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I INTRODUCTION

Multiple scattering by random arrangements of scatterers is a topic with an extensive litera-
ture. The modern era dates from the work of Foldy (1945), Lax (1951, 1952), Waterman and
Truell (1961), and Twersky (1962). Major applications include wave propagation through
suspensions (see, for example (McClements et al., 1990), (Povey, 1997), (Dukhin and Goetz,
2001), and (Spelt et al., 2001)) and through elastic composites (see (Mal and Knopoff, 1967),
(Kim et al., 1995), and (Kanaun, 2000)). In this paper, we are mainly interested in two-
dimensional problems, motivated by the calculation of sound propagation through forests
(Embleton, 1966; Price et al., 1988). An important paper on acoustic scattering by arrays
of circular cylinders is that of Bose and Mal (1973); see Sec. IV below. For subsequent work,
see (Varadan et al., 1978), (Yang and Mal, 1994), (Bose, 1996), (Kanaun and Levin, 2003),
and (Kim, 2003). For analogous plane-strain elastodynamics, see (Varadan et al., 1986),
(Yang and Mal, 1994), (Bussink et al., 1995) and (Verbis et al., 2001).

A typical problem is the following. The region x < 0 is filled with a homogeneous
compressible fluid of density ρ and sound-speed c. The region x > 0 contains the same fluid
and many scatterers; to fix ideas, we suppose that the scatterers are identical circles (parallel
circular cylinders). Then, a time-harmonic plane wave with wavenumber k = ω/c (ω is the
angular frequency) is incident on the scatterers: what is the reflected wave field? This field
may be computed exactly for any given configuration (ensemble) of N circles, but the cost
increases as N increases. If the computation can be done, it may be repeated for other
configurations, and then the average reflected field could be computed (this is the Monte
Carlo approach). Instead of doing this, one can try to do some ensemble averaging in order
to calculate the average (coherent) field. One result of this is a formula for the effective
wavenumber K. This can then be used to replace the “random medium” occupying x > 0
by a homogeneous effective medium.

Foldy (1945) began by considering isotropic point scatterers; this is an appropriate model
for small sound-soft scatterers. He obtained the formula

K2 = k2 − 4ign0, (1)

where n0 is the number of circles per unit area and g is the scattering coefficient for an
individual scatterer. (In fact, Foldy considered scattering in three dimensions; the two-
dimensional formula, Eq. (1), can be found as Eq. (3.20) in (Twersky, 1962) and Eq. (26) in
(Aristégui and Angel, 2002), for example.) The formula (1) assumes that the scatterers are
independent and that n0 is small. We are interested in calculating the correction to Eq. (1)
(a term proportional to n2

0), and this will require saying more about the distribution of the
scatterers; specifically, we shall use pair correlations. Thus, our goal is a formula of the form

K2 = k2 + δ1n0 + δ2n
2
0, (2)

with computable expressions for δ1 and δ2. Moreover, we do not only want to restrict our
formula to sound-soft scatterers.

There is some controversy over the proper value for δ2. In order to state one such formula,
we introduce the far-field pattern f . For scattering by one circular cylinder, we have

uin = eikr cos(θ−θin)
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for the incident plane wave and then the scattered waves satisfy

usc ∼
√

2/(πkr)f(θ − θin) exp (ikr − iπ/4) as r → ∞, (3)

where (r, θ) are plane polar coordinates. Then, Twersky (1962) has given the following
formula:

K2 = k2 − 4in0f(0) + (2n0/k)
2 sec2 θin

{
[f(π − 2θin)]

2 − [f(0)]2
}
. (4)

This formula involves θin, so that it gives a different effective wavenumber for different
incident fields.

The three-dimensional version of Eq. (4) is older. For a random collection of identical
spheres, it is

K2 = k2 − 4πi(n0/k)f(0) + δ2n
2
0

with
δ2 = (4π2/k4) sec2 θin

{
[f(π − 2θin)]

2 − [f(0)]2
}
, (5)

where the far-field pattern is now defined by usc ∼ (ikr)−1eikrf(ϑ), and r and ϑ are spherical
polar coordinates. The same formula but with θin = 0 (normal incidence) was given by
Waterman and Truell (1961). However, it was shown by Lloyd and Berry (1967) that Eq. (5)
is incorrect; they obtained

δ2 =
4π2

k4

{
−[f(π)]2 + [f(0)]2 +

∫ π

0

1

sin (ϑ/2)

d

dϑ
[f(ϑ)]2 dϑ

}
(6)

(with no dependence on θin). Lloyd and Berry (1967) used methods (and language) coming
from nuclear physics. Thus, in their approach, which they “call the ‘resummation method’, a
point source of waves is considered to be situated in an infinite medium. The scattering series
is then written out completely, giving what Lax has called the ‘expanded’ representation.
In this expanded representation the ensemble average may be taken exactly [but then] the
coherent wave does not exist; the series must be resummed in order to obtain any result
at all.” One purpose of the present paper is to demonstrate that a proper analysis of the
semi-infinite two-dimensional model problem (with arbitrary angle of incidence) leads to
a formula that is reminiscent of the (three-dimensional) Lloyd–Berry formula; specifically,
instead of Eq. (4), we obtain

K2 = k2 − 4in0f(0) +
8n2

0

πk2

∫ π

0

cot (θ/2)
d

dθ
[f(θ)]2 dθ. (7)

Our analysis does not involve “resumming” series or divergent integrals. It builds on a
conventional approach, in the spirit of the papers by Fikioris and Waterman (1964) and by
Bose and Mal (1973).

In outline, the paper is as follows. Some elementary probability theory is recalled in
Sec. II. In particular, the pair-correlation function is introduced; this leads to the notion of
“hole correction”—individual cylinders must not be allowed to overlap during the averaging
process. In Sec. III, we derive the integral equations of Foldy (isotropic scatterers, no hole
correction) and of Lax (isotropic scatterers, hole correction included). Foldy’s integral equa-
tion can be solved exactly whereas we have been unable to solve Lax’s integral equation.
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Nevertheless, we have developed a rigorous method for extracting an expression for K from
these integral equations without actually solving the integral equations themselves. Then,
we use the same method in Sec. IV but without the restriction to isotropic scatterers. We
start by following Bose and Mal (1973), and use an exact (deterministic) theory for scat-
tering by N circles followed by ensemble averaging. We give a clear derivation of a certain
homogeneous infinite linear system of algebraic equations, obtained previously by Bose and
Mal (1973) for the case of normal incidence; the system does not depend on θin and the ex-
istence of a non-trivial solution determines K. We solve the system for small n0, and obtain
Eq. (7). We also show that Eq. (4) is obtained if the hole correction is not done correctly.
Concluding remarks are given in Sec. V.

II SOME PROBABILITY THEORY

In this section, we give a very brief summary of the probability theory needed. For more
information, see (Foldy, 1945), (Lax, 1951), (Aristégui and Angel, 2002) or chapter 14 of
(Ishimaru, 1978).

Suppose we have N scatterers located at the points r1, r2, . . . , rN ; denote the configuration
of points by ΛN = {r1, r2, . . . , rN}. Then, the ensemble (or configurational) average of any
quantity F (r|ΛN) is defined by

〈F (r)〉 =

∫
· · ·
∫
p(r1, r2, . . . , rN)F (r|ΛN) dV1 · · ·dVN (8)

where the the integration is over N copies of the volume BN containing N scatterers. Here,
p(r1, . . . , rN) dV1 dV2 · · ·dVN is the probability of finding the scatterers in a configuration in
which the first scatterer is in the volume element dV1 about r1, the second scatterer is in
the volume element dV2 about r2, and so on, up to rN . The joint probability distribution
p(r1, . . . , rN) is normalised so that 〈1〉 = 1. Similarly, the average of F (r|ΛN) over all
configurations for which the first scatterer is fixed at r1 is given by

〈F (r)〉1 =

∫
· · ·
∫
p(r2, . . . , rN |r1)F (r|ΛN) dV2 · · ·dVN , (9)

where the conditional probability p(r2, . . . , rN |r1) is defined by

p(r1, r2, . . . , rN) = p(r1) p(r2, . . . , rN |r1).

If two scatterers are fixed, say the first and the second, we can define

〈F (r)〉12 =

∫
· · ·
∫
p(r3, . . . , rN |r1, r2)F (r|ΛN) dV3 · · ·dVN , (10)

where
p(r2, . . . , rN |r1) = p(r2|r1) p(r3, . . . , rN |r1, r2).

Higher-order probabilities can be defined, but we shall not need them.
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Now, as each of the N scatterers is equally likely to occupy dV1, the density of scatterers
at r1 is Np(r1) = n0, the (constant) number of scatterers per unit volume. Thus

p(r) = n0/N = |BN |−1, (11)

where |BN | is the volume of BN . Also, as p(r1, r2) = p(r1) p(r2|r1), we obtain

∫ ∫
p(r2|r1) dV1 dV2 =

N

n0
= |BN |. (12)

We have to specify p(r2|r1), consistent with Eq. (12). Also, we want to ensure that scatterers
do not overlap. For circular cylinders of radius a, a simple choice is p(r2|r1) = p0H(R12 − b)
with b ≥ 2a, where H(x) is the Heaviside unit function, R12 = |r1 − r2| and p0 is a constant
determined by Eq. (12). Thus,

p0 =
{
|BN | − πb2

}−1 ' n0/N, (13)

assuming that b2n0/N � 1. (The equality in Eq. (13) assumes that the “hole” at r1 of
radius b does not cut the boundary of BN . Evidently, taking this possibility into account
would not change the approximation p0 ' n0/N .) Hence, the simplest sensible choice for
the pair-correlation function is

p(r2|r1) =

{
0, R12 < b,
n0/N, R12 > b.

(14)

This simple choice will be used for most of our analysis. More generally, we could use

p(r2|r1) =

{
0, R12 < b,
(n0/N)[1 + χ(R12;n0)], R12 > b,

(15)

where the function χ is to be chosen, subject to some constraints. The effect of using
Eq. (15) instead of Eq. (14) is calculated in Sec. IV.D. One could also consider functions χ
that depend on r1−r2 (instead of just |r1−r2|); such possibilities are discussed in (Twersky,
1978) and (Siqueira et al., 1995).

III FOLDY–LAX THEORY: ISOTROPIC

SCATTERERS

Foldy’s theory begins with a simplified deterministic model for scattering by N identical
scatterers, each of which is supposed to scatter isotropically. Thus, the total field is assumed
to be given by the incident field plus a point source at each scattering centre, rj:

u(r|ΛN) = uin(r) + g

N∑

j=1

uex(rj; rj|ΛN)H0(k|r − rj|). (16)
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Here, Hn(w) ≡ H
(1)
n (w) is a Hankel function, g is the (assumed known) scattering coefficient,

and the exciting field uex is given by

uex(r; rn|ΛN) = uin(r) + g
N∑

j=1
j 6=n

uex(rj; rj|ΛN)H0(k|r− rj|). (17)

The N numbers uex(rj; rj|ΛN) (j = 1, 2, . . . , N) required in Eq. (16) are to be determined by
solving the linear system obtained by evaluating Eq. (17) at r = rn; direct numerical solutions
of this system have been given by Fikioris (1966) and by Groenenboom and Snieder (1995).

Let us try to compute the ensemble average of u, using Eqs. (16) and (8). The result is

〈u(r)〉 = uin(r) + gn0

∫

BN

〈uex(r1)〉1H0(k|r − r1|) dV1, (18)

where we have used Eqs. (9) and (11), and the indistinguishability of the scatterers. For
〈uex(r1)〉1, we obtain

〈uex(r)〉1 = uin(r) + g(N − 1)

∫

BN

p(r2|r1) 〈uex(r2)〉12H0(k|r − r2|) dV2, (19)

where we have used Eqs. (10) and (17). Equations (18) and (19) are the first two in a
hierarchy, involving more and more complicated information on the statistics of the scatterer
distribution. In practice, the hierarchy is broken using an additional assumption. At the
lowest level, we have Foldy’s assumption,

〈uex(r)〉1 ' 〈u(r)〉, (20)

at least in the neighbourhood of r1. When this is used in Eq. (18), we obtain

〈u(r)〉 = uin(r) + gn0

∫

BN

〈u(r1)〉H0(k|r− r1|) dV1, r ∈ BN . (21)

We call this Foldy’s integral equation for 〈u〉. The integral on the right-hand side is an
acoustic volume potential. Hence, an application of (∇2 + k2) to Eq. (21) eliminates the
incident field and shows that (∇2 +K2)〈u〉 = 0 in BN , where K2 is given by Foldy’s formula,
Eq. (1).

At the next level, we have the Lax (1952) quasi-crystalline assumption (QCA),

〈uex(r)〉12 ' 〈uex(r)〉2. (22)

When this is used in Eq. (19) evaluated at r = r1, we obtain

v(r) = uin(r) + g(N − 1)

∫

BN

p(r1|r) v(r1)H0(k|r− r1|) dV1, r ∈ BN , (23)

where v(r) = 〈uex(r)〉1. We call this Lax’s integral equation.
In what follows, we let N → ∞ so that BN → B∞, a semi-infinite region, x > 0.
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A Foldy’s integral equation: exact treatment

Consider a plane wave at oblique incidence, so that

uin = ei(αx+βy) with α = k cos θin and β = k sin θin. (24)

For a semi-infinite domain B∞, Foldy’s integral equation, Eq. (21), becomes

〈u(x, y)〉 = ei(αx+βy) + gn0

∫ ∞

0

∫ ∞

−∞

〈u(x1, y + Y )〉H0(kρ1) dY dx1,
x > 0,

−∞ < y <∞,

where ρ1 =
√

(x− x1)2 + Y 2. This equation can be solved exactly. Thus, writing

〈u(x, y)〉 = U(x) eiµy, x > 0, −∞ < y <∞, (25)

we obtain

U(x) = eiαxei(β−µ)y + gn0

∫ ∞

0

∫ ∞

−∞

U(x1)H0(kρ1) eiµY dY dx1,
x > 0,

−∞ < y <∞.
(26)

Hence, for a solution in the form Eq. (25), we must have

µ = β = k sin θin.

Now, ∫ ∞

−∞

H0(kρ1) eiβY dY =
2

α
eiα|x−x1|, (27)

where α =
√
k2 − β2 = k cos θin. Thus, we see that U solves

U(x) = eiαx +
2gn0

α

∫ ∞

0

U(x1) eiα|x−x1| dx1, x > 0. (28)

Now, put U(x) = U0 eiλx, so that Eq. (25) gives

〈u(x, y)〉 = U0 ei(λx+βy), x > 0, −∞ < y <∞, (29)

and Eq. (28) gives

U0 eiλx − eiαx =
2gn0U0

iα

(
2αeiλx

λ2 − α2
− eiαx

λ− α

)
,

where we have assumed that Imλ > 0. If we compare the coefficients of eiλx, we see that U0

cancels, leaving
λ2 − α2 = −4ign0, (30)

which determines λ. Then, the coefficients of eiαx give U0 = 2α/(λ+ α). A similar method
can be used to find 〈u〉 when B∞ is a slab of finite thickness, 0 < x < h, say; see Aristégui
and Angel (2002).

From Eq. (29), it is natural to write

λ = K cosϕ and β = K sinϕ = k sin θin. (31)

These define the effective wavenumber K; the last equality is recognised as Snell’s law, even
though K and ϕ are complex, with ImK > 0. Hence, we see that

λ2 − α2 = K2 − k2, (32)

whence Eq. (30) reduces to Foldy’s formula, Eq. (1).
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B Foldy’s integral equation: approximate treatment

We have seen that Foldy’s integral equation can be solved exactly, and that the solution
process has two parts: first find λ (and hence the effective wavenumber) and then find U0.
In fact, λ can be found without finding the complete solution; the reason for pursuing this
is that we cannot usually find exact solutions. Thus, consider Eq. (28), and suppose that

U(x) = U0e
iλx for x > `,

where U0, λ and ` are unknown. To proceed, we need say nothing about the solution U in
the “boundary layer” 0 < x < `. Now, evaluate the integral equation for x > `; we find that

U0 eiλx − eiαx =
2gn0

α
eiαx

∫ `

0

U(t) e−iαt dt+
2gn0

α

∫ ∞

`

U(t) eiα|x−t| dt

= A eiλx + B eiαx for x > `,

where A = −4ign0U0/(λ
2 − α2) and

B =
2gn0

α

∫ `

0

U(t) e−iαt dt +
2ign0U0

α(λ− α)
ei(λ−α)`.

Then, setting U0 = A gives Eq. (30) again, without knowing the solution U everywhere.
This basic method will be used again below.

C Lax’s integral equation

Using the approximation p(r1|r) = (n0/N)H(R1 − b) in Lax’s integral equation, Eq. (23)
gives

v(r) = uin(r) + gn0
N − 1

N

∫

Bb
N

(r)

v(r1)H0(kR1) dr1, r ∈ BN , (33)

where Bb
N(r) = {r1 ∈ BN : R1 = |r − r1| > b}, which is BN with a (possibly incomplete)

disc excluded.
Let N → ∞ and take an incident plane wave, Eq. (24), giving

v(x, y) = ei(αx+βy) + gn0

∫

x1>0, ρ1>b

v(x1, y + Y )H0(kρ1) dY dx1,
x > 0,

−∞ < y <∞.

As in Sec. III.A, we write

v(x, y) = V (x) eiβy, x > 0, −∞ < y <∞, (34)

giving

V (x) = eiαx + gn0

∫

x1>0, ρ1>b

V (x1)H0(kρ1) eiβY dY dx1,
x > 0,

−∞ < y <∞.
(35)

Then, using Eq. (27), we see that V solves

V (x) = eiαx + gn0

∫ ∞

0

V (x1)L(x− x1) dx1, x > 0, (36)
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where the kernel, L(x− x1), is given by

L(X) =
2

α
eiα|X| − 2

∫ c(X)

0

H0(k
√
X2 + Y 2) eiβY dY (37)

with c(X) =
√
b2 −X2H(b− |X|); here, we have written the integral over Y in Eq. (35) as

an integral over all Y minus an integral through the disc, if necessary.
We have been unable to solve Eq. (36) exactly (even though it is an integral equation of

Wiener–Hopf type). However, the approximate method described in Sec. III.B can be used.
Thus, let us suppose that

V (x) = V0 eiλx for x > `, (38)

where V0, λ and ` are unknown. Then, consider Eq. (36) for x > ` + b, so that the interval
|x− x1| < b is entirely within the range x1 > `. Making use of Eq. (37), Eq. (36) gives

V0 eiλx − eiαx

gn0
=

2

α
eiαx

∫ `

0

V (t) e−iαt dt+
2

α

∫ ∞

`

V (t) eiα|x−t| dt

− 2

∫ x+b

x−b

V (t)

∫ c(x−t)

0

H0

(
k
√

(x− t)2 + Y 2
)

dY dt (39)

for x > ` + b. Equation (38) can be used in the second and third integrals. The second
integral is elementary, and has the value

2iV0

α(λ− α)
ei(λ−α)`eiαx − 4iV0

λ2 − α2
eiλx.

The third integral becomes

−2V0

∫ b

−b

eiλ(x+ξ)

∫ √
b2−ξ2

0

H0(k
√
ξ2 + Y 2) eiβY dy dξ

= −V0 eiλx

∫ 2π

0

∫ b

0

eiKr cos(θ−ϕ)H0(kr) r dr dθ

= −2πV0 eiλx

∫ b

0

J0(Kr)H0(kr) r dr

= V0 eiλx

{
4i

K2 − k2
− 2πN0(Kb)

K2 − k2

}
,

where
N0(Kb) = KbH0(kb) J1(Kb) − kbH1(kb) J0(Kb). (40)

Using these results in Eq. (39), noting Eq. (32), we obtain

V0 eiλx − eiαx = A eiλx + B eiαx for x > `+ b,

where

A =
2πgn0V0

k2 −K2
N0(Kb),

B =
2gn0

α

∫ `

0

V (t) e−iαt dt +
2ign0V0

α(λ− α)
ei(λ−α)`.
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For a solution, we must have A = V0, whence

K2 = k2 − 2πgn0N0(Kb), (41)

which is a nonlinear equation for K. Notice that this equation does not depend on the angle
of incidence, θin.

We have N0(Kb) → 2i/π as b → 0 so that, in this limit, we recover Foldy’s formula for
the effective wavenumber, Eq. (1).

Let us solve Eq. (41) for small n0. (Alternatively, we could use the dimensionless area
fraction πa2n0.) Begin by writing

K2 = k2 + δ1n0 + δ2n
2
0 + · · · , (42)

where δ1 and δ2 are to be found; for δ1, we expect to obtain the result given by Eq. (1). It
follows from Eq. (42) that

K = k + 1
2
δ1n0/k +O(n2

0)

and then

N0(Kb) = N0(kb) + (Kb− kb)N ′
0(kb) + · · ·

= 2i/π + 1
2
b2δ1d0(kb)n0 +O(n2

0),

where d0(x) = J0(x)H0(x) + J1(x)H1(x). When this approximation for N0(Kb) is used in
Eq. (41), we obtain

K2 = k2 − 4ign0 − πb2gδ1d0(kb)n
2
0.

Comparison of this formula with Eq. (42) gives δ1 = −4ig (as expected) and δ2 = 4πi(gb)2d0(kb),
so that we obtain the approximation

K2 = k2 − 4ign0 + 4πi(gbn0)
2d0(kb). (43)

Note that the second-order term in Eq. (43) vanishes in the limit kb→ 0.

IV FINITE-SIZE EFFECTS

The theory described above relies on the assumption of isotropy. Here, we use a more
complete theory. We start with an exact theory (due to Závǐska) for acoustic scattering by
N identical circular cylinders of radius a; for details and references, see p. 173 of (Linton and
McIver, 2001). The cylinders can be soft, hard or penetrable. Then (in Sec. IV.B), we form
averaged equations, and we invoke the QCA. This leads to an infinite homogeneous system
of linear algebraic equations from which the effective wavenumber, K, is to be determined;
the equations are independent of the angle of incidence. An approximate solution for K is
found in Sec. IV.C, correct to O(n2

0). In Sec. IV.D, it is shown that this approximation does
not depend on the choice of the function χ(r;n0), appearing in the pair-correlation function,
Eq. (15). In Sec. IV.E, it is shown how Twersky’s formula for K can be derived, using an
unreasonable choice for the pair-correlation function.
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Figure 1: A view of two typical cylinders.

A A finite array of identical circular cylinders: exact theory

We use polar coordinates (r, θ) centred at the origin and (rj, θj), centred at rj = (xj, yj), the
centre of the jth cylinder. The various parameters relating to the relative positions of the
cylinders are shown in Figure 1.

Exterior to the cylinders the pressure field is u, where

∇2u+ k2u = 0. (44)

In the interior of cylinder j, the field is uj, where

∇2uj + κ2uj = 0. (45)

A plane wave, given by Eq. (24), is incident on the cylinders. A phase factor for each cylinder,
Ij, is defined by

Ij = ei(αxj+βyj) (46)

and then we can write

uin = Ije
ikrj cos(θj−θin) = Ij

∞∑

n=−∞

ein(π/2−θj+θin)Jn(krj). (47)

We seek a solution to Eqs. (44) and (45) in the form

u = uin +
N∑

j=1

∞∑

n=−∞

Aj
nZnHn(krj)e

inθj , (48)

uj =

∞∑

n=−∞

Bj
nJn(κrj)e

inθj , (49)
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for some set of unknown complex coefficients Aj
n and Bj

n. The factor

Zn =
qJ ′

n(ka)Jn(κa) − Jn(ka)J ′
n(κa)

qH ′
n(ka)Jn(κa) −Hn(ka)J ′

n(κa)
= Z−n (50)

has been introduced for later convenience. Here κ = ω/c̃ and q = ρ̃c̃/(ρc), where ρ̃ and c̃
are the density and sound speed, respectively, inside the cylinders. Note that we recover the
sound-soft results in the limit q → 0, whereas the limit q → ∞ gives the sound-hard results.
The boundary conditions on the cylinders are

u = us,
1

ρ

∂u

∂rs
=

1

ρ̃

∂us

∂rs
on rs = a, s = 1, . . . , N. (51)

Using Graf’s addition theorem for Bessel functions, it can be shown that provided rs <
Rjs for all j, we can write the field exterior to cylinder s as

u(rs, θs) =

∞∑

n=−∞

(
IsJn(krs)e

in(π/2−θs+θin) + As
nZnHn(krs)e

inθs
)

+

N∑

j=1
j 6=s

∞∑

n=−∞

Aj
nZn

∞∑

m=−∞

Jm(krs)Hn−m(kRjs)e
imθsei(n−m)αjs . (52)

The geometrical restriction implies that this expression is only valid if the point (rs, θs) is
closer to the centre of cylinder s than the centres of any of the other cylinders. This is
certainly true on the surface of cylinder s and so Eq. (52) can be used to apply the body
boundary conditions which leads, after using the orthogonality of the functions exp(imθs),
m ∈ Z, and eliminating the coefficients Bj

n, to the system of equations

As
m +

N∑

j=1
j 6=s

∞∑

n=−∞

Aj
nZnei(n−m)αjsHn−m(kRjs) = −Iseim(π/2−θin),

s = 1, 2, . . . , N,
m ∈ Z.

(53)

Note that the quantities q, κ and a only enter the equations through the terms Zn.
For a single cylinder the solution is immediate: A1

m = −imI1 exp(−imθin) and then the
far-field pattern, defined by Eq. (3), is given by

f(θ) = −
∞∑

n=−∞

Zneinθ. (54)

B Arrays of circular cylinders: averaged equations

The above analysis applies to a specific configuration of scatterers. Now we follow Bose and
Mal (1973) and take ensemble averages. Specifically, setting s = 1 in Eq. (53) and then
taking the conditional average, using Eq. (14), we get

〈A1
m〉1 + n0

N − 1

N

∞∑

n=−∞

Zn

∫

BN : R12>b

Hn−m(kR21) ei(n−m)α21〈A2
n〉12 dV2

= −I1eim(π/2−θin), m ∈ Z. (55)
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Now we let N → ∞ so that BN becomes the half-space x > 0, and invoke Lax’s QCA,
Eq. (22). This implies that

〈A2
m〉12 = 〈A2

m〉2. (56)

We seek a solution to Eq. (55) in the form

〈As
m〉s = im eiβysΦm(xs) (57)

so that

Φm(x1) + n0

∞∑

n=−∞

Zn(−i)n−m

∫

x2>0, R12>b

ψn−m(x21, y21) eiβy21Φn(x2) dx2 dy2

= −e−imθineiαx1 , m ∈ Z, (58)

where we have written x21 = x2 − x1 and y21 = y2 − y1, used α21 = α12 − π, and defined

ψn(X, Y ) = Hn(kR) einΘ

with X = R cos Θ and Y = R sin Θ.
Proceeding as before, suppose that for sufficiently large x (say x > `) we can write

Φm(x) = Fm e−imϕeiλx, (59)

where λ and ϕ are defined by Eq. (31). We assume that Imλ > 0 so that Φm → 0 as x→ ∞.
Then if x1 > `+ b, Eq. (58) becomes

Fm e−imϕeiλx1 + n0

∞∑

n=−∞

Zn(−i)n−m

{∫ `

0

Φn(x2)Ln−m(x21) dx2 + Fn e−inϕeiλx1Mn−m

}

= −e−imθineiαx1 , m ∈ Z, (60)

where

Ln(X) =

∫ ∞

−∞

ψn(X, Y ) eiβY dY, (61)

Mn =

∫

x2>`, R12>b

ψn(x21, y21) Ψ(x21, y21) dx2 dy2, (62)

Ψ(X, Y ) = ei(λX+βY ) = eiKR cos (Θ−ϕ), (63)

and we have used Eq. (31). Next, we shall evaluate Ln andMn; note that we have x2 < ` < x1

in Eq. (60) so that x21 < 0.
Consider the integral Ln(X) for X < 0. From Eq. (27), we have

L0(X) = (2/α)e−iαX and L′
0 = −iαL0. (64)

For Ln with n > 0, we use the fact that

Ln(X) =

∫ ∞

−∞

−1

k
eiβY

(
∂

∂X
+ i

∂

∂Y

)
ψn−1(X, Y ) dY. (65)
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Then, as the ∂/∂X can be taken outside the integral and the ∂/∂Y can be removed using
an integration by parts, we have

Ln = −1

k
L′

n−1 −
β

k
Ln−1, (66)

which expresses Ln in terms of Ln−1 and L′
n−1. It follows from Eq. (64) that

Ln =
2(iα− β)n

αkn
e−iαX =

2 in

α
einθin e−iαX . (67)

This formula also holds for n < 0. Hence, for x1 > x2,

Ln(x2 − x1) = (2/α)in einθineiα(x1−x2). (68)

The double integral Mn can be evaluated using Green’s theorem as follows. We have

ψn∇2Ψ − Ψ∇2ψn = (k2 −K2)ψnΨ.

It follows that

Mm =
1

k2 −K2

∫

∂B

[
ψm

∂Ψ

∂n
− Ψ

∂ψm

∂n

]
ds2,

where ∂B consists of two parts, the line x2 = ` and the circle R12 = b. Now, on x2 = `,
∂/∂n = −∂/∂x2 and so we have

−
∫

x2=`

[
ψn

∂Ψ

∂x2

− Ψ
∂ψn

∂x2

]
dy2

= eiλ(`−x1)

∫ ∞

−∞

eiβy21

[
−iλψn + cosα12

∂ψn

∂R12
− sinα12

R12

∂ψn

∂α12

]

x2=`

dy2

= eiλ(`−x1)

∫ ∞

−∞

eiβy21

[
−iλψn +

k

2
(ψn−1 − ψn+1)

]

x2=`

dy2

=
2

α
ei(α−λ)(x1−`) in−1einθin(λ+ α), (69)

using 2H ′
n(x) = Hn−1(x)−Hn+1(x), (2n/x)Hn(x) = Hn−1(x)+Hn+1(x), and Eq. (68) thrice.

The contribution from the circle R12 = b is

−
∫ 2π

0

[
ψn

∂

∂R

(
eiKR cos (Θ−ϕ)

)
− eiKR cos (Θ−ϕ) ∂ψn

∂R

]

R=b

b dΘ

= −b
∫ 2π

0

eiKb cos(Θ−ϕ)einΘ [iKHn(kb) cos(Θ − ϕ) − kH ′
n(kb)] dΘ

= −b einϕ

∫ 2π

0

einθ
∞∑

q=−∞

iqJq(Kb)e
−iqθ

[
iK

2
Hn(kb)(e

iθ + e−iθ) − kH ′
n(kb)

]
dθ

= −2πbineinϕ [KHn(kb)J ′
n(Kb) − kH ′

n(kb)Jn(Kb)] . (70)

Thus, the system (60) can be written as

Am e−imϕeiλx + B e−imθineiαx = −e−imθineiαx, x > `+ b, m ∈ Z, (71)
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where

Am = Fm +
2n0π

k2 −K2

∞∑

n=−∞

FnZnNn−m(Kb),

B =
2n0

α

∞∑

n=−∞

Zn einθin

{∫ `

0

Φn(t) e−iαt dt+
iFn e−inϕ

λ− α
ei(λ−α)`

}
,

and
Nn(Kb) = kbH ′

n(kb) Jn(Kb) −KbHn(kb) J ′
n(Kb). (72)

Notice that N0, defined by Eq. (40), appeared in Sec. III.C during our analysis of Lax’s
integral equation.

From Eq. (71), we immediately obtain B = −1 and Am = 0 for all m; the second of
these, namely

Fm +
2n0π

k2 −K2

∞∑

n=−∞

FnZnNn−m(Kb) = 0, m ∈ Z, (73)

is of most interest to us. It is an infinite homogeneous system of linear algebraic equations
for Fm, m ∈ Z. The existence of a non-trivial solution to Eq. (73) determines K. Notice that
Eq. (73) does not depend on θin, so that the effective wavenumber cannot depend on θin.

Equation (73) is the same as Eq. (33) in (Bose and Mal, 1973) (with the choice Eq. (14));
these authors began by considering normal incidence, θin = 0. However, the derivation of
Eq. (73) given here has some advantages over that given by Bose and Mal (1973). First, we
do not invoke “the so-called ‘extinction theorem’” of Lax; this is described in Sec. VI of (Lax,
1952). Roughly speaking, this “theorem” asserts that one may simply delete the incident
field when calculating the effective wavenumber, in the limit N → ∞. Along with this come
some divergent integrals; for example, the integrals in the unnumbered equation between
eqns. (32) and (33) of (Bose and Mal, 1973) are divergent, because eiKx is exponentially
large as x → −∞. In fact, we can say that our analysis proves Lax’s theorem in our
particular case.

Second, when dealing with a half-space containing scatterers, we know from the work of
Lloyd and Berry (1967) that the boundary of the half-space can cause difficulties. Here, we
give a proper treatment of this boundary. In particular, we do not assume that all fields are
proportional to eiλx everywhere inside the half-space, x > 0, but only in x > `, away from
the boundary: the width of the boundary layer, `, is not specified, and need not be specified
if one only wants to calculate K.

A more recent analysis was given by Siqueira and Sarabandi (1996). They allow non-
circular and non-identical cylinders (using a T -matrix formulation) but they do assume that
the effective field is proportional to eiλx for all x > 0.

C Approximate determination of K for small n0

The only approximation made in the derivation of Eq. (73) is the QCA, which is expected
to be valid for small values of the scatterer concentration (n0a

2 � 1). We now assume (as
in Sec. III.C) that n0/k

2 is also small and write K2 = k2 + δ1n0 + δ2n
2
0 + . . .. We then have

Nn(Kb) = 2i/π + 1
2
b2δ1dn(kb)n0 +O(n2

0), (74)
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where
dn(x) = J ′

n(x)H ′
n(x) + [1 − (n/x)2]Jn(x)Hn(x) (75)

and so
Nn(Kb)

k2 −K2
= − 2i

πδ1n0
− b2dn(kb)

2
+

2iδ2
πδ2

1

+O(n0). (76)

If Eq. (76) is substituted in Eq. (73) and O(n2
0) terms neglected we get

Fm =
4i

δ1

∞∑

n=−∞

ZnFn + n0

∞∑

n=−∞

ZnFn

(
πb2dn−m(kb) − 4iδ2

δ2
1

)
, m ∈ Z. (77)

At leading order this gives

Fm =
4i

δ1

∞∑

n=−∞

ZnFn, m ∈ Z, (78)

which implies that all the Fm are equal. If we write Fm = F , Eq. (78) becomes

δ1 = 4i
∞∑

s=−∞

Zs = −4if(0), (79)

where f is the far-field pattern, given by Eq. (54).
Returning to Eq. (77), we now put Fm = F + n0qm, and then the O(n0) terms give

qm = − 1

f(0)

∞∑

n=−∞

Znqn + πb2F
∞∑

n=−∞

Zndn−m(kb) − iFδ2
4f(0)

, m ∈ Z. (80)

It follows that qm − πb2F
∑∞

n=−∞ Zndn−m must be independent of m, call it Q:

Q = − 1

f(0)

∞∑

n=−∞

Znqn − iFδ2
4f(0)

= − 1

f(0)

∞∑

n=−∞

Zn

(
Q + Fπb2

∞∑

s=−∞

Zsds−n(kb)

)
− iFδ2

4f(0)
. (81)

Hence

δ2 = 4πib2
∞∑

n=−∞

∞∑

s=−∞

ZnZsds−n(kb) (82)

and so we obtain the approximation

K2 = k2 − 4in0f(0) + 4πib2n2
0

∞∑

n=−∞

∞∑

s=−∞

ZnZsds−n(kb) + . . . . (83)

For isotropic point scatterers, we have |Z0| � |Zn| for all n 6= 0 and g = −Z0, so that
Eq. (83) reduces to Eq. (43) in this limit.
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So far we have not made any assumptions about the size of ka or kb (though clearly
kb ≥ 2ka). Now we will assume that kb is small. In the limit x→ 0, we have

x2dn(x) ∼ 2i|n|/π. (84)

Hence as kb→ 0,

δ2 ∼ − 8

k2

∞∑

n=−∞

∞∑

s=−∞

|s− n|ZnZs. (85)

Now

[f(θ)]2 =
∞∑

n=−∞

∞∑

s=−∞

ZnZse
i(n+s)θ =

∞∑

n=−∞

∞∑

s=−∞

ZnZs cos(n− s)θ (86)

since Zn = Z−n. Thus

d

dθ
[f(θ)]2 = −

∞∑

n=−∞

∞∑

s=−∞

(n− s)ZnZs sin(n− s)θ. (87)

Also ∫ π

0

cot 1
2
θ sinmθ dθ = π sgn(m), (88)

see Eq. 3.612(7) in (Gradshteyn and Ryzhik, 2000). Thus, setting kb = 0 gives

K2 = k2 − 4in0f(0) +
8n2

0

πk2

∫ π

0

cot 1
2
θ

d

dθ
[f(θ)]2 dθ. (89)

The integral appearing here is convergent because f ′(0) = 0.

D Effect of pair-correlation function choice

Here, we consider the effect of using a more complicated pair-correlation function, defined
by Eq. (15) in terms of the function χ(r;n0). This function must decay rapidly to zero as
r → ∞ and, in addition, χ(r;n0) → 0 as n0 → 0 for any fixed r. For example, Bose and Mal
(1973) suggest using χ(r;n0) = e−r/L(n0), where the correlation length L(n0) → 0 as n0 → 0.
Other authors have supposed that χ(r;n0) = 0 for r > b′ > b, where the radius b′ may be
taken as 2b; see, for example, p. 1072 of (Bose, 1996) or Eq. (27) in (Twersky, 1978).

Proceeding as in Sec. IV.B, we obtain Eq. (58) with an additional factor of [1+χ(R12;n0)]
in the integrand. Evaluating this equation for x1 > ` + b′, assuming that χ(r;n0) = 0 for
r > b′, we obtain Eq. (60) with Mn−m replaced by M ′

n−m, where

M ′
n = Mn +

∫

b<R12<b′
ψn(x21, y21) Ψ(x21, y21)χ(R12;n0)dx2 dy2

= Mn + 2πineinϕWn,

Wn =

∫ b′

b

Hn(kR) Jn(KR)χ(R;n0)R dR,
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and Mn is defined by Eq. (62). Hence, we obtain a modified form of Eq. (73), namely

Fm + 2n0π

∞∑

n=−∞

FnZn

{Nn−m(Kb)

k2 −K2
+Wn−m

}
= 0, m ∈ Z, (90)

from which K is to be determined. This homogeneous system for Fn is Eq. (33) in (Bose and
Mal, 1973) and it is a special case of Eq. (24) in (Siqueira and Sarabandi, 1996). Moreover,
the fact that Wn = o(1) as n0 → 0 means that the approximations for K obtained in
Sec. IV.C, namely Eqs. (83) and (89), are unchanged by the presence of χ.

E Reproducing Twersky’s formula

It is implicit in the work of Twersky (1962) (and others) that the complications arising when
a scatterer centre is closer to the boundary x = 0 than its radius are ignored. It was pointed
out by Lloyd and Berry (1967) that, since all scatterers are treated equally, ignoring the
boundary-layer effects is equivalent to using a pair-correlation function with the following
property: if one scatterer is at (x1, y1), then no other scatterer (with centre (x2, y2)) can
occupy the infinite strip x1 − a < x2 < x1 + a. Thus, instead of Eq. (14), the choice

Np(r2|r1) =

{
0, |x21| < a,

n0, |x21| > a,
(91)

was made. We shall show that use of Eq. (91) leads to Twersky’s formula, Eq. (4).
Setting s = 1 and taking the conditional average of Eq. (53) in the usual way, and looking

for a solution in the form of Eq. (57) now leads to

Φm(x1) + n0

∞∑

n=−∞

Zn(−i)n−m

(∫ x1−a

0

+

∫ ∞

x1+a

)
Ln−m(x21)Φn(x2) dx2

= −e−imθineiαx1 , m ∈ Z, (92)

where Ln(X) is defined by Eq. (61).
Suppose that for x > ` we can write (cf. Eq. (59))

Φm(x) = Fm e−imθineiλx, (93)

where Imλ > 0. Then if x1 > ` + a, Eq. (92) becomes

Fmeiλx1 + n0

∞∑

n=−∞

Zn(−i)n−meimθin

∫ `

0

Φn(x2)Ln−m(x21) dx2

+ n0e
iλx1

∞∑

n=−∞

FnZne−i(n−m)(π/2+θin)

(∫ x1−a

`

+

∫ ∞

x1+a

)
Ln−m(x21)e

iλx21 dx2

= −eiαx1 , m ∈ Z. (94)



Linton & Martin, JASA 19

We have already evaluated Ln(x) for x < 0, see Eq. (68). Now, we also need its value for
x ≥ 0; we have

αLn(x) =

{
2(−i)n e−inθin eiαx x ≥ 0

2in einθin e−iαx x < 0.
(95)

Using these in Eq. (94) gives

Ãmeiλx + B̃eiαx = −eiαx, x > `+ a, m ∈ Z,

where

Ãm = Fm − 2in0

α

∞∑

n=−∞

FnZn

{
e−i(λ−α)a

λ− α
− ei(λ+α)a

λ+ α
ei(n−m)θT

}
,

B̃ =
2n0

α

∞∑

n=−∞

Zn

{
einθin

∫ `

0

Φn(t) e−iαt dt+
iFn ei(λ−α)`

λ− α

}

and θT = π − 2θin. Thus, λ is to be found from Ãm = 0 for all m ∈ Z.
As before, we write K2 − k2 = λ2 − α2 = δ1n0 + δ2n

2
0 + . . .. Hence,

e−i(λ−α)a

λ− α
− ei(λ+α)a

λ+ α
ei(n−m)θT =

2α

δ1n0
+

1

2α

{
1 − 2iαa− e2iαaei(n−m)θT

}
− 2αδ2

δ2
1

+O(n0).

Substituting in Ãm = 0 and neglecting terms that are O(n2
0), we obtain

Fm −
∞∑

n=−∞

FnZn

{
4i

δ1
+

in0

α2

{
1 − 2iαa− e2iαaei(n−m)θT

}
− 4in0δ2

δ2
1

}
= 0

for m ∈ Z. Proceeding as in Sec. IV.C, we obtain Eq. (79), as before. Then, the O(n0) terms
give

δ2 =
δ2
1

4α2
(1 − 2iαa) +

4

α2
e2iαa

∞∑

n=−∞

∞∑

s=−∞

ZnZse
i(s−n)θT

=
4

α2

{
e2iαa[f(θT )]2 − (1 − 2iαa)[f(0)]2

}
.

Hence, if we let αa→ 0 in this formula, we recover Twersky’s (erroneous) formula, Eq. (4).

V CONCLUDING REMARKS

We have derived a two-dimensional version of the three-dimensional Lloyd–Berry formula
for the effective wavenumber in a dilute random configuration of scatterers, using methods
that differ from those used by Lloyd and Berry (1967). Much remains to be done in order
to validate the new formula. Specifically, it should be possible to compare its predictions
with those obtained from full numerical simulations (using Monte Carlo methods) and from
experiments. Some comparisons between Monte Carlo results and solutions of the infinite
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system (90), for various choices of χ, have been reported by Siqueira and Sarabandi (1996).
They used lossy cylinders, and found good agreement for low area fractions, with little
dependence on χ.

Price et al. (1988) have compared the predictions of Twersky’s formula, Eq. (4), with
experimental results obtained from sound propagation through three forests; they found
“poor” agreement, but perhaps this could be attributed to errors in the formula and the crude
approximation of an actual forest by a random array of sound-hard circular cylinders. For
a recent review of the quantification of attenuation effects due to trees, see (Attenborough,
2002). Several other experimental studies, in the context of fiber-reinforced materials, are
cited in the paper by Verbis et al. (2001).

In three dimensions, there is an extensive literature on comparisons between experiments,
direct numerical simulations, and various theories, including the Lloyd–Berry formula; see,
for example, Sec. 4.3.12 of (Povey, 1997), (Hipp et al., 1999), and references therein. For low
volume fractions and properly modelled spheres, the agreement is generally good: according
to Povey (1997, p. 133), there is “a sizeable body of evidence in support of the acoustic
multiple scattering theory.”
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