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Abstract

A generalisation of the Stieltjes relations for the Painlevé-IV transcendents and
their higher analogues determined by the dressing chains is proposed. It is proven that
if a rational function from a certain class satisfies these relations it must be a solution
of some higher Painlevé-IV equation. The approach is based on the interpretation of
the Stieltjes relations as local trivial monodromy conditions for certain Schrödinger
equations in the complex domain. As a corollary a new class of the Schrödinger opera-
tors with trivial monodromy is constructed in terms of the Painlevé-IV transcendents.

1 Introduction and formulation of the results.

In 1885 Stieltjes [1, 2] has found the following remarkable interpretation of the zeroes of
Hermite polynomials Hn(z):

Hn(z) = (−1)nez2 dn

dzn
e−z2

.

Consider n particles on the line interacting pairwise with repulsive logarithmic potential
in the harmonic field. Then the equilibrium of this system is exactly the set of zeroes of
Hn(z). More precisely, the extremum condition for the function

U(z1, ..., zn) =
n∑

j=1

z2
j −

n∑

j<k

ln(zj − zk)2,

which is the system of the Stieltjes relations

n∑

j �=k

(zk − zj)−1 − zk = 0, k = 1, ..., n, (1)

determines exactly the roots of the equation Hn(z) = 0. What is important for us is that
although all these roots are real the result is true in the complex domain as well, i.e. all
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the complex solutions of the system (1) are actually real and coincide with the zeroes of
Hermite polynomial Hn(z). The proof is not difficult and based on the fact that y = Hn(z)
satisfies the following second-order linear differential equation

y′′ − 2zy′ + 2ny = 0

and this actually determines Hn(z) up to a constant multiplier (see e.g. Szego’s classical
book [3], pp. 140-141). The sign ′ here and below means the derivative with respect to z.

The goal of this paper is to show that these relations have a natural analogue for the
fourth Painlevé transcendents (and their higher analogues) and to explain how all this is
related to the theory of the Schrödinger operators with trivial monodromy in the complex
domain.

To explain the relation of the Stieltjes result with the fourth Painlevé equation (PIV)

2ww′′ = w′2 + 3w4 + 8zw3 + 4(z2 − a)w2 + 2b (2)

let’s first recall the well-known fact that the logarithmic derivative of the Hermite poly-
nomial w = −(lnHn(z))

′
satisfies PIV with special parameters a = (n + 1), b = 2n2

(see [4, 5, 6]). Notice that the zeroes of Hermite polynomials are the simple poles of
the corresponding rational solution w of PIV, each of them has the residue -1. The sec-
ond remark is that the Stieltjes relations (1) are equivalent to the fact that the function
f = −(z + w) = −z + (lnHn(z))

′
has no constant terms at the Laurent expansions at all

the poles or, equivalently, that all the residues of the function f2 = ((lnHn(z))′ − z)2 are
zeroes:

Res f2(z) = 0.

Indeed one can easily check that the left hand side of the relation (1) is proportional to
the corresponding constant term in the Laurent expansion of f at the pole z = zk.

Our first simple observation is that in this form this relation holds for any solution of
PIV equation.

Theorem 1 For any solution w of the fourth Painlevé equation the residues of the func-
tion (z + w)2 are zero at all the poles of the solution w:

Res (z + w)2 = 0. (3)

Actually we will prove a more general result about the following system introduced by
A.B.Shabat and the author in [7] in relation with the spectral theory of the Schrödinger
operators under the name dressing chain:

(fi + fi+1)′ = f2
i − f2

i+1 + αi, i = 1, 2, ..., N, (4)

where N = 2p + 1 is odd, α1, α2, ..., αN are some constant parameters and we assume
that fN+1 = f1. In [7] it was shown that this system has many remarkable properties, in
particular it passes the Kovalevskaya-Painlevé test.

When N = 3 and α =
∑N

i=1 αi = −2 the dressing chain (4) is equivalent to PIV: the
function w = −(z + f1) satisfies the fourth Painlevé equation (2) with a = 1

2(α3 −α1), b =
−1

2α2
2 (see [7, 8]).
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Similarly a dressing chain with any odd period N ≥ 3 is equivalent to some nonlinear
ordinary differential equation on f = f1 of order N (or N − 1 if we fix the sum of fi to be
αz). Slightly abusing the terminilogy we will call such equations the higher PIV equations
which altogether form the PIV hierarchy. We should mention that an equivalent hierarchy
has been considered also by M. Noumi and Y. Yamada [9] who were not familiar with the
theory of the dressing chain [7, 8].

Theorem 2 For any meromorphic solution of the dressing chain (4) the function f = f1

has the poles of the first order with integer residues. At any pole z0 with Resz=z0 f = m
the following generalised Stieltjes relations are satisfied:

Resz=z0 f2 = Resz=z0 f4 = ... = Resz=z0 f2|m| = 0. (5)

In particular, the residues of such function f2 are zero at all the poles of f :

Res f2(z) = 0. (6)

The main question is how strong are these relations. We will show that at least for
the rational solutions they are indeed very strong and can be used as their characteristic
property.

More precisely, let’s consider a class of rational functions of the form

f =
n∑

i=1

mi

z − zi
+ ν − µz, (7)

where mi are some integers. It is easy to show (see [7] and section 2 below) that this is
a general form of the rational solutions of the dressing chains. In particular, for the PIV
equation (2) all the rational solutions have the form w = −(f + z), where f has a form
(7) with mi = ±1, ν = 0 and µ = ±1 or −1/3 (see [6]).

Theorem 3 If a rational function f from the class (7) satisfies the generalised Stieltjes
relations (5) then f is a rational solution of some higher Painleve-IV equation.

For a generic solution the residues mi = ±1 (see section 2), so we have only the usual
Stieltjes relations (6), or explicitly 1

n∑

j �=k

mj

zk − zj
+ ν − µzk = 0, k = 1, ..., n (8)

They can be represented as the extremum conditions for the function

V (z1, ..., zn) = µ
n∑

j=1

mj(zj −
ν

µ
)2 −

n∑

j<k

mjmk ln(zj − zk)2,

which also has a ”physical” interpretation: it is the potential of the system of charged
particles of charge mj with logarithmic pairwise interaction in an external harmonic field

1As I have learnt from V.G.Marikhin in this form (with mi = ±1 and ν = 0) the Stieltjes relations for
the rational solutions of PIV equations have been written (under the name ”Coulomb gas equations”) in
the recent paper [20]. The question how strong these relations are was not addressed in this paper.
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with charge µ centered at ν/µ. In case when all mi = 1, ν = 0 and µ = −1 (or, equivalently,
if all mi = −1, ν = 0, µ = 1) we have the Stieltjes system.

Actually we will describe all the solutions of the system (8) explicitly as zeroes of certain
polynomials: Schur polynomials if µ = 0 and the wronskians of Hermite polynomials if
µ �= 0 (see Section 4 below). The main idea is to interpret the Stieltjes relations as the
trivial monodromy conditions for certain Schrödinger operators in the complex domain
and then to use the known results about such operators [10], [11]. More precisely, let us
consider such an operator

L = − d2

dz2
+ u(z)

with a potential u which is meromorphic in the whole complex plane. We will say that
the operator L has trivial monodromy if all the solutions of the corresponding Schrödinger
equation

Lψ = −ψ′′ + uψ = λψ

are also meromorphic in the whole complex plane for all λ.
Duistermaat and Grünbaum were probably the first to consider the problem of the clas-

sification of all such operators. In their fundamental paper on bispectrality [10] they have
solved this problem in the class of the rational potentials decaying at infinity. Oblomkov
[11] recently generalised this result to the case when the potential has a quadratic growth
at infinity. Gesztesy and Weikard investigated the case of the potentials given by elliptic
functions [12].

It turns out that the Stieltjes relations (3) are exactly the local trivial monodromy
conditions for the following new class of the Schrödinger operators related to PIV tran-
scendents. Let w be any solution of PIV equation (2) (which is known to be meromorphic
in the whole complex plane) and let’s consider the Schrödinger operator L with the po-
tential

u = w′ + (w + z)2. (9)

Theorem 4 For any solution w of the fourth Painleve equation (2) the Schrödinger op-
erator L with the potential (9) has trivial monodromy in the complex plane. The same is
true for the operators with the potentials

u = f ′ + f2,

where f = f1 for any meromorphic solution of some dressing chain.

As a by-product we have the proof of following result first established by F.Calogero
[13] (see also [14]). The following system of Calogero relations

2
n∑

j �=k

(zk − zj)−3 − zk = 0, k = 1, ..., n, (10)

describes the equilibriums in the well-known Calogero-Moser model with the potential

VCM (z1, ..., zn) =
n∑

j=1

z2
j − 2

n∑

j<k

(zj − zk)−2.
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Theorem 5. (F.Calogero) The Stieltjes relations (1) imply the Calogero relations (10).
On the reals these relations are equivalent but in the complex domain Calogero re-

lations have many more solutions different from the zeroes of Hermite polynomials (see
sections 3 and 4 below). For a discussion of the hierarchy of the similar relations for some
classical polynomials and Bessel functions we refer to a very interesting paper [15].

2 Local analysis of the dressing chain and the proof of the
Stieltjes relations for PIV transcendents.

Let’s prove the theorem 2, the theorem 1 will then follow. The local expansions of the
solutions of the dressing chain (4) near a pole (which we assume without loss of generality
to be zero) have the form (see [7]): fi = aiz

−1 + bi + ciz + .... Substitution of this form
into the system (4) gives an infinite system of equations for the coefficients. The first two
equations are

−(ai + ai+1) = a2
i − a2

i+1 (11)

and
2aibi − 2ai+1bi+1 = 0. (12)

The first equation means that the coefficients a1, a2, ..., aN determine a periodic trajectory
of the 2-2 correspondence

(x + y)(x − y + 1) = 0. (13)

Lemma 1. Any periodic trajectory of the correspondence (13) of an odd period must
be integer and contain zero.

Proof is elementary. Let’s first show that such a trajectory must be integer. This
follows from the fact that the image of x under the N-th iteration of the 2-valued mapping
(13) consists of the points of the form x + k,−x + l with some integer k, l such that
k ≡ N(mod 2), l ≡ (N − 1)(mod 2). In particular, if N is odd then k �= 0 so for periodicity
one can only have −x + l = x, which means that 2x = l, so x is an integer since l is an
even number.

Now let’s consider the absolute value of x : u = |x|. Under the mapping (13) u may
either stay unchanged or move by 1 in either positive or negative direction. Obviously for
periodic trajectories we have an even number of the last movements. This means that for
an odd period we have an odd number of changes the sign which only can be possible if
at least one element of the trajectory vanishes. This finishes the proof of the Lemma.

Remark. Notice that actually we have proved more: it follows from the proof that
any periodic trajectory of the period N = 2p + 1 consists of integers between −p and p.
The extreme examples are −p,−p+1,−p+2, ...,−1, 0, 1, ..., p−1, p and 1,−1, 0, 0, 0, ..., 0.
Only for the last sequence one has a family of solutions depending on the maximal number
of free parameters (see [7]).

Now from the Lemma it follows that at any pole of the solution of (4) at least one of the
coefficients ai must be zero. The relation (12) shows that the product 2aibi = 2ai+1bi+1

is independent of i and because ai = 0 for some i this is zero for all i. This means that
if aj �= 0 than the corresponding bj = 0, and therefore Res f2

i = 0 for all i. Continuing
in a similar way one can prove that if aj = m then all the coefficients at the Laurent

5



expansions of fj at even powers z2k are zeroes for all k = 0, 1, ..., |m| − 1. This implies
theorem 2 (and therefore theorem 1).

The theorem 1 can be proven also directly from the local analysis of the PIV equation.
Indeed, substituting the general form of the pole expansion of the solution w

w = α(z − z0)−1 + β + γ(z − z0) + ...

into PIV equation (2) one can easily derive that

α = ±1 (14)

and
β = −z0.

The last relation means that the constant term of the similar expansion for the function
f = w + z at this pole is zero:

w + z = α(z − z0)−1 + (β + z0) + (γ + 1)(z − z0) + ... = α(z − z0)−1 + (γ + 1)(z − z0) + ...

This gives a direct proof of the Stieltjes relations for the general solution of the PIV
equation.

Remark. For PIV equation there is a theorem saying that all the solutions are mero-
morphic in the whole domain. We believe that the same is true for the solutions of the
dressing chains (i.e. for the whole PIV hierarchy) but the proof is still to be found.

3 Stieltjes and Calogero relations as trivial monodromy con-
ditions.

Now we are going to prove theorem 4 leaving the proof of the theorem 3 for the next
section. Let us consider the Schrödinger equation

−ϕ′′ + u(z)ϕ = λϕ (15)

with a meromorphic potential u having poles only of second order. Near such a pole (which
can be assumed for simplicity to be z = 0) the potential can be represented as Laurent
series

u =
∞∑

i=−2

ciz
i.

Following the classical Frobenius approach (see e.g. [16]) one can look for the solutions of
the form

ϕ = z−µ(1 +
∞∑

i=1

ξiz
i).

The corresponding µ must satisfy the characteristic equation µ(µ+1) = c−2, which means
that the equation (15) has a meromorphic solution only if the coefficient c−2 at any pole
has a very special form:

c−2 = m(m + 1), m ∈ Z+. (16)
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This condition is in fact not sufficient: the corresponding solution ϕ may have a logarithmic
term. A simple analysis shows (see e.g. [10]) that the logarithmic terms are absent for
all λ if and only if in addition to (16) all the first m + 1 odd coefficients at the Laurent
expansion of the potential are vanishing:

c2k−1 = 0, k = 0, 1, ..., m. (17)

The relation of this theory with the Stieltjes relations is explained by the following
simple but important Lemma.

Lemma 2. Let f be a meromorphic function having the poles of the first order with
integer residues. The Schrödinger operator L with the potential u = f ′ + f2 has trivial
monodromy in the complex domain if and only if at any pole z0 with Resz=z0 f = m the
following relations are satisfied:

Resz=z0 f2 = Resz=z0 f4 = ... = Resz=z0 f2|m| = 0.

Proof is straightforward: one can easily check by the substitution of f = ±m
z−z0

+
∑

k=0 αk(z − z0)k with m ∈ Z+ into u = f ′ + f2 that c−2 = m(m ± 1) and that the
trivial monodromy conditions c2k−1 = 0, k = 0, 1, ..., m− 1 are equivalent to the vanishing
of the coefficients α2k = 0, k = 0, 1, ..., m − 1. A remarkable fact is that an additional
relation c2m−1 = 0, which should be checked for the negative residue −m is then fulfilled
automatically.

Combining this lemma with the first two theorems proved in the previous section we
come to theorem 4.

Now let us explain how this implies Calogero result. Consider the rational function w
of the form

w =
n∑

i=1

−1
z − zi

.

As we have shown the Stieltjes relations imply the local trivial monodromy conditions for
the potential u = w′ + (w + z)2. The function u has a form

u = z2 +
n∑

i=1

2
(z − zi)2

(18)

since the residues c−1 must be zero (see (17)). It is easy to check that the second of the
local trivial monodromy conditions c1 = 0 for such a potential are precisely the Calogero
relations. This proves the theorem 5.

As we will see in the next section the Calogero relations holds not only for the
zeroes of the Hermite polynomials Hk but also for the zeroes of all their wronskians
W (Hk1 , Hk2 , ..., Hkn). This means that in the complex domain the Stieltjes relations ac-
tually are much stronger than the Calogero relations.

4 Stieltjes relations and the rational solutions of the dress-
ing chains.

Consider now a rational function of the form (7):

f =
n∑

i=1

mi

z − zi
+ ν − µz,
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where all mi are integers. We are going to describe all the functions of this form which
satisfy the generalised Stieltjes relations (5). As a corollary we will prove the theorem
3 which claims that such a function must be a rational solution of a some higher PIV
equation (4).

Notice first that the scaling transformations f(z) → βf(βz − α) preserve both the
class of functions (7) and the PIV hierarchy (4) Modulo these transformations we have
essentially only two different cases: µ = 0 (with an arbitrary ν) and µ = 1, ν = 0. Following
the main idea of the previous section let’s consider the Schrödinger operator L with the
potential u = f ′+f2. Lemma 2 says that the generalised Stieltjes relations (5) implies that
the operator L has trivial monodromy in the whole complex plane. Due to the relation
Resf2 = 0 all the residues of u are zero so the potential has a form u =

∑n
i=1

2
(z−zi)2

+ c0

if µ = 0 or u = z2 + c0 +
∑n

i=1
2

(z−zi)2
if µ = 1.

Now we can use the results of Duistermaat-Grünbaum [10] and Oblomkov [11] which
describe all such operators explicitly in terms of Darboux transformations.

Let’s consider first the case µ = 0. Following Adler-Moser [17] let’s define the sequence
of polynomials determined by the recurrence relation Pk(z)′′ = Pk−1(z) with P1 = z:

P1 = z, P2 =
1
6
z3 + τ1, P3 =

1
120

z5 +
1
2
τ1z

2 + τ2, ...

and Wn = W (P1, P2, ..., Pn) be the Wronskian of these polynomials, which is also a poly-
nomial in z depending on n additional parameters τ1, τ2, ..., τn. This is a special case
of Schur polynomials known also as Burchnall-Chaundy (or Adler-Moser) polynomials.
Duistermaat and Grünbaum [10] have proved that if a rational potential u decays at in-
finity and satisfies all the local trivial monodromy conditions (16),(17) then (up to a shift
z → z − a) it must be equal to the second logarithmic derivative of such polynomial Wn

with some parameters τ1, τ2, ..., τn:

u = −2(log Wn(z)).′′

Corresponding f is a rational solution of the Riccati equation f ′ + f2 = u. It is easy to
show using the results of [10] that f must be of the form

f =
d

dz
log

Wn±1

Wn
(19)

if ν = 0 and

f =
d

dz
log

Ŵn

Wn
, (20)

if ν �= 0. Here Ŵn = W (P1, P2, ..., Pn, eνz) is the Wronskian of the functions P1, P2, ..., Pn, eνz.
In the case µ = 1, ν = 0 we can use Oblomkov’s theorem which says that any

Schrödinger operator with trivial monodromy and with the rational potential growing
at infinity as z2 has the form

L = − d2

dz2
− 2

d2

dz2
log W (Hk1 , Hk2 , ..., Hkn) + z2 + const,
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where Hk(z) is the k-th Hermite polynomial and k1, k2, ..., kn is a sequence of different
positive integers (see [11]). The corresponding functions f have the form

f =
d

dz
log

W (Hk1 , Hk2 , ..., Hkn , Hkn+1)
W (Hk1 , Hk2 , ..., Hkn)

− z, (21)

where k1, k2, ..., kn, kn+1 are again some different positive integers.
The formulas (19), (20), (21) give a complete description (modulo natural affine trans-

formations) of the functions f of the form (7) which satisfy the Stieltjes relations (5).
Now we are ready to prove theorem 3. Indeed we have seen that for any such f the cor-
responding Schrödinger operator L is a result of some number m of the rational Darboux
transformations applied to the operator L0 = − d2

dz2 + µ2z2. Reversing this procedure we
come back to L0, then by taking f0 = −µz we can do one more step which only shifts
L0 by a constant. Now we can apply our rational Darboux transformations to return to
the initial operator L. Thus we have constructed a closed chain of the rational Darboux
transformations of an odd length N = 2m+1, which is equivalent to the rational solution
of the dressing chain (4) with f1 = f (see [7]). Theorem 3 is proven.

Remark. To identify all f of the form (21) which satisfy some higher PIV of a given
order is actually a non-trivial task. In this relation I would like to mention the paper by
M. Noumi and Y. Yamada [18] where the rational solutions for the ordinary PIV equation
(N = 3) have been described in terms the Schur functions for the special Young diagrams.

5 Some open questions.

We have seen that the rational solutions of the PIV hierarchy can be characterised as
certain rational functions satisfying the generalised Stieltjes relations (see Theorem 3).
It is natural to conjecture that these relations characterise also the general solutions of
PIV hierarchy among all the meromorphic functions of certain order (in the sense of
Nevanlinna) with integer residues. Rod Halburd suggested recently some interesting ideas
which may help to prove this. As an intermediate case one can consider the special
solutions of PIV equations expressed in terms of Weber-Hermite functions (see e.g. [6]).

Another interesting question: what are the analogues of the Stieltjes relations for other
Painlevé transcendents ? For example, for the second Painlevé equation PII

y′′ = 2y3 + zy + a

one can easily see that the constant terms in the Laurent expansions at the poles of the
solutions must be zero, so we have the relations

Res y2 = 0,

which can be considered as such an analogue.
One more intriguing problem is to understand what is a proper multidimensional ana-

logue of the Stieltjes relations in the theory of multidimensional Baker-Akhiezer functions
recently developed in [19].
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