

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288388686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A lightweight Web GUI specification and realisation system and its impact on
accessibility

Roger Stone
Department of Computer Science

Loughborough University of Technology, LE11 3TU, England
R.G.Stone@lboro.ac.uk

Abstract

Developments like XFORMS are supposed to
encourage the web programmer to concentrate on the
specification of the functionality of the web GUI rather
than its appearance on screen. Instead of having the
document delivery system make the same realisation
choices for every user it could be better to give the
user some control in order to fully exploit this degree
of choice. This would be particularly important for
disabled users. This work shows how a functional
specification of a GUI may be rendered in different
ways to different users by using personal preferences
residing in a user's profile. This extends previous work
on profile-based web document delivery. Because the
GUI parts of pages are rendered according to their
own personal preferences, the web pages become more
accessible to disabled users with very much reduced
effort from the author of the pages. The technique does
not require a specific or modified browser and can be
easily implemented using a combination of common
technologies.

1. Introduction

It is claimed that a large percentage of the time
needed to create an application is spent on the user
interface, the ‘GUI’ [1]. For web pages the table-
based, pixel-positioning methods of the early days
have largely given way to CSS-based methods. There
is a growing acceptance of elastic interfaces [2] –
where the designer accepts that the user may well not
see the interface rendered as the designer saw it. This

could be because of a drastic change of screen size
(e.g. desk top to mobile phone) or a substitution of
styles (e.g to provide better contrast because the user
has a visual impairment). One bold approach to reduce
the time spent by the author on the user interface was
to try and evolve it by genetic programming [3]. The
development of XFORMS [4] reinforces the idea that
the designer should simply be able to specify the
interface and leave the realisation up to the browser.
This provides a degree of freedom for the rendering
engine. An example of the kind of choice that needs to
be made is how to render on screen an interface
element that has been specified as a one-out-of-n
choice. The expectation is that under certain conditions
a group of radio buttons would be chosen and under
other conditions a select/menu element would be
chosen. The question that remains is just how the
rendering decisions are to be made. The conventional
solution is to try and make decisions which would suit
all users thus perpetuating the historical one-
realisation-suits-all concept. An alternative, explored
here, is to use the freedom offered by the designer to
allow the delivery system to personalise the rendering
of a page for a user by taking account of their
preferences expressed in a profile.

The discussion about utilising degrees of freedom

to benefit individual users can be applied to increase
the accessibility of web pages and thereby benefit
disabled users. WCAG [5] contains many tests to make
sure that HTML Forms are accessible to all users. The
conventional process is to try to ensure that a single
realisation of a web page is accessible by all users (the

one-realisation-suits-all concept). However the new
draft of the Web Content Accessibility Guidelines
(WCAG 2.0 [6]) identifies specific disabilities and
identifies which tests are intended to make sure that
pages are accessible to people with those disabilities.
This acknowledges the differences in user
requirements but persists in trying to capture their need
by group or category. A more radical approach is to
acknowledge the individual nature of each disabled
user and try to render a page optimally for each
individual. This idea has resulted in the creation of a
profile for each user so that each page can be rendered
taking into account the various preferences stored in
the profile. So far the work on user profiling has
captured three areas of preferences [7]. It is proposed
to add the GUI preferences to the profile and thus fully
exploit the degrees of freedom in the realisation of the
interface.

The designers and implementers of XFORMS have

been aware of accessibility issues and have taken some
steps towards accessibility in the conventional sense.
The designers are working to a charter to ensure that
XForms meets W3C accessibility goals [8]. The
accessibility of the XFORMS extension of the Firefox
browser from Mozilla is to be improved [9]. However
the approach to providing accessibility in both cases is
via the one-realisation-suits-all concept.

In order to investigate the alternative concept a

prototype system was constructed. The system was
built to accept web pages containing interfaces
captured in the specification style and to deliver such
pages to an individual with interfaces dependent on the
profile for that individual. It was convenient to use a
basically HTML-based system but with the GUI
specified in the notation of the User Interface
component of XFORMS. An XSLT [10] stylesheet is
used to render the XFORMS interface elements into
HTML according to the user preferences as specified
in a profile. Some of the implementations of XFORMS
also use this transformation approach (e.g. [11]) and
there are reverse transformations available (e.g. [12])
which try to assist with the legacy problem of
converting HTML Forms to XFORMS.

2. User Profiles

Previous work on profile-based document delivery
concerned profiles containing information about user
preferences in relation to three aspects of a document:
Styling, Essentiality, Accessibility checking.

In regard to styling, the profile stores text-size, text-
font, colour preferences, etc. (c.f. TechDis Toolbar
[13], Web Adaptation software [14]). In regard to
essentiality, the profile stores an essentiality level
(currently on a scale of 1-10) as a measure of how
much information the user and/or their chosen
browsing tool can comfortably handle in a single
transaction. This aspect relies on the pages having
been specially marked up by the author. We use a
system of micro-formatting so that the conformity of
the page to markup standards is not compromised. For
example

<p class="ess10">This paragraph is crucially important.</p>
<p class="ess1">This is purely aesthetic content</p>

In regard to accessibility checking we consider that

having an accessibility badge at the foot of a page is of
very limited help to the disabled user. We maintain
that a live check, made before the page is offered to the
user, is of greater benefit. However in keeping with the
concept of user-profiles it is realised that not all of the
WCAG checks are of interest to all users. Therefore
the accessibility checker only runs the tests requested
in the profile. If any tests fail then a report is given to
the user before they read the page so that they are fore-
warned of any accessibility issues. We use our own
accessibility checker written in CDuce inspired by
Centeno [15].

It is into this environment that we wish to add the

preferences of a user in relation to the rendering of the
GUI of a web Form. These preferences could be
expressed at different levels. They could merely be
stylistic in relation to font-size for example. They
could relate to a particular method of labelling of form
controls (e.g. label preceding, use of square brackets,
colon) as in this radio example [where, for
convenience the radio buttons are represented by (o)]

[male: (o)] [female: (o)]

At these levels the preferences can be handled using

CSS. However at the highest level, the preferences
could be a specification of the circumstances in which
to choose between a group of radio buttons and a
select/menu element. It is at this level that it is
proposed to use XSLT styling.

3. XFORMS

If coming to XFORMS from a background in
HTML Forms a key difference is the concentration on
functionality rather than rendering. So for example a

select1 tag can be used to specify an “exactly one from
many” selection which may finally be rendered to the
user as a radio group or as a menu selection, e.g.

<select1 ref="semester">
<label>Semester</label>
<item><value>1</value><label>Semester 1</label></item>
<item><value>2</value><label>Semester 2</label></item>
</select1>

Similarly a select tag can be used to specify a
“none, one or many” selection which may finally be
rendered to the user as a checkbox group or as a
(multiple choice) menu selection, e.g.

<select ref="cards">
<label>cards held</label>
<item> <value>visa</value> <label>Visa</label> </item>
<item> <value>delta</value> <label>Delta</label> </item>
<item> <value>switch</value> <label>Switch</label> </item>
</select>

The input tag in XFORMS is only used when text
input is required. A submit button is specified by the
submit tag and a password by the secret tag.

4. XFORMS and Accessibility

XFORMS implementations via HTML have the
opportunity to increase the accessibility of web forms
in the sense that they can apply the WCAG rules
consistently for all Form elements. Thus the WCAG
guideline 12, Checkpoint 4, “Associate labels
explicitly with their controls” can be enforced by
making sure that the transformation from XFORMS to
HTML picks up the label tag in the XFORMS
specification and employs it in the HTML realisation.
For example the first item in

<select1 ref="semester">
<label>Semester</label>
<item><value>1</value><label>Semester 1</label></item>
<item><value>2</value><label>Semester 2</label></item>
</select1>

could be processed (to produce a label tag with a
attribute named for, relating to a radio button) and
become

<label for="id001">Semester 1</label>
<input type="radio" name="Semester" id=" id001" value="1">

Furthermore these generated tags could be given

class attributes (e.g. class="label" and class="labelled"
so that they could be styled appropriately by a CSS
stylesheet.

5. XFORMS and XSLT

It is quite easy to write an XSLT stylesheet to
perform the basic processing outlined above to
transform XFORMS Form elements into HTML Form
elements. Perhaps one of the harder issues is to capture
the pre-selection in the style of XFORMS. The
information about pre-selected items is given in
instance tags in the head of the document. For
example, for the semester example above a pre-
selection of semester two could be achieved by writing
the instance tag

<instance>
 <data xmlns=""><semester>2</semester></data>
</instance>

When building select tags, radio buttons and check

boxes this information has to be accessed and turned
into selected or checked attributes.

The degree of freedom of presenting a one-out-of-

many choice as a radio group or a select can be
handled by a template match along the lines shown
below

<xsl:apply-templates match="select1">
 <xsl:choose>
 <xsl:when test="count(item)<’6' ">
 ...transform XFORMS select1 to an HTML radio group...
 </xsl:when>
 <xsl:when test="count(item)>=’6' ">
 ... transform XFORMS select1 to an HTML select...
 </xsl:when>
 </xsl:choose>
</xsl:apply-templates>

Here if there are less than six choices to be

presented then a radio template is used, otherwise a
select (menu) template is used.

6. XFORMS and Actions

It is proposed to translate an XFORMS
specification of a GUI to XHTML for presentation to
the user. During the translation the user profile will be
consulted as to which realisation to use for each
element. However a potential problem arises here. If
the author of the GUI does not know which interface
elements will be used, how can they write the script
which is used to process the form results after
submission?

For the one scripting system that has been explored

in detail (PHP [16]) there is a simple solution. For the
interface elements textbox, password, textarea, radio

button, select (single) and submit button the ‘value’ is
passed as a single variable. All that has to be ensured is
that the XSLT transformer translates the ref attribute of
the XFORMS to the name attribute of the HTML
version. The action script will then receive an
instantiated variable of the same name and can then
process the value in the normal way.

More care has to be exercised over the interface

elements checkbox and select (multiple). Here the
‘value’ is a multiple value conveniently carried by an
array in the processing script. Now PHP has a built-in
behaviour of expanding an array to accept another
value when empty indexing brackets are provided so
that if the first reference to an array $v in a script is

$v[]="A"; $v[]="B"; $v[]="C";

then it has the same effect as

$v[0]="A"; $v[1]="B"; $v[2]="C";

This is exploited in the XSLT transformation of the

XFORMS select element where the transformation of
the ref attribute r is to a name attribute r[]. Thus an
XFORMS select tag such as

<select ref="sport">
 <item><value>f</value><label>football</label></item>
 <item><value>r</value><label>tennis</label></item>

</select>

is transformed according to user preference to either
the HTML menu

<select name="sport[]" multiple="multiple" id="select">
 <option value="f">football</option>
 <option value="t">tennis</option>
 ...
</select>

or the HTML radio group

<label for="id1">football</label>
<input type="checkbox" name="sport[]" value="f" id="id1" />
<label for="id2">tennis</label>
<input type="checkbox" name="sport[]" value="t" id="id2" />

...

In either case the script programmer can use the

built-in iterator each(...) to look through the array
$sport to find out if it contains any of the values “f” or
“t”, etc. as defined by the specification.

7. CSS and Profiles

Within the profile work it has already been
established how to store CSS type styles in a user
profile and apply them routinely on behalf of a user.
To some extent this can be done with XFORMS. For
example the styles label and labelled referred to earlier
could be defined as

.label:before { content: " [" }
.label:after { content: " --> " }
.labelled:after { content: "] " }

This would have the effect of `bracketing' the label

to the control and `pointing' from the label to the
control. The effect on a radio button group would be
something like

 [Semester 1--> (o)] [Semester 2--> (o)]

This would help overcome the potential ambiguity

in a long list of radio buttons as to whether the label
was on the left or the right.

mon (o) tues (o) wed (o) thurs (o) fri (o) sat (o) sun (o)

However a much more drastic `styling' can be

contemplated. If a particular disabled user can always
operate radio buttons confidently (even if badly styled)
and has difficulty with menus (however they are
styled), then that user should be able to state as a
preference that all one-out-of-many choices are to be
presented using radio buttons. This level of styling
cannot be achieved with CSS and so it is necessary to
resort a more powerful styling system.

8. XSLT and Preferences

The Extensible Style Language XSL contains
XSLT which is a transformation language. A
stylesheet is constructed out of templates which are
applied when they match some criterion. Typically this
criterion is based solely on the XML input that is being
processed (e.g. “is there a descendant of the root node
of the input which has a certain tag name and attribute
value...?”). For the situation under consideration the
criteria will be based on the web page requested by the
user but will also include preferences expressed by the
user in their profile.

Traditionally radio buttons and checkboxes are used

for small numbers of choices and menus are used for
the larger numbers of choices. This means that the
basic choice that a user might make is to decide on the

break point at which changeover happens. Thus a
template for select1 might be coded to produce
alternative results which depend on the value of an
<xsl:variable> USER_RADIO_MAX as follows

<xsl:template match="select1">
 <xsl:if test="count(item)<$USER_RADIO_MAX">
 <xsl:apply-templates mode="radio" />
 </xsl:if>
 <xsl:if test="count(item)>=$USER_RADIO_MAX">
 <xsl:apply-templates mode="menu" />
 </xsl:if>
</xsl:template>

so that an XFORMS select1 element is either
transformed into a radio group (if there are less than
six items) or a menu if there are more items.

9. Storing GUI preferences in a profile

Now that XSLT gives the ability to transform the
web page according to user preferences it must be
established how to provide the correct stylesheet which
can transform the page according to user preferences.
First the range of preferences that need to be
accommodated should be established.

The phrase “radio to 6, checkbox to 10” could be

treated as a specification of user preferences which
would suggest switching to menus for a select1 tag
with more than 6 and for a select tag with more than 10
options. The specification “radio to 0, checkbox to 0”
would be treated as a request to always use menus. The
specification “radio to 65535, checkbox to 65535”
would effectively be treated as a request never to use
menus.

The appearance of the large number (65535) may

bring to mind a question as to how many choices there
can legitimately be in a selection. One of the common
occasions when a relatively large number of choices is
met is the traditional sign-up page where a user is
giving personal details in order to register for some
kind of service. This will often have a form element
which contains an alphabetical choice of country and
typically this will have around 250 entries. This can be
an infuriating choice to make, even as an able-bodied
user, if you are not sure whether your country is listed
under “b” for Britain, “e” for England or “u” for
United Kingdom. Neither radio buttons nor a menu
seem ideal for this wide choice. It is possible that a
further interface option might be invented to try to the
effort required to make this choice - maybe a text box
with a paragraph of hints following to suggest what to
type in the text box:

Country: [type here] one of AL(Albania)
 ... AR(Argentina) ... AU(Australia), AT(Austria)
 ... EN(England) ... FR(France) ...

In fact there are more possibilities even within radio

buttons, checkboxes and menus. XFORMS uses the
appearance attribute with three possible values “full”,
“compact” or “minimal”. This allows the designer to
hint at a suitable realisation. Thus a 4-way select1
could be portrayed as a radio if “full” is specified, as a
stay-open 4 choice menu if “compact” is specified and
as a collapsing menu of height 1 for “minimal”.
However these are choices that we would want the
user to make.

In the preceding section there was a discussion of

using CSS styling to introduce content onto the page to
help ‘bracket’ together a form element and its label.
However CSS Styling cannot switch the order of a
label and the element it labels. Having label first or
element first is another preference that must be
handled within the XSLT styling.

Because of the range and detail of the interface

preferences it was decided to experiment first with
associating complete stylesheets with individual users
rather than trying to parameterise a master stylesheet.
It is not envisaged that a user would have to write a
stylesheet or any part of it directly. Rather they should
be able to interact with a visual tool which offers a
range of basic settings which they could customise.

10. Implementation details

The environment for this work is largely (X)HTML
1.0 with dynamic pages implemented in PHP with
mySQL providing database support. This means that
introducing XFORMS requires the rewriting of HTML
Forms into equivalent XFORMS specifications. In this
lightweight, experimental implementation using only
the user interface part of XFORMS, the XFORMS tags
are written directly into an otherwise XHTML 1.0
compliant file. An XSLT stylesheet recognises and
rewrites the XFORMS parts and passes the remaining
XHTML through unchanged. The details are slightly
different for static or dynamic pages. Where the
original HTML Form-based version was a static page
the XFORMS version can be transformed by a very
short server-side script which simply identifies the xml
file and the xsl transformation file and invokes the xslt
processor.

Input Processor Output

XFORM.xml

PHP Script invoking xslt
processor (+ templates.xsl)

HTML Form

Table I - Static Page

Where the original HTML Form-based version was

a dynamic page, a new dynamic page is created which
generates XFORMS output in place of HTML Form
output. A new short server-side script is then written
which first executes the XFORMS-updated script
using wget and then transforms the result using the xslt
processor.

Input Processsor 1 Processor 2 Output

XFORM.php

wget

xslt processor
(+ templates.xsl)

HTML

Table II - Dynamic Page

The profiles are stored in a mySQL database table.

The profile-based delivery tool we have extended is
referred to as a filter. By starting at the filter's home
page and after selecting a profile to use, the user
chooses their first URL to browse. The filter makes
changes to the page in accordance with the preferences
of the user and hopefully causes an optimum page to
be rendered to the user. If the user now chooses to
select a link away from the page then the new page
will also be filtered. This is because part of the action
of the filter is to rewrite links. An original link that
might have looked like

link text

is rewritten to be re-routed through the filter as

link text

11. Conclusions

There are two opposing views about ensuring
accessibility of web pages. In the one view the page
author is expected to create a single version of their
page which is accessible by all. In the other view there
is a tacet admission that this one-realisation-suits-all
concept is flawed. The alternative is to provide a
system which knows enough about the person for
whom it is providing pages so that it can adapt the
page in an optimal way for the user. The work reported
here is pursuing this second alternative by storing
knowledge about the user in a profile. Various kinds of
preference have been considered for inclusion in the
profile and the most recent is the preferences
associated with the web GUI elements. In order to give
the filter opportunities to offer the user different
versions of the GUI, the original page must be

specified at a higher level than is normal in HTML.
For this study the notation of XFORMS was used as it
concentrates on the functionality required of the
interface rather than the visual realisation. An XSLT
transformation is used to translate the XFORMS
specification of the GUI into XHTML according to the
preferences stored in the user profile. Thus the
technique presented does not require a specific or
modified browser and can be easily implemented using
a combination of common technologies.

The work required now is to conduct user trials to

see if users report the expected benefits and to decide
on the best way to store the GUI preferences for a user.
In a more general sense there is the general search for
any other way in which the profile-based system can
improve document delivery on the web.

References

[1] B.A. Meyers and M.B. Rosson, “Survey on User
Interface Programming”, Proceedings of the Conference on
Human Factors in Computing Systems, 1992,
http://portal.acm.org/citation.cfm?id=142789
[2] P. Griffiths, “Elastic Design,”
http://www.alistapart.com/articles/elastic/
[3] M.S. Withall, “The Evolution of Complete Software
Systems,” PhD Thesis, http://www-staff.lboro.ac.uk/
mpmsw/
[4] W3C-XFORMS, “XFORMS 1.0 (Second Edition) - W3C
Recommendation”, 2006,
http://www.w3.org/MarkUp/Forms/
[5] W. Chisholm and G. Vanderheiden, “Web Content
Accessibility Guidelines 1.0,” Web Accessibility Initiative
(WAI), World Wide Web Consortium, 1999,
http://www.w3.org/TR/WAI-WEBCONTENT/
[6] B. Caldwell, W. Chisholm, J. Slatin and G.
Vanderheiden, “WCAG 2.0, Web Content Accessibility
Guidelines 2.0 (Working Draft),” Web Accessibility
Initiative (WAI), World Wide Web Consortium, 2005,
http://www.w3.org/TR/WCAG20/
[7] J. Dhiensa, C.H.C. Machin, F. Smith and R.G. Stone,
“Optimizing the User Environment: Leading Towards an
Accessible and Usable Experience,” Accessible Design in
the Digital World Conference 2005, Dundee, Scotland. 23 -
25 August 2005,
http://ewic.bcs.org/conferences/2005/accessible/session1/pap
er3.htm
[8] XFORMS Working Group Charter,
http://www.w3.org/MarkUp/Forms/2003/xforms-wg-
charter.html
[9] XFORMS and Firefox: Accessibility Grant,
http://www.beaufour.dk/blogarchives/
2006/05/xforms accessib.html

[10] W3C-XSLT, “XSL Transformations (XSLT) 1.0 - W3C
Recommendation,” 1999, http://www.w3.org/TR/xslt
[11] Orbean Presentation Server,
http://www.orbeon.com/ops/doc/integration-xforms-jsp
[12] XHTML to XForms converter,
http://sourceforge.net/projects/xhtml-toxforms
[13] P. Rainger, “User Preferences Toolbar,” TechDis,
http://www.techdis.ac.uk/index.php?p=1 20051905100544
[14] V.L. Hanson, “The user experience: designs and
adaptations,” Proceedings of the 2004 international cross-
disciplinary workshop on Web accessibility (W4A), New

York City, USA,
http://portal.acm.org/citation.cfm?id=990659
[15] V. L. Centeno, et al., “Web Accessibility Evaluation
Tools: A Survey and Some Improvements”, Electronic Notes
in Theoretical Computer Science, article 17, 157(2), Springer
ENTCS, 1st International Workshop on Automated
Specification and Validation of Websites (WWV 2005),
Valencia, Spain, 2005, pp. 87-100
[16] R. Lerdorf, “Hypertext Preprocessor (PHP),”
http://www.php.net/

