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AN INTERACTION THEORY FOR SCATTERING BY DEFECTS IN
ARRAYS∗
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Abstract. Wave scattering by an array of bodies that is periodic except for a finite number
of missing or irregular elements is considered. The field is decomposed into contributions from a
set of canonical problems, which are solved using a modified array scanning method. The resulting
interaction theory for defects is very efficient and can be used to construct the field in a large number
of different situations. Numerical results are presented for several cases, and particular attention is
paid to the amplitude with which surface waves are excited along the array. We also show how other
approaches can be incorporated into the theory so as to increase the range of problems that can be
solved.
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1. Introduction. Wave scattering by arrays of bodies is of fundamental impor-
tance in numerous engineering and physics applications. Here we are concerned with
the effect of one or more defects in an infinite, periodic array. This problem is of sig-
nificant current interest in several fields, including elastodynamics [19] and phononic
[7, 28] and photonic [1, 26, 5] crystals. The presence of defects leads to a significant
increase in difficulty in determining the scattered field, because the geometry is no
longer periodic. In particular, Rayleigh–Bloch (RB) surface waves (also known as ar-
ray guided surface waves) are excited if the array geometry and physical parameters
are such that these modes can exist. RB waves propagate without loss along an array,
and are evanescent in other directions. They are known to occur in a wide variety
of situations [15, 21, 18, 10]. One of the key goals of this article is to develop an
efficient and accurate method for the determination of the amplitude with which they
are excited. The theory is presented in a form that can be directly interpreted in a
number of different physical contexts. These include the acoustic case, in which the
wavenumber k is the ratio of the angular frequency ω to the speed of sound c, and the
interaction of linear water waves with bottom mounted, surface penetrating cylinders,
in which case k is the positive solution to the dispersion relation k tanh kh = ω2/g,
g being the acceleration due to gravity and h the quiescent fluid depth. For acous-
tics, Dirichlet and Neumann boundary conditions are used to model sound hard and
sound soft bodies, respectively, whereas Neumann conditions are appropriate for solid
bodies immersed in water. The method is also applicable in the electromagnetic and
elastodynamic cases, provided that the overall vector wave problem decouples into
separate scalar components.

Our first step in obtaining the field scattered by a defective array is to decompose
the solution into contributions arising from a set of simpler, canonical problems. This
is achieved by modifying the field generated when a wave interacts with a periodic
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1784 I. THOMPSON AND C. M. LINTON

array, so as to eliminate a finite number of elements, or replace these with bodies
of different sizes, shapes, or surface compositions. The procedure is independent of
the type of wavefunctions used to represent the field (i.e., cylindrical, spherical, etc.)
and is therefore presented in a general form in section 2. The canonical problems are
independent of the defect configuration and all aspects of the incident field, except the
wavenumber; they need not be solved again if these parameters are changed. In order
for the decomposition to be useful in a specific case, the relevant canonical problems
must be solved accurately and efficiently. The boundary conditions on the surface
of the array elements come into play at this stage, and therefore we must apply
an appropriate multiple scattering theory. This requires the use of certain results
concerning the periodic array, and these are readily available for problems involving
cylindrical wavefunctions; a summary is given in section 3. The canonical problems
for this case are then solved in section 4 using a special Fourier series. This approach
is closely related to the array scanning method [27, 16], which is typically used in
problems involving excitation by an aperiodic field, and in particular for the analysis
of antenna arrays [3, 4]. The idea is to create a periodic incident field by introducing
an array of phase-shifted sources, and then to integrate over a single period of the
phase shift so as to eliminate all but one of the sources. The procedure used in section
4 is similar, but its effect is rather different, and we shall refer to it as the “modified
array scanning method” (MASM). Instead of eliminating sources, the integration,
which must be performed using quadrature, enables us to replace one member of a
periodic array with a source. This is the most computationally intensive part of the
technique. Nevertheless, important parameters such as RB wave amplitudes can be
efficiently calculated to near machine precision. In contrast, other techniques such
as the filtering approach used for a related problem in [11] have limited accuracy.
Technical details regarding the method used to evaluate the relevant integrals are given
in the appendix. This method is chosen for simplicity and is open to improvement.

Considered together, the decomposition into canonical problems and the MASM
are similar to the “fictitious source superposition method” which was originally used
for a study of photonic crystals with a single defect [26]. This was later extended in
[5] to account for situations where more than one defect is present. Our formulation,
which is a generalization of earlier work in [22], is rather different and automatically
includes the case of multiple defects. Indeed, by first reducing to canonical problems,
we obtain an “interaction theory for defects” by means of which the solutions for a
wide variety of cases can be constructed at very little computational expense.

A representative sample of the numerical results that can be obtained is given
in section 5. We also demonstrate how the methods in sections 2–4 can be com-
bined with other approaches, such as infinite array subtraction [11] and the large
array approximation method used in [24], to widen the class of problems that can be
considered.

2. General theory. In this section we will show how the problem of wave scat-
tering by a defective array can be reduced to a set of simpler, canonical problems. This
is achieved using a procedure that is independent of the shape of the scatterers and
the boundary conditions that are to be applied on their surfaces. We therefore present
the theory from a general perspective, although for clarity we deal with the case of a
one-dimensional array in the two-dimensional setting. The extensions to higher array
dimensions and to three dimensions in space is straightforward, requiring only that
scalar indices are replaced by appropriate multi-indices.

Thus, consider an array of scatterers which is periodic, except for a finite number
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INTERACTION THEORY FOR DEFECTS 1785

of missing, or possibly irregular, elements. The elements are labeled by an index
p ∈ Z, and the defects correspond to those values for which p is a member of the finite
defect set D. If p /∈ D, we shall say that scatterer p is regular. A (one-dimensional)
lattice of points rp is defined so that r = rp lies inside scatterer p if this body is
present in the array. The field in the vicinity of each scatterer is then expanded about
the point r = rp as a sum of incoming and outgoing wavefunctions. The former are
regular for all r, whereas the latter are singular at r = rp and regular elsewhere. The
choice of rp is of course not unique.

In the region exterior to the scatterers, all wavefields φ must satisfy the Helmholtz
equation

(2.1) (∇2 + k2)φ = 0.

The array is excited by the incident wave φi, and the total field is obtained by adding
the scattered response. Hence,

(2.2) φt = φi + φs,

where φs can be expanded in the form

(2.3) φs(r;D) =
∑
m

∑
p

Ap
m(D)Hp

m(r).

Here, the notation Hp
m represents an outgoing wavefunction of order m that is singular

at r = rp and regular elsewhere. Where no limits are placed on an index it is to be
understood that this ranges over all possible values. The radiation condition stipulates
that φs cannot include any contributions that are incoming from the far field, or that
increase in magnitude as the observer moves toward infinity. Initially, we consider
defects that consist of missing scatterers, in which case we must have

(2.4) Ap
m(D) = 0, p ∈ D,

so that there are no singularities in the field. Later we will show how the theory can
be modified to account for irregular scatterers, which is slightly more difficult.

The pivotal idea behind our procedure is to modify φs(r, ∅) (i.e., the scattered
field that occurs when there is no defect) by cancelling the singularities at r = rp for
each p ∈ D. The resulting wavefield does not include any radiation from the scatterers
for which p ∈ D, and no longer satisfies the boundary conditions on their surface. In
this way, the influence of these array elements is eliminated. The boundary conditions
on the surface of the regular scatterers are still satisfied, as is the radiation condition.

At a later stage, it is necessary to apply a multiple scattering theory in order to
satisfy the boundary conditions on the scatterer surfaces. This requires that, in some
region containing the surface of scatterer p, the total field can be represented in the
form

(2.5) φt(r;D) = φi
p(r;D) + φr

p(r;D),

where

φi
p(r;D) =

∑
m

Ipm(D)J p
m(r)(2.6)
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1786 I. THOMPSON AND C. M. LINTON

and

φr
p(r;D) =

∑
m

Ap
m(D)Hp

m(r).(2.7)

Here, J p
m represents a regular wavefunction of order m and φi

p is the total field in-
coming toward the point rp. It consists of the incident wave and the radiation from
all of the other scatterers. The second term on the right-hand side of (2.5) represents
the field outgoing from scatterer p. The relationships between the expansions (2.3)
and (2.5)–(2.7) can be found in [14, Chapters 2 and 3] for wavefunctions in a number
of separable geometries. The crucial point here is the nature of the regions where the
series appearing in (2.6) and (2.7) converge and therefore represent valid solutions to
the Helmholtz equation. The expansion of the incoming field (2.6) is valid inside a
simply connected region that contains the point rp. In fact, if we are to apply a mul-
tiple scattering theory based on the expansions (2.5)–(2.7), this region must contain
the whole of scatterer p. Thus, the field incoming toward a particular body can be
extended to the entire region inside that body, and there it continues to represent
a valid solution to the Helmholtz equation. The same cannot be said for the field
radiating from a particular body (equation (2.7)) because Hp

m(r) is singular at the
point r = rp. Note that the use of (2.5)–(2.7) to represent the field at the surface of
the scatterers imposes a geometrical restriction. For cylindrical and spherical wave-
functions, the maximum distance from rp to the surface of scatterer p must be less
than |rp − rp±1| [14, sections 2.5, 3.12].

As a starting point, for the case where D = ∅, we have

(2.8) φs(r; ∅) =
∑
m

∑
p

Ap
m(∅)Hp

m(r),

and we will assume that the coefficients Ap
m(∅) are known, since this is a periodic

geometry, and so the solution can be obtained relatively easily. Now, construct the
field φs(r;D) by writing

(2.9) φs(r;D) = φs(r; ∅) + ψ(r;D),

and observe that ψ(r;D) must satisfy the boundary conditions on the regular scat-
terers because φs(r;D) and φs(r; ∅) do so independently. From (2.3), (2.4), and (2.8)
we have the explicit representation

(2.10) ψ(r;D) =
∑
m

∑
p/∈D

[Ap
m(D) −Ap

m(∅)]Hp
m(r) −

∑
m

∑
p∈D

Ap
m(∅)Hp

m(r).

By considering the last term on the right-hand side (which is known) as an incident
field, and the other terms as the associated scattered response, it is now seen that
ψ(r;D) is the total field that occurs when an array with scatterers absent for p ∈ D
is excited by a distribution of sources located at the points r = rp, p ∈ D. We shall
refer to Hp

m(r) as the source of order m with unit amplitude, located at the point
r = rp.

Rather than solve for ψ(r;D) directly, we can reduce the problem to a set of
simpler, canonical problems by considering each source term in (2.10) separately.
Thus, introduce the potential ψq

n(r), which represents the total field that occurs when
a periodic array has a single element (labeled by q) removed and replaced by a unit
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source of order n. Crucially, if q ∈ D, then ψq
n(r) satisfies the boundary conditions

on the surface of all the regular scatterers. Now ψ(r;D) clearly consists entirely of
waves that are outgoing from the array, and therefore we can expand it into the form

(2.11) ψq
n(r) = Hq

n(r) +
∑
m

∑
p�=q

Cp,q
m,n Hp

m(r).

Here, we have introduced the convention that the indices to the right of the comma
describe the source, in this case referring to order n and position q. It is convenient
to simplify such expressions by defining

(2.12) Cq,q
m,n = δmn,

so that the first term on the right-hand side can be taken inside the series. To
avoid any possible misinterpretation, we emphasize that (2.11) does not represent a
homogeneous solution to the periodic (i.e., defect-free) array problem because the
appropriate boundary condition on the surface of scatterer q is not satisfied.

Next, we represent ψ(r;D) as a linear combination of the potentials ψq
n(r), q ∈ D;

thus

(2.13) ψ(r;D) =
∑
n

∑
q∈D

aqnψ
q
n(r).

If we substitute from (2.11) into (2.13) and rearrange the summations, we obtain

(2.14) ψ(r;D) =
∑
m

∑
p∈D

apmHp
m(r) +

∑
m

∑
p

∑
n

∑
q∈D
q �=p

aqnC
p,q
m,n Hp

m(r).

Comparing this with (2.10), we find that

apm +
∑
n

∑
q∈D
q �=p

aqnC
p,q
m,n = −Ap

m(∅), p ∈ D,(2.15)

which is a linear system of equations for the coefficients apm, and∑
n

∑
q∈D

aqnC
p,q
m,n = Ap

m(D) −Ap
m(∅), p /∈ D,(2.16)

which then serves to determine the unknowns Ap
m(D). Equation (2.15) is an “interac-

tion theory for defects,” which is similar in nature to the standard interaction theories
for multiple bodies. If only a single scatterer is absent from the array, we retrieve
apm = −Ap

m(∅) so as to cancel the radiation emanating from r = rp, as we should
expect. A useful simplification now occurs if the array consists of periodic repetitions
of a single body. In this case the potentials ψp

m are identical up to a spatial shift, and
we need only determine ψ0

m. In terms of the coefficients Cp,q
m,n, we have

(2.17) Cp,q
m,n = Cp−q,0

m,n

and so there is a single canonical problem to solve for each value of m.
Finally, consider defects consisting of scatterers that are in some way different

from the other elements of the array. In this case, the method operates by replacing
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members of the periodic array for which p ∈ D with irregular bodies. In contrast to
the case of absent scatterers, Ap

m(D) is generally nonzero for p ∈ D. The singularities
at r = rp are no longer cancelled; instead they are adjusted so that for p ∈ D, the
expansion (2.7) represents a solution to the Helmholtz equation in the region exterior
to the new element. Consequently, the point r = rp must lie inside scatterer p for
p ∈ D (as it does for p /∈ D). The field ψ(r;D) can still be constructed from a linear
combination of the solutions to the same canonical problems, but in place of (2.15),
we now have

(2.18) apm +
∑
n

∑
q∈D
q �=p

aqnC
p,q
m,n = Ap

m(D) −Ap
m(∅), p ∈ D.

Equation (2.16) is unaffected. The presence of the additional unknowns Ap
m(D) on

the right-hand side of (2.18) is countered by the need to apply a boundary condition
on the surface of the irregular scatterers, and in section 5 we shall see how this works
in practice. While it is evident that replacing scatterers is more complicated than
eliminating them, the increase in difficulty is marginal. Essentially this is because the
extra requirement is to determine the field incoming toward r = rp for p ∈ D, but this
is no more difficult than determining the field incoming toward a regular scatterer,
which is always necessary.

A major advantage of this method over a more direct approach is as follows. Had
we simply applied an interaction theory to the defective array problem, we would be
faced with the inversion of a linear system of equations containing infinite sums over
the spatial indices. These have a very slow rate of convergence and present serious
difficulties in obtaining accurate results, even with the aid of modern computing
power. In contrast, (2.15), (2.16), and (2.18) contain only finite spatial sums. The
infinite order summation is of less concern, particularly at low frequencies, because
as |m| is increased the coefficients Ap

m converge rapidly to zero. Even in cases where
the scatterers are almost in contact, the convergence of the order sum is much more
rapid than that of the spatial sum; the former can be truncated at a relatively small
value of |m|. Of course, it remains to solve the canonical problems, and these involve
infinite linear systems containing spatial sums. However, these possess symmetries
that are not present in the overall problem, and as mentioned earlier, solutions to one
set of canonical problems can be used to construct the field for a number of different
cases. Thus, the decomposition described above is useful even in problems where the
MASM cannot be used effectively.

3. Array problems involving cylindrical wavefunctions. In order to solve
the canonical problems that arise in the interaction theory for defects, we must deal
with the boundary conditions on the scatterer surfaces. It is therefore necessary to
present subsequent material for a specific geometry, and since the theory of linear
arrays is well established for the case of cylindrical wavefunctions, this is a natural
choice. Here, we collect some results from pre-existing literature in this area that
will be needed later. It should be noted that the essential principles upon which the
method depends remain unchanged if wavefunctions from another separable geometry
are used. We will assume that the scatterers themselves are circular so as to present
the theory in the simplest possible form; however we will indicate how scatterers of a
different shape can be considered through the incorporation of transfer matrices.

Let all lengths be scaled on the distance between the centers of consecutive lattice
points, with these located at rp = (p, 0) in the (x, y) plane. According to the chosen
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scaling, the radius a of the regular scatterers must satisfy the inequality a ≤ 0.5. The
expansion (2.3) now takes the form

(3.1) φs(r;D) =
∑
m

∑
p

Ap
m(D)H (1)

m (krp)e
imθp ,

where (rp, θp) is a set of polar coordinates with its origin at the center of scatterer p

(see Figure 3.1), and H (1)
m (·) denotes a Hankel function of the first kind with order m.

This choice of outgoing wavefunction (rather than H (2)
m (·)) corresponds to an implicit

time-harmonic factor e−iωt. We also have a decomposition of the form (2.5)–(2.7),
with

φi
p(rp, θp;D) =

∑
m

Ipm(D) Jm(krp)e
imθp(3.2)

and

φr
p(rp, θp;D) =

∑
m

Ap
m(D)H (1)

m (krp)e
imθp ,(3.3)

where Jm(·) is the Bessel function of order m. As before, φi
p(r;D) represents the

total field incoming toward scatterer p, and this consists of the incident wave and the
radiation from all of the other scatterers. The expansion (3.2) is a valid representation
for φi

p(r;D), provided that rp < 1. In general, a transfer matrix appropriate to the
geometry of the scatterers relates the coefficients Ipm(D) and Ap

m(D), but for circular
scatterers, orthogonality leads to a matrix that is diagonal. Consequently, we can
write

(3.4) Ap
m(D) + ZmIpm(D) = 0,

where Zm is a scattering coefficient which is given by

Zm = Jm(ka)/H (1)
m (ka)(3.5)

for Dirichlet boundary conditions, or

Zm = J ′
m(ka)/H (1) ′

m (ka)(3.6)

for Neumann conditions. Other expressions for Zm can be used to model different
situations, such as impedance boundary conditions.

Scattering problems of this type can be separated into components that are sym-
metric and antisymmetric about y = 0 by decomposing the incident field φi into an
even (subscript “+”) and an odd (subscript “−”) function of y; thus

(3.7) φi
±(x, y) =

1

2

[
φi(x, y) ± φi(x,−y)

]
.

If the array is excited by incident wave φi
±(x, y), then the resulting coefficients Ap

m

and Ipm satisfy the identity

(3.8) Up
−m = ±(−1)mUp

m.

This often leads to useful simplifications, and also to an increase in performance
when inverting linear systems. For brevity, we will give equations for the complete



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1790 I. THOMPSON AND C. M. LINTON

rp

θp

Θ 1

a

x

y

Fig. 3.1. Schematic diagram of a periodic array with circular scatterers centered at the points
(p, 0) in the (x, y) plane, and a plane wave incident at angle Θ.

wavefield, and it is to be understood that these can always be decomposed in the
manner described above.

To conclude this section, we will now review the theory of periodic arrays, starting
with the method for obtaining the coefficients Ap

m(∅) in the case where the incident
field is the plane wave

(3.9) φi(x, y) = eik(x cos Θ+y sin Θ);

see Figure 3.1. Values for Ap
m(∅) are of course required as a starting point, and the

technique used to obtain them provides some motivation for the MASM developed
in section 4 to solve the canonical problems. First of all, we require a second set of
equations relating the coefficients Ap

m(∅) and Ipm(∅). This will form a closed system,
when combined with (3.4), and can be obtained using Graf’s addition theorem [14,
section 2.5]. For the specific case under consideration here, we have

(3.10) Ipm(∅) = imeipk cos Θe−imΘ +
∑
v

∑
j �=p

Aj
v(∅)X

p−j
v−m H

(1)
v−m(k|p− j|),

where Xp
v = sgn(p)v. Given that the only difference between the field at the point

(x, y) and that at (x + j, y), j ∈ Z, is a phase shift due to the incident plane wave,
this can be simplified by seeking a solution for which

(3.11) Ap
m(∅) = A0

m(∅)eipk cos Θ.

Enforcing the boundary conditions via (3.4), and then making use of (3.11), we obtain

(3.12) A0
m(∅) + Zm

∑
v

A0
v(∅)σv−m(k cos Θ) = −Zmime−imΘ,

which is a linear system involving only an order sum. The function σn(t) is a
Schlömilch series of order n, i.e.,

(3.13) σn(t) =

∞∑
j=1

[
e−ijt + (−1)neijt

]
H (1)

n (kj).

If the values of k and Θ are such that the Schlömilch series are divergent, the values
for Ap

m(∅) can be obtained as in [12]. Note that σ−n(t) = (−1)nσn(t).
The Schlömilch series is a type of lattice sum, and the capacity to evaluate these

accurately and efficiently is crucial to the analysis of wave interactions with arrays.
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For the case under consideration here, the well-known Twersky formulae [25, 8] can
be used. The singularity structure of σn(t) must be considered when applying the
MASM, and so we note that

(3.14) σn(t) = bn(t) + 2(−i)n+1

⎡⎣μ0
n(t) +

∞∑
j=1

(
μj
n(t) + μ−j

−n(t) − δn0

πj

)⎤⎦ ,

where bn(t) is an entire function that can be expressed as a finite sum of Bernoulli
polynomials, and

(3.15) μj
n(t) =

[t + 2jπ − γ(t + 2jπ)]
n

knγ(t + 2jπ)
.

The function γ(t) is defined for real t via

(3.16) γ(t) =

{ √
t2 − k2 : |t| ≥ k,

−i
√
k2 − t2 : |t| < k.

For n = 0, 1, and 2, the summand in (3.14) is O(j−3) as j → ∞; for larger n it is
O(j−5) or smaller. The rate of convergence can easily be accelerated by expanding
the summand in (3.14) for large j. Where derivatives are required, the formula

(3.17)
dμj

n

dt
=

−μj
n(t)

γ(t + 2jπ)

[
n +

t + 2jπ

γ(t + 2jπ)

]
can be used. The infinite summation in the resulting formula for σ′

n(t) has a summand
that is O(j−3) as j → ∞ for n = 0 and n = 1, and O(j−5) or smaller for larger values
of n. Again, the convergence can be accelerated where necessary.

An important property of infinite periodic arrays is their capacity to support RB
surface waves in some circumstances. These propagate without loss along the array
and decay exponentially in other directions. The presence of RB waves corresponds
to the existence of nontrivial homogeneous solutions to the periodic array problem
with the form

(3.18) φt
RB(r) =

∑
m

∑
p

B̃meipβ̃ H (1)
m (krp)e

imθp ,

where β̃ ∈ R is an arbitrary phase shift. The coefficients B̃m satisfy the same system
of equations as A0

m(∅) (i.e., (3.12)), but with the right-hand side set to zero and

k cos Θ replaced by β̃; thus

(3.19) B̃m + Zm

∑
v

B̃vσv−m(β̃) = 0,

in which B̃m 
= 0 for at least one m. A straightforward method for finding the
appropriate values for β̃ is given in [6]. The associated coefficients B̃m are then
normalized so that

(3.20)
∑
m

|B̃m|2 = 1.
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Given the evident 2π-periodicity of the Schlömilch series (3.13), distinct solutions to

(3.19) can occur only for β̃ ∈ [0, 2π). Full details of the parameter ranges for which RB
modes have been found are given in [23]. Here we summarize the important details.

If the surface of the scatterers is subject to a Dirichlet boundary condition, then
RB waves do not occur [2]. On the other hand, if a Neumann boundary condition is
in use, then up to two distinct modes are known to exist. One of these is symmetric
about y = 0; this can occur for scatterers of any size, for a range of wavenumbers
0 < k < ks

max < π. The other is an antisymmetric mode which exists in the range
ka
min < k < ka

max < π, but only if a � 0.403. The cut-off values depend upon the
scatterer radius a. Outside the given ranges for k, the RB wave is replaced by a mode
that is evanescent in x. In both the symmetric and antisymmetric cases, the principal
value for β̃ lies in the interval (k, π) and corresponds to a right-propagating wave.

The associated left-propagating mode has the phase shift 2π − β̃ in place of β̃ and
the coefficient (−1)mB̃m in place of B̃m. As k → kmax, β̃ → π, i.e., the RB modes
become standing waves. The amplitude with which RB modes are excited is a key
parameter in the solution, and obtaining this is a major goal of our analysis. In what
follows, we will assume that exactly one type of RB mode occurs (i.e., symmetric or
antisymmetric). It is not difficult to modify our subsequent analysis if this is not the
case. In a problem where the incident wave has been decomposed using (3.7), there
is at most one mode for each component of the solution.

4. Canonical problems. In order to proceed, we must determine ψ0
n, i.e., the

total field that occurs when scatterer 0 is replaced by a unit source of order n. In this
case, we have the expansion

(4.1) ψ0
n(r) =

∑
m

∑
p

Cp,0
m,n H (1)

m (krp)e
imθp ,

where

(4.2) C0,0
m,n = δmn,

as in (2.12). A useful symmetry relation can be obtained by changing x to −x and y
to −y (and therefore rp → r−p and θp → π + θ−p) in (4.1). After applying (4.2) and
comparing the result to (4.1), we find that

(4.3) C−p,0
m,n = (−1)m+nCp,0

m,n.

As before, a linear system for the unknown coefficients can be obtained by locally
expanding ψ0

n about the point rp = 0; thus

(4.4) ψ0
n(rp, θp) =

∑
m

[
Kp,0

m,n Jm(krp) + Cp,0
m,n H (1)

m (krp)
]
eimθp .

An expression for the incoming field coefficients Kp,0
m,n in terms of the outgoing coef-

ficients Cp,0
m,n can be deduced from (3.10) by simply omitting the term due to plane

wave forcing. We find that

(4.5) Kp,0
m,n =

∑
v

∑
j �=p

Cj,0
v,nX

p−j
v−m H

(1)
v−m(k|p− j|),

and the boundary condition gives

(4.6) Cp,0
m,n + ZmKp,0

m,n = 0, p 
= 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERACTION THEORY FOR DEFECTS 1793

The MASM can now be used to obtain an expression for Cp,0
m,n. The principal idea

is derived from the original array scanning method [27, 16, 23], in which the unknown
coefficients are represented as Fourier integrals. First of all, introduce damping by
writing

(4.7) k = Re[k] + iε,

where ε > 0. This ensures the convergence of the summations over the spatial index
in subsequent equations. Once the solutions are obtained, we can take the limit ε → 0
to retrieve the time-harmonic field. Next, define the function fm,n(t) by writing

(4.8) fm,n(t) = i
∑
p

Cp,0
m,ne−ipt,

so that we have

(4.9) Cp,0
m,n =

1

2πi

∫ 2π

0

fm,n(t)eipt dt.

One motivation for this choice of representation is that the spatial dependence of the
integral is such that if we substitute (4.9) into (4.5), the sum over j will become a
Schlömilch series as in (3.13). Indeed, combining (4.5), (4.6), and (4.9), we find that

(4.10)

∫ 2π

0

[
fm,n(t) + Zm

∑
v

fv,n(t)σv−m(t)

]
eipt dt = 0, p 
= 0.

A second motivation for (4.8) is that the integration in (4.9) facilitates a simple means
by which the left-hand side of (4.10) can be made to vanish for all p 
= 0. If we now
write

(4.11) fm,n(t) + Zm

∑
v

fv,n(t)σv−m(t) = Fm,n(t),

then (4.10) becomes

(4.12)

∫ 2π

0

Fm,n(t)eipt dt = 0, p 
= 0.

By considering the Fourier series expansions of Fm,n(t), it becomes clear that (4.11)
can be satisfied if and only if these functions are constants, which we denote by Fm,n.
The values for these are fixed by setting p = 0 in (4.9) and imposing the requirement
(4.2); hence

(4.13)
1

2πi

∫ 2π

0

fm,n(t) dt = δmn.

Note that the system of equations (4.11) contains only an order sum, and also that the
source order n does not affect the operator on the left-hand side, which is of exactly
the same form as those appearing in (3.12) and (3.19), with the variable t taking the

place of the parameters k cos Θ and β̃.
In order to determine the coefficients Fm,n, we introduce the function gm,n(t) as

the solution to the linear system (4.11), but with the right-hand side replaced by δmn,
i.e.,

(4.14) gm,n(t) + Zm

∑
v

gv,n(t)σv−m(t) = δmn.
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Since the right-hand side is known, this system of equations can be inverted numer-
ically for any value of t at which both σn(t) and gv,n(t) are analytic. If (4.14) is
multiplied by Fn,u and then summed over all integers n, we see that gm,n(t) is related
to fm,n(t) via

(4.15)
∑
v

gm,v(t)Fv,n = fm,n(t).

Integrating (4.15) yields

(4.16)
1

2πi

∑
v

Fv,n

∫ 2π

0

gm,v(t) dt = δmn,

in view of (4.13). In principle, therefore, the solutions to the canonical problems are
now available—take the limit ε → 0 in (4.7) and then apply quadrature to compute
the integrals in (4.16). This latter step is discussed in the appendix. This done, the
resulting linear system can be inverted to yield Fm,n. However, taking the limit ε → 0
in (4.7) will cause singularities to appear on the real line, and so we must determine
the correct indentations for the path of integration.

First, for any k > 0, there exists λ ∈ Z such that Re[kλ] ∈ [0, 2π], where

(4.17) kλ = k + 2λπ.

Equation (3.14) shows that the function σn(t) has a branch point at t = kλ; another
is located at t = 2π− kλ. Note that Im[kλ] = ε, and Im[2π− kλ] = −ε. The functions
fm,n(t) and gm,n(t) will inherit these singularities via (4.11) and (4.14), respectively.
The special case in which kλ = 2π − kλ = π can be handled by adjusting the path of
integration in (4.9) to run from −π to π.

A second important possibility is that, after taking the limit ε → 0 in (4.7), there
may exist real values of t at which the matrix of known coefficients appearing on the
left-hand side of (4.11) and (4.14) is singular. These correspond to the existence of

RB waves, as discussed in section 3; at t = β̃ the left-hand side of (4.11) (and also
(4.14)) is identical to that of (3.19). In general, the Fredholm alternative permits

solutions at t = β̃ and t = 2π − β̃ if the functions fm,n(t) and gm,n(t) possess simple

poles at these points. Numerical results in [6] show that dβ̃/dk > 0, and so when

we add damping using (4.7) the pole at t = β̃ moves above the real line, and that

at t = 2π − β̃ moves below. If we now let ε → 0 in (4.7) so as to retrieve the time-
harmonic solution, we find that the correct indentations for the path of integration
are those shown in Figure 4.1. This is the only configuration that leads to a purely
outgoing scattered field in the limit

√
x2 + y2 → ∞. The residues at the poles of

fm,n(t) determine the amplitudes of any RB waves that are excited, and these make
a contribution to Cp,0

m,n that does not decay in the limit |p| → ∞. We now calculate

these, using the method in [23]. First, multiply (4.11) by t − β̃ and then take the

limit t → β̃. The residue of the function fm,n(t) at the pole must satisfy the resulting
homogeneous linear system, which is identical to (3.19), and hence

(4.18) Res
t=β̃

fm,n(t) = cnB̃m,

for some constant cn. Essentially, the coefficients B̃m describe the shape of the RB
wave, and cn is the amplitude. The same procedure can then be applied with β̃
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Re(t)

Im(t)

2πkλ

2π − kλ

eβ

2π − eβ

Fig. 4.1. Singularity structure and indented contour of integration in the t plane. The poles at
t = β̃ and t = 2π − β̃ do not occur if Dirichlet boundary conditions are imposed on the surface of
the regular scatterers, or if λ �= 0 (i.e., k > π).

replaced by 2π − β̃, (and B̃m by (−1)mB̃m) and the symmetry relation (4.3) then
shows that

(4.19) fm,n(t) = f̂m,n(t) + cnB̃m

[
1

t− β̃
− (−1)m+n

t + β̃ − 2π

]
,

where f̂m,n(t) is analytic at t = β̃ and t = 2π − β̃. Finally, substitute (4.19) into

(4.11), transfer the terms with denominator t− β̃ to the right-hand side, and take the

limit t → β̃ using L’Hôpital’s rule as appropriate. We can now apply the Fredholm
alternative to the resulting linear system. The left-hand side consists of a singular
matrix, multiplied by a vector of bounded functions. Therefore, a solution can exist
if and only if the right-hand side is orthogonal to the (nontrivial) solution to the
homogeneous adjoint problem [20, eqns. (5.7)–(5.9)]. The latter is easily shown to be

B̃m/Z∗
m [23], leading to the following equation for cn:

(4.20)
∑
m

B̃∗
mFm,n

Zm
= cn

∑
m

B̃∗
m

∑
v

B̃vσ
′
v−m(β̃).

Here, the superscript “∗” denotes the complex conjugate, and the prime a derivative
with respect to the argument. The residues of the function gm,n(t) can be calculated
in exactly the same way; simply replace f with g in (4.18) and (4.19) and Fm,n with
δmn in (4.20).

The asymptotic behavior of Cp,0
m,n in the limit |p| → ∞ can be obtained by noting

that fm,n(t) is 2π-periodic, this property being inherited from the Schlömilch series
via (4.11). Consequently, if the path of integration in (4.9) is closed in the upper
half plane, the contributions from t = iu and t = 2π + iu, u > 0, cancel each other.
Therefore, as p → ∞, we have

(4.21) Cp,0
m,n ∼ cnB̃meipβ̃ + Cm,n

eikp

p3/2
+ O(p−5/2).

Here, the second term on the right-hand side is the dominant contribution from the
branch point at t = kλ. The dependence upon p can be deduced by using the method
in [12] to show that fm,n(t) remains finite as t → kλ. Given that t = kλ is a branch
point of square root type, the result follows. In principle, one can also obtain a formula
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for the coefficient Cm,n using a similar technique, but this is somewhat involved. The
behavior of Cp,0

m,n in the limit p → −∞ can be deduced by closing the contour of
integration in (4.9) in the lower half plane; alternatively, the symmetry relation (4.3)
can be used.

A final point concerns the field incoming toward the source, which must be cal-
culated if we are dealing with defects that do not consist of absent scatterers. From
(4.4) it is seen that this amounts to finding the value of K0,0

m,n, which can be achieved
by setting p = 0 in (4.5). Both the spatial sum and the order sum can be evaluated
exactly. Thus, on using (4.9), we have

(4.22) K0,0
m,n =

1

2πi

∫ 2π

0

∑
v

fv,n(t)σv−m(t) dt.

Equation (4.11) reduces this to an integral whose value is known in view of (4.13),
the result being

(4.23) ZmK0,0
m,n = −δmn − iFm,n.

5. Illustrative results. In this section we present some numerical results for a
variety of different situations. We also show how the interaction theory for defects
can be combined with the infinite array subtraction technique developed in [11], and
the large array approximation used in [24] to validate results, and extend the range of
applicability. Particular attention is paid to the determination of the amplitude with
which RB waves are excited by the defects. Accurate computation by more direct
numerical methods is difficult (see the appendix, and also [11]), but our approach
is numerically efficient, and we are able to compute the amplitudes for all possible
k and Θ. In view of the number of cases that can be solved, we have not carried
out a comprehensive parameter survey, but instead we have attempted to provide a
representative sample of the types of result that can be obtained. In performing any
such calculations, the rapidly convergent order summations that occur throughout
our analysis must be truncated at some suitable value, which depends on the size of
ka. This must be chosen to be large enough to yield accurate results, but not so large
as to unnecessarily increase program execution time or generate near singular linear
systems. The truncation levels used by our numerical codes are the same as those
reported in [24]. Unless otherwise stated, Neumann boundary conditions are applied
on the surface of the regular scatterers.

5.1. Localized defects. In cases where the defects are confined to a small sec-
tion of the array, all of the relevant integrals can easily be evaluated by quadrature.
The asymptotic behavior of Ap

m(D) for large p can be obtained using (2.16), (2.17),
(3.11), and (4.21). A formula for large, negative p can be obtained in a similar way
by applying the symmetry relation (4.3) in (2.17). We find that, as p → ±∞,

(5.1) Ap
m(D) ∼ A0

m(∅)eikp cos Θ + (±1)mΓ
±
B̃mei|p|β̃ + O(|p|−3/2),

where

(5.2) Γ
±

=
∑
n

(±1)ncn
∑
q∈D

aqne∓iqβ̃ .

The quantity Γ
+

(Γ
−
) is the complex amplitude coefficient of the right- (left-) prop-

agating RB wave that is excited by the defect. This depends upon the solutions to
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Fig. 5.1. Contour plots showing the amplitude of the right-propagating RB wave, |Γ+ |, for
a = 0.25 with varying k and Θ. (a) D = {0}. (b) D = {0, 1, 2, 3, 4, 5}.

the canonical problems and the interactions between the defects via the coefficients
cn, and the sum over D, respectively.

Figure 5.1 shows contour plots of |Γ+ | with varying k and Θ, for a = 0.25 and
two different defect sets: D = {0} and D = {0, 1, 2, 3, 4, 5}. Figure 5.2 shows similar
plots, but for the antisymmetric RB wave on an array with a = 0.49. In all cases,
|Γ− | can be deduced by symmetry. The computation time required to obtain data
for figures such as these is greatly reduced by the fact that the canonical problems
need only be solved once for each value of k. The general trend for the amplitude
to increase with k is consistent with the cases of excitation at an array end [11],
and by an aperiodic source [23]. The upper limit for k is the cut-off (k ≈ 2.783 for
a = 0.25 and k ≈ 2.971 for the antisymmetric mode on an array with a = 0.49), above
which the RB waves cease to exist. For all values of k smaller than those shown, the
symmetric mode exists but is excited at a very low amplitude. The antisymmetric
mode does not exist for k � 1.796; for intermediate values up to those that are shown

in Figure 5.2 the excitation amplitude is small. The dependence of Γ
+

upon the angle
of incidence Θ exhibits a number of interesting features. First, the surface wave is cut
off completely as Θ → 0 and Θ → π. In fact, the total field vanishes in these limits,
as demonstrated in [12]; the presence of a finite set of defects has no bearing on this.
The cut-off at Θ = 0 is sharper in Figures 5.1(b) and 5.2(b) than it is in Figures
5.1(a) and 5.2(a); this is consistent with the case of excitation at the end of a semi-
infinite array, where the cut-off disappears, and the amplitude is generally greatest
at head-on incidence [11]. The two-peak structure, and the fact that the relative size
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Fig. 5.2. Contour plots showing the amplitude of the right propagating antisymmetric RB wave,

|Γ+ |, for a = 0.49 with varying k and Θ. (a) D = {0}, (b) D = {0, 1, 2, 3, 4, 5}.

of the peak at Θ ≈ 0.8π is reduced for the larger defect sets, is also consistent with
the case of excitation at an end. Finally, note that for the case where D = {0}, the
amplitude of the symmetric right-propagating RB wave is largest when Θ ≈ 0.8π,
which corresponds to an incident field whose x-component is propagating to the left.

The infinite array subtraction methods introduced in [11] provide a useful means
of validating results such as those shown in Figures 5.1 and 5.2. If we write

(5.3) Dp
m(D) = Ap

m(D) −Ap
m(∅),

then, on recalling that Ap
m(D) = 0 for p ∈ D, it is not difficult to use the results in

section 3 to show that the coefficients Dp
m(D) satisfy the linear system of equations

(5.4) Dp
m(D) + Zm

∑
v

∑
j /∈D
j �=p

Dj
v(D)Xp−j

v−m H
(1)
v−m(k|p− j|)

= Zm

∑
v

A0
v(∅)

∑
j∈D

eijk cos ΘXp−j
v−m H

(1)
v−m(k|p− j|), p /∈ D.

Note that the right-hand side has been simplified using (3.4) (with D = ∅) and (3.10).
If no RB waves are present, then we should expect that Dp → 0 as |p| → ∞. On the
other hand, if RB waves are present in the solution, their contribution can be isolated
by writing

(5.5) Dp
m(D) =

⎧⎪⎨⎪⎩
D̂p

m(D) + Γ
−
e−ipβ̃(−1)mB̃m : p ≤ p0,

D̂p
m(D) : p0 < p < p1,

D̂p
m(D) + Γ

+

eipβ̃B̃m : p ≥ p1,
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where p0 and p1 are chosen so that the array is regular for p ≤ p0 and p ≥ p1.
Substituting this into (5.4), we find that the coefficients D̂p

m(D) satisfy a linear system
which has the same left-hand side as (5.4) and correction terms Lp

m and Rp
m (due to

the left- and right-propagating RB waves, respectively) added to the right-hand side.
A straightforward calculation shows that

Lp
m =

⎧⎪⎪⎨⎪⎪⎩
−Γ

−
Zme−ipβ̃

∑
v

(−1)vB̃vS
p−p0

v−m (β̃) : p > p0,

Γ
−
(−1)mZme−ipβ̃

∑
v

B̃vS
1+p0−p
v−m (−β̃) : p ≤ p0

(5.6)

and

Rp
m =

⎧⎪⎪⎨⎪⎪⎩
−Γ

+

Zmeipβ̃
∑
v

B̃vS
p1−p
m−v (β̃) : p < p1,

Γ
+

Zmeipβ̃
∑
v

B̃vS
1+p−p1

v−m (−β̃) : p ≥ p1,
(5.7)

where

(5.8) Sp
m(β) =

∑
j≥p

eijβ H (1)
m (kj);

this half range Schlömilch series can be efficiently computed using methods in [8].
The fact that the RB wave is a homogeneous solution to the periodic array problem
has been used to simplify Lp

m for p ≤ p0 and Rp
m for p ≥ p1. If we now solve the linear

system for D̂p
m(D), the solution will decay as |p| → ∞, but only if the correct values

for the RB amplitudes Γ
−

and Γ
+

are used.
As an example, consider the parameter set a = 0.25, k = 2.5, Θ = 0.1π, and

D = {0}, which is included in Figure 5.1. Figure 5.3 shows a logarithmic plot of Dp

for this case, where

(5.9) Dp =
∑
m

|Dp
m(D)|2 .

This provides a simple measure of the difference between the scattered fields in the
periodic and defective array problems. The data are obtained by truncating the
system (5.4) at |p| = 100. Clearly, Dp does not decay as |p| → ∞; instead it oscillates
about a fixed value corresponding to the amplitude of the RB wave. As in Figure
5.1, this is stronger to the left of the defect. The quantity D̂p is also plotted in

Figure 5.3. This is obtained by replacing Dp
m(D) with D̂p

m(D) in (5.9). Values for

Γ
−

(≈ 0.07613 + 0.02638i) and Γ
+

(≈ −0.04897 + 0.00176i) are obtained using (2.15)
and (5.2), with the canonical problems solved using the MASM. These values are then

used in (5.6) and (5.7). The fact that D̂p decays as |p| is increased confirms that these
amplitudes are indeed correct.

5.2. Irregular scatterers. In cases where the defects do not consist of absent
scatterers, we must close the system of equations for apm (2.18) by applying boundary
conditions on the surface of the irregular array elements. We will assume that the
irregular scatterers differ from the other array elements in either size, surface compo-
sition, or possibly both. In such cases, we can impose the boundary condition for the
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Fig. 5.3. Logarithmic plot of Dp and D̂p for a = 0.25, k = 2.5, Θ = 0.1π, and D = {0}.

irregular scatterers using an equation similar to (3.4), but with a different scattering

coefficient Ẑm; thus

(5.10) Ap
m(D) + ẐmIpm(D) = 0, p ∈ D.

As before, it is not difficult to incorporate transfer matrices so as to deal with scat-
terers of a different shape. Equation (5.10) is to be used in conjunction with

(5.11) Ap
m(D) = Ap

m(∅) +
∑
n

∑
q∈D

aqnC
p−q,0
m,n ,

which is obtained from (2.12) and (2.16)–(2.18), and is valid for all p. The simplest
way to proceed is to deduce an expression for Ipm(D) from (3.10) by replacing ∅ with
D. If we then use (5.11) to decompose Ap

m(D), the spatial sums in the resulting
expression can be evaluated using (3.10) and (4.5), leading to

(5.12) Ipm(D) = Ipm(∅) +
∑
n

∑
q∈D

aqnK
p−q,0
m,n .

The incoming field coefficients Kp,0
m,n on the right-hand side can then be eliminated

using (3.4) (with D = ∅), (4.6), and (4.23). This amounts to exploiting the fact that
(5.11) decomposes Ap

m(D) into contributions from fields that satisfy the boundary
condition for a regular scatterer at rp = a and contributions for which the local
expansion of the incoming field is known from (4.23). We find that

(5.13) −ZmIpm(D) = Ap
m(∅) +

∑
n

∑
q∈D

aqnC
p−q,0
m,n + i

∑
n

apnFm,n.

Finally, we can form a closed system for apm by combining (5.13) with (5.10) and
(5.11). The resulting expression is

(5.14) −iẐm

∑
n

apnFm,n+(Zm−Ẑm)
∑
n

∑
q∈D

aqnC
p−q,0
m,n = (Ẑm−Zm)Ap

m(∅), p ∈ D.
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Fig. 5.4. Contour plots showing Re[φt] for a = 0.25, k = 5.0, and Θ = 0.25π, with Dirichlet
boundary conditions applied on the surface of the regular scatterers. (a) D = ∅. (b) D = {0}. The
defect is a Neumann scatterer, also with a = 0.25.

As before, this determines the values of apm; (5.11) can then be used to find values of

Ap
m(D) for p /∈ D. Note that taking Ẑm = 0 returns the equation for absent scatterers,

and Ẑm = Zm yields apm = 0, as we should expect, since then there are no defects.
Figure 5.4 shows contour plots depicting the local effects caused by replacing a

single element in a periodic array with an irregular scatterer. The parameters used
are a = 0.25, k = 5.0, and Θ = 0.25π, and a Dirichlet boundary condition is applied
on the surface of the regular scatterers (shown as white with a black boundary). In
Figure 5.4(a), there is no defect, and the quasi-periodic nature of the field is evident.
In Figure 5.4(b), the field is modified using the solutions to the canonical source
problems, so that the Neumann boundary condition is now satisfied on the surface of
scatterer 0 (shown as black with a white boundary). Contour lines intersecting this
scatterer do so at a right angle to the surface tangent. The influence of the defect is
more significant in the region above the array, because the field in the periodic case
is relatively weak here.

For suitable parameters, irregular scatterers also cause RB waves to be excited.
Figure 5.5 shows contour plots of |Γ+ | for a = 0.25 with varying k and Θ, with
D = {0} and D = {0, 1, 2, 3, 4, 5}. The defects consist of Dirichlet scatterers with

radius a = 0.25. As before, |Γ− | can be deduced by symmetry. The pattern of
behavior here is quite different from the case of absent scatterers shown in Figure
5.1. The main qualitative difference lies in the dependence of |Γ+ | upon Θ; there is
no longer a second peak at Θ ≈ 0.8π. Elsewhere, the excitation is generally stronger
than it is in the corresponding cases in Figure 5.1.

5.3. Widely spaced defects. If the defects are spread over a large section of
the array, the evaluation of (4.9) by quadrature is no longer straightforward. This is
because we must calculate values for Cp−q,0

m,n for all p, q ∈ D, and if |p − q| is large,
the integrals are difficult to compute. There are a number of ways to proceed. One
possibility is to adopt a mixed strategy, obtaining Γ

±
using the MASM, and then

solving for the decaying contributions to Cp−q,0
m,n using the infinite array subtraction

technique discussed in section 5.1. This yields approximate values for all of the
unknown coefficients, and is therefore a particularly attractive idea if results for a
large number of different defect sets are to be computed. Alternatively, we can form
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Fig. 5.5. Contour plots showing the amplitude of the right-propagating RB wave, |Γ+ |, for
a = 0.25 with varying k and Θ; Dirichlet boundary conditions are applied on the surface of scatterers
for which p ∈ D. (a) D = {0}. (b) D = {0, 1, 2, 3, 4, 5}.

an approximate interaction theory by neglecting the decaying terms in (4.21) when
p3/2 � 1. This approximation was used in generating the data for Figure 5.6; it
amounts to assuming that significant interactions between widely spaced defects are
caused solely by the RB modes and has been shown to work well in practice in the
related case of a long, finite array [24].

The presence of such widely spaced defects in an array can lead to “near-trapping”
in the intermediate region. This effect was originally reported in [13] in a study of
interactions between water waves and long, finite arrays of bottom-mounted circular
cylinders. In this physical context, the force in the x direction exerted on cylinder p
by the total field (i.e., the integral of the pressure times the component of the outgoing
normal to rp = a that is parallel to the array), normalized using the force exerted on
an isolated cylinder, is given in [9] as

(5.15) Xp =

∣∣∣∣ 1

2Z1

[
Ap

1(D) −Ap
−1(D)

]∣∣∣∣ .
Figure 5.6 shows a contour plot of the horizontal force on an array element that
is equidistant between two widely spaced defects, each of which consists of a single
absent element. The scatterer radius a is 0.25, as in [13] and in the majority of cases in
[24]. The wavenumber is varied between 2.7 and the cut-off for RB waves (k ≈ 2.783),
using 1000 data points, and the angle of incidence is varied between 0 and π/2 using
500 data points. Results for Θ > π/2 can be deduced by symmetry. The plot reveals
that very large forces occur at certain discrete intervals in k and Θ. The strongest
force occurs at a wavenumber that is close to, but not exactly equal to, the cut-off for
RB waves. No significant peaks in the force occur for values of k smaller than those
shown. The causes of the near-trapping effect are explored in [24] for the case of a
finite array; the mechanism here is much the same. Essentially, RB waves generated
by one periodicity breaking feature (end or defect) are reflected back by the other.
The magnitude of the reflection coefficient increases as k → kmax. Peaks in the force
correspond to situations where the interference is predominantly constructive between
RB modes excited by the interaction of the incident wave with the defects and those
generated by reflection.
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Fig. 5.6. Contour plot showing the force exerted on scatterer 51, with a = 0.25 and D = {0, 102}.

6. Concluding remarks. By reducing the problem of scattering by a defective
array to a set of simpler, canonical problems, we have developed an interaction the-
ory for defects in infinite periodic arrays. This is similar in nature to the standard
interaction theory for a finite number of bodies. The simplest case is that of an array
with one or more absent scatterers. A straightforward extension to the theory that
allows irregular scatterers to be considered has also been presented. The MASM is
an effective means by which the canonical problems can be solved, and in particular
enables important field characteristics such as RB surface wave amplitudes to be effi-
ciently calculated to near machine accuracy. The canonical problems are independent
of the defect type and configuration and all aspects of the incident field except the
wavenumber, and need not be solved again if these parameters are changed.

Numerical results for various cases have been presented, with particular attention
paid to the amplitude with which RB surface waves are excited. The MASM is
particularly well-suited to cases in which the defects are localized. For defects that
are spread over a larger section of the array, we have shown how other methods such as
infinite array subtraction and the large array approximation can be incorporated so as
to overcome the difficulties that arise. All of the results that we have presented involve
arrays whose elements are circular cylinders. It is not difficult to modify our theory
so as to account for other shapes by using transfer matrices. More complicated cases
such as fully three-dimensional scattering problems can also be considered, provided
that the relevant analogue to the theory of periodic arrays summarized in section 3 is
available.

Appendix. Numerical quadrature. The most computationally expensive
procedure in applying the interaction theory for defects in arrays is the evaluation
of the integrals in (4.16) and (4.9). Quadratures must be performed on a contour
whose orientation with respect to the branch points is the same as that shown in
Figure 4.1, but in general it is convenient to move the path of integration away from
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eβ

2π−eβ

Qb

Fig. A.1. Schematic diagrams of the contours Qa and Qb used for numerical quadrature.

the various singularities. Since the residues of the functions fm,m(t) and gm,n(t)
can be obtained using (4.20), the orientation with respect to the poles need not be
maintained. In choosing an appropriate contour, a number of factors must be taken
into consideration. These include the possibility of complex poles, contour length,
proximity to the known real line singularities, and the behavior of the exponential
term eipt that appears in (4.9). Obviously, the extent to which a computer program
can automatically adjust the contour to account for these factors has a significant
effect on its overall complexity.

The paths of integration used by our numerical codes when RB modes are present
are shown in Figure A.1. These are chosen for their relative simplicity, and we do not
claim that they are optimal. For most parameter values, the distance between the two
poles is at least as great as the distance between a pole and the nearest branch point,

i.e., 2(π− β̃) ≥ β̃−k, and so we use the contour Qa, which consists of two semicircular

arcs of radius π/2, centered at t = π/2 and t = 3π/2. As k → π, β̃ → π, and so the

two poles move close together. If 2(π− β̃) < β̃−k, then we integrate along Qb, which

consists of two semicircular arcs of radius (β̃ + k)/4 centered at t = (β̃ + k)/4 and

t = 2π − (β̃ + k)/4, and a third arc centered at t = π with radius 2π − (β̃ + k). A

residue contribution from the pole at t = β̃ must be included in this case.
To deal with the possibility of complex poles, we introduce the function d(t) as the

determinant of the matrix on the left-hand side of (4.11) (also (4.14)), so that poles
of fn

m(t) and gnm(t) can occur only at points where d(t) = 0. We then numerically
apply the principle of the argument [17, page 99] to log[d(t)] in the finite region(s) of
the cut plane enclosed by the original path of integration (Figure 4.1) and the new

contour (Figure A.1). Aside from t = β̃ and t = 2π − β̃, no poles that interfere with
the deformations used here have been found. Additional poles were found on the line
t = π+iu, u ∈ R, but only for large values of |u|. It should be noted that we have not
searched exhaustively across the parameter ranges for a and k. A uniform partition of
the contours Qa and Qb is used by our numerical codes, and the three-point Gaussian
formula is applied on each subinterval. In cases involving multiple defects, efficiency
can be greatly improved by storing values of fm,n(t) at the partition points used for
the largest value of |p| at which the integral in (4.9) must be evaluated and by making
repeated use of these.

It is of some interest to compare the accuracy achieved by the MASM with that
of the filtering technique [11], which can also be used to solve the canonical problems.
The filtering technique requires the truncation and inversion of linear systems involv-
ing slowly convergent infinite spatial sums. We should therefore expect the MASM
to achieve a superior degree of both accuracy and performance. An ideal parameter
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Table A.1

Convergence in |c0| and performance in computing |cn| for a = 0.25 and k = 2.5.

Modified array scanning Filtering
NSI |c0| % change time (s) SPT |c0| % change time (s)
99 0.1361053213 4.24 70 0.1360833934 4.36

149 0.1361053214 0.0000000039 6.40 90 0.1360096190 0.0542126301 8.55
199 0.1361053214 0.0000000003 8.57 110 0.1361554350 0.1072100718 14.33
249 0.1361053214 0.0000000000 10.72 130 0.1361523637 0.0022557485 21.68
299 0.1361053214 0.0000000000 12.90 150 0.1360562815 0.0705696206 31.55

for comparison is the quantity |cn|, i.e., the amplitude of the RB wave that is excited
by a source of order n replacing the scatterer centered at the origin. Table A.1 shows
typical performance and accuracy figures that can be achieved by the two methods.
The parameters used are a = 0.25 and k = 1, which lead to β̃ ≈ 2.586, and the com-
putations are performed using Fortran 2003 on a machine with a 2.5GHz processor.
Note that the times given are those required for the simultaneous computation of cn
for all n up to the order truncation. The abbreviation NSI stands for the number of
subintervals into which the contour is divided. The value for the spatial index p at
which the linear system used in the filtering method is truncated is denoted by SPT.
The dependence of computation time upon NSI is clearly linear, whereas increasing
SPT leads to a significant decrease in performance. The results obtained by the two
methods are in agreement up to the degree of accuracy that can be expected of the
filtering method [11]; this requires the inversion of a large linear system of equations
and is susceptible to round-off errors. It is clear that the MASM yields far greater
accuracy, and is also much more efficient.
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Anal., 8 (1961), pp. 323–332.

[26] S. Wilcox, L. C. Botten, R. C. McPhedran, C. G. Poulton, and C. Martijn de Sterke,
Modeling of defect modes in photonic crystals using the fictitious source superposition
method, Phys. Rev. E, 71 (2005), 056606.

[27] C. P. Wu and V. Galindo, Properties of a phased array of rectangular waveguides with thin
walls, IEEE Trans. Antennas and Propagation, 14 (1966), pp. 163–173.

[28] F. Wu, Z. Liu, and Y. Liu, Splitting and tuning characteristics of the point defect modes in
two-dimensional phononic crystals, Phys. Rev. E, 69 (2004), 066609.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


