
The two-parameter soliton family for the interaction of a fundamental

and its second harmonic

R.H.J. Grimshaw (a), E. A. Kuznetsov (b), and E.G. Shapiro (c)

(a)
{ Department of Mathematics and Statistics, Monash University, Clayton, Vic 3800, Australia

(b)
{ Landau Institute for Theoretical Physics, 2 Kosygin str., 117334 Moscow, Russia

(c)
{ Institute of Automation and Electrometry, 630090 Novosibirsk, Russia

(October 30, 2000)

For a system of interacting fundamental and second harmonics the soliton family
is characterized by two independent parameters, a soliton potential and a soliton
velocity. It is shown that this system, in the general situation, is not Galilean
invariant. As a result, the family of movable solitons cannot be obtained from the rest
soliton solution by applying the corresponding Galilean transformation. The region
of soliton parameters is found analytically and con�rmed by numerical integration of
the steady equations. On the boundary of the region the solitons bifurcate. For this
system there exist two kinds of bifurcation: supercritical and subcritical. In the �rst
case the soliton amplitudes vanish smoothly as the boundary is approached. Near
the bifurcation point the soliton form is universal, determined from the nonlinear
Schrodinger equation. For the second type of bifurcations the wave amplitudes
remain �nite at the boundary. In this case the Manley-Rowe integral increases
inde�nitely as the boundary is approached, and therefore according to the VK-type
stability criterion, the solitons are unstable.

I. INTRODUCTION

It is well-known that three wave packets which carrier frequencies satisfying the triad resonant

condition can form bound states - solitons - due to their mutual nonlinear interaction (see e.g.

[1]). The corresponding equations are called the three-wave system [2]. The three-wave system

describes spatial solitons as well as spatial-temporal solitons in �
(2) media [1,3]. This system

couples amplitudes of three quasi-monochromatic waves due to quadratic nonlinearity. A special

case of such an interaction is that of the �rst (fundamental) and second harmonic, given by

2!(k) = !(2k) (1)

where ! = !(k) is the dispersion law and k is the wave vector. In this case the three-wave system

transforms into a pair of equations for the amplitudes of the �rst and second harmonics. When the

di�erence in group velocities between these �rst and second harmonics is small enough (which is

typical for nonlinear optics) it is necessary to take into account wave dispersion. In this case this

model can be considered as a vector nonlinear Schrodinger system but with quadratic nonlinearity.

The balance between nonlinear interaction and dispersion results in the existence of solitons. If

the di�erence in group velocities is large enough, then each wave packet propagates away with its

group velocity, and the system cannot form a bound state between the �rst and second harmonic.

Moreover, in this case this system is close to being integrable. For zero dispersion it can be integrated

by means of the inverse scattering transform [4,5].

The system of a fundamental frequency (FF) interacting with its second harmonic (SH) has also

another very interesting application to solitary waves propagating with a constant velocity in a

nonlinear medium without change of shape. Such objects have been called solitons [6]. These

objects are really stationary, unlike, for instance, spatial-temporal solitons in a �2 medium where

only the envelopes of the amplitudes can be considered stationary. To distinguish these solitons
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from really stationary solitons, it was suggested in [6] to call the former quasi-solitons. For instance,

breathers described by the Sine-Gordon equation will be an example of such quasi-solitons.

It was shown in [6] and [9] that when the soliton velocity v is close to the minimumphase velocity

of linear waves, vcr = min(!(k)=k), the Fourier spectrum of the stationary pulse represents a set of

peaks. Their positions in the frequency domain correspond to the frequency related to the minimal

phase velocity (fundamental harmonic) and to its multiple harmonics. The width of these peaks

vanishes when the critical velocity vcr is approached. This allows us to introduce an envelope for

each peak, and apply a standard multi-scale expansion. In the case when the carrier frequency,

corresponding to the critical velocity does not satisfy the resonance condition (1), then the envelope

of the fundamental harmonic obeys the nonlinear Schroedinger equation (NLS).This phenomenon

was �rst discovered for gravity-capillary waves [7,8]. Later it was understood that this is the general

situation for an arbitrary soliton if its amplitude vanishes at v = vcr (i.e. does not have a jump at

the critical velocity). If the carrier frequency for the fundamental harmonic is close to the resonance

condition (1) then the corresponding equations for a steady pulse transform into the steady (time-

independent) equations for the interacting fundamental and second harmonics. The stability of

these soliton solutions with respect to modulation perturbations can be described in the framework

of the unsteady system for fundamental and second harmonics.

When the di�erence in group velocities for FF and SH is small enough, then it is necessary to

take into account dispersion (plus di�raction in the multi-dimensional case), and then the system of

interacting fundamental and second harmonics contains three free parameters: the phase mismatch


, which characterizes how far the carrier frequencies of the �rst and second harmonics are from

resonance, and two dispersion coe�cients !001 and !002 where 1; 2 stand for FF and SH respectively,

and prime means derivative with respect to k1;2 where k2 = 2k1. In the multi-dimensional case,

instead of dispersion coe�cients two dispersion tensors arise. All other parameters can be excluded

by simple rescaling. The behavior of solitons depends signi�cantly on these three parameters. In

the simplest variant soliton solutions are determined by one internal parameter �2, which can be

considered as a \chemical potential". Until now, mainly such solutions have been treated. We

would like to pay attention to the fact that the system of interacting fundamental and second

harmonics (as well as the three-wave system) is not Galilean invariant in the general situation.

In particular, this means that the system must have a more broad soliton family than could be

considered before. The velocity of the soliton, together with the \chemical potential" are two inner

independent parameters of the soliton family. In the present paper we study this two-parameter

family both analytically and numerically. We show that these two parameters are not arbitrary

indeed: there are some restrictions imposed on them which follow from the conditions for soliton

existence. This yields a two-dimensional region in the parameter space. Passing across the boundary

of this region, a soliton undergoes bifurcations. In this paper we show that for this system two types

of bifurcation are possible. The �rst is a supercritical bifurcation, when the �rst harmonic amplitude

 1 for the soliton solution vanishes smoothly while the second harmonic amplitude depends on  1
quadratically. Near such a bifurcation a soliton solution transforms into the soliton of the nonlinear

Schrodinger equation (NLS) that is embedded in the general scheme suggested in [6], [9]. As we

show in this paper such solutions are stable for the one-dimensional case.

Another possibility is a subcritical bifurcation which takes place when the characteristic size for

the second harmonic becomes in�nite as the soliton parameters approach the boundary. In this

case near the boundary the amplitude of the second harmonic remains �nite, but the amplitude  1
vanishes. Correspondingly, close to the boundary the Manley-Rowe integral in this case becomes

in�nite. The derivative of this integral relative to the parameter �2 becomes negative, so that, in

accordance with the Vakhitov-Kolokolov (VK) type of criteria [10,11], there is soliton instability.

In this case, however, this criterion is only a su�cient criterion for instability : it cannot be used to

establish stability. The original VK stability criterion was derived �rst for the NLS equation [10]:

@N=@�
2
> 0: (2)
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Here N is the number of particles in the soliton solution and " = ��2 < 0 is the energy of the NLS

soliton in the bound state. For the NLS this criterion is simultaneously necessary and su�cient. For

a positive derivative, i.e., when the addition of a single particle decreases the energy ", the soliton is

stable. In the opposite case, where a level is expelled as N increases, the soliton is unstable (in this

case the derivative in (2) is negative). The di�erence in the stability criteria between the NLS and

the FF-SH system (being a two-component NLS system), is connected with the vector character of

the latter (for details see [11]). Just for this reason, it is impossible to generalize the criterion (2)

to the FF-SH system completely.

II. BASIC EQUATIONS

The equations of motion describing the interaction of the �rst (fundamental) and second har-

monics can be written as follows:

i
@ 1

@t
+

1

2
!

00

1 1xx = �2 2 
�
1; (3)

i
@ 2

@t
� 
 2 +

1

2
!

00

2 2xx = � 
2
1 (4)

where  1 and  2 are amplitudes for the �rst and second harmonics respectively, and the parameter 


in (3) characterizes the phase mismatch. Here, for simplicity, we consider only the one-dimensional

case. The corresponding generalization to the multi-dimensional case is straightforward. In partic-

ular, in the multi-dimensional case one needs to change the 1D operators !00
l
@
2
x
(l = 1; 2) in (3,4)

to

@
2
!l(kl)

@kli@klj

@
2

@xi@xj
:

The system under consideration (3,4) is Hamiltonian:

i
@ l

@t
=
�H

� �
l

(5)

with the Hamiltonian

H =

Z

j 2j

2
dx+

X
l

Z
1

2
!

00

l
j lxj

2
dx�

Z
( �21  2 + c:c:)dx: (6)

Besides the Hamiltonian, this system conserves also the Manley-Rowe integral

N =

Z
(j 1j

2 + 2j 2j
2)dx (7)

which is a consequence of gauge invariance of the system. This integral has also be regarded as an

adiabatic invariant which appears as a result of average of the original system over fast oscillations

corresponding to the carrier frequencies of two resonant wave packets. From the de�nition (7), the

Manley-Rowe integral is a positive quantity.

Another integral of motion for Eqs. (3, 4) is the momentum,

P = �
i

2

X
l

Z
( �

l
 lx �  

�
lx
 l)dx ;

which is a consequence of the invariance of the system to spatial translations. The latter, however,

does not guarantee that the equations of motion will be Galilean invariant. To check this, let us

perform two transformations. The �rst is passing to the coordinate system moving with velocity v;
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x
0 = v � vt; t

0 = t; (8)

and another is a simple gauge transform:

 1 !  1e
�i!t+ikx

;  2 !  2e
�i2!t+i2kx

: (9)

Then we require that the obtained equations have a similar form to the original system. Simple

calculations show that this demand can be satis�ed if and only if

2p1 = p2 (10)

where pl = 1=!00
l
: Under this condition only, we have Galilean invariance. In all other cases the

system (3, 4) is not Galilean invariant. The same situation occurs for the three-wave system which

describes the interaction of three resonant wave packets (compare with [11]). For the three-wave

system the analog of (10) is written as follows

p1 + p2 = p3:

The absence of Galilean invariance in the general case for the system (3, 4) means that movable

soliton solutions cannot be transformed by means of the transformations (8, 9) to the rest soliton.

In other words, the soliton velocity v itself is a new independent parameter, which together with the

energy of solitons (as bound states) " = ��2 de�nes a two-parameter soliton family. This family is

given as follows:

 1(x; t) =  1s(x� vt)e
i�

2
t
;  2(x; t) =  2s(x� vt)e

2i�2t
;

where the amplitudes  1s and  2s satisfy the equations:

��
2
 1 � iv@x 1 +

1

2
!

00

1 @
2
x 1 = �2 2 

�
1 ; (11)

�2�2 2 � iv@x 2 � 
 2 +
1

2
!

00

2 @
2
x 2 = � 

2
1: (12)

Here and below the index s for  1s and  2s is temporarily omitted.

It is easy to verify that a solution of the stationary equations is a stationary point of the Hamil-

tonian H for �xed N and momentum P : equations (11, 12) follow from the variational problem

�(H + �
2
N � vP ) = 0: (13)

In order to have localized solution of the stationary system it is necessary to require that two

operators

A1 = ��
2
� iv@x +

1

2
!

00

1 @
2
x
;

A2 = �2�
2
� iv@x �
 +

1

2
!

00

2 @
2
x

must be sign (negative or positive) de�nite to provide exponentially decreasing behaviour at in�n-

ity. Physically, this requirement means absence of Cherenkov radiation by solitons. Indeed, the

condition on the signature of the operators is more restrictive: the operators A1 and A2 must be

simultaneously negative (or positive) de�nite. This follows from the two integral relations which can

be obtained from the variational principle (13) and directly from the stationary equations (11,12)

after multiplying the �rst equation by  �1 , the second one by 2 �2 , with summation of the obtained

results, followed by their integration over x (for details, see [11]).

In the case when the operators are negative de�nite, the following conditions must be ful�lled:
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!
00

1;2 > 0; (14)

��
2 +

1

2

v
2

!
00

1

< 0 ; (15)

�2�2 � 
+
1

2

v
2

!
00

2

< 0: (16)

These requirements guarantee absence of Cherenkov radiation by stationary propagating solitons

(for details, see papers [6,9]).

The conditions (14-16) de�ne the region of parameters where soliton solutions are possible. To

�nd this region it is convenient to introduce instead of �2 a new quantity �2 = �
2
� p1v

2
=2 which

in accordance with (15) has to be a positive quantity. As a result, the last inequality (16) reads as

2�2 + (2p1 � p2)
v
2

2
+ 
 > 0: (17)

Depending on the signs of � = 2p1 � p2 and 
 we have four possibilities:

1. � > 0, 
 > 0. In this case the inequality (17) is satis�ed automatically. The allowed region

for the soliton parameters is the quarter-plane �2
1 > 0, v2 � 0.

2. � > 0, 
 < 0. The allowed region for the soliton parameters is the quarter-plane �2
> 0 and

v
2
� 0 except the triangular region near origin bounded by the straight line 2�2+�v2=2 = j
j.

3. � < 0, 
 > 0. The allowed region for the parameters is the quarter-plane �2
> 0 and v2 � 0

except the region below the straight line 2�2 = j�jv2=2� 
.

4. � < 0, 
 < 0. The allowed region is the quarter-plane �2
> 0 and v2 � 0 except the region

below the straight line 2�2 = j�jv2=2 + j
j. In this case �2 can not reach zero value.

It is interesting to note that � = 0 recovers Galilean invariance of the equations (3), (4). In this

case both criteria (14) and (17) when expressed through �2 do not contain the velocity:

�2
> 0; 2�2 +
 > 0:

III. SOLITONS AND BIFURCATIONS

Next we shall analyze the soliton solutions which are de�ned from the system (11), (12). By the

transformation,

 l !  1e
ip1vx;  2 !  2e

2ip1vx;

and rescaling the amplitudes  l, this system can be rewritten as follows:

��2
1 1 + @

2
x 1 = �2 2 

�
1; (18)

��2
2 2 + (@x � ik)

2
 2 = � 

2
1 (19)

where k = �v and

�2
1 = 2p1�

2
; �2

2 = 2p2(2�
2 + �v

2
=2 + 
):

The ordinary di�erential equations (18) and (19) have two integrals. The �rst is obtained by

multiplying Eq. (18) by  �1 , subtracting the complex conjugate, and then repeating the operation

for Eq. (19). Then multiplying the latter result by 2, and adding to the former, we get:
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�
1 1x �  

�
1x 1 + 2( �2 2x �  

�
2x 2) � 4ikj 2j

2 =M; (20)

which has a meaning of \angular momentum" for the system (18, 19). Another integral, \energy",

can be obtained in a similar way. The only di�erence is that it is �rst necessary to multiply Eq.(18)

by  �1x and then add the complex conjugate. The result is:

j 1xj
2 + j 2xj

2
� �2

1j 1j
2
� (�2

2 + k
2)j 2j

2 +  
�
2 

2
1 +  2 

�2
1 = E: (21)

For a soliton solution ( 1;2 ! 0 as jxj ! 1) both integrals are equal to zero. Here we have two

cases k = 0 and k 6= 0: In the �rst case a soliton solution can be taken purely real and so the �rst

integral becomes equal to zero identically. Thus, in this case only the \energy" integral survives,

which can be used to reduce the order of the system of ordinary di�erential equations. In the second

case the solution remains complex.

It is worth noting that the conditions (14)-(16) for localized solutions of the system (18), (19)

correspond simply to the positivity of �2
1 and �2

2. Thus, the boundary of the soliton parameter

region is given by the two equations �2
1 = 0 (when �2

2 > 0) and �2
2 = 0 (when �2

1 > 0). Accordingly,

we have two variants of soliton degeneracy.

A. Supercritical bifurcations

Consider �rst how the soliton family looks like near the parameter boundary �2
1 = 0 (when

�2
2 > 0) First, note that in Eq. (18)  1 near this boundary changes on the scale l � 1=�1. In this

limit the wave function  2 has the same characteristic scale, i.e, l � 1=�1. Therefore in Eq. (19)

we can neglect the derivatives and, as a result, obtain a local relation between  1 and  2:

(�2
2 + k

2) 2 =  
2
1 :

Substitution of this expression into (18) leads to the stationary nonlinear Schrodinger equation

(NLS):

��2
1 1 + @

2
x
 1 +

2

�2
2 + k2

j 1j
2
 1 = 0: (22)

Its solution is the NLS soliton:

 1 =
�1p

�2
2 + k2

sech (�1x): (23)

In this case the second harmonic amplitude is given by the expression

 2 =
�2
1

(�2
2 + k2)2

sech 2(�1x):

In this asymptotic regime, the main contribution in the Manley-Rowe integral is given by the

�rst harmonic (23):

N �

2�1

�2
2 + k2

: (24)

In Fig.1 we show the dependence of the Manley-Rowe integral N on �1 for the case k = 0 and

�2
2 = 1, obtained by numerical integration of the system (18),(19). For small �1 N changes linearly

in accordance with the analytical dependence (24). For larger �1 we have a positive deviation from

this linear dependence. In all our numerical work we also checked that for �2
1 < 0, as well as for
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�2
1 < 0, soliton solutions are absent, which is in complete agreement with the de�nition of the

soliton region given by (14 - 16).

Thus, while approaching the boundary �2
1 = 0 the �rst harmonic amplitude undergoes a super-

critical bifurcation: max j 1j � �1 and  2 vanishes like �
2
1: For �

2
1 < 0 Eq. (22) has no localized

solution at all. Note that this case is completely embedded in the general situation for this type of

bifurcations of solitons (cf. [6], [9]).

To conclude this subsection, we would like to point out that the reduction of the FF-SH system

to the NLS was �rst obtained in the paper [1] at the case when the phase mismatch parameter is

large enough. Later it was discussed in many other papers (see, for instance, the recent paper [14]

and the review [15]).

B. Subcritical bifurcations

Now let us consider how solitons behave near the other boundary �2
2 = 0 (when �2

1 and k are

not equal to zero). First we shall analyze the special case k = 0 when the system (18), (19) takes

the form:

��2
1 1 + @

2
x 1 = �2 2 1; (25)

��2
2 2 + @

2
x
 2 = � 

2
1 (26)

Here without lose of generality we put  1 =  
�
1 so that Eq.(25) transforms into the stationary

Schrodinger equation for  1 and U (x) = 2 2(x) there serves as a potential. The latter quantity is

found from the second equation (26) by means of a Green's function:

 2 =
1

2�2

Z 1

�1

e
��2jx�x

0
j
 
2
1(x

0)dx0: (27)

Thus one can see that  2(x) decreases exponentially for large x and the small parameter �2 de�nes

the largest scale L = ��12 in this problem:

 2 �
e
��2jxj

2�2

Z 1

�1

 
2
1(x

0)dx0 for jxj � L: (28)

On the other hand, in the stationary Schrodinger equation (25) the value �2
1 can be considered

as the energy of the bound state and will yield the smallest scale l = ��11 � L in this problem.

Further, as we show below, the characteristic scale a of  1(x) lies between l and L:

L� a� l: (29)

This allows one to neglect the second derivative term in (25) and so estimate the maximum value

of  2 (attained at x = 0):

max( 2) � �2
1=2: (30)

Comparing (28) and (30) we arrive at the following estimate for the integral

Z 1

�1

 
2
1dx � �2

1�2;

Thus, this integral vanishes as �2 ! 0. At the same time the integral of  22 becomes in�nitely large:

the maximum value remains constant and the characteristic scale becomes in�nite as �2 tends to

zero. By this argument, the corresponding Manley-Rowe integral will diverge as
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N � 2

Z
 
2
2dx �

�4
1

2�2
: (31)

The main contribution to this integral is given by the second harmonic, and correspondingly the

contribution from the �rst harmonic is small.

Let us next consider the behavior of  1(x). To estimate its amplitude and to �nd its characteristic

size we shall assume that

 1(x) = A�1(�); where � = �x and � =
1

a
: (32)

Substituting (32) into the integral (27) and taking into account the relations between the scales

(29) we �nd that

 2 =
A
2
C0

2��2
exp(��2jxj) +

A
2

�2
�2(�);

where C0 =

Z 1

�1

�
2
1(�)d� and �2�� � ��

2
1:

For large jxj (� L), this expression has the same asymptotic behaviour as (28). For small jxj � a

the �rst term can be expanded so that the potential (U = 2 2) can be represented as follows

U (x) = U0 +
A
2

�2
V (�);

where U0 =
A
2
C0

��2
; and V (�) = [�j�j+ 2�2(�)] :

Here U0 gives the constant background and the potential V (�) (� U0) provides the bound state

for  1. In this case U0 is approximately equal to �2
1 which coincides with (30) for the maximum

value of  2. The small di�erence between �2
1 and 2max( 2) is just �

2, so that:

�2
1 =

A
2
C0

��2
+ �

2
; and A

2 = �
4
:

As a result, for these scales equation (25) takes the form:

��1 + @
2
��1 + V (�)�1 = 0:

We now see that the scaling of the small parameters yields the relations:

A
2
C0

�
� �2

1�2

from which it follows that:

C0�
3
� �2

1�2; (33)

and the amplitude of  1 is of the order:

A �
�
4=3
1 �

2=3
2

C
2=3
0

:
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Thus, we have shown that for the case k = 0 the amplitude of the second harmonic (SH) remains

constant at the bifurcation point, but its size becomes in�nitely large. In contrast to SH, the FF

amplitude vanishes as �
2=3
2 , but its size grows as �

�1=3
2 . This means that we have in this case a

subcritical bifurcation.

In spite of this behavior for  1, the main contribution to the Manley-Rowe integral comes from

the SH, since the input from the FF is small. This statement holds also at k 6= 0. To establish this

fact it is not necessary to know the solution for  1, it is enough to estimate contributions from the

FF and SH in the Manley-Rowe integral.

Consider the stationary equations (18) and (19) for k 6= 0. In this case �rst it is convenient to

exclude k from the second equation (19) by means of the transform:

 2 !  2e
ikx
; (34)

 1 !  1e
ikx=2

: (35)

Then Eqs. (18), (19) become:

��2
1 1 + (@x + ik=2)2 1 = �2 2 

�
1 ; (36)

��2
2 2 + @

2
x 2 = � 

2
1 (37)

so that the second equation has the same form when k = 0, and hence  2 is given by the same

expression (27).

Assuming that the amplitude  1 has a characteristic scale larger than ��11 and k�1, one can get

an estimate for  2 at x = 0 (analogous to (30)):

maxj 2j ' (�2
1 + k

2
=4)=2; (38)

so that it remains �nite at �2 = 0. As in the case k = 0, the characteristic size of j 2j grows like

��12 . From this point of view, the type of bifurcation remains the same as it was at k = 0: this is

the subcritical bifurcation. As far as  1 is concerned, its contribution to the Manley-Rowe integral

becomes in�nitely small with respect to that from SH:

Z
j 1jdx � �2:

This follows from comparison of Eq. (28) at x = 0 and Eq. (38). The latter indicates that the FF

amplitude must vanish at �2 = 0.

Thus, for both cases (k = 0 and k 6= 0) the Manley-Rowe integral diverges like 1=�2 for small

�2:

N � 2

Z
j 2j

2
dx � 1=�2:

Thus, the function N (�2) has a negative derivative near �2 = 0, which, due to the VK-type criterion

[11], corresponds to instability of solitons. At k = 0 it is possible to prove. For k 6= 0 it is an open

problem, but it looks very reasonable to expect instability also in this case because the instability

holds for small k.

In Fig.2 we show the dependence of N on �2 for the case �
2
1 = �2

2 + 1 and k = 0, obtained from

our numerical solutions. It was found that such behavior of N with respect to �2 is typical for all

cases including k = 0: for small values of �2 N diverges, for intermediate values it has a minimum

at �2 = �2min and grows for larger �2. When N !1 as �2 ! 0, the dependence N (�2) can be

approximated by the function

f(�2) =
a

�2
+ b (39)
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where for �2
1 = 1 + �2

2 and k = 0, a = 0:537; b = 3:33. So we can see a nice correspondence with

theoretical formula (31) where a = 1=2.

In Fig.3 we show the dependence of N (�2) for this case, where the dashed line corresponds to

the approximation (39). The same dependence N (�2) is displayed on Fig.4 for k = 1 with the

same value of �1 = 1 (in this case a = 0:763 and b = 4:299). As �2 ! 0 our numerics demonstrate

that the maximum amplitude of the second harmonic tends to a constant (Fig.5) but its width

grows (Fig.6) which causes the divergence of N for small �2. Simultaneously the �rst harmonic

amplitude vanishes and its width increases slightly as �2 approaches zero (see also Fig.7). 1. As

a result, the contribution of the �rst harmonic to N becomes small compared with that from the

second harmonic.

Thus, the function N (�2) for the soliton solution has a negative derivative in the band 0 < �2 <

�2min where, according to the VK-type criterion [11], the considered soliton solutions should be

expected to be unstable against small perturbations. It can be proved rigorously for k = 0. For

�2 > �2min the sign of the derivative changes and therefore we should expect a stable soliton

branch. However, the VK criterion cannot be applied to this case. It is connected with very �ne

details in the proof for the VK-type criteria (for details see [11]). For the NLS case the proof is based

on use of the oscillation theorem for scalar Schrodinger operators, which appear after linearization

of the NLS on the background of the soliton. However, for the linear stability problem for the

FF-SH solitons, instead of scalar operators, we have a matrix (2 � 2) Schrodinger operators for

which the oscillation theorem does not hold 2. Therefore the VK-type criterion, being a su�cient

criterion for instability, cannot be used for stability. Thus we can expect instability for the region

of the negative derivative of N (�2
2). In the region of positive derivative, nevertheless, one can

make a conclusion about stability by using a combination of the (incomplete) VK criterion and the

Lyapunov approach (this analysis will be published soon [17]). As �rst shown in [13] (for details see

also [11]) the Hamiltonian of the FF-SH system is bounded from below for a �xed Manley-Rowe

integral. A key point for stability is to consider the dependence H(N;P ) for soliton solutions.

If this dependence is monotonic and unique then the soliton solution will be stable. Indeed, the

boundedness of the Hamiltonian from below means that solutions realizing its minimum will be

stable in accordance with the Lyapunov theorem. In the case of a unique surface H(N;P ) this

minimizer will belong to this surface. Strictly speaking, the latter needs also compactness of the

considered functionals, which can be proved by standard methods for such systems. If the function

H(N;P ) is not monotonic, then there exist several branches for �xed N and P , i.e. H = H(N;P )

represents a set of separate surfaces. Then the solitons from the lower branch, or from the lower

surface, will be stable only in the Lyapunov sense.

As for the stability of solitons near a supercritical bifurcation, this problem has some peculiari-

ties. As shown before the soliton family near the boundary �1 = 0 transforms into NLS solitons,

generally speaking, independently of the problem dimension. In this case the most dangerous

perturbations will be disturbances of the modulation type. Their dynamics will be described by

the time-dependent nonlinear Schrodinger equation. It is well known (see, e.f., [12]) that only

one-dimensional solitons are stable with respect to perturbations with the same dimension. For

instance, the solutions (23) will be stable with respect to one-dimensional modulation perturba-

tions, guaranteed, in particular, by the criterion (2). Thus, in the one-dimensional case the soliton

boundary in the parameter space coincides with the stability boundary. However, for dimensions

D � 2 the NLS solitons are known to be unstable. >From another perspective, the boundedness of

1We note that such a tendency was also observed numerically in [16] for the FF-SH solitons in one particular
case, but the authors did not give any explanation of this fact.
2Recall that the oscillation theorem for the scalar Schrodinger operator establishes a correspondence
between a number of nodes of the wave function and a level number.
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the Hamiltonian for �xed N provides stability of solitons realizing the minimum of H. This means

that for D � 2, in the parameter space the stability region is separated from the soliton boundary.

IV. CONCLUDING REMARKS

It is necessary to emphasize that the results obtained in this paper about the behavior of solitons

near both the supercritical and subcritical bifurcations are in complete agreement with a general

theory given in [6,9]. It is interesting to note that if the phase mismatch parameter 
 is negative for

stationary solitons (v = 0) only the supercritical bifurcation is possible; the subcritical bifurcation

is forbidden. For propagating solitons we have another possibility. For instance if

�
1�

�

2

�
v
2 + 
 < 0

which can be satis�ed, for instance, if

� < 0; or p2 > 2p1 (40)

and then necessarily 
 < 0, the only possible bifurcation is the subcritical one. Note, that equality

in (40) recovers the Galilean invariance of the FF-SH system. Thus, the soliton family signi�cantly

depends on the phase mismatch 
 and � (i.e.p2�2p1) with a large asymmetry with respect to these

parameters. The latter will be interesting to observe in experimentally, for instance, in nonlinear

optics.

We would like to underline once more that the results of this paper can be easily extended to

the multi-dimensional case. In particular, the main conclusion about the character of solitons near

subcritical and supercritical bifurcations holds in the multi-dimensional case. For a dimensionD � 2

solitons near a supercritical bifurcation for the FF amplitude will coincide with D-dimensional NLS

solitons, and the SH amplitude will be proportional to square of the FF amplitude as it is in 1D case.

When approaching a subcritical bifurcation point in the multi-dimensional case, the Manley-Rowe

integral diverges which results in instability of solitons.
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FIG. 1. The dependence of N on �1 for the case k = 0 and �2
2 = 1 (near the supercritical bifurcation

boundary). The straight (dashed) line corresponds to the analytical result (24).
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FIG. 2. The dependence N on �2 for the case �2
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2 + 1 and k = 1. �2 = 0 corresponds to the
subritical bifurcation point.
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FIG. 3. The curve N(�2) for �
2
1 = �2

2+1 and k = 0 near the subcritical bifurcation boundary (�2 = 0);
the dashed line displays the approximation f(�2) with a = 0:537 and b = 3:333.
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FIG. 4. The curve N(�2) for �1 = 1 and k = 1 near the subcritical bifurcation boundary (�2 = 0); the
dashed line corresponds to the approximation f(�2) with a = 0:7630 and b = 4:299.
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