit node.

Acceptable
if
Lower_limit +
-1.0 *System Variable
<0
Not_Acceptable
if
Lower Limit +
-1.0 *System Variable
>0 -
Figure 8. The equations and weights which could be
assigned to the network shown in figure 5 for the
Lower_Limit node.
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5 X S 1 Regqi
Many control problems require several
regions of the control variables to be segmented.
A simple example of a bimodal warning illustrates
this point. Figure 9 shows the two regions where
the signal should be active and the three regions
where the signal is inactive.

No Warning
Hen — - - - Waming
MoMen 7 & — & o No Waring
Mdlw = — — = — — — =~ Warning
e No Warning
Timo ———=s-

Figure 9. Regions where the inhibited warning node
is active and inactive.
The system is not required to give a
warning for the case error > High as it will be
taking action at this point. This is an inhibited
warning. A suitable network architecture
implementing bimodal warning outputs,
of the parallel segmentation nodes, is shown in
figure 10. All the nodes, High, Low, Mid_High,
Mid_Low are parallel, since they segment a single
process control variable.

making use

Bimodal
Warn

System_Variable

Low

Figure 10. A network structure fo:
the bimodal warning node.

implementing

Multiple variapl

Many control processes are possible when
considering multiple system variables, The
variables may interact in nonlinear algebraic ways
which requires system investigation to discover
the combination of wvariables.
implementation of control processes
control variables
design task, a suitable methodology 1s presented.
Figure 11, shows the three main components
relevant for designing a neural network control
process.

relevant Since
when many

are present 1is a difficult

S I : :

All complex processes will be influenced by
sev..al system variables, the relevant
variables discovered, the

Once

Process have been
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algebraic relationships between them must be

discovered.

System Investigation:
Padalines

Quantisation:
Paralie! Nodee for Cortrol

Boolean Network Structure: |
Parallel hidden nodes

Figure 11. Methodology for designing neural

network controllers of complex processes.

This is achieved by an investigation of the
relevance of the algebraic combinations of process
variables. This technique has been used before

([4), {12]) and is derived from a combination of
polynomial (p) and adaptive 1linear neuron
(adaline), they are known as polynomial adaptive

linear neuron The basic idea is that
new input nodes can be formed from functions of

(padaline) .

the basic input nodes, 1if the function being
modelled is the sum of several elementary
functions then the padaline can discover the

coefficients of the separating surface.

Acceptable
if
Bias_weight +
3 Input_weight (i) *System Variable (i)
>0
Not_Acceptable
if
Bias weight +
Y, Input_weight (i) *System Variable (i)

<0
Figure 12. Algorithm that defines a threshold rode
with many inputs.
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relevant
the

Once the system variables have
padaline layer, the
either a linear

Figure 12, or a

been discovered by
quantisation layer
thresholding layer,

segmentation layer.

acts as
see
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Figure 13.
system.

Segmentation of a two control variable
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A pair of parallel opposite facing nodes in
the quantisation layer can segment the control
variables into three regions. See figure 13 for a
visual representation of the regions when only two
system variables are present. Similarly more
regions can be segmented with the use of more
parallel nodes.

Ihe Booleapn Network Structure

is the
the the
require

The final part of the network
Boolean transformation that is applied to
selected region. All control problems
specific action to be taken when the process
system is in a specific state. The controller has
to provide suitable outputs when the inputs are
within a specific region. This is the case however

complex the relationship between the system
variables. This 1is shown for a specific two
variable case in figure 14. The process should

follow the ideal path to within a given tolerance.
If the process is within this region no action is
taken, while for all other
action must be taken.

g

\

regions corrective

System Variable 1

Figure 14. Process with two system variables
showing the ideal path to within a given
*olerance.

The selection of these regions with

suitable decisions can be made in just one layer,
(refer to figure 10), since the multivariable case
is analogous to the single variable case. If we
are implementing an intelligent controller that
requires different remedial action given different

segments of the input space a more general two

layer network must be used.
System Varlable 2
D
[t ——"
T

T
A

\\\

System Variable 1

Figure 15. Process with two system variables
showing two points that require distinct
corrective actions.
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Referring to figure 15, the point A and the
point B require corrective action to restore the
process to the desired region. However, the action
that must be applied is different in each case
since they lie in different segments of System
Variable 1. The Boolean transformation required to
implement this decision requires two layers [9].

Standard Control Net

Beyond the first layer of a network the
values input to and output from a node are in the
set (~1,1} and therefore all transformations
beyond that layer are Boolean. The output of any
node is a Boolean value and so all the
quantisation must occur in the first layer. This
results in real values being turned into ranges
and so is referred to as the quantisation layer.

Boolean Transformation .

Real Valed
Inputs
T |
Quantisation
- O
Boolean
Outputs

Figure 16. The control network architecture with
real valued inputs and interacting quantisations.

Figure 16 illustrates a composite network
showing an initial fully connected quantisation
layer followed by a Boolean transformation layer,
This would be the form of a standard control
network that does not exploit the parallelism
inherent in control processes.

Parallel Nodes in Neural Network Control Systems

Simple independent quantisation that
segments the control parameters provides sets of
parallel nodes (the quantising nodes themselves).
Transformed control parameters, e.g padalines,
that are quantised (figure 16) with parallel
regions in higher dimensional spaces also provide

parallel nodes. Therefore, parallel nodes occur
naturally and are the ideal representational
scheme, whether we are considering simple
quantisation or interconnected quantisation. The
Boolean transformation layer can similarly be
implemented by parallel nodes (see [8] and [9]).
The complete network structure from the

quantisation layer to the Boolean transformation
layers can be naturally implemented using parallel
nodes.
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The network structures with these specified
relationships has much fewer weight wvalues to
determine, most of them being interrelated.
is more knowledge available about the topology and
internal representations ef the network since
these are made explicit by the parallel
relationships. Having more knowledge about the
network allows the understanding and
interpretation of the representation to be more
successful.

There

Paralio!
0des Boolean
Outputs
Figure 17. A Loughborough control net. The

architecture explicitly shows the nodes that are
parallel.

The Loughborough Control Net makes use of
the property that parallel
control processes,

nodes can model most
by structuring the architecture
of the net so that the parallel nodes are
explicitly shown. Figure 17 illustrates this. The
connection pattern is dependent on the control
process that is modelled. It is constructed by the
analysis of the control problem and by training on
suitable training points.

und ; o

One problem of neural networks which must
preclude their widespread use in safety critical
areas is the lack of knowledge of the internal
models that have been formed in the net. If an
unstructured network (see figure 16) correctly
represents the training set, its behaviour over
this set is perfectly predictable. This can not be
said about the remaining points in the space of
system variables. The actual transformation that
the network structure implements is difficult to
discover and so, its behaviour is hard to predict.
Making use of the parallel dependencies helps to
alleviate this problem. It allows the control
network’s behaviour to predicted perfectly over
the total space of system variables. Therefore the
behaviour of a network can be programmed given a
suitable methodology and fully
und: “stood. No part nt behaviour is
und: ’ ined.

its behaviour

the networks
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be engineered to have a
set

A network can
particular constrained topology and weight
which can then be tuned appropriately to provide
the required behaviour. All the weights and biases
will be interrelated. This means that
understanding the function of one node will aid
the understanding of the corresponding parallel
node. This is also the case even if the network
has been trained on sample data.

Two paraliel and opposite nodes effectively
make no contribution in output to the region that
is not between the two nodes. This is seen from
the fact that the contribution from the first
node, “+1” say, and that of the second node, “-17,
effectively cancel when the contribution are added
(8) for further
Throughout this discussion pairs of
discriminating nodes that segment a region are
parallel and opposing. Therefore the effect of the
parallel nodes on any point outside the
enclosed region 1is cancelled. Thc¢ enclosed region

by a node in the next layer. (See

discussion).

two

is interpreted as an area cf the input space where
a specific output is given. The behaviour of the
complete network structure is easily understood,
since the parallel planes that form the hidden
layers can be interpreted independently.

The Application
To illustrate the application of the
network architecture to a real process, the

characteristics of the dispensing of adhesives in
the manufacture of mixed technology PCB’s are
outlined below. Earlier work into neural network
based control of the adhesive dispensing system
[13] addressed the question of the feasibility of
this type of controller for this particular
process. Since the input data to the network was
preprocessed, much of the problem solving lay
outside the network. Furthermore there was no a
priori design of the topology and internal
representat ons- a fully interconnected network
trained wiin appropriate data was modified in an
ad hoc manner until satisfactory convergence was
obtained.

In the manufacture of mixed technology
PCB’s, the surface mount components are secured to
the board, prior to a wave soldering operation, by
a small (0.0002 to 0,005 ccs depending on
component) amount of adhesive. The amount of
adhesive dispensed is critically depe dent upon
several process environment variables (e.qg.
humidity, erratic thixotropic
behaviour of the adhesive, air bubbles in the flow
and variations in the PCB substrate).

temperature,

The dispensing unit consists of a syringe
of adhesive coupled to a pressure control unit,
The unit is made up of a solenoid valve, pressure
regulator, temperature sensor and a pressure
transducer to monitor the variation of pressure
within the syringe. " =2 d° ‘ensing unit is fixed
to a SEIKO k13000 robot wh moves the syringe to




locations on the PCB where the adhesive has to be

dispensed, either for good or bad dispense
operations. Feedback data collection is carried
out by an image processing system (Imaging

Technology ITI 151) coupled to a Pulnix TM-460 CCD
camera incorporating a magnifying optical system,

The original system, as reported in (1]},
was developed using the MUSE real time AI toolkit
and used bang-bang rule based control as the main
paradigm. MUSE is a hybrid modular
supporting a range of knowledge representation
paradigms; PopTalk, a procedural lanqguage with
object oriented programming extensions, a forward
chaining rule 1language, a backward chaining
language, data directed programming through the
use of daemons and flexible relation supporting
general relations objects. Particular
support for real time operation included agenda
based priority scheduling,
fast data capture.

system

between

interrupt handling and

Target Pressure Disp d
Aee * Coaroenar | puse T oisponsing Blob
System >
IVisbn L
Biob
Area
Figure 18. Feedback control loop of the adhesive

dispensing system.

Figure 18 illustrates the basic feedback
control loop of the adhesive dispensing system. By
varying the height and/or width of the pressure
pulse applied to the syringe the amount of
adhesive dispensed can be controlled. Feedback
data consists of the plan area of the dispensed
blob. Differences between this and the target size
required for a particular component provides the
input for the process controller. Steady state
control is illustrated in figure 19.

Biob Area Action
e — — M08 -> TR
gt P e = VRG> 2%
area No Action
b e — e = — -
— — — —
Action
Disperses _g,.

Figure 19. Steady State Control of the size of the
adhesive blob.

Control <consists of maintaining the
measured area within bands around the target.
Action is taken whenever the measured area drifts
outside the +/- 5%. Figure 10 illustrates the
network that can be easily configured to provide
control.
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BLOB FALLEN OVER GOOD DISPENSE

Figure 20.
dispenses.

Illustration of good and bad

There are several process faults that occur
in the dispensing of blobs of adhesive. These
faults are generally observed when process
variables or trends in process variables exceed
heuristically determined thresholds and thus can
be monitored using simple networks that implement
single thresholds (see figure 2). For example (a)
pad contamination can occur when an
incorrect blob shape is dispensed (figure 20).
This is usually due to trailing the adhesive blob
as the dispense head is moved to the next
location. This *“blob fallen over” condition is
monitored by determining the ratio of the measured
area of the blob to the area of a box that
encloses the blob. For a perfect dispense this box
area ratio (BAR) is ~0.8. Solder pad contamination
occurs at values BAR <0.6 (figure 21).

_

dispenses __pm
Figure 21. The Box Area Ratio is a good indicator
of the quality of an adhesive dispense operation.

solder

BAR
threshold

risetime
fallime
pulse ’//
height
A
pulse
width

Figure 22, Parametrisation of the variation of
pressure within the syringe of adhesive.

(b) The measured variation of pressure
within the syringe 1is shown in figure 22. The
pressure pulse is characterised by lts risetime,
pulse height, pulse width and falltime. Faults are
indicated when parameters vary outside their
allowable range. For example large increases in
the risetime and falltime have been found to be
caused by air leaks and sticking solenoid valves
respectively.

Figure 23. The increasing size of blob can
indicate the presence of a bubble.

(c) voids in the flow of adhesive can lead
to missed dispenses where a blob is absent. The




onset of a “bubble” is characterised by a dramatic
increase in the in the size of the adhesive blob
in the absence of a corresponding increase in the
dispense pressure (figure 23).

A simple neural network solution for the
adhesive dispensing system is appatent from the
above. Using a of small 1independent
networks a simple bang-bang controller and error
monitor is easily determined.

series

The interdependence of the individual
parameters 1is currently under investigation.
Figure 24 illustrates the methodology adopted (see
also figure 11).

Area

BAR

Padaline Quantisation Boolean

Risstime Transformation

Faltime

Pulse width trend

Puise height trend

Area trend

i/

Figure 24. The methodology adopted in determining
the interdependencies between the
dispensing parameters.

adhesive

The interdependence is determined from real
data using a padeline (although standard system
identification techniques [6] also under
investigation). Quantisation leads to a
determination of the various thresholds and the
control rules determined in the Boolean part of
the network (10].

are

Conclusions
The paper has addressed the problem of
designing neural networks rather than treating
them as adaptive black boxes. The use of
dependencies in the hidden layers tightly
constrains the space of possible configurations of
the network. The interdependencies introduced of
making the nodes parallel allows us to be more
confident about the internal representations that
are induced by the training set.
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