

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288388685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Comparing Content-Filter Techniques For Stopping Spam

Andrew Akehurst, Iain Phillips and Mark Withall

Department of Computer Science
Loughborough University
I.W.Phillips@lboro.ac.uk

Abstract

There are many new theoretical tech-
niques for detecting spam e-mail based
upon the message contents. Although
Bayesian methods are the most well-
known, there are other approaches for
classifying information. This paper es-
tablishes some criteria for measuring
spam filter effectiveness and compares the
Boosting and Support Vector Machine
approaches with some well-known exist-
ing filter software. It also examines ways
of transforming e-mail messages into a
form which is more readily processable by
such algorithms.

1 Introduction

E-mail has been blighted in recent years by a
problem known as ‘spam’: unsolicited junk mes-
sages filling up one’s storage space, drowning out
legitimate messages by their sheer volume.

The problem appears to be increasing over
time. Figures from the recent UK Parliamen-
tary All Party Internet Group report on spam
estimate that there are 10 billion spam messages
sent per day, which accounts for between one
third and one half of all e-mail [2]. Brightmail,
an e-mail filtering company, estimates there was
a 900% increase in the volume of spam from
April 2001 to April 2003.

Much research has been concerned with the
methods to detect and eliminate spam automat-
ically, thus saving huge amounts of human time
and effort.

However, the problem has proved consider-
ably challenging to overcome. Each time a tech-
nique is found to reduce the spam problem, the
senders of spam (‘spammers’) discover ways to
defeat the technique. The result has been a kind
of arms race: a technological battle of wits be-
tween spammers and those who oppose them.

In this study possible technological methods

to reduce the impact of spam are investigated.

1.1 What Are The Characteristics Of

Spam?

The definition of spam as “unsolicited e-mail,
usually sent in bulk” is a helpful starting point
for discussion but is not specific enough for prac-
tical purposes. It is necessary to consider the
properties of a typical spam message to see what
kinds of features they have.

Spam messages incorporate a number of tech-
niques to hide the real content of the message
from computerised spam-idenfication systems.

Firstly, the subject line often has had some
additional text appended to it. This is intended
to confuse content-filtering systems which rely
upon dictionary-based filtering. Such meth-
ods often assign a ‘spam score’ rating to each
word: ‘free’, ‘pharmacy’ and ‘viagra’ are likely
to have high positive scores, whereas more in-
nocent every-day words will have low or even
negative scores. The net effect is that the inclu-
sion of many ‘non-spam’ words can artificially
decrease the spam rating of the overall message,
meaning that it is more likely to pass through
such filters.

Secondly, there is sometimes additional con-
cealed text within the body which is most likely
designed to achieve the same purpose. This
can be enclosed in an HTML FONT element
which sets the text colour to be white; there-
fore such text will not show up against a white
background and will be invisible to the reader
(assuming their mail client can display HTML
e-mail).

Thirdly, addition obfuscation techniques are
used such as: a dummy HTML tag in the mid-
dle of the word and substituting the ‘@’ symbol
for the letter ‘a’. This is of course because the
word ‘Viagra’ alone is easily detected as proba-
ble spam.

Finally, invalid HTML tags are used to break
up key words in the text. Such tags are ignored

by an HTML rendering program and are hid-
den from the user, but make it more difficult for
automated filters to determine the true content.

It follows that a major guiding principle in
detecting spam should be that, when considering
whether a message is spam, it is vital to consider
the way in which the message will be displayed
to the recipient.

This is not to suggest that the unseen con-
tent is unnecessary in spam classification; indeed
such features rarely occur in genuine messages.
However, looking at the raw message content
alone is often insufficient to determine its true
nature. A good filtering system will be capa-
ble of stripping away unseen HTML content,
content-transfer encodings and converting ob-
fuscated character entities into the actual char-
acters they represent, whilst taking the presence
of such features into account during classifica-
tion.

2 Classifying SPAM

2.1 Possible Spam Indicators

One aim of this work was to determine some
attributes by which spam may be recognised and
to decide which attributes tend to work most
effectively.

It is unlikely that such analysis will remain
unchanged in future, since the behaviour of
spammers tends to adapt over time. However,
the intention is to suggest some general types of
attribute which will be useful and to determine
some criteria which can be used to evaluate fu-
ture proposed spam indicators.

The number of Spam indicators means they
are too numerous to list in this paper, but typi-
cally the following are included:

• Specific words and characters in header
fields or the body of an email message,
e.g. free, pharmacy or accented characters

• HTML syntax embedded in words, or
specific HTML tags, including Malformed
HTML.

• Statistics about the words in the messages,
such as mean or maximum length.

• Attachment types, especially inline images
or ‘octet-stream’ Content-Types.

2.2 How Are Spam Indicators Used?

The problem of identifying spam is one of clas-
sification. Suppose that any e-mail message

could be represented by an instance of some data
type M .

In order to construct an efficient classifica-
tion algorithm, it is necessary to extract the use-
ful relevant features of a message and discard
all other information. Each feature can be rep-
resented by a number (with Booleans mapped
onto 0 or 1). The collection of all such feature
numbers for a given message can be presented as
an n dimensional vector, where n is the number
of features.

Thus for every message m of type M it will
be possible to find such a vector. In the gen-
eral case, the elements of the vector will be real
numbers and so the vector has type R

n. Each
message can be regarded as being a point in n

dimensional vector space.
Effectively three things are required:

1. A feature space function fs : M → R
n

which can map individual e-mail messages
onto a vector of n feature values which char-
acterise that message. In order to behave
consistently, this must be strictly determin-
istic.

2. A learning algorithm AL which, given some
pre-classified e-mail examples, can divide
the feature space into two regions: spam
and non-spam. Each message must first be
mapped onto its point in feature space using
fs and then that space will be partitioned.

Input: Two finite sets of message feature
vectors: one set of spam and the other of
legitimate messages.

Output: The regions of feature space which
comprise spam and non-spam. This is ex-
pressed as a function (fc) which can map a
feature vector onto a class label.

Thus AL : F(Rn
x B) → (Rn → B)

3. The classification function fc which, given
some feature vector v ∈ R

n, can classify m

as being either spam or legitimate:

fc : R
n → B

fc(v) , “if v represents spam then True else
False fi” (semi-formally)

Here, a Boolean label is used to indicate the
class. One could also map v onto the sets
{0, 1} or {-1, 1}.
Some classification algorithms also output a
(positive) number whose magnitude reflects
how confident the system is about the ac-
curacy of the classification. One example of

2

this type of algorithm is the Boosting algo-
rithm, which will be discussed later. In that
case, fc : R

n → B x R
+

2.3 Classification Techniques

There is a range of techniques which can be used
for categorising text into known classes. In this
section, Bayesian Classification, Boosting Algo-
rithms and Support Vector Machines will be dis-
cussed.

2.3.1 Bayesian Classification

There has been much research into Bayesian
methods for e-mail classification. For example,
Sahami et al. described such a method for filter-
ing spam [6]. Since the authors compared some
existing Bayesian implementations with other
techniques, it is worth examining the principles
behind the approach.

Paul Graham’s article “A Plan For Spam”
is a practical guide to spam filtering1 and
gives some interesting examples of how Bayesian
methods can detect spam. For instance, consider
Table 1 which lists the probabilities of individual
words being spam indicators. The values repre-
sent the words that have a probality of indicat-
ing spam furthest from 0.5, for a given message.

The word “madam” appears in unsolicited
messages which start “Dear Sir or Madam”
whilst the term “republic” commonly occurs in
so-called Nigerian scam messages. Graham cites
the example of a message containing “shortest”,
“madam” and “promotion”. Now “shortest” is
a very good indicator of legitimate messages,
according to Graham’s own collection. How-
ever, the other two are spam-like words, so it is
potentially difficult to classify such mixed con-
tent. Applying Bayes Theorem gives a probabil-
ity that the message is spam of 0.9027.

Interestingly, Graham’s results also show
that the string “FF0000” (the HTML hexadec-
imal code used for red fonts) is just as good a
spam indicator as the word “sexy”. Of course
this depends upon the training set used, but it
shows that good spam indicators are not always
obvious to the recipient.

2.3.2 Boosting Algorithms

Boosting algorithms are a class of algorithms
which can combine separate weak classification
rules into a composite whole. There is assumed
to exist a “weak learning procedure” to gener-
ate hypotheses which may be only partially ac-
curate. A boosting algorithm aims to find a set

Term Probability

madam 0.99
promotion 0.99
republic 0.99
enter 0.91

quality 0.89
investment 0.86
valuable 0.82

very 0.14
sorry 0.08

shortest 0.05
mandatory 0.02

Table 1: Words and message spam probabilities.
Adapted from A Plan For Spam

of weak hypotheses whose combined accuracy is
greater than that of any individual hypothesis.

An example of this approach is that of Car-
reras and Màrquez [3], whose work is a special
case of Schapire and Singers approach [7].

Each hypothesis h(x) can be regarded as a
function based on some predicate p evaluated
upon an e-mail message x:

h(x) =

{

c0 if p holds in x

c1 otherwise

Here, c0 and c1 are real numbers which are cal-
culated by the training algorithm. Their deriva-
tion will be explained later.

Carreras and Màrquez describe an algorithm
known as AdaBoost in which the weak learn-
ing procedure is invoked repeatedly in a series
of t rounds. A weight value αt is computed
for each weak hypotheses ht thus obtained, such
that the combined hypothesis may be calculated
via Equation 1. Here, x is an element of the fea-
ture space, i.e. a message to be classified. The
sign of c(x) gives the class label and the mag-
nitude is regarded as the level of confidence in
the prediction. Similarly each ht has the same
properties.

c(x) =

t
∑

i=1

αihi(x) (1)

Training occurs using a set S of pre-classified
messages, of which there are m in total.

S can be regarded as a set of pairs in the
form (xi, yi) where xi is the message itself and
yi ∈ {−1,+1} is the corresponding class label.
Alternatively it could be represented as a pair

1. http://www.paulgraham.com/spam.html

3

of disjoint sets in line with the definition of AL

given earlier. This design choice does not affect
the operation of the algorithm.

AdaBoost operates by maintaining a vector
of weight values ~D. The vector ~Di represents
the values of that vector after round i of the
algorithm. ~D is used by the weak learning pro-
cedure to find a weak hypothesis which has a low
error with respect to those weights. Note that
~D begins as a uniform distribution and is then
adjusted exponentially at each round. There is
one weight value in ~D for each message in the
training set.

The use of ht to compute weights for the
next round ensures a feedback system in which
the adjustment of weights is in proportion to
the confidence with which that round’s weak hy-
pothesis ht asserts its prediction yi for the ith
message in the training set.

The values used for αt depend upon the type
of weak learning algorithm employed. It can be
shown that the training error of AdaBoost is at
most equal to the product of Zt over all rounds,
where Zt is the normalisation factor used to en-
sure that ~D remains a valid distribution [7].

It is necessary to find values of c0 and c1 for
each weak predicate which minimise Zt, in or-
der to produce a minimal overall training error.
Schapire and Singer also showed that one can
minimise Zt by choosing αt = 1 and letting:

cj =
1

2
ln

(

W
j
+1

W
j
−1

)

The value of W i
b is equal to the total weight in

~Dt of all training messages which are in class
b and which are in partition j according to the
predicate. As stated above, the class is either -1
(spam) or +1 (legitimate).

Given the above definition of h(x), parti-
tion 0 is the subset X0 of the training set for
which p holds true; partition 1 is the subset X1

for which p is false. Thus there are four possible
subsets of the training data, which correspond
to W 0

+1, W 1
+1, W 0

−1 and W 1
−1.

More formally, the W values are defined be-
low. Here, [q] : B → {0, 1} evaluates to 1 if and
only if q is True.

W
j
b =

m
∑

i=1

~Dt(i)[xi ∈ Xj ∧ yi = b]

2.3.3 Support Vector Machines

Support vector machines (SVMs) are a promis-
ing type of learning machine. SVM algorithms

are a special case of a more general class of learn-
ing algorithms known as kernel-based learning
algorithms. A general and highly mathemat-
ical overview of such algorithms is given by
Müller et al [5]. The original SVM concept is
due to Vapnik [8].

The basic use of SVMs is to map each mes-
sage onto a point in feature space and then at-
tempt to find a hyperplane which separates them
consistently. In general there might be many
such hyperplanes, so the problem is to determine
the optimal hyperplane which can most reliably
separate spam from non-spam. Drucker et al
specifically discussed the use of SVMs for e-mail
classification [4].

The general equation of a hyperplane is ~w.~x+
b = 0. Here, ~w and ~x are vectors and b is a scalar
constant2. In this case, ~w defines a constant
vector of weights and ~x can be regarded as the
feature vector of an e-mail message.

If the two classes are linearly separable then
there exists an optimal weight vector ~w∗ such
that || ~w∗||2 is a minimum and for any example
message xi of class yi:

Either ~w∗. ~xi + b ≥ 1 if yi = 1 (legitimate)

or ~w∗. ~xi + b ≤ −1 if yi = −1 (spam)

These equations define two distinct hyperplanes.
The support vectors of the spam class form one
hyperplane; the support vectors of the non-spam
class form the other. The distance between the
hyperplanes defines a margin which can be max-
imised by minimising || ~w∗||2. When the margin
it at a maximum, the separation between the
classes is as well defined as possible.

The above can be combined into a single in-
equality:

yi((~w∗. ~xi) + b) > 1

Once ~w∗ has been found, the classification de-
cision for any unseen message xi is to compute
sign((~w∗. ~xi) + b).

One reason that SVMs can be effective using
linear classification is that it is common to map
each data point into a feature space of higher
dimensionality. Thus points which might not be
linearly separable in n dimensional space may
well be so in N dimensional space (N ∈ N,
N > n). This is usually achieved with some
mapping Φ. Of course, computing the scalar
product ~w∗. ~xi in N dimensional space could be
very costly for many dimensions.

2. The reader may recognise this as a general-
isation of the two-dimensional straight-line equa-
tion: w1x + w2y + b = 0 where ~x = (x y) and
~w = (w1 w2).

4

In practice a kernel function is used to calcu-
late the scalar product in n dimensional space
instead. A variety of well-known Φ and cor-
responding kernel functions exist; the choice of
kernel depends upon Φ.

For example, consider the case where some
data are arranged such that one of the sets of
points falls entire on the inside of an ellipse
and the other set falls entirely on the outside.
Clearly no flat plane can separate the different
classes of points in only two dimensional space.
Note that these data could be separated by an
ellipse of equation:

x2

p2
+

y2

q2
= 1

Where p and q are constants.
If it were possible to transform each point to

include x2 and y2 terms, then the data could be
properly classified. Müller et al give the follow-
ing example mapping:

Φ : R
2 → R

3

(x1 x2) 7→ (x2
1

√
2x1x2 x2

2)

They demonstrate that the higher feature space
scalar product Φ(~x).Φ(~y) can be computed as
(~x.~y)2 and thus that the general kernel function
for this class of Φ mappings is (~x.~y)n where n is
the original feature vector size.

In this example, the corresponding hyper-
plane equation would be:

(

1

p2 0 1

q2

)

.Φ(~xi) + b = 0

Hence the classification inequality would be:

yi

((

1

p2 0 1

q2

)

.Φ(~xi) + b = 0
)

≥ 1

The general SVM inequality is:

yi((~w∗.Φ(~xi)) + b) ≥ 1

Here, the weight vector ~w∗ is assumed to be al-
ready in N dimensional space. If this were not
the case it would be simple to compute Φ(~w∗)
as a one-time calculation.

So far, only linearly separable classification
has been considered. However, this may not hold
true: errors may occur and some training exam-
ples may exist in the region between the classes.
Thus a more general inequality exists in which
slack variables ξi are used to allow for less rigid
class boundaries:

yi((~w∗.Φ(~xi)) + b) ≥ 1 − ξi

Müller explains how this latter equation can be
solved for ~w∗ and ~ξ. The aim is to achieve a
balance between the complexity of classification
and the risk of classification error. Central to
the algorithm is an optimisation problem to min-
imise the following sum:

1

2
|| ~w∗||2 + C

m
∑

i=1

ξi

Here, C is a constant which represents a cost
penalty for misclassification. Each ξi is only
non-zero if the corresponding training sample xi

has been misclassified.
There are some issues to do with underfitting

and overfitting data; a good SVM implemen-
tation must be able to produce sensible results
which are not unduly swayed by small anoma-
lies or outliers during training. One of the main
advantages of SVM classification is that it elimi-
nates extreme anomalous values during training;
only points close to the margin are retained.

Drucker et al compared the e-mail classifica-
tion capabilities of SVMs with three other clas-
sification algorithms (including boosting trees)
and concluded that boosting and SVM algo-
rithms gave the fastest and most accurate clas-
sification. Yet they also found that SVMs re-
quired significantly less training time than the
other algorithms, which makes them worthy of
further study.

2.4 Testing Methodology

Machine learning algorithms are likely have
both false negative and false positive results.
Content-classification systems must balance the
likely risk of either situation. A loose filter would
have a low chance of mislabelling genuine mes-
sages, but would most likely allow a large num-
ber of spam messages through: false negatives.
This is undesirable because the sole purpose of a
filter is to prevent the user having to sift through
large numbers of messages manually. However,
a stricter filter might risk catching genuine mes-
sages, creating false positives and causing the
user to miss real e-mail.

Since classification systems must learn by be-
ing shown pre-classified examples, it is neces-
sary to have two training sets (corpora) of mes-
sages: one of spam and one of legitimate mes-
sages. Once the system has been trained to
recognise messages correctly, it should then be
shown two further sets of unseen pre-classified
messages, again spam and legitimate. Since the
class of these messages is known in advance, the

5

accuracy of classification can be automatically
computed.

A number of well-known spam corpora al-
ready. For example, some of the SpamAssassin
test data are publicly available3. There are also
some academic corpora such as LingSpam4 and
PU15, which are often used by text classification
researchers.

For the purposes of these tests, the authors
accumulated some 4,000 messages (“Akehurst
corpus”) consisting of 2,000 spam and 2,000 gen-
uine messages. Additional tests were run with
the SpamAssassin and LingSpam corpora.

The method used for testing was ten-fold
cross-validation. The classification corpus was
divided into ten equal parts, each part having
the same proportion of spam as the whole. Ten
rounds of learning and classification were per-
formed, each using nine of the parts for training
and the tenth for testing, with a different part
for testing in each round; the results were then
averaged across all rounds using an arithmetic
mean.

2.5 Statistical Measures

Adopting the notational conventions from Car-
reras and Màrquez [3], we define the sets S and
L as sets of spam and legitimate messages. We
futher define S+ as the number of correctly clas-
sified messages in S+ and S− as the number in-
correctly classified messages. There are similar
definitions for L+ and L−.

Two critical measures of classification per-
formance are the False Negative Ratio and False
Positive Ratio. A good classification system will
have small (near zero) values for these ratios:

FNR =
S−

S+ + S−

FPR =
L−

L+ + L−

Two other common measures used are precision
and recall, which are often used in information
retrieval theory:

P =
S+

S+ + L−

R =
S+

S+ + S−

Precision represents the proportion of blocked
messages which are actually spam, while recall
gives the proportion of spam messages correctly
classified out of all the spam. Clearly it is desir-
able for precision and recall to be as close to 1
as possible.

As each of the above measures only gives a
partial indicator of performance, an additional
accuracy measure will be defined for summary

purposes:

A =
S+ + L+

|S| + |L|

3 Results

For comparison we have tested existing spam
implementations using our statistical measures,
and compared these with the newly introduced
techniques of boosting and SVMs.

3.1 Existing Systems

The first section of Table 2 shows the test re-
sults achieved by the existing anti-spam imple-
mentations. Clearly, SpamAssassin’s Bayesian
classifier has the lowest false negative score and
hence the highest recall of all (96.9%). Its low
false positive score is also impressive, giving it a
good overall accuracy (> 98%). The basic Spa-
mAssassin classifier is good, but the Bayesian
component clearly yields better results, albeit
at the cost of slightly lower throughput.

Mozilla’s Bayesian classifier is noteworthy for
being the only implementation not to misclassify
a single genuine e-mail, hence its 100% precision
score. It also had the second-highest overall ac-
curacy score.

Vipul’s Razor is interesting for its different
approach to the other systems. It relies upon
matching against fingerprints of known reported
spam. Unfortunately it missed the largest pro-
portion of spam, perhaps due to variability in
spam reporting. However it has a respectable
precision score. Of the false positives it did find,
not a single one was a personal e-mail. Certain
messages like the New Scientist newsletter have
perhaps been mistakenly reported as spam.

It is noticeable that the false-positive ratios
of all the implementations are very low, the high-
est being SpamAssassin’s 1.4%. This suggests
that all these implementations are optimised to
reduce misclassification of genuine e-mail, since
that may have a more severe cost to the typi-
cal (non-technical) user than the arrival of a few
spam messages in their in-box. The large preci-
sion scores (all ≥ 98.3%) support this hypothe-
sis.

Some authors have done a cost-based anal-
ysis of misclassification [1]. Many assume that
false positives are more serious than false nega-

3. http://spamassassin.org/publiccorpus/

4. http://www.aueb.gr/users/ion/lingspam_
public.tar.gz

5. http://www.aueb.gr/users/ion/pu1_
encoded.tar.gz

6

tives, due to the potential economic loss to busi-
ness recipients of genuine potential sales leads.
However, the cumulative cost to recipients in
time lost deleting spam manually can also be
large. In this work, all misclassification is re-
garded as equally undesirable.

3.2 New Implementations

Two new anti-spam classifiers were written
based on the Boosting and SVM techniques de-
scribed earlier. They were tested with the same
methodology and corpus as the other implemen-
tations.

3.2.1 Feature Vectors

Both approaches require the conversion of each
e-mail message into a feature vector which char-
acterises it. Thus the design of an efficient
and effective feature space function is important.
The elements of the feature vector used are those
defined in Section 2.1. Most of these are num-
bers representing fixed features such as counts
of certain HTML tags.

However, some features represent the num-
ber of times certain key indicator words appear
in a message. Since the vocabulary used in all
e-mail is so large and diverse, it is impossible to
include all word frequencies in the feature vec-
tor. Therefore only the top w most frequently
occurring words are included in the vector.

Words were taken to be strings of at least two
alphanumeric characters, separated by whites-
pace and certain punctuation symbols (such as
commas). All words were converted into lower
case and embedded HTML elements in the mid-
dle of words were ignored. Thus the earlier ex-
ample of “Via<!Qj>gr@” might be read as “vi-
agr@”.

Further word matching was done by glyph-
based similarity matching. Each character is
assigned to a character class, according to how
similar the symbols used to render those char-
acters would look to the casual reader. Thus
characters such as “á”, “ä”, “â”, “á” and “@”
belong to the “a” class and would be matched
accordingly. Hence “Via<!Qj>gr@” would ac-
tually be recognised as “viagra”.

Some experiments involved “differential” fre-
quency, rather than using the top w most
frequently-occurring words in the training cor-
pus. The frequencies of each word in spam
and legitimate e-mail (f0 and f1 respectively)
were found; the words were then sorted in non-
increasing order of |f0 − f1|, with the top w in

the list being chosen for inclusion in the feature
vector.

Here, the aim was to pick words which were
potentially strong indicators for either class of
message. Words with similar frequencies in both
classes will have |f0 − f1| close to zero and so
they will appear low down in the sorted list.
Thus weaker classifiers are less likely to be cho-
sen. Also, infrequent words are unlikely to ap-
pear high in such a list, so their presence should
not skew the results.

Some further tests were also performed us-
ing simply word-based information in the feature
vector. These are shown by the phrase “words
only” in table 2.

3.2.2 Pre-processing

Before generating the feature vectors, each
messge undergoes pre-processing as follows:

• Decoding any headers encoded according to
RFC 2047

• Decoding any body text in quoted-printable
or base64 content transfer encoding, accord-
ing to RFC 2045

• Removing the binary data of any attach-
ments in the message. Such data does not
contribute to classification and only slows
down later processing

The purpose of transforming messages is to en-
sure that what the filter sees is the same essential
information which the user sees.

3.2.3 Boosting Results

In the system described, there are typically over
1,000 elements in the feature vector. It would be
impractical to use all of them, and indeed many
may turn out to be poor spam indicators. The
AdaBoost algorithm will select the best predi-
cates for the training corpus.

Carreras and Màrquez found that training in
excess of 150 rounds (i.e. 150 weak rules) yielded
little benefit in classification performance. How-
ever, this is a result which can be tested with the
new implementation; there is still some scope for
tuning t, the number of rounds. Typically 150
rounds of boosting were needed in our experi-
ments also.

The section section of Table 2 shows the re-
sults for Boosting. Four experiments are shown,
which are the best achieved performance for: the
simple feature vector set; the same set comple-
mented by features based on the differential fre-
quency method for choosing words; simply using

7

Program FNR % FPR % Precision % Recall % Accuracy %

Mozilla Bayesian 5.5 0 100.0 94.5 97.3
SpamAssassin Default 15.7 1.4 98.4 84.3 91.5
SpamAssassin Bayesian 3.1 0.7 99.3 96.9 98.1
Vipul’s Razor 55.0 0.8 98.3 45.1 72.1

Boosting 0.6 0.5 99.5 99.4 99.4
Boosting (diff sel) 0.6 0.5 99.5 99.4 99.4
Boosting (words only) 2.4 3.1 96.9 97.6 97.3
Boosting (words only, diff sel) 16.4 42.2 66.4 83.6 70.7

SVM 4.8 3.2 96.7 95.2 96.0
SVM (diff sel) 0.7 0.2 99.8 99.3 99.6
SVM (words only) 12.8 50.1 63.5 87.2 68.6
SVM (words only, diff sel) 12.0 46.0 65.7 88.0 71.0

Table 2: Results, Akehurst Corpus

the words as features; and simply using words
chosen by differential selection. Typically 500
words were used except in the best performance
for differential selection with words only where
10 were sufficient.

3.2.4 SVM Results

An existing SVM code library was used.
This is known as LIBSVM and is available
from http://www.csie.ntu.edu.tw/~cjlin/

libsvm/. LIBSVM was written by Chih-Chung
Chang and Chih-Jen Lin of the National Taiwan
University.

Experiments concentrated upon the Gaus-
sian Radial Basis Function (RBF) kernel, since
early experiments indicated that this provides
excellent results in many situations.

Results are shown in Table 2. In these ex-
periements a value of 7 was used for C and the
number of words 500, expect for the words only
methods where w was 50 for non-differential se-
lection and 25 for differential selection.

4 Conclusions

Firstly, it is clear that the Boosting and SVM
approaches can classify e-mail at least as accu-
rately as existing implementations, often exceed-
ing the standard of existing tools.

Use of word features alone is insufficient.
When the indicators listed in Section 2.1 were in-
cluded in the feature vectors, both Boosting and
SVM classification accuracy were clearly higher
than without such elements. Systems which use
only word tokens are discarding invaluable in-
formation. Since the behaviour of a classifier

depends greatly upon the training set, it is dif-
ficult to recommend specific features to include
in all cases.

The differential frequency method for select-
ing words can give good results provided non-
word features are also included.

Where Support Vector Machines are used, a
Gaussian RBF kernel with 1 ≤ C ≤ 7 gives good
accuracy. When Boosting is used, 150 rounds is
a reasonable choice.

Further work could concentrate on removing
“noise” caused by weak classifiers. SVMs are af-
fected by noise since they use all dimensions in
training and classification. Boosting might be
more resistant to noise since it picks only the
best dimensions from the vector. Further study
is needed on the effects of noise and how to re-
duce it. Also, the Boosting algorithm outputs a
confidence level for how well a message fits the
predicted class. This information is discarded
by the implementation, but it could be useful in
tuning classification or sorting messages within
a MUA.

References

[1] I. Androutsopoulos, J. Koutsias, K. Chandri-
nos, and D. Spyropoulos. An experimental
comparison of näıve bayesian and keyword-
based anti-spam filtering with personal e-
mail messages. In Proc. 23rd ACM SIGIR

Annual Conference, pages pp.160–167, 2000.

[2] APIG. Spam: A report of the all-party in-
ternet group, 2003. http://www.apig.org.
uk/spam_report.pdf.

[3] X. Carreras and L. Màrquez. Boosting trees

8

for anti-spam email filtering. In Proceedings

Of RANLP-01, 4th Intl. Conference on Re-

cent Advances in Natural Language Process-

ing, 2001.

[4] H. Drucker, D. Wu, and V. Vapnik. Sup-
port vector machines for spam categoriza-
tion. IEEE Transactions on Neural Net-

works, Vol. 10(No. 5):pp.1048–1054, 1999.

[5] K. Müller, S. Mika, G. Rätsch, K. Tsuda,
and B. . Schölkopf. An introduction to
kernel-based learning algorithms. IEEE

Transactions in Neural Networks, Vol.
12(No. 2):pp.181–201, March 2001 2001.

[6] M. Sahami, S. Dumais, D. Heckerman, and
E. Horvitz. A bayesian approach to filter-
ing junk e-mail. Learning for Text Catego-

rization – Papers from the AAAI Workshop,
pages pp. 55–62, 1998.

[7] R. E. Schapire and Y. Singer. Improved
boosting algorithms using confidence-rated
predictions. Machine Learning, 37(3):pp.
297–336, 1999.

[8] V. N. Vapnik. The Nature of Statisti-

cal Learning Theory. Springer-Verlag, New
York, 1995.

9

