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Abstract

Uniqueness in the linearised water-wave problem is considered for a fluid layer of constant depth
containing two, three or four vertical barriers. The barriers are parallel, of infinite length in a
horizontal direction, and may be surface-piercing and/or bottom mounted and may have gaps.
The case of oblique wave incidence is included in the theory.

A solution for a particular geometry is unique if there are no trapped modes, that is no free
oscillations of finite energy. Thus, uniqueness is established by showing that an appropriate homo-
geneous problem has only the trivial solution. Under the assumption that at least one barrier does
not occupy the entire fluid depth, the following results have been proven: for any configuration of
two barriers the homogeneous problem has only the trivial solution for any frequency within the
continuous spectrum; for an arbitrary configuration of three barriers the homogeneous problem has
only the trivial solution for certain ranges of frequency within the continuous spectrum; for three-
barrier configurations symmetric about a vertical line, it is shown that there are no correspondingly
symmetric trapped modes for any frequency within the continuous spectrum; for four-barrier con-
figurations symmetric about a vertical line, the homogeneous problem has only the trivial solution
for certain ranges of frequency within the continuous spectrum.

The symmetric four-barrier problem is investigated numerically and strong evidence is presented
for the existence of trapped modes in both finite and infinite depth. The trapped mode frequencies
are found for particular geometries that are in agreement with the uniqueness results listed above.
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1 Introduction

Over many years the problem of uniqueness of the solution to the linearised water-wave problem

for time-harmonic motions has received much attention. Considerable effort has been directed

towards attempts at obtaining a general uniqueness theorem, but without success. In the meantime,

many partial results have been obtained with restrictions to particular classes of geometry or

ranges of frequency. The reason for the lack of a general theorem became clear when McIver

(1996) provided a counterexample which demonstrated that the problem need not be unique. For

certain pairs of surface-piercing structures and for certain discrete frequencies, she was able to

construct a solution of the homogeneous water-wave problem that has finite energy; such solutions

are generally termed ‘trapped modes’. The examples of trapped modes constructed by McIver

(1996) and extended by Kuznetsov & Porter (1999) have undermined the previously dominant

view that there is uniqueness in the water-wave problem for all frequencies and for all geometries.

There are important consequences for geometries with the non-uniqueness property. In particular,

the non-homogeneous water-wave problem can have no solution for some types of forcing; for

example, McIver (1997) has shown that the heave potential may not exist and in other situations

there is more than one solution at the frequency at which non-trivial solutions of the homogeneous

problem occur.

Since there are examples of non-uniqueness for geometries separating a portion of the free surface

from infinity, it is natural to study in detail what are perhaps the simplest geometries of this type,

namely configurations of two or more surface-piercing vertical barriers. This is the main topic of

the work reported here where uniqueness results are presented for two, three and four barriers and

numerical evidence is presented for the existence of trapped modes in the presence of four vertical

barriers.

Levine & Rodemich (1958) gave an explicit solution for the two-dimensional problem of scat-

tering by a pair of identical vertical barriers that is valid for all frequencies. This is the only known

explicit solution for two surface-piercing structures. Unfortunately, the solution is complicated

and difficult to interpret. Subsequently, Evans & Morris (1972) formulated the problem in terms

of integral equations and, quite remarkably, showed that it is possible for such a pair of barriers

to completely reflect an incident wave at certain discrete frequencies. In section 3 of the current

work it is proven that the solution of the two-dimensional problem for any pair of surface-piercing

barriers is unique at all frequencies. Thus, the uniqueness of Levine & Rodemich’s solution and
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the unique solvability of the integral equations obtained for the same problem by Evans & Morris

(1972) are established.

An explicit solution for the related two-dimensional problem of scattering by two vertical bar-

riers extending downwards indefinitely from points the same distance beneath the free surface was

obtained by Jarvis (1971). The solution is similar to, but simpler than, the solution of Levine &

Rodemich (1958) for two surface-piercing barriers. The uniqueness theorem of section 3 covers this

case as well.

The ideas used in the uniqueness proof for two barriers are readily extended to three barriers and

symmetric configurations of four barriers and this is done in sections 4 and 5. However, the proofs

now apply to only certain configurations or ranges of frequency thus leaving open the possibility

that trapped modes may exist for these geometries.

The possibility that a structure may totally reflect waves has led to speculation that this may

be used as a basis for the construction of trapped modes. The following heuristic argument is

reproduced verbatim from Evans & Porter (1998). ‘Consider, in two dimensions, the scattering of

a plane wave by one or more fixed rigid bounded obstacles. The resulting reflection coefficient, R,

depends on wave frequency and body geometry and satisfies |R| ≤ 1. Suppose for a particular wave

frequency and geometry, |R| = 1, so that the plane wave is totally reflected. Placing an identical

mirror-image configuration of bodies at a position sufficiently far downstream for local effects to be

negligible, will result in the totally reflected plane wave in its turn being totally reflected and so on.

By suitable choice of spacing of the two configurations it is possible to construct a standing wave

oscillation in the region between the configurations and only a rapidly decaying local field outside.’

A number of geometries are known to exist for which |R| = 1 (or alternatively T = 0, where

T is the transmission coefficient). For instance, Parsons & Martin (1994) showed numerically that

a surface-piercing flat plate inclined to the vertical has this property. Subsequently, Linton &

Kuznetsov (1997) presented strong numerical evidence that waves can be trapped by a pair of such

plates, and the frequencies of the modes are closely correlated with the frequencies at which T = 0

for a single plate. The work of Linton & Kuznetsov (1997) suggests that vertical barriers may be

the only type of a symmetric, surface-piercing, barrier pair with the uniqueness of solution property.

As mentioned above, another configuration for which T = 0 is a pair of suitably spaced, thin,

vertical, surface-piercing barriers. This suggests that a geometry consisting of two pairs of such

barriers may support trapped modes. In the present work, accurate computations using the method

of Porter & Evans (1995) for finite depth and that of Linton & Kuznetsov (1997) for infinite depth
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are used to demonstrate very convincingly that trapped modes exist in the presence of two pairs

of vertical barriers. The trapped-mode frequencies are close to the frequencies at which T = 0 for

a single pair of barriers and lie in the frequency bands for which the theorem on four barriers does

not establish uniqueness.

The plan of the paper is as follows. The problem is stated and the governing equations presented

in section 2. In sections 3, 4, and 5 uniqueness theorems are presented respectively for two, three

and four vertical barriers. Numerical evidence for the existence of trapped modes in the presence of

four barriers is presented in section 6. Formulations valid for finite and infinite depth are described

in sections 6.1–6.2 and the results are given in section 6.3.

2 Statement of the problem

An inviscid, incompressible fluid occupies a layer of mean depth h (possibly infinite) bounded below

by a rigid bed and above by a free surface. Cartesian coordinates x, y and z are chosen with y

measured vertically upwards from the mean free surface. This paper is concerned with solutions

of the linearised water-wave problem that have a velocity potential in the form φ(x, y)ei(`z−ωt);

such solutions are time-harmonic with angular frequency ω and periodic in the z direction with

corresponding wavenumber ` (possibly zero).

Let L denote the strip {−∞ < x < ∞; −h < y < 0}, F the free surface, B the bed {−∞ <

x <∞; y = −h}, and S the boundary curve in the (x, y) plane of any structures within the fluid;

the fluid domain W is therefore that part of L outside S. The potential φ satisfies

(∇2 − `2)φ = 0 in W (1)

and the boundary condition

φy −Kφ = 0 on F, (2)

where K = ω2/g and g is the acceleration due to gravity. There can be no flow through the rigid

bed so that

φy = 0 on B, (3)

and there must be no flow through the surface of any structure within the fluid so that

φn = 0 on S, (4)
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where n denotes a coordinate measured normal to S. The present work is concerned with problems

involving vertical barriers so that S will be a union of lines on constant values of x.

For fixed `, the problem (1)–(4) defines an eigenvalue problem whereK is the spectral parameter.

For a solution φ corresponding to a particular K, the quantity

H[φ;K] =
∫
W
|∇φ|2 dxdy +K

∫
F
|φ|2 dx (5)

is proportional to the time-averaged energy of the motion per unit length of the z axis. If, for

a non-zero φ, H[φ;K] is unbounded then K belongs to the continuous spectrum of the relevant

operator, while if H[φ;K] < ∞ then K is a point eigenvalue and the corresponding eigenfunction

φ describes a so-called ‘trapped mode’.

The continuous spectrum corresponds to those values of K for which propagating waves are

possible at infinity. As x→ ±∞, radiated-wave solutions of equations (1)–(3) are of the form

φ = C±eiαx cosh k(y + h) +O
(

[x2 + y2]−1/2
)
, (6)

where k is the unique positive root of

K = k tanh kh (7)

and α =
√
k2 − `2 is real. Thus, the continuous spectrum corresponds to k > ` which is equivalent

to K > ` tanh `h. Note that k → K in the deep water limit h→∞ and in this case cosh k(y + h)

must be replaced by eKy in (6).

For the solutions of (1)–(4) to have finite energy, it is sufficient for the radiation condition,

φx ∓ iαφ = o(1) as x→ ±∞, (8)

to hold. Another condition arises from the fact that the boundary of W is not smooth because of

the presence of the submerged barrier tips and any corners between the barriers and F or B. Thus,

there is the additional requirement that

φ ∈ H1
loc(W ), (9)

that is for every open set E ⊂W such that E is a compact subset of L,∫
E
|φ|2 dxdy +

∫
E
|∇φ|2 dxdy <∞. (10)

Equations (1)–(4) and (8) together with condition (9) constitute the statement of the homogeneous

water-wave problem for vertical barriers that is to be investigated here.

5



W

S+S-

y

x

+b

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

F0

B

F-

b-

F+

Figure 1: Definition sketch for two-barrier configuration.

We conclude this section with some simple consequences of (8) and (9). Using asymptotic

expansions at a corner for solutions of elliptic boundary value problems (see Kozlov, Maz’ya &

Rossman (1997) for a general exposition or Wigley (1964) where particular formulae sufficient

for the present work are given), one arrives at the following properties of the velocity potential

satisfying (1)–(4) and (9). It is continuous at the submerged barrier tips and for each tip

|∇φ(x, y)| = O
(
ρ−1/2

)
as ρ→ 0, (11)

where ρ is the distance of a point in the fluid from that tip. Also, in each corner between F or B

and a barrier, φ is continuous up to the boundary of the water domain and

|∇φ(x, y)| = O
(
r−1+δ

)
as r → 0, (12)

where r is the distance of a point in the fluid from that corner and δ > 0.

The second corollary is concerned with the behaviour of φ at infinity. It is well known (see

for example Simon & Ursell 1984) that C+ = C− = 0 in (6) for a solution to the homogeneous

water-wave problem and hence φ ∈ H1(W ) so that the total energy of the fluid motion satisfies

H[φ;K] <∞. (13)

3 A uniqueness theorem for two barriers

Consider the two-barrier configuration sketched in figure 1. Two rigid vertical barriers are immersed

in a fluid of depth h so that their wetted surfaces occupy the lines S± = {x = ±b;−a± < y < 0},
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a± > 0. The free surface of the fluid is F = {|x| 6= b; y = 0} = F− ∪ F0 ∪ F+, where the portions

of the free surface that extend to infinity are F± = {±x > b; y = 0} and the portion between the

barriers is F0 = {|x| < b; y = 0}. For the particular case of two barriers, the structural boundary

condition (4) becomes

φx(+b± 0, y) = 0 on S+ and φx(−b± 0, y) = 0 on S−. (14)

The aim is to establish that the problem defined by equations (1)–(3), (8)–(9), and (14) has

only the trivial solution for the continuous spectrum K > ` tanh `h. This is done by constructing

an inequality which can be satisfied only if φ = 0. First of all it is convenient to establish some

properties of

w(x) =
∫ 0

−h
φ(x, y) cosh k(y + h) dy, (15)

where k is the unique positive root of (7). This function (referred to as the simple wave of order zero

by John 1950) is given for all x ∈ F since the barriers are assumed to be vertical. Differentiation

with respect to x and use of (1) gives

wxx(x) =
∫ 0

−h

[
`2φ(x, y)− φyy(x, y)

]
cosh k(y + h) dy (16)

and so, by integration by parts and equations (2), (3) and (7),

wxx − `2w = −
[
φy(x, 0) cosh kh− k

∫ 0

−h
φy(x, y) sinh k(y + h) dy

]

= −
[
Kφ(x, 0) cosh kh− kφ(x, 0) sinh kh+ k2

∫ 0

−h
φ(x, y) cosh k(y + h) dy

]

= −k2w(x) (17)

and hence

wxx + α2w = 0. (18)

The general solution of (18) is

w(x) = C1 cosαx+ C2 sinαx (19)

and hence from the radiation condition (8),

w(x) = 0 on F± (20)
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(see John 1950, pp. 79–82 for details).

Now φx(x, y) is continuous across x = ±b for y 6= −a±. For −a± < y < 0 this follows from (14)

and for −h < y < −a± it is a consequence of analyticity of solutions to (1). This continuity of φx

together with (11) and (12) imply that wx is continuous across x = ±b. Hence, from (18) and (20),

wx = 0 for |x| = b (21)

and thus on F0

w(x) = C1 cosαx with α = mπ/b, m = 1, 2, . . . , (22)

or

w(x) = C2 sinαx with α = (2m− 1)π/2b, m = 1, 2, . . . , (23)

so that only values of K arising from α = nπ/2b, n = 1, 2, . . . , can be eigenvalues of the problem

(1)–(3), (8)–(9), and (14). From the above it follows immediately that∫
F0

|wx|2 dx = α2

∫
F0

|w|2 dx. (24)

The properties of w are now used to establish certain bounds for φ. Following John (1950), we

note that for (x, 0) ∈ F± equation (20) gives∫ 0

−h
φ(x, y) cosh k(y + h) dy = 0 (25)

and hence

φ(x, 0) sinh kh =
∫ 0

−h
φy(x, y) sinh k(y + h) dy (26)

so that

|φ(x, 0) sinh kh|2 ≤
(∫ 0

−h
|φy(x, y)|2 dy

)(∫ 0

−h
sinh2 k(y + h) dy

)
(27)

and, after evaluation of the last integral, this becomes

K|φ(x, 0)|2 ≤ 1
2

∫ 0

−h
|φy(x, y)|2 dy. (28)

Integration over the intervals |x| > b gives

K

∫
F+∪F−

|φ(x, 0)|2 dx ≤ 1
2

∫
W+∪W−

|φy(x, y)|2 dxdy (29)
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where W± = {|x| > b;−h < y < 0} are the fluid regions below F±.

Attention is now turned to obtaining a similar bound for the fluid region bounded above by F0.

Integration by parts in the definition (15) of w gives

φ(x, 0) sinh kh = kw(x) +
∫ 0

−h
φy(x, y) sinh k(y + h) dy for (x, 0) ∈ F0. (30)

Now for λ > 0

(p+ q)2 = p2 + q2 + 2(λ1/2p)(λ−1/2q) ≤ (1 + λ)p2 + (1 + λ−1)q2, (31)

where the last inequality follows from the obvious relation (λ1/2p− λ−1/2q)2 ≥ 0. Thus

|φ(x, 0) sinh kh|2 ≤ (1 + λ)k2|w(x)|2 + (1 + λ−1)
sinh2 kh−Kh

2K

∫ 0

−h
|φy(x, y)|2 dy, (32)

where λ is to be chosen later for convenience. From (15)

|w(x)|2 ≤ sinh2 kh+Kh

2K

∫ 0

−h
|φ(x, y)|2 dy (33)

and

|wx(x)|2 ≤ sinh2 kh+Kh

2K

∫ 0

−h
|φx(x, y)|2 dy. (34)

Integration of (32) along F0 gives

K

∫
F0

|φ|2 dx ≤ (1 + λ)
`2 + α2

sinh2 kh
K

∫
F0

|w|2 dx+ (1 + λ−1)
sinh2 kh−Kh

2 sinh2 kh

∫
W0

|φy|2 dxdy (35)

and integration of (33) along F0 gives∫
F0

|w|2 dx ≤ sinh2 kh+Kh

2K

∫
W0

|φ|2 dxdy, (36)

where W0 = {|x| < b;−h < y < 0} is the portion of the fluid domain lying directly beneath F0.

Combination of the last two inequalities with (24) and then with (34) gives

K

∫
F0

|φ|2 dx ≤ (1 + λ)
sinh2 kh+Kh

2 sinh2 kh
`2
∫
W0

|φ|2 dxdy

+ (1 + λ)
K

sinh2 kd

∫
F0

|wx|2 dx+ (1 + λ−1)
sinh2 kh−Kh

2 sinh2 kh

∫
W0

|φy|2 dxdy

≤ (1 + λ)
sinh2 kh+Kh

2 sinh2 kh

∫
W0

(
`2|φ|2 + |φx|2

)
dxdy

+ (1 + λ−1)
sinh2 kh−Kh

2 sinh2 kh

∫
W0

|φy|2 dxdy. (37)
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The choice

λ =
sinh2 kh−Kh
sinh2 kh+Kh

, (38)

which is positive in view of (7), simplifies the last inequality to

K

∫
F0

|φ|2 dx ≤
∫
W0

(
`2|φ|2 + |∇φ|2

)
dxdy. (39)

Finally, combination of (39) with the corresponding inequality (29) for the exterior domains

yields

K

∫
F
|φ|2 dx ≤ 1

2

∫
W+∪W−

|φy|2 dxdy +
∫
W0

(
`2|φ|2 + |∇φ|2

)
dxdy. (40)

Comparison of this with the energy identity

K

∫
F
|φ|2 dx =

∫
W

(
`2|φ|2 + |∇φ|2

)
dxdy, (41)

which is a consequence of Green’s formula, leads to the inequality∫
W+∪W−

(
1
2 |∇φ|

2 + `2|φ|2
)

dxdy ≤ 0. (42)

It immediately follows that φ ≡ 0 in W+∪W− and as φ is analytic it therefore vanishes throughout

W .

Thus, the following uniqueness theorem has been proven.

For the geometry shown in figure 1 the two-barrier problem defined by equations (1)–(3), (8)–(9),

and (14) has only the trivial solution for K > ` tanh `h.

The above result holds for more geometries than that in figure 1. The proof does not depend in

any way on the positions of the barriers on the lines x = ±b. Thus the water-wave problem under

consideration has only the trivial solution for any configuration of barriers lying on the lines x = ±b.
The only requirement is that at least one of the lines has one or more gaps as the continuation

argument following equation (42) breaks down without a gap in at least one of the lines.

4 A uniqueness theorem for three barriers

Consider now the three-barrier configuration sketched in figure 2. Three rigid vertical barri-

ers are immersed in a fluid of depth h so that their wetted surfaces occupy the lines S± =

{x = b±; −a± < y < 0} and S0 = {x = 0; −a0 < y < 0}, with a±, a0 > 0. The free surface of
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Figure 2: Definition sketch for three-barrier configuration.

the fluid is F = {x 6= 0, b±; y = 0} = F− ∪ F−0 ∪ F+0 ∪ F+, where the portions of the free surface

that extend to infinity are F± = {±x > ±b±; y = 0} and the portions between the barriers are

F±0 = {0 < ±x < ±b±; y = 0}. The fluid domain is W = L\{S− ∪ S0 ∪ S+}. The boundary

conditions on the rigid barriers are

φx(b+ ± 0, y) = 0 on S+,

φx(±0, y) = 0 on S0,

φx(b− ± 0, y) = 0 on S−.

(43)

With w(x) defined as in equation (15), the preliminary calculations for the two-barrier config-

uration apply equally well here. Thus

wxx + α2w = 0 on F± and F±0 (44)

and it then follows from the radiation condition (8) that w vanishes identically on F±. As before,

wx is continuous across x = 0, b± so that

wx(b− + 0) = wx(b+ − 0) = 0 (45)

and

wx(−0) = wx(+0). (46)

The solution of (44) satisfying (45) has the form

w(x) = C± cosα(b± − x) on F±0 (47)
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where by (46) C− sinαb− = C+ sinαb+. Three cases must be investigated. These are:

(i) only one of sinαb− and sinαb+ vanishes,

(ii) sinαb− = sinαb+ = 0,

(iii) neither sinαb− nor sinαb+ vanishes.

Case (i): Suppose that sinαb+ = 0 and sinαb− 6= 0 then C− = 0 and αb+ = mπ for m =

1, 2, . . . , so that

w(x) = 0 on F−0 (48)

and

w(x) = C+(−1)m cosαx on F+0. (49)

The situation has been reduced to one that is essentially identical to that considered for two

barriers in section 3. Thus the three barrier problem has only the trivial solution when αb+ = mπ

for m = 1, 2, . . . , and sinαb− 6= 0; the same is true when the plus and minus signs are interchanged

in these last expressions.

Case (ii): Now αb+ = mπ and αb− = −nπ for m,n = 1, 2, . . . , so that

w(x) = C−(−1)n cosαx on F−0 (50)

and

w(x) = C+(−1)m cosαx on F+0 (51)

and hence (24) is true with F0 replaced by F±0. Again, the considerations of section 3 apply and

there is only the trivial solution.

Case (iii): Repetition of the considerations for two barriers leads to

K

∫
F±0

|φ|2 dx ≤ (1 + λ)
`2 + α2

sinh2 kh
K

∫
F±0

|w|2 dx+ (1 + λ−1)
sinh2 kh−Kh

2 sinh2 kh

∫
W±0

|φy|2 dxdy. (52)

However, (24) is not true in general and thus an inequality similar to (39) cannot be derived without

the two additional assumptions ∫
F±0

|w|2 dx ≤ α−2

∫
F±0

|wx|2 dx (53)

which are equivalent to ∫ b±

0

[
cos2 α(b± − x)− sin2 α(b± − x)

]
dx ≤ 0. (54)
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These reduce to the pair of inequalities

± sin 2αb± ≤ 0 (55)

which, in particular, contain the case (ii) discussed above. Since these two inequalities guarantee

that (39) holds, the proof can be completed in the same way as for two barriers. Thus the following

theorem has been obtained.

If the two inequalities (55) hold simultaneously, or when either sinαb− or sinαb+ vanishes, then

the three-barrier problem defined by equations (1)–(3), (8)–(9), and (43) has only the trivial solution

for all K > ` tanh `h.

The theorem can be illustrated with the following two simple examples. First of all if −2b− =

b+ = b then by (55) the inequalities

sin 2αb ≤ 0 and sinαb ≤ 0 (56)

must hold simultaneously and the uniqueness theorem holds when

2πm− π

2
≤ αb ≤ 2πm, m = 1, 2, . . . . (57)

For −b− = b+ = b, the inequalities (55) reduce to

sin 2αb ≤ 0 (58)

which gives the intervals

πm− π

2
≤ αb ≤ πm, m = 1, 2, . . . (59)

and so there are additional intervals of uniqueness when compared with (57).

If the geometry is symmetric about the y axis so that −b− = b+ = b > 0 and a± = a > 0 then it

is possible to treat separately the cases of symmetric and antisymmetric solutions of (1)–(3), (8)–

(9), and (43). The symmetric solution φ(+) is defined by φ(+)(−x, y) = φ(+)(x, y) so φ(+)
x (0, y) = 0

for y ∈ (−h, 0). Hence the fully symmetric case is just a special case of the two-barrier problem

in which one barrier, corresponding to the line of symmetry for the three-barrier problem, extends

throughout the depth. Thus the following result is established immediately.

For a symmetric arrangement of three-barriers, the homogeneous problem defined by (1)–(3),

(8)–(9), and (43) has no symmetric solution other than the trivial solution for K > ` tanh `h.
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An antisymmetric solution φ(−) is defined by

φ(−)(−x, y) = −φ(−)(x, y) (60)

which implies that

w(−)(x) =
∫ 0

−h
φ(−)(x, y) cosh k(y + h) dy (61)

is an odd function on F . In the same way as above, the solution

w(−)(x) = ±C cosα(b∓ x) on F±0 (62)

is obtained. Since φ(−)(0, y) = 0 for −h < y < −a0 then, for a non-trivial solution φ(−), (62) yields

cosαb =
∫ 0

−a0

φ(−)(+0, y) cosh k(y + h) dy (63)

(C may be chosen as unity without loss of generality).

No further consequences about uniqueness of φ(−) follow from (62). Thus the following is true.

For a symmetric arrangement of three-barriers, when (59) holds the homogeneous problem defined

by (1)–(3), (8)–(9), and (43) has no antisymmetric solution other than the trivial solution for

K > ` tanh `h.

For the two-dimensional problem (` = 0) further progress on antisymmetric solutions of the

symmetric three-barrier problem can be made using a stream function. Let ψ(−)(x, y) be a conjugate

harmonic function to the antisymmetric velocity potential φ(−)(x, y). By (43) and the Cauchy-

Riemann equations

ψ(−)(0, y) = 0 on S0 and ψ(−)(b, y) = C on S+, (64)

where C is a real constant and, without loss of generality, the stream function is chosen as zero on

S0. Differentiation of the definition (60) of φ(−) with respect to x gives

φ(−)
x (−x, y) = φ(−)

x (x, y); (65)

that is the x derivative of φ(−) is an even function in x. It follows that

ψ(−)
y (−x, y) = ψ(−)

y (x, y) (66)
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and hence

ψ(−)(−x, y) = ψ(−)(x, y) + F (x). (67)

As ψ(−)(x, y) is harmonic, F ′′(x) = 0 and so, from (64), F (x) = Ax where A is a real constant.

Differentiation of (67) with respect to x then yields

ψ(−)
x (0, y) = −1

2A. (68)

Thus, the function

Ψ(−)(x, y) = ψ(−)(x, y) + 1
2Ax. (69)

is harmonic in W and by (64) and (68) satisfies homogeneous Cauchy data on S0. Hence Ψ(−)

vanishes identically in W and the stream function

ψ(−)(x, y) = −1
2Ax in W. (70)

This is impossible unless A = 0 because by the Cauchy-Riemann equations and (10)∫
W
|∇ψ(−)|2 dxdy =

∫
W
|∇φ(−)|2 dxdy <∞. (71)

As ψ(−)(x, y) vanishes identically in W , φ(−)(x, y) is a constant in W and from (10) this constant

is zero. This, together with the above result on symmetric solutions, yields the following.

In the two-dimensional problem (` = 0) and for a symmetric arrangement of three-barriers, the

homogeneous problem defined by (1)–(3), (8)–(9), and (43) has only the trivial solution for K > 0.

As for the case of two barriers, the uniqueness results obtained above are true not only when

the barriers are surface piercing, but also when they are placed arbitrarily (symmetrically about

x = 0 for φ(±)) on vertical lines. There must be gaps on at least two of these lines and one of these

lines must be x = 0.

Until the present work, the only uniqueness theorem for three surface-piercing two-dimensional

structures was that obtained by Kuznetsov & Simon (1995b). For ` = 0 they proved uniqueness

for frequencies below a certain bound depending on the geometry.
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Figure 3: Definition sketch for symmetric four-barrier configuration (x ≥ 0 only).

5 A uniqueness theorem for four barriers

Consider the four-barrier configuration illustrated in figure 3; the geometry is assumed to be sym-

metric about x = 0 so that only x ≥ 0 need be considered. In x ≥ 0, two rigid barriers occupy the

lines Si = {x = bi; −ai < y < 0}, i = 1, 2, and the free surface of the fluid is F = F0 ∪ Fm ∪ F+

where F0 = {0 ≤ x < b1; y = 0}, Fm = {b1 < x < b2; y = 0}, and F+ = {x > b2; y = 0}. The

part of the fluid domain W> lying in x > 0 is L>\
{
S1 ∪ S2

}
and the boundary conditions on the

rigid barriers are

φx(bi ± 0, y) = 0 on Si, i = 1, 2. (72)

Symmetric and antisymmetric solutions, φ(+) and φ(−) respectively, may be considered simul-

taneously. (The symmetric solutions are just a special case of the three-barrier problem, but for

completeness both symmetric and antisymmetric solutions are included in the working below.)

Each formula containing ‘±’ must be considered as two formulae for the two different problems. In

a similar way to the two-barrier problem,

w(±)(x) =
∫ 0

−h
φ(±)(x, y) cosh k(y + h) dy (73)

satisfies

w(±)
xx + α2w(±) = 0 on F0, Fm and F+. (74)

Again w
(±)
x is continuous across the barriers and it is readily found that

w(±) ≡ 0 on F+ (75)
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and

w(±)(x) = C± cosα(b2 − x) on Fm. (76)

Since

φ(±)(−x, y) = ±φ(±)(x, y) (77)

then

w(±) = D± cos
(
αx− π

4
± π

4

)
on F0. (78)

Continuity of wx on x = b1 then yields

−D± sin
(
αb1 −

π

4
± π

4

)
= C± sinαs, (79)

where s = b2 − b1 is the spacing within a barrier pair.

There are four cases to consider:

(i) sin
(
αb1 − π

4 ± π
4

)
= 0 and sinαs 6= 0,

(ii) sin
(
αb1 − π

4 ± π
4

)
6= 0 and sinαs = 0,

(iii) sin
(
αb1 − π

4 ± π
4

)
= sinαs = 0,

(iv) sin
(
αb1 − π

4 ± π
4

)
6= 0 and sinαs 6= 0

(80)

Case (i): To be specific it is assumed that cosαb1 = 0 which corresponds to an antisymmetric

solution. Equation (79) gives C− = 0 and hence w(−) ≡ 0 on Fm and F+. The result obtained for

two barriers now applies and it is concluded that the antisymmetric problem has only the trivial

solution. The symmetric solution can be treated similarly.

Case (ii): Equation (79) implies that D± = 0 and an estimate analogous to (29) can be derived

for F0. Moreover, (24) holds with w and F0 replaced by w(±) and Fm respectively and the proof is

concluded in the same way as for two barriers.

Case (iii): These conditions ensure that equalities of the form (24) hold on both Fm and F0 and

hence the proof is completed in the same way as for the two-barrier case.

Case (iv): This is treated in the same way as case (iii) for three barriers. Thus, in order to

complete the proof, it is assumed that∫ b2

b1

[
cos2 α(b2 − x)− sin2 α(b2 − x)

]
dx ≤ 0 (81)
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and ∫ b1

0

[
cos2

(
αx− π

4
± π

4

)
− sin2

(
αx− π

4
± π

4

)]
dx ≤ 0 (82)

which are equivalent to

sin 2αs ≤ 0 and ± sin 2αb1 ≤ 0. (83)

The combination of the above four cases results in the following theorem.

If the inequalities (83) hold simultaneously, or if either of (80) cases (i)–(ii) hold, then the

solution φ(±) of the homogeneous four-barrier problem defined by equations (1)–(3), (8)–(9), and

(72) is trivial for K > ` tanh `h.

As for the cases of two and three barriers, the uniqueness results obtained above are true not

only when the barriers are surface piercing, but also when they are placed arbitrarily on vertical

lines and as long as each barrier has at least one gap.

6 Trapped modes for four barriers

Here numerical evidence is provided for the existence of trapped modes in the presence of four

vertical barriers. The barriers are configured as two symmetrically arranged pairs.

6.1 Finite depth

The fluid domain (see figure 3) is divided into three regions; these are 0 < x < b1, b1 < x < b2 and

x > b2. In each region the potential is expressed in terms of vertical eigenfunctions that satisfy the

free-surface condition (2) and the bed condition (3) and are defined by

ψn(y) = N−1/2
n cos kn(y + h), n = 0, 1, 2, . . . , (84)

where

Nn =
1
2

(
1 +

sin 2knh
2knh

)
. (85)

The numbers kn, n = 1, 2, 3, . . . , are the positive roots of

K + kn tanh knh = 0 (86)
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and k0 = −ik, where k is the positive root of (7). In the following the orthogonality relation

1
h

∫ 0

−h
ψm(y)ψn(y) dy = δmn, (87)

where δmn is the Kronecker delta, will be used extensively.

Expansions appropriate to the three fluid regions are

φ(x, y) =
∞∑
n=0

An coshαnx ψn(y), 0 < x < b1, (88)

φ(x, y) =
∞∑
n=0

(
Bne−αnx + Cneαnx

)
ψn(y), b1 < x < b2, (89)

and

φ(x, y) = D0E(αx)ψ0(y) +
∞∑
n=1

Dne−αn(x−b2)ψn(y), x > b2, (90)

where αn =
√
k2
n + `2 and α0 = −iα = −i

√
k2 − `2. Trapped mode solutions have only evanescent

terms in x > b2. However, the additional term involving

E(αx) = cosαx+ β sinαx (91)

has been included in this region to explore the possibility that other (that is not trapped mode)

solutions may be generated by the solution procedure. This term will eventually be set to zero.

6.1.1 Velocity formulation

From (88) and (89), the velocity

φx(b1, y) ≡ U (1)(y) =
∞∑
n=0

U (1)
n ψn(y) (92)

may be written

U (1)(y) =
∞∑
n=0

αnAn sinhαnb1 ψn(y) =
∞∑
n=0

αn

(
−Bne−αnb1 + Cneαnb1

)
ψn(y) (93)

and so

U (1)
n ≡ 1

h

∫
G1

U (1)(y)ψn(y) dy = αnAn sinhαnb1 = αn

(
−Bne−αnb1 + Cneαnb1

)
, (94)
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where the orthogonality condition (87) has been used and Gi = {x = bi; −h < y < ai} is the gap

beneath barrier i. Similarly, from (89) and (90), the velocity

φx(b2, y) ≡ U (2)(y) =
∞∑
n=0

U (2)
n ψn(y) (95)

may be written

U (2)(y) =
∞∑
n=0

αn

(
−Bne−αnb2 + Cneαnb2

)
ψn(y) = αD0E

′(αb2)ψ0(y)−
∞∑
n=1

αnDnψn(y) (96)

and so

U (2)
n ≡ 1

h

∫
G2

U (2)(y)ψn(y) dy = αn

(
−Bne−αnb2 + Cneαnb2

)
ψn(y) =

 αD0E
′(αb2), n = 0

−αnDn, n 6= 0.

(97)

Equations (94) and (97) give, in particular,

Bn = − eαnb2

2αn sinhαns

(
U (1)
n − U (2)

n e−αns
)

and Cn = − e−αnb2

2αn sinhαns

(
U (1)
n − U (2)

n eαns
)
. (98)

From equations (88)–(90), continuity of the potential (and hence pressure) in the gaps beneath

the barriers yields

∞∑
n=0

An coshαnb1 ψn(y) =
∞∑
n=0

(
Bne−αnb1 + Cneαnb1

)
ψn(y), y ∈ G1, (99)

and

∞∑
n=0

(
Bne−αnb2 + Cneαnb2

)
ψn(y) = D0E(αb2)ψ0(y) +

∞∑
n=1

Dnψn(y), y ∈ G2. (100)

Equations (94), (97) and (98) may be used to express all of the coefficients in the last two equations

in terms of U (1)(·) and U (2)(·) and this results in the coupled integral equations

2∑
j=1

∫
Gj

U (j)(η)K(ij)(y, η) dη = 0, y ∈ Gi (i = 1, 2), (101)

where

K(11)(y, η) =
∞∑
n=0

sinhαnb2 ψn(y)ψn(η)
αnh sinhαnb1 sinhαns

, (102)

K(12)(y, η) = K(21)(y, η) = −
∞∑
n=0

ψn(y)ψn(η)
αnh sinhαns

, (103)

20



and

K(22)(y, η) = −
(

cotαs+
E(αb2)
E′(αb2)

)
ψ0(y)ψ0(η)

αh
+
∞∑
n=1

1 + cothαnb2
αnh

ψn(y)ψn(η). (104)

If the scaled velocities

u(i)(y) = U (i)(y) sinαs, i = 1, 2, (105)

are introduced and the propagating-wave terms isolated, then the integral equations (101) may be

rewritten as

2∑
j=1

∫
Gj

u(j)(η)K(1j)
1 (y, η) dη =

U
(1)
0 sinαb2
α sinαb1

ψ0(y)− U
(2)
0

α
ψ0(y), y ∈ G1(y), (106)

and

2∑
j=1

∫
Gj

u(j)(η)K(2j)
1 (y, η) dη = −U

(1)
0

α
ψ0(y)

+
U

(2)
0

α

(
cosαs+

E(αb2)
E′(αb2)

sinαs
)
ψ0(y), y ∈ G2(y), (107)

where

K
(11)
1 (y, η) =

∞∑
n=1

sinhαnb2 ψn(y)ψn(η)
αnh sinhαnb1 sinhαns

, (108)

K
(12)
1 (y, η) = K

(21)
1 (y, η) = −

∞∑
n=1

ψn(y)ψn(η)
αnh sinhαns

, (109)

and

K
(22)
1 (y, η) =

∞∑
n=1

1 + cothαnb2
αnh

ψn(y)ψn(η). (110)

From (97), the terms in U
(2)
0 are zero if either D0 = 0 (that is, there is a trapped mode solution)

or if

E′(αb2) = 0 and E′(αb2) cosαs+ E(αb2) sinαs = 0, (111)

that is if E′(αb2) = E(αb2) sinαs = 0. From (91) it is easily seen that E′(αb2) = E(αb2) = 0

(which is equivalent to a non-trivial solution for φ with zero pressure and velocity on a line) is

impossible for non-zero E. However, the case E′(αb2) = sinαs = 0 is possible when E is not
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identically zero. Thus, when looking for trapped mode solutions, it is permissible to set to zero the

terms in (106)–(107) involving U (2)
0 , as long as solutions satisfying sinαs = 0 are rejected.

As the problem is homogeneous, it is permissible to specify one of the coefficients in (88)–(89).

With A0 = 1, the integral equations now reduce to

2∑
j=1

∫
Gj

u(j)(η)K(1j)
1 (y, η) dη = − sinαb2 ψ0(y), y ∈ G1(y), (112)

and

2∑
j=1

∫
Gj

u(j)(η)K(2j)
1 (y, η) dη = sinαb1 ψ0(y), y ∈ G2(y). (113)

These can be solved for the velocities u(1)(y) and u(2)(y) and trapped mode solutions require the

velocities to satisfy the consistency conditions∫
G1

u(1)(η)ψ0(η) dη = −αh sinαb1 sinαs (114)

and ∫
G2

u(2)(η)ψ0(η) dη = 0 (115)

arising from the specification of A0 and D0.

Approximate solutions to (112)–(113) are sought in the form

u(i)(y) =
Ni∑
n=0

a(i)
n u

(i)
n (y) (116)

where each u(i)
n (y) is chosen to have the correct asymptotic behaviour at the barrier tip (see Porter

& Evans 1995, section 2.1 for details of the functions used). After substitution of this series

approximation, multiplication by each of {u(i)
m (y); m = 0, 1, . . . , Ni} and integration over Gi as

appropriate, equations (112)–(113) reduce to

2∑
j=1

Nj∑
n=0

a(j)
n K(1j)

mn = − sinαb2 F
(1)
m0 , m = 0, 1, . . . , N1, (117)

and

2∑
j=1

Nj∑
n=0

a(j)
n K(2j)

mn = sinαb1 F
(1)
m0 , m = 0, 1, . . . , N2, (118)

22



where

K(11)
mn =

∞∑
r=1

sinhαrb2 F
(1)
mrF

(1)
nr

αrh sinhαrs sinhαrb1
, (119)

K(12)
mn = K(21)

nm = −
∞∑
r=1

F
(1)
mrF

(2)
nr

αrh sinhαrs
, (120)

K(22)
mn =

∞∑
r=1

eαrsF (2)
mrF

(2)
nr

αrh sinhαrs
(121)

and

F (i)
mr =

∫
Gi

u(i)
m (y)ψr(y) dy = N−1/2

n J2m(kn(h− ai)), i = 1, 2. (122)

The consistency conditions (114)–(115) reduce to

N1∑
n=0

a(1)
n F

(1)
n0 = −αh sinαb1 sinαs (123)

and

N2∑
n=0

a(2)
n F

(2)
n0 = 0 (124)

respectively. Trapped mode solutions correspond to a combination of frequency and geometrical

parameters such that (123)–(124) are satisfied with sinαs 6= 0, where {a(i)
n , n = 1, 2, . . . , Ni; i =

1, 2} are the solutions of (117)–(118).

The formulation for antisymmetric solutions is similar to the above with sinhαrbi replaced by

coshαrbi and sinαbi replaced by − cosαbi in the final expressions.

6.1.2 Pressure-difference formulation

An alternative formulation may be given in terms of the pressure differences across x = bi, i = 1, 2.

For symmetric φ and y ∈ (−h, 0) define

P (1)(y) = φ(b1 − 0, y)− φ(b1 + 0, y)

=
∞∑
n=0

An coshαnb1 ψn(y)−
∞∑
n=0

(
Bne−αnb1 + Cneαnb1

)
ψn(y) (125)
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and

P (2)(y) = φ(b2 − 0, y)− φ(b2 + 0, y)

=
∞∑
n=0

(
Bne−αnb2 + Cneαnb2

)
ψn(y)−D0E(αb2)ψ0(y)−

∞∑
n=1

Dnψn(y). (126)

Multiplication of each of the above by ψn(y) and integration over the depth gives

P (1)
n ≡ 1

h

∫
S1

P (1)(y)ψn(y) = An coshαnb1 −
(
Bne−αnb1 + Cneαnb1

)
(127)

and

P (2)
n ≡ 1

h

∫
S2

P (2)(y)ψn(y) =

 B0eiαb2 + C0e−iαb2 −D0E(αb2), n = 0,

Bne−αnb2 + Cneαnb2 −Dn, n 6= 0.
(128)

These last two equations, together with equations (94), (97) and (98), allow all of the coefficients

in the eigenfunction expansions to be expressed in terms of P (1)
n and P

(2)
n . In particular,

U (1)
n = αn sinhαnb1e−αnb1

(
P (1)
n + e−αnsP (2)

n

)
(129)

and

U (2)
n =


(
P

(1)
0 sinαb1 + P

(2)
0 sinαb2

)
/(sinαb2 V (α)), n = 0,

αne−αnb2
(
P

(1)
n sinhαnb1 + P

(2)
n sinhαnb2

)
, n 6= 0,

(130)

where

V (α) =
1

α sinαs

(
sinαb1
sinαb2

− cosαs− E(αb2)
E′(αb2)

sinαs
)
. (131)

Now

U (i)(y) =
∞∑
n=0

U (i)
n ψn(y) = 0, y ∈ Si, (132)

and thus from (129)–(130)[
P

(1)
0

(
cosαs+

E(αb2)
E′(αb2)

sinαs

)
+ P

(2)
0

]
sinαb1 ψ0(y)
sinαb2 V (α)

+
∞∑
n=1

αn sinhαb1e−αnb1
(
P (1)
n + e−αnsP (2)

n

)
ψn(y) = 0, y ∈ S1, (133)
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and (
P

(1)
0

sinαb1
sinαb2

+ P
(2)
0

)
ψ0(y)
V (α)

+
∞∑
n=1

αne−αnb2
(

sinhαnb1P (1)
n + P (2)

n sinhαnb2
)
ψn(y) = 0, y ∈ S2. (134)

To obtain a trapped mode solution it is required that D0 = 0. From (97) and (130),

P
(2)
0 = −sinαb1

sinαb2
P

(1)
0 (135)

implies D0 = 0 unless

αE′(αb2)V (α) = −
(
E′(αb2) cotαb2 + E(αb2)

)
= 0. (136)

From (91), (136) is satisfied by taking β = 0; that is it appears that the choice (135) need not

necessarily correspond to a trapped mode. However, we also have the consistency conditions

1
h

∫
S1

P (1)(y)ψ0(y) dt = −U
(1)
0

α
(cotαs+ cotαb1) +

U
(2)
0

α sinαs
(137)

and

1
h

∫
S2

P (2)(y)ψ0(y) dt =
U

(1)
0

α sinαs
− U

(2)
0

α

(
cotαs+

E(αb2)
E′(αb2)

)
. (138)

The terms in U
(2)
0 are zero if either D0 = 0 or

E′(αb2) = 0 and E′(αb2) cotαs+ E(αb2) = 0, (139)

which are the same conditions that arise in the velocity formulation. Hence, solutions obtained

from using (135) correspond to trapped modes unless sinαs = 0.

With (135), so that U (2)
0 = 0, and the choice U (1)

0 = −α sinαb1 made previously, the above may

be simplified to
∞∑
n=1

αnh sinhαb1e−αnb1
(∫

S1

p(1)(t)ψn(t) dt+ e−αns
∫
S2

p(2)(t)ψn(t) dt
)
ψn(y) = ψ0(y), y ∈ S1,

(140)

and
∞∑
n=1

αnhe−αnb2
(

sinhαnb1
∫
S1

p(1)(t)ψn(t) dt+ sinhαnb2
∫
S2

p(2)(t)ψn(t) dt
)
ψn(y) = 0, y ∈ S2

(141)
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with the consistency conditions∫
S1

p(1)(t)ψ0(t) dt =
sinαa2

αh sinαa1 sinαs
(142)

and ∫
S2

p(2)(t)ψ0(t) dt = − 1
αh sinαs

; (143)

here the substitution

P (i)(y) = αh2 sinαa1 p
(i)(y), i = 1, 2, (144)

has been made. The integrations and summations in (140)–(141) cannot be reversed as the resulting

infinite series are divergent.

Solutions to (140)–(141) are sought in the form

p(i)(y) =
Ni∑
n=0

b(i)n p
(i)
n (y) (145)

where each p(i)
n (y) has the correct asymptotic behaviour at the barrier tip (see Porter & Evans 1995,

section 2.1 for details of the functions used). After substitution of this series approximation, mul-

tiplication by each of {p(i)
m (y); m = 0, 1, . . . , Ni} and integration over Si as appropriate, equations

(140)–(141) reduce to

2∑
j=1

Nj∑
n=0

b(j)n M (1j)
mn = G

(1)
m0, m = 0, 1, . . . , N1 (146)

and

2∑
j=1

Nj∑
n=0

b(j)n M (2j)
mn = 0, m = 0, 1, . . . , N2, (147)

where

M (11)
mn =

∞∑
r=1

αrh sinhαrb1 e−αrb1G(1)
mrG

(1)
nr , (148)

M (12)
mn = M (21)

nm =
∞∑
r=1

αrh sinhαrb1 e−αrb2G(1)
mrG

(2)
nr , (149)

M (22)
mn =

∞∑
r=1

αrh sinhαrb2 e−αrb2G(2)
mrG

(2)
nr , (150)
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and

G(i)
mr =

∫
Si

p(i)
m (y)ψr(y) dy = N−1/2

n

cos knh
knh

J2m+1(knai), i = 1, 2. (151)

The consistency conditions (142)–(143) reduce to

N1∑
n=0

b(1)
n G

(1)
n0 =

sinαb2
αh sinαb1 sinαs

(152)

and

N2∑
n=0

b(2)
n G

(2)
n0 = − 1

αh sinαs
(153)

respectively. Trapped mode solutions correspond to a combination of frequency and geometrical

parameters such that (152)–(153) are satisfied with sinαs 6= 0, where {b(i)n , n = 1, 2, . . . , Ni; i =

1, 2} are the solutions of (146)–(147).

The formulation for antisymmetric solutions is similar to the above with sinhαrbi replaced by

coshαrbi and sinαbi replaced by − cosαbi in the final expressions.

6.2 Infinite depth

An alternative approach to the interaction of water waves with thin plates is to introduce an

appropriate Green’s function and formulate the problem as an integral equation, which due to the

nature of the geometry, turns out to be hypersingular, involving a Hadamard finite-part integral.

This method has been pioneered in a series of papers by Parsons & Martin (1992, 1994, 1995)

and has been used recently by Linton & Kuznetsov (1997) to investigate the existence of trapped

modes in the presence of a pair of symmetrically placed inclined barriers. The Green’s function has

a much simpler form in infinite depth and we will restrict attention to the deep-water case in this

section. Furthermore the Green’s function takes on a different form depending on whether ` is zero

or not. Here we will consider the case ` = 0, but the necessary formulae for the Green’s function

when ` > 0 can be found in Parsons & Martin (1995).

The formulation of the problem for the symmetric four-barrier problem illustrated in figure 3

is very similar to that given in Linton & Kuznetsov (1997). We obtain a hypersingular integral

equation for the unknown discontinuity in the potential across the plates, [φ]. The result is∫
S
× [φ(q)]

∂2G(p, q)
∂np∂nq

dsq = 0, p ∈ S, (154)
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where p and q are points on S = S1∪S2, the integral is a Hadamard finite-part integral and G(P,Q)

is the Green’s function which is chosen to satisfy

∇2G = 0 in the fluid, P 6= Q (155)

G ∼ ln |P −Q| as P → Q, (156)

KG− ∂G

∂y
= 0 on y = 0, (157)

∂G

∂x
= 0 on x = 0, (158)

∂G

∂x
− iKG = o(1) as x→∞. (159)

With this G, equation (154) will have a non-trivial solution for a given value of K if and only if a

trapped mode exists at that frequency.

With P = (x, y) and Q = (ξ, η) we obtain for the solution to (155)–(159),

G =
1
2

[
ln
X2 + Y 2

X2 + Ỹ 2
+ ln

X̃2 + Y 2

X̃2 + Ỹ 2

]
− 2[φ0(X, Ỹ ) + φ0(X̃, Ỹ )]. (160)

Here X = x− ξ, X̃ = x+ ξ, Y = y − η, Ỹ = y + η, and

φ0(X,Y ) =
∫ ∞

0

ekY cos kX
k −K dk, (161)

where the integration contour is indented so as to pass below the pole at k = K. The function

φ0 is easily evaluated using an expansion derived by Yu & Ursell (1961). For vertical barriers

np = nq = (−1, 0), and it can be shown that

∂2G

∂np∂nq
=− 1

X2 + Y 2
+

1− 2KỸ
X̃2 + Ỹ 2

+
X2 − Ỹ 2

(X2 + Ỹ 2)2
− X̃2 − Y 2

(X̃2 + Y 2)2
+

2KỸ
X2 + Ỹ 2

+
2X2

(X2 + Y 2)2
− 2X̃2

(X̃2 + Ỹ 2)2
+ 2K2

[
φ0(X̃, Ỹ )− φ0(X, Ỹ )

]
. (162)

A suitable parametrization for q ≡ (ξ, η) ∈ Si, i = 1, 2 is given by

ξ = bi, η(ti) = −aiti, 0 ≤ ti ≤ 1, (163)

and p ≡ (x, y) ∈ Si is parametrized in the same way but with ti replaced by si. We introduce the

functions fi(t) ≡ [φ(q(t))] on Si and approximate them as

fi(t) ≈ (1− t2i )1/2
Ni∑
n=1

a(i)
n Un−1(ti) (164)
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where Un(·) is a Chebyshev polynomial of the second kind and a
(i)
n , n = 1, . . . , Ni are unknown

constants. This form for fi(t) ensures the correct behaviour at the ends of the plate (see Martin

1991).

Substituting (164), together with the given parameterization of p and q, into (154) leads to

2∑
j=1

Nj∑
n=1

a(j)
n

∫
Sj

gn(tj)H(si, tj) dtj = 0, 0 ≤ si ≤ 1, i = 1, 2, (165)

where gn(t) = (1−t2)1/2Un−1(t) = sin(n cos−1 t) andH(s, t) is the parametrized form of ∂2G/∂np∂nq.

Equation (165) is converted into a finite system of equations by collocating at the points

s(i)
m =

1
2

{
1 + cos

[
(2m− 1)π

2Ni

]}
, m = 1, . . . , Ni. (166)

We thus obtain the (N1 +N2)× (N1 +N2) linear system for the unknowns a(1)
n and a

(2)
n :

2∑
j=1

Nj∑
n=1

Aijmna
j
n = 0, m = 1, . . . , Ni, i = 1, 2, (167)

where

Aijmn =
∫
Sj

gn(tj)H(s(i)
m , tj) dtj . (168)

When i 6= j the evaluation of Aijmn is straightforward, if lengthy. But when i = j special care

must be taken due to the hypersingular nature of the integral. In this latter case we have X = 0,

X̃ = 2bi, Y = −ai(ti − s(i)
m ), Ỹ = −ai(ti + s

(i)
m ) and so, from (162),

H(s(i)
m , ti) = − 1

a2
i (ti − s

(i)
m )2

+
1 + 2Kai(ti + s

(i)
m )

4b2i + a2
i (ti + s

(i)
m )2

− 1

a2
i (ti + s

(i)
m )2

− 4b2i − a2
i (ti − s

(i)
m )2

[4b2i + a2
i (ti − s

(i)
m )2]2

− 2K

ai(ti + s
(i)
m )
− 8b2i

[4b2i + a2
i (ti + s

(i)
m )2]2

+ 2K2
[
φ0(2bi, ai(ti + s(i)

m ))− φ0(0, ai(ti + s(i)
m ))

]
. (169)

The only troublesome term is the first one, which leads to a contribution

−
∫ 1

0
× gn(t)

a2
i (t− s

(i)
m )2

dt.

This integral can be computed simply using recurrence relations listed in Parsons & Martin (1994).

Our objective is to find values of K for which, in the limit as N1, N2 →∞, non-trivial solutions

to the system of equations (167) exist. In other words we must find values of K at which the
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determinant of the matrix whose (m,n)-th element is

A11
mn if 1 ≤ m ≤ N1 and 1 ≤ n ≤ N1,

A12
mn if 1 ≤ m ≤ N1 and N1 + 1 ≤ n ≤ N1 +N2,

A21
mn if N1 + 1 ≤ m ≤ N1 +N2 and 1 ≤ n ≤ N1,

A22
mn if N1 + 1 ≤ m ≤ N1 +N2 and N1 + 1 ≤ n ≤ N1 +N2,

is zero. The method used to locate such zeros is described in Linton & Kuznetsov (1997).

The formulation for antisymmetric solutions is very similar. Equation (158) is replaced by

G = 0 on x = 0 and the correct form for G is now

G =
1
2

[
ln
X2 + Y 2

X2 + Ỹ 2
− ln

X̃2 + Y 2

X̃2 + Ỹ 2

]
− 2[φ0(X, Ỹ )− φ0(X̃, Ỹ )]. (170)

6.3 Results

For finite water depth, trapped modes may be identified through the velocity formulation of section

6.1.1 or the pressure-difference formulation of section 6.1.2. In the velocity formulation, trapped

modes are identified by searching for points in the parameter space at which both of equations (123)

and (124) are satisfied, where {a(i)
n , n = 1, 2, . . . , Ni; i = 1, 2} are solutions of equations (117) and

(118). For a fixed barrier pair configuration (that is for fixed a1/h, a2/h and s/h) the satisfaction

of (123) and (124) each corresponds to a line in the k-b1 plane. These lines are straightforward to

compute; other than intersections at sinαs = 0, each intersection point of these lines corresponds

to a trapped mode. An alternative solution procedure would be to reduce equations (101) to a

homogeneous algebraic system and look for zeros of the corresponding determinant. However, such

zeros will be isolated points in the parameter space and hence difficult to locate; for this reason the

solution procedure outlined above is preferred here. In the pressure-difference formulation, trapped

modes are identified by searching for points in the parameter space at which both of equations (152)

and (153) are satisfied, where {b(i)n , n = 1, 2, . . . , Ni; i = 1, 2} are solutions of equations (146) and

(147). Solutions of (117)–(118) are easier to locate than solutions of (146)–(147) because lines in

the parameter space corresponding to (146)–(147) have regions of very rapid change. Thus, the

calculations reported here were made with the velocity formulation although all numerical values

given were checked with the pressure difference formulation and agreement was obtained to at least

the number of digits shown in the tables below.
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The infinite summations appearing in the definitions of the K(ij)
mn and M (ij)

mn (see equations 117–

118 and 146–147) are evaluated using the technique described by Porter & Evans (1995, section 5).

Thus, for example, suppose that a typical summation is

Tmn =
∞∑
r=1

Tmn,r (171)

then this is evaluated as

Tmn ≈
M1∑
r=1

Tmn,r + C(−1)(m+n)
M1+M2∑
r=M1

Sr (172)

where C(−1)(m+n)Sr is the leading-order asymptotic form of Tmn,r as r →∞. It turns out for each

of K(ij)
mn and M (ij)

mn , C is a constant that depends only on the geometry. Moreover, Sr is independent

of α, m and n and is the same for all K(ij)
mn and M

(ij)
mn , and so need only be evaluated once for a

particular geometry.

The basic strategy adopted in the numerical calculations was to fix the geometry of one barrier

pair, that is fix a1/h, a2/h and s/h, and then vary the wavenumber parameter kh and spacing

between barriers b1/h to obtain trapped-mode solutions. For fixed truncation levels, the accuracy

of the calculations depends significantly on kh and ai/h. However, for the calculations reported

here the values N1 = N2 = 20, M1 = 8000 and M2 = 5 × 106 are sufficient to obtain six-figure

agreement between the velocity and pressure-difference formulation.

The heuristic argument of Evans & Porter (1998), reproduced in the introduction of the present

paper, suggests that trapped waves for four barriers will occur at frequencies close to those at

which there are zeros of transmission for a pair of barriers. This wide spacing argument can then

be used to estimate the required spacing between pairs of barriers; this was done by Linton &

Kuznetsov (1997) when looking for trapped modes in the presence of one pair of inclined barriers.

The wide-spacing argument proceeds as follows. Let x = B = (b1 + b2)/2 be the mid line between

the pair of barriers in x > 0, and let α = αT be the x component of the wavenumber corresponding

to a zero of transmission for that barrier pair. At this zero the reflection coefficient R = eiχ for

some real phase χ. Between the pairs of barriers there will be waves propagating to right and left

which will combine to form a standing wave. For symmetric modes this will happen if

eiαT (x−B) +Re−iαT (x−B) = A cosαTx (173)

which is equivalent to

ei(χ+2αTB) = 1 (174)
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Figure 4: Lines in the ks-b1/a plane where velocity conditions are satisfied; ——–
equation (123), – – – – equation (124). Intersection points (trapped modes) are
marked •. Here `h = 0, a1/h = a2/h = 0.1, s/h = 0.12.

so that the spacing

B =
2nπ − χ

2αT
(175)

for some integer n. For antisymmetric modes

eiαT (x−B) +Re−iαT (x−B) = A sinαTx (176)

which gives a spacing

B =
(2n− 1)π − χ

2αT
(177)

for some integer n.

Results are presented first for the case `h = 0, a1/h = a2/h = 0.1. These parameters correspond

to the results of Porter & Evans (1995) for zeros of transmission for a barrier pair presented in

their figure 8. Shown in figure 4 for the spacing s/h = 0.12 are the lines in the ks-b1/a1 plane

where equations (123)–(124) are satisfied; these equations correspond to symmetric solutions. The

lines have a number of intersection points other than the precluded intersections at ks = π, thus

confirming the existence of trapped modes. For the value of s/h used here, it can be seen from

Porter & Evans (1995, figure 8) that there are two zeros of transmission for 0 < ks < π; these zeros
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Finite depth Infinite depth

Wide spacing Exact Wide spacing Exact

b1/a1 Ka1 b1/a1 Ka1 b1/a1 Ka1 b1/a1 Ka1

2.8672 1.1361 2.8592 1.1388 2.8677 1.1359 2.8590 1.1389

5.6326 1.1361 5.6304 1.1365 5.6335 1.1359 5.6298 1.1366

8.3979 1.1361 8.3969 1.1362 – – – –

1.2217 2.5745 1.2226 2.5726 1.2217 2.5746 1.2211 2.5757

2.4420 2.5745 2.4423 2.5742 2.4419 2.5746 2.4420 2.5745

3.6622 2.5745 3.6623 2.5745 – – – –

Table 1: A selection of symmetric trapped modes. For all calculations, `s = 0,
s/a1 = s/a2 = 1.2. For the finite depth calculations a1/h = 0.1.

occur at kh = 11.361, 25.745 or, equivalently, ks = 0.434π, 0.983π. It is apparent from figure 4 that

there is a close association between these values of ks and those at which trapped modes occur.

Further evidence of this for both symmetric and antisymmetric modes is given in tables 1 and 2

where a variety of numerically calculated trapped-mode spacing-frequency pairs are compared with

the corresponding predictions of the wide-spacing formulas (175) and (177). Additional evidence is

provided by calculations for infinite depth made using the method described in section 6.2. Apart

from the depth, the parameters for the finite and infinite depth calculations are the same. The

finite depth calculations are made for a small barrier submergence compared to the depth and hence

there is good agreement between the finite- and infinite-depth calculations. The blanks in the table

for infinite depth correspond to large Kb1 when it is difficult to compute trapped modes using the

method of section 6.2 because some of the integrals defined by (168) become highly oscillatory.

The question arises “Are trapped modes always associated with zeros of transmission”? The

numerical evidence suggests that this is indeed the case. It is apparent from Porter & Evans (1995,

figure 8) that as the spacing s within a barrier pair increases then a given zero of transmission is

lost. The present figure 5 shows the lines where the individual velocity conditions are satisfied for a

spacing for which there are no zeros of transmission within the illustrated range of ks; the lines do

not intersect and so there are no trapped modes. Figure 8 of Porter & Evans (1995) also indicates

that there are no zeros of transmission for π < ks < 2π; numerical investigations with a number of

geometries have revealed no trapped modes for this range of ks. For sufficiently small spacing, there
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Finite depth Infinite depth

Wide spacing Exact Wide spacing Exact

b1/a1 Ka1 b1/a1 Ka1 b1/a1 Ka1 b1/a1 Ka1

1.4846 1.1361 1.5060 1.1239 1.4849 1.1361 1.4997 1.1277

4.2499 1.1361 4.2536 1.1352 4.2506 1.1361 4.2536 1.1352

7.0152 1.1361 7.0166 1.1359 – – – –

0.6116 2.5745 0.6106 2.5789 0.6115 2.5745 0.6106 2.5790

1.8318 2.5745 1.8313 2.5753 1.8318 2.5745 1.8313 2.5753

3.0521 2.5745 3.0519 2.5747 – – – –

Table 2: A selection of antisymmetric trapped modes. For all calculations, `s = 0,
s/a1 = s/a2 = 1.2. For the finite depth calculations a1/h = 0.1.

0 2 4 6 8 10
b1 �a1

0

Π

ks

Figure 5: Lines in ks-b1/a2 parameter space where velocity conditions are satisfied;
——– equation (123), – – – – equation (124). Here `h = 0, a1/h = a2/h = 0.1,
s/h = 0.24.

are further zeros of transmission when 2π < ks < 3π and so there are very likely further trapped

modes within this range of ks. However, it becomes increasingly difficult to compute reliable results

for ks > 2π (for the parameters used here at least).

Uniqueness of the four barrier problem was established in section 5 for ranges of frequency de-

termined by the inequalities (83) which are illustrated in figure 6. Regions for which uniqueness of
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Figure 6: Regions of uniqueness for symmetric modes (S) and antisymmetric
modes (A) determined by the inequalities (83). Computed trapped mode solutions
are marked • for symmetric modes and ◦ for antisymmetric modes. The solid curves
mark the predicted location of trapped modes based on the wide-spacing approxi-
mation.

symmetric modes has been established are denoted by S and regions for which uniqueness of anti-

symmetric modes has been established are denoted by A (the boundaries of each cell are included).

Also included are some trapped mode solutions taken from tables 1 and 2. The locations of these

are entirely consistent with the uniqueness theorem; modes that appear to lie on a line of constant

αb1 are in fact slightly to the right and hence in agreement with the theorem. Also plotted in

figure 6 are lines where trapped modes are approximately expected to occur in the two-dimensional

problem (` = 0) based on the wide-spacing approximation for infinite-depth water. The limiting

values for Ks = 0 are calculated from the asymptotic solution for two barriers found by Newman

(1974). Although not shown in figure 6, the wide-spacing approximation predicts the existence

of trapped modes for 0 < αb1 < π/2, but no modes have been located within this range using

either numerical method. Perhaps this is not surprising as the wide-spacing approximation can be

expected to break down for very small spacings between the barrier pairs.

35



a1/h a2/h s/h b1/a1 Ka1

0.10 0.10 0.12 2.8592 1.1388

0.10 0.12 0.12 3.2992 1.0046

0.12 0.10 0.12 3.2234 1.2055

0.10 0.10 0.10 3.0857 1.0656

Table 3: Effect on a symmetric trapped mode of changes in the geometry: `h = 0.

`h b1/a1 Ka1 b1/a1 Ka1 b1/a1 Ka1 b1/a1 Ka1

0 2.8592 1.1388 5.6304 1.1365 1.2226 2.5726 2.4423 2.5742

1 2.8615 1.1422 5.6349 1.1399 1.2226 2.5745 2.4423 2.5760

2 2.8676 1.1525 5.6465 1.1505 1.2227 2.5801 2.4424 2.5818

3 2.8760 1.1701 5.6626 1.1685 1.2227 2.5898 2.4425 2.5913

4 2.8856 1.1951 5.6819 1.1939 1.2227 2.6032 2.4428 2.6045

5 2.8961 1.2272 5.7039 1.2264 1.2229 2.6200 2.4431 2.6214

Table 4: Effect on selected symmetric modes of changes in `h: s/a1 = s/a2 = 1.2, a1/h = 0.1.

From the work of Porter & Evans (1995) and McIver (1985) it is known that zeros of transmission

for a pair of vertical barriers will persist if the geometry is perturbed. Thus, for a configuration

where there is known to be a zero of transmission at a certain frequency, if the length of one or both

barriers, or the spacing between the barriers, is changed then in general there will still be zero of

transmission at a nearby frequency. The only exception is that the zero may be lost if the spacing

is increased by too much (see Porter & Evans 1995, figure 8). This suggest that the existence of

trapped modes for two barrier pairs may be preserved by similar perturbations. This is indeed the

case and a small number of calculations are given in table 3 to illustrate this point.

All of the calculations reported so far have been for the two-dimensional case, ` = 0. Exactly

the same procedures may be applied to find trapped modes for ` 6= 0 and a few results are given in

table 4 to show the effect of increasing ` on some of the symmetric modes already given in table 1.

The general trend is that both the spacing b1/a1 and the frequency parameter Ka1 increase as `h

is increased. The changes in b1/a1 are quite small for modes with higher frequencies.

36



7 Discussion

The geometry in figure 1 provides the first example of two surface-piercing structures separated by

a bounded portion of the free surface for which the uniqueness theorem holds for all K > ` tanh `h,

that is for the the whole continuous spectrum. Previously, the uniqueness of the solution in this

situation has been established only for some frequency intervals. For the two-dimensional problem

(` = 0), the first uniqueness theorem was proved by Kuznetsov (1988) and extended by Kuznetsov

& Simon (1995); however their frequency interval (which depends on the geometry) for uniqueness

is finite. For the oblique case (` > 0) with two symmetric surface-piercing structures, Kuznetsov at

al. (1998) generalised a method previously used in two dimensions (see the appendix to Linton &

Kuznetsov 1997) to prove uniqueness of symmetric and antisymmetric solutions when αb belongs

to complementary intervals (2b is the distance between structures satisfying John’s condition). For

0 < K < ` tanh `h, the uniqueness proof of McIver (1991) and Simon (1992) for a single surface-

piercing cylinder has been noted to hold (Kuznetsov et al. 1998) for an arbitrary finite number of

cylinders each satisfying John’s condition.

For the two-dimensional problem (` = 0), there are only two criteria of uniqueness for totally

submerged structures known at the present time. That of Maz’ya (1978), subsequently extended by

Kuznetsov (1991), does not apply for any geometry with two submerged barriers. The uniqueness

theorem of Simon & Ursell (1984) holds for pairs of submerged barriers that are not too widely

spaced or do not have top points too close to the free surface; hence not all possible cases of

two-barrier geometries are covered by this theorem.

Thus, the present uniqueness theorem for two vertical barriers extends in two ways previous work

on two surface-piercing structures. First of all it provides a new example for the two-dimensional

water-wave problem (` = 0) in which uniqueness has been established for the whole continuous

spectrum. Secondly the two-barrier geometry is the first for which uniqueness has been proven for

the whole continuous spectrum for any ` > 0.

Also, uniqueness is established for all K > 0 in the two-dimensional problem (` = 0) of three

symmetrically-arranged surface-piercing barriers. This is the first of example of a uniqueness the-

orem that holds for all frequencies in the presence of three bodies floating in the free surface. For

` > 0 and an arbitrary arrangement of three barriers an infinite sequence of uniqueness intervals is

found.

In the case of four symmetrically arranged barriers, strong numerical evidence has been pro-
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vided for the existence of trapped modes in frequency intervals complementary to those for which

uniqueness is proved. The evidence is equally strong that these trapped modes are associated with

zeros of transmission for a pair of barriers. A natural topic for further research is to investigate the

construction of trapped modes for other geometries for which zeros of transmission are known to

exist.

Given a pair of barriers for which a zero of transmission exists, trapped modes for two such

pairs are found only for certain discrete spacings between the pairs. For any small perturbation

of the spacing the trapped mode no longer exists. However, it is interesting that for any other

perturbation of the geometry (changing the length of one or both barriers in, or the spacing of,

the pair) it is possible to find a trapped mode at a frequency near to that for the unperturbed

geometry.
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