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Abstract

An infinite row of periodically spaced, identical rigid circular cylinders is excited by
an acoustic line source, which is parallel to the generators of the cylinders. A method
for calculating the scattered field accurately and efficiently is presented. When the
cylinders are sufficiently close together, Rayleigh–Bloch surface waves, which propagate
energy to infinity along the array are excited. An expression is derived which enables
the amplitudes of these surface waves to be computed without requiring the solution
to the full scattering problem.

1 Introduction

The interaction of waves with periodic arrays is of fundamental importance in many physical

contexts. When an infinite array is excited by a plane wave, the theoretical treatment of the

problem can be greatly simplified by taking account of the periodicity of the incident wave

and of the array. When the excitation is due to a point or line source, however, the incident

field is no longer periodic and the resulting problem is more challenging. Nevertheless, there

is usually no great difficulty provided the scattered field decays to zero as one moves along the

array away from the source. In this article we wish to focus on a situation where this is not the

case due to the presence in the scattered field far from the source of Rayleigh–Bloch surface

waves travelling along the array. We consider two-dimensional scattering by an infinite row

of periodically-spaced, identical circular cylinders excited by a line source which is parallel

to the generators of the cylinders. We will refer primarily to the acoustic setting in which

we look for time-harmonic solutions Re[φ(x, y) exp(−iωt)] so that the acoustic potential φ

satisfies the two-dimensional Helmholtz equation (∇2 + k2)φ = 0 in the region exterior to

the cylinders, where k = ω/c and c is the speed of sound. The scatterers are assumed

to be rigid and so the normal derivative of φ must vanish on the cylinder boundaries; the

boundary-value problem is thus also applicable to the electromagnetic scattering by an array

of perfect conductors of an S-polarized incident field.

This geometry has been chosen because it is known that Rayleigh–Bloch surface waves

can propagate along such an array [1],[2],[3]. These RB waves, as we will henceforth refer

to them, decay exponentially away from the array but travel along the array undamped and

our main objective is to develop a method by which the amplitude of the RB waves that are

excited can be determined without having to solve the full scattering problem. Note that if

the boundary condition on the cylinders was changed to φ = 0 then no such waves exist [4].

Previous theoretical work on aperiodic excitation of periodic structures, when the struc-

ture supports pure surface waves, is scarce. The first attempts to tackle this type of problem
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were made over 40 years ago but little progress appears to have been made since then. For

the case of electromagnetic scattering due to a magnetic line current in the presence of a

grounded slab covered by an infinite conducting plane containing a periodic array of narrow

slots, progress was made in [5] via an approximate sampling technique which reduced the

problem to one which could be solved with the aid of Fourier transforms. A different ap-

proximate technique, which again reduced the problem to one for which Fourier transforms

could be used, was used in [6] to study point source excitation of an array of dipoles. In that

paper the question which is or primary concern here was addressed; how can one accurately

and efficiently determine the amplitude of the surface wave that is excited?

A general approach to problems in which a periodic structure is excited by an aperiodic

incident field is the so-called continuous phased-array or array scanning method in which

the solution for aperiodic excitation is written as an integral of the solution for periodic

excitation, the integration variable being the phase of the incident field. This approach

was used in [7] to analyse line source radiation from a dielectric slab backed by a metal

strip grating. The Fourier integral approach used in §4 is essentially equivalent to the array

scanning method. For some recent applications of this technique, see [8, 9].

The paper is organised as follows. The problem is formulated in §2 and the existence

and nature of the surface waves that can propagate along the array is discussed in §3. In §4
we present our method which allows the amplitude of the surface waves that are generated

to be computed accurately without solving the full scattering problem and in §5 an analysis

of the nature of the far field is given. Numerical results are presented for the amplitudes of

the RB waves that are excited and the directional dependence of the overall scattered field.

Contour plots of the total field in the presence of a long but finite array are shown which

demonstrate that the far field for the infinite array predicts the nature of the field very well.

A quantity of particular interest is the proportion of the energy emitted by the source that

propagates to infinity along the array and a method for computing this quantity is given

in §6.

2 General theory

Consider the scattering of a cylindrical wave by an infinite row of circular cylinders of radius

a < 0.5, located at the points (x, y) = (p, 0) where p ∈ Z. A line source is positioned at

(X, Y ), and (Rp,Θp) represents the magnitude and orientation of the vector from this point

to the centre of cylinder p; see figure 1. The method described below is valid for all source

positions, except those at which Y = 0; numerous subsequent equations involve series and

integrals that are divergent when this is the case. Without further loss of generality, we

assume that Y < 0 so that the source is positioned below the array as in figure 1. The total

field is then expressed in the form

φt(x, y;X;Y ) = φi(x, y;X;Y ) + φs(x, y;X;Y ), (1)

where the incident wave and scattered response are given by

φi = H0(kS), (2)
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Figure 1: A section of the infinite array. In the (x, y) plane, the scatterers are located at

(p, 0) for integer p, and the line source (•) at the point (X, Y ).

and

φs =
∞∑

p=−∞

∞∑
n=−∞

Lpn Hn(krp)e
inθp , (3)

respectively. Here, S =
√

(x−X)2 + (y − Y )2, (rp, θp) represents a shifted set of polar

co-ordinates with its origin at the centre of scatterer p and Hn(·) represents the nth order

Hankel function of the first kind. All of the terms in (1) satisfy the Helmholtz equation

(∇2 + k2)φ = 0, (4)

and on the surface of the scatterers we have the Neumann boundary condition

∂φt/∂rp = 0, p ∈ Z. (5)

The linear system satisfied by the coefficients Lpn can easily be deduced from Linton &

McIver [10, eqn (6.7)]. Thus, we omit the right-hand side due to plane wave forcing, and

include an extra ‘scatterer’ for which Lm = δm0, to obtain

Lpm+Zm

∞∑
j=−∞
j 6=p

∞∑
n=−∞

LjnX
jp
n−m Hn−m(k|j−p|) = (−1)m+1Zme−imΘp Hm(kRp), m, p ∈ Z, (6)

where

Xjp
n =

{
(−1)n : j > p,

1 : j < p.
(7)

The constants Zn are given by

Zn = J′n(ka)/H′
n(ka), (8)

and the spacing of the cylinders is such that

k < π; (9)
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in this regime equation (6) cannot easily be solved by truncation since the coefficients Lpn do

not tend to zero as |p| → ∞ due to the presence of surface waves.

The overall problem can easily be split into components that are symmetric and antisym-

metric about y = 0. To obtain the symmetric system, the factor e−imΘp on the right-hand

side of (6) is replaced by cos(mΘp), and the set of unknown coefficients is then reduced via

Lp−m = (−1)mLpm. (10)

Similarly, the antisymmetric system is obtained by replacing e−imΘp with −i sin(mΘp) and

applying the identity

Lp−m = (−1)m+1Lpm. (11)

Note that Lp0 = 0 for all p in this case. If the source is positioned so that X = 0, horizontal

symmetry leads to the further reduction

L−p−m = Lpm. (12)

The summations appearing in (3) and (6) are of two different types. On the interior, we

have an order summation (over n) and as |n| increases, the coefficients Zn, and therefore the

unknowns Lpn, rapidly converge to zero [11, §9.3.1]. The exterior sum is of spatial type, and

converges much more slowly, relying on the increasing size of the argument of the Hankel

function. We therefore aim to treat these sums analytically; in doing so we require the

integral representation [12]

Hn(kr)e
inθ =

(−i)n+1

π

∫ ∞

−∞

[
α− γ(α)

k

]n sgn(y)

e−γ(α)|y|+iαx dα

γ(α)
. (13)

Here, γ(α) = (α2 − k2)1/2, with γ(0) = −ik. Note that

arccos(α/k) = −i log [α− γ(α)] + i log k, (14)

for a suitably defined continuation of the inverse cosine to the cut plane. By writing

k = kr + iε, (15)

where kr is real, the singularities are removed from the real line, and taking the limit k → kr
determines the manner in which the path of integration should be indented. Thus, the branch

cuts are positioned along the lines α = ±k(1 + iu), with u > 0, and the path of integration

is indented so as to pass above α = −k and below α = k. Evidently, the integral in (13)

converges for all values of y except 0 (for n = 0 it converges everywhere except x = y = 0).

Finally, we introduce the function

ψj(α) = arccos

[
1

k
(α+ 2jπ)

]
, j ∈ Z, (16)

and when no ambiguity can arise we write ψj in place of ψj(α). For real α, ψj is located on

one of the line sections [0, π], iu and π − iu, with u > 0. Note that, for all j,

k sinψj = iγ(k cosψj). (17)
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3 Rayleigh–Bloch waves

The infinite array can support trapped modes known as Rayleigh–Bloch waves, which propa-

gate without loss in x. The form of these waves can be obtained as follows. First, we remove

the right-hand side from equation (6) and write

Lpn = eipβ̃B̃n, (18)

for β̃ ∈ R. After some manipulation, we obtain

B̃m + Zm

∞∑
n=−∞

B̃nσn−m(β̃) = 0, m ∈ Z, (19)

with B̃m 6= 0 for at least one m, and

σn(β̃) =
∞∑
j=1

[e−ijβ̃ + (−1)neijβ̃] Hn(jk). (20)

This quantity is known as a Schlömilch series; in this form its convergence properties are

very poor, however formulae which enable σn to be be computed efficiently are available; see

[13, 14] and appendix A. RB waves with |β̃| ≤ k have not been found, and, furthermore, if β̃

gives rise to a right propagating RB wave, then −β̃ yields the same wave carrying energy to

the left; this has the coefficient (−1)nB̃n in place of B̃n. In view of the evident 2π periodicity,

we may impose the restriction

k < β̃ < π. (21)

Solutions to (19) satisfying (21) give rise to right propagating RB modes and there may

be two of these at most; one that is symmetric about y = 0 and one that is antisymmetric.

Computations show that symmetric modes exist for all cylinder sizes 0 < a < 0.5, whereas

antisymmetric modes exist only if the cylinders are sufficiently large (a & 0.403). For a given

value of a, RB waves only exist for a range of values of k; symmetric modes in the range

0 < k < ks
max < π (22)

and antisymmetric modes in the range

ka
min < k < ka

max < π. (23)

It turns out that there are three distinct regimes: for a . 0.403 only symmetric modes are

possible; for 0.403 . a . 0.459 we have ks
max < ka

min and so it is possible to have symmetric

and antisymmetric modes, but not for the same value of k; finally when 0.459 . a < 0.5 we

have ks
max > ka

min and hence it is only in this parameter range that it is possible to excite

both symmetric and antisymmetric modes at the same time. Figure 2 shows values of ks
max,

ka
min and ka

max for varying scatterer radius a. Note that as a → 0.5 the gaps between the

cylinders shrink to zero. At a = 0.5 there is no connection between the regions on each

side of the array and the symmetric and antisymmetric modes are essentially the same. To
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Figure 2: kmin and kmax for symmetric and antisymmetric RB modes.

simplify our subsequent discussion, we will henceforth assume that there is only one type

of RB wave (symmetric or antisymmetric) present, that is there exists a single nontrivial

solution to (19) for which β̃ satisfies (21). Cases where two modes exist can be dealt with

by splitting the problem into parts symmetric and antisymmetric about y = 0 (c.f. §2).

The problem of actually locating β̃ can be simplified using the following procedure, due

to Evans & Porter [15]. It follows from equations (16–17), (21), and (A3–A5) that cos ψ̃j is

positive real for all j, whereas sin ψ̃j is positive imaginary. Hence,

σn(β̃) = −δn0 + in+1λn(β̃), (24)

where λn is real. Using this in (19), and multiplying by im/(1− Zm) yields

(imB̃m) +
J′m(ka)

Y′
m(ka)

∞∑
n=−∞

(inB̃n)λn−m(β̃) = 0, m ∈ Z; (25)

a linear system with real coefficients. Once obtained, the coefficients B̃n are normalised so

that
∞∑

n=−∞

|B̃n|2 = 1. (26)

Substituting (18) into (3) and using the identity (13) along with the Poisson summation

formula, we obtain the modal representation for the RB waves, valid for y > 0, thus

φrb = Γ
±

∞∑
j=−∞

[±]Ãje
ik(±x cos ψ̃j+y sin ψ̃j). (27)

Here, the upper and lower signs refer to the right and left propagating waves, respectively,

and the symbol in square brackets appears in the antisymmetric case only. In addition we

have introduced the notation

ψ̃j = ψj(β̃). (28)
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The quantities Γ
±

represent arbitrary (complex) amplitude coefficients, and Ãj is given by

Ãj =
2

k sin ψ̃j

∞∑
n=−∞

(−i)nB̃ne
inψ̃j . (29)

Note that this is pure imaginary. Equivalent results for y < 0 can be deduced by symmetry,

but the modal form is not valid on y = 0. The RB wave evidently propagates without loss

in the x direction, and decays exponentially as y is increased.

The presence of these waves at the extremities of the array accounts for the fact that the

coefficients Lpm do not tend to zero as |p| → ∞. After writing

Lpm =

{
L̂pm + Γ

+
B̃meipβ̃ : p ≥ 0,

L̂pm + Γ
−
(−1)mB̃me−ipβ̃ : p < 0,

(30)

a linear system for L̂pm can be formed by substitution into (6). The left-hand side is the

same as that for Lpm, and a correction term Qp
m must be added to the right-hand side. It is

not difficult to show that

Qp
m = (−1)mZm

∞∑
n=−∞

B̃n

[
Γ
−
e−ipβ̃s

|p|
n−m(−β̃)− (−1)nΓ

+

eipβ̃s
|p|
n−m(β̃)

]
(31)

for p < 0, whereas for p ≥ 0, we have

Qp
m = Zm

∞∑
n=−∞

B̃n

[
Γ

+

eipβ̃s1+p
n−m(−β̃)− (−1)nΓ

−
e−ipβ̃s1+p

n−m(β̃)
]
, (32)

with

spn(α) =
∞∑
j=p

Hn(kj)e
ijα. (33)

In both cases, the expression for Qp
m has been simplified by using (19). Efficient methods for

evaluating the function spn(α) are given in [16]. The linear system for L̂pm can then be solved

by truncation, since the unknowns now decay as |p| → ∞. Although the solution to this

system is not required in the determination of Γ±, it acts as a useful check on the correctness

of the numerical codes, and can be used to compute the field close to the scatterers.

4 Integral representation of the solution

We now represent the unknown coefficients Lpn as Fourier integrals, thus

Lpn =
1

iπ

∫ ∞

−∞
fn(α;X;Y )eiαp dα, (34)

where the function fn is independent of the scatterer number p, and substitute this into the

linear system (6). Consider the spatial summation which appears on the left-hand side. A

straightforward calculation yields
∞∑

j=−∞
j 6=p

LjnX
jp
n−m Hn−m(k|j − p|) =

1

iπ

∫ ∞

−∞
fn(α;X;Y )σn−m(α)eiαp dα, (35)
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where σn is the Schlömilch series (20). For the right-hand side, we note that

Rp cos Θp = p−X and Rp sin Θp = −Y, (36)

therefore replacing n with −m in (13) and applying the identity

α+ γ(α)

k
=

k

α− γ(α)
, (37)

shows that

Hm(kRp)e
−imΘp = − i1−m

π

∫ ∞

−∞

[
α+ γ(α)

k

]m
e−γ(α)|Y |−iαXeiαp dα

γ(α)
. (38)

Collecting these results together, we obtain

∫ ∞

−∞

[
fm(α;X;Y ) + Zm

∞∑
n=−∞

fn(α;X;Y )σn−m(α)

]
eiαp dα

= −Zmim
∫ ∞

−∞

[
α+ γ(α)

k

]m
e−γ(α)|Y |−iαXeiαp dα

γ(α)
, (39)

and if we write

fm(α;X;Y ) =
Bm(α)

γ(α)
e−γ(α)|Y |−iαX , (40)

then (39) will clearly be solved if

Bm(α) + Zm

∞∑
n=−∞

Bn(α)σn−m(α) = −Zmim
[
α+ γ(α)

k

]m
. (41)

Hence, the integral representation for the coefficient Lpn is

Lpn =
1

iπ

∫ ∞

−∞

Bn(α)

γ(α)
e−γ(α)|Y |+iα(p−X) dα; (42)

this result can also be obtained via the ‘array scanning method’ [9], though the technique

used above is somewhat simpler in this particular case.

Typically, the function Bn(α) can be evaluated directly from (41). As noted in §3,

however, there are real values of α for which the matrix on the left-hand side of (41) is

singular, i.e. when the homogeneous system (19) possesses a nontrivial solution. At these

points, the characteristic polynomial of the matrix has a simple zero, and therefore the

system (41) can be solved by allowing the unknown functions Bn(α) to possess simple poles.

Those whose location is given by α = β̃ + 2jπ and α = β̃ − 2jπ (j ∈ Z) contribute to the

right- and left-propagating RB waves, respectively.

Consider the pole located at α = β̃. By Laurent’s theorem, we can write

Bn(α) =
bn

α− β̃
+ Cn(α), (43)
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where Cn is regular at the point α = β̃. Substituting this into (41), multiplying by (α− β̃)

and taking the limit α → β̃ shows that the coefficients bn satisfy the same linear system as

B̃n, hence bn = c
+
B̃n, for some constant c

+
. Equation (41) now becomes

Cm(α) + Zm

∞∑
n=−∞

Cn(α)σn−m(α) =
−c+

α− β̃

[
B̃m + Zm

∞∑
n=−∞

B̃nσn−m(α)

]

− Zmim
[
α+ γ(α)

k

]m
, (44)

where all terms on the right-hand side are known, aside from the constant c
+
, and the limit

α → β̃ can be taken using L’Hôpital’s rule. (Derivatives of σn(α) can be calculated as

shown in appendix A.) In this limit, the matrix of coefficients on the left-hand side becomes

singular, and since the functions Cn are regular at this point it follows that (44) can be

solved if and only if the right-hand side and the (nontrivial) solution to the homogeneous

adjoint problem are mutually orthogonal [17, eqns (5.7–5.9)]. That is, if

Dm +
∞∑

n=−∞

Z∗n(−1)n−mσ∗n−m(β̃)Dn = 0, m ∈ Z, (45)

with Dm 6= 0 for at least one m, then

−ic
+

∞∑
m=−∞

D∗
mZm(−i)m

∞∑
n=−∞

inB̃n

[
d

dα
λn−m(α)

]
α=β̃

=
∞∑

m=−∞

D∗
mZmim

[
β̃ + γ(β̃)

k

]m
. (46)

Here, the superscript ‘∗’ refers to the complex conjugate, and the function λn(α) is defined

as in (24). If we now use (24) in (45) and compare the resulting expression with (25), it

follows immediately that

Dm = B̃m/Z
∗
m. (47)

Equation (46) therefore yields a unique value for c
+
, which can be obtained by solving

a single linear system involving only an order summation. Note that c
+

is pure imaginary,

since inB̃n and λn(β̃) are real (§3). Finally, we observe from equations (41), (37) and (A2)

that

B−n(−α) = Bn(α). (48)

Now, as noted in §3, the left-propagating wave has the coefficient (−1)nB̃n in place of B̃n.

Thus, if we write

Bn(α) =
c

+
B̃n

α− β̃
+
c
−
(−1)nB̃n

α+ β̃
+ Cn(α), (49)

where now Cn(α) is regular at α = ±β̃, then, in view of (48), changing α to −α and n to

−n yields

c
+

B̃−n = c
−
(−1)n+1B̃n (50)

and

c
+

B̃n = c
−
(−1)n+1B̃−n. (51)
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Figure 3: A rectangular strip of the complex plane. The complete plane consists of 2π-

periodic repetitions of this structure. The locations of the singularities are given by b
+

=

k + 2jπ, b
−

= −k + 2(j + 1)π, and p
+

= β̃ + 2jπ, p
−

= −β̃ + 2(j + 1)π.

Hence c
+

= ±c− . Equations (10) and (11) now show that the upper and lower signs apply

in the antisymmetric and symmetric cases, respectively. Other residues can be obtained by

simply substituting β̃ + 2jπ, j ∈ Z in place of β̃ in the above analysis.

The singularity structure of the function Bn(α), and its relationship to the integral (42)

may now be determined. In addition to poles Bn(α) possesses branch points which it inherits

from the function σn(α) via (41). The location of these in the α plane is determined in

appendix A; the path of integration passes below the branch points given by (A8) and above

those given by (A9). Similarly, the path of integration is indented to pass below those poles

whose location is given by α = β̃ + 2jπ and above those given by α = −β̃ + 2jπ, so as to

yield right- and left-propagating RB modes for p� 0 and p� 0 respectively. The strip

k + 2jπ ≤ Re[α] ≤ −k + 2(j + 1)π

is illustrated in figure 3. The complete complex plane consists of periodic repetitions of this

region. As we are concerned with the case k < π and since β̃ ∈ (k, π), the branch points lie

outside the interval (−k, k) and do not interfere with the calculation of RB amplitude.

The asymptotic behaviour of (42) for large |p| is easily deduced. Thus, consider the limit

p → ∞. The path of integration is deformed into the upper half plane, and residues are

collected from the poles located at α = β̃ + 2jπ. The remaining contributions, which make

up the coefficient L̂pm in equation (30) come from the branch points α = k + 2jπ, j ∈ Z.

Results in [18] show that Bn(α) remains finite as these points are approached, as does the

ratio Bn(α)/γ(α) as α → ±k. All of the branch points are of order one (see appendix A),

and the leading contributions from opposing sides of a cut always cancel each other. The

same argument applies as p → −∞ (in this case the path of integration must be deformed

downwards), and it then follows that, as p→ ±∞,

L̂pm ∼ L
±

m

e±ikp

p3/2
. (52)
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Figure 4: Symmetric Rayleigh–Bloch wave amplitudes for a source positioned at (0,−1).

5 The far field

Let us first consider the region where |x − X| is large and |y| ≈ 0. Deforming the path of

integration in (42) into the appropriate half plane, we collect residues to find that

Γ
±

= ±2i

k

∞∑
j=−∞

c
±
j

sin ψ̃j
eik(sin ψ̃j |Y |±cos ψ̃jX). (53)

Here, c
±
j refers to the constant c

±
in (46), with β̃ replaced by β̃+2jπ throughout the analysis

in §4. Contributions from the branch points can be neglected, since these decay according

to (52). Thus, in this case the dominant contribution to the scattered field is due to the RB

waves. The series in (53) converges exponentially, therefore only a small number of terms is

required in computing Γ
±

to a high degree of accuracy, provided that Y 6≈ 0.

Note that |Γ+| = |Γ−| so that the amplitudes of the left- and right-propagating RB

waves are the same, whatever the source position. Also, if X = 0, then we have Γ
+

= Γ
−

and Γ
+

= −Γ
−

in the (vertically) symmetric and antisymmetric cases, respectively. The

amplitudes of the RB waves decay exponentially as |Y |, the distance between the source and

the array is increased. For moderately large |Y |, only the j = 0 term is required, and in this

case the variations in X merely result in a phase shift.

The value of |Γ±| for the symmetric RB wave is shown in figure 4, for three different

scatterer sizes, with varying k. Here, as in all of our subsequent numerical calculations,

the source is positioned at (X,Y ) = (0,−1). A corresponding plot for the antisymmetric

mode, which exists within a narrower wavenumber spectrum, and only for large scatterers is

shown in figure 5. The amplitude tends to increase with frequency, however in the symmetric

case with a = 0.49 it attains its maximum value before the cut-off is reached. Generally,

increasing the scatterer size also leads to greater RB wave amplitudes. The final data point

on each of the curves in figures 4 and 5 is positioned so that kmax − k < 10−8 so as to
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Figure 5: Antisymmetric Rayleigh–Bloch wave amplitudes for a source positioned at (0,−1).

capture any sharp changes in amplitude as the cut-off is approached. No such behaviour

was observed; in fact, as k → kmax, β̃ → π, so that the RB mode tends to a standing wave

of finite amplitude. Typically, where both waves are present the symmetric mode has the

larger amplitude, as in the case where a = 0.49. The correctness of these results has been

confirmed by truncating (6), and inverting the resulting linear system. Where RB waves are

present, the absence of decay in Lpm as p is increased can be observed using a relatively small

(≈ 25–30) spatial truncation. On adjusting the right-hand side using (31) and (32), the

contribution from the RB wave(s) is removed, inducing the unknown coefficients to decay as

predicted in (52).

To illustrate the behaviour of Lpm as p→ ±∞, we define

Lp =

√√√√ ∞∑
m=−∞

|Lpm|2, (54)

and likewise for L̂pm. Results obtained by inverting (6), truncating the spatial sum at ±100

(i.e. using 201 scatterers) are shown in figure 6, with the y axis on a base 10 logarithmic

scale. Here, a = 0.49, k = 2.5. Both the symmetric and antisymmetric RB modes are

present, therefore the quantity Lp does not tend to zero as p → ∞. In fact, it oscillates

slightly about a constant value, which can be seen from figure 4 to be the amplitude of the

symmetric wave (≈ 0.23). The plot which we have labeled L̂p is obtained by removing this

contribution using (31) and (32). This exhibits qualitatively similar behaviour to Lp, with

the oscillations now centred at the amplitude of the antisymmetric wave, which can be read

off from figure 5 (≈ 0.06). Finally,
ˆ̂
Lp is calculated by removing the contributions from both

of the RB waves; the decay in this quantity with increasing p is evident.

The leading order behaviour of the far field in other regions can be obtained by using

12
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Figure 6: Logarithmic plot illustrating the behaviour of Lp as p is increased, with a = 0.49,

k = 2.5 and the source positioned at (0,−1).

equations (13) and (42) in (3), thus

φs = − 1

π2

∞∑
p=−∞

∫ ∞

−∞

∫ ∞

−∞

∞∑
n=−∞

(−i)nBn(α)

[
ξ − γ(ξ)

k

]n sgn(y)

× e−γ(α)|Y |−iαXe−γ(ξ)|y|+iξxeip(α−ξ) dαdξ

γ(α)γ(ξ)
. (55)

The integral over ξ can then be evaluated using the Poisson summation formula, giving

φs = − i

π

∞∑
j=−∞

∫ ∞

−∞
Aj(α)e−γ(α)|Y |−iαXe−γ(α+2jπ)|y|+i(α+2jπ)x dα

γ(α)
, (56)

in which

Aj(α) =
2

k sinψj(α)

∞∑
n=−∞

(−i)nBn(α)ein sgn(y)ψj(α), (57)

(c.f. equation (29)). The remaining integral may be approximated using the method of

steepest descents. First, we show that the branch points do not contribute to the leading

order term. The argument is similar to that used in obtaining (52). Thus, the function Aj(α)

remains bounded at the branch points of the function Bn(α) (i.e. in the limit sinψj → 0);

the means of demonstrating this can be found in [18]. Also, for j = 0 the steepest descent

path always has the correct orientation with respect to the branch points α = ±k regardless

of whether the source or observer is to be moved far from the origin. When j 6= 0, Aj(α) → 0

as α → ±k, and the ratio Aj(α)/γ(α) is finite, again details are in [18]. The branch points

are of order one (see appendix A), and the dominant contributions from opposing sides of

a cut always cancel each other. It now follows that, if a descent path should require a

diversion around one or more branch points, then the resulting contributions will be one

13



asymptotic order smaller than those from the saddle points (−3/2 as opposed to −1/2), and

may therefore be neglected. We may also ignore the effect of the poles, since their residues

decay exponentially as |y| or |Y | is increased.

In view of this, we need only consider the saddles, deducing their contributions by com-

parison to (13) with n = 0, and using the result that, as kr →∞,

H0(kr) ∼ F (r) =

√
2

πkr
e−i

π
4 eikr. (58)

Thus, with R0 and Θ0 defined as in (36), we find for R0 � 0 that

φs ∼ F (R0)
∞∑

j=−∞

Aj(k cos Θ0)e
ikr cos(θ−sgn(y)ψj), (59)

where the function ψj is to be evaluated at the point α = k cos Θ0. It is not difficult to show

that, as R0 →∞,

φi ∼ F (R0)e
ikr cos(θ−Θ0), (60)

and this limit provides a useful check on the correctness of (56), since (59) is identical to

the exact result for excitation by a plane wave incident at angle Θ0, aside from the presence

of the amplitude factor F (R0).

In calculating the leading order behaviour for r � 0, some care must be taken so as to

obtain results that are valid on both sides of the array. In particular, note that ψj(k cos θ)

is an even function of θ, so that if we take θ ∈ [−π, π], then ψ0(k cos θ) = |θ|. With this in

mind, a straightforward calculation shows that

φt ∼ F (r)D(θ), (61)

where the diffraction coefficient D(θ) is given by

D(θ) = eikR0 cos(Θ0−θ) +
∞∑

j=−∞

eikR0 cos(Θ0−ψj)Sj(θ), (62)

in which

Sj(θ) =
sinψ0

sinψj
A−j(k cosψj). (63)

Here, the function ψj is to be evaluated at the point α = k cos θ. The expression for Sj(θ)

can be simplified using (57) to yield

Sj(θ) =
2

k sinψj

∞∑
n=−∞

(−i)nBn(k cos θ + 2jπ)einθ. (64)

If the coefficients Bn are (vertically) symmetric, then we can make the transformations

θ → −θ and n → −n to show that Sj(θ) = Sj(−θ), in view of (10). Similar arguments

apply in the antisymmetric case, with Sj(θ) = −Sj(−θ). All of the terms in the series in

(62) except the j = 0 term vanish in the limit sin θ → 0 and decay exponentially as sin θ is

increased. On the dark side of the array, the quantity 1 + S0(θ) is the amplitude of a single
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Figure 7: Modulus of the diffraction coefficient D(θ). The source is positioned at (X.Y ) =

(0,−1).

circular wave emanating from the source point; this can be thought of as the transmitted

field. For y < 0, i.e. on the lit side, the incident field is present, and there is also a reflected

field emanating from (X,−Y ), with amplitude S0(θ). Results in [18] show that

lim
α→±k

A0(α) = −1, (65)

meaning that the leading order contributions from the saddle points and the incident field

cancel each other at the extremities of the array. This is an acoustic analogue of the Lloyd’s

mirror effect in optics; see [19, p.519].

The modulus of the diffraction coefficient is shown in figure 7, for two different sets

of parameters. In the first instance, where a = 0.25 and k = 2.5, |D(θ)| ≈ 1 except in

the vicinity of the array where the circular waves vanish as discussed above, and directly

beneath the source, where there is interference between the incident and reflected waves.

For a = 0.49 and k = 2.9, the effect of transmission is much weaker, as we should intuitively

expect. There is also a great deal more interference from the reflected field on the lit side of

the array. In particular there are two directions in which |D(θ)| ≈ 0; these occur θ ≈ −π/4
and θ ≈ −3π/4. In the vicinity of the array, the gradient of D(θ) is sharper on the dark side

of the array than it is on the lit side, hence the circular waves are more significant on the

dark side for small values of |θ|.
Figures 8 and 9 show contour plots of the field due to a line source at (0,−1) exciting

a large array (201 scatterers). In the first case, we have a = 0.25 and k = 2.5 and the

formation of a symmetric RB mode is clearly evident. This wave is also shown in isolation,

with its complex amplitude coefficient Γ
+

computed by assuming the array to be infinite.

Both plots are shown on the same amplitude scale, and there is good agreement in both the

amplitude and phase of the RB mode. Similarly, in figure 9, the scatterer radius a is 0.49

and the wavenumber k is 2.9, so that an antisymmetric RB mode is present. As before the
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Figure 8: Above: contour plot of Re[φt], with a = 0.25 and k = 2.5. Note the formation of a

symmetric RB wave occurring to the right of the source. Below: A section of the RB wave

in isolation (i.e. with no other contributions to the field). The two plots are shown on the

same amplitude scale.
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Figure 9: Above: contour plot of Re[φt], with a = 0.49 and k = 2.9. Note the formation of

an antisymmetric RB wave occurring to the right of the source. Below: A section of the RB

wave in isolation (i.e. with no other contributions to the field). The two plots are shown on

the same amplitude scale.

17



ω1

ω2

ω3

ω4

ω5

ω6

x = −q x = q

y = −q

y = q

Figure 10: The contour of integration Ω, which is made up from ω1−6.

value of Γ
+

appropriate to the infinite array has been used to plot the RB mode in isolation,

and again the agreement between the two plots is good. The behaviour of the circular waves

is also in agreement with the results for the infinite array.

6 Energy distribution

The proportion of energy radiated to infinity by the RB waves and the other contributions to

the field can be determined by applying Green’s second identity to φt its complex conjugate

in the region bounded by the contour Ω shown in figure 10, and then taking the limit q →∞.

Note that the energy radiated by the unit line source is affected by the presence of the array,

therefore the sum of these contributions can vary. Thus, the amount of energy radiated by

the total field is given by

Et = C lim
q→∞

∫
Ω

− Im

[
φt

(
∂φt

∂n

)∗]
ds, (66)

where dn is in the direction of the outgoing normal, and C is a positive constant of pro-

portionality which depends upon the particular physical context. Note that there is no

contribution from the surfaces of scatterers ±q, since the integrand vanishes here. Also,

contributions from (vertically) symmetric and antisymmetric field components are clearly

independent of eachother, since (66) evaluates to zero if the integrand is antisymmetric.

Now, let φrb represent the contribution to the total field due to RB waves, and define

φd = φt − φrb, (67)
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so that φd → 0 as the distance between source and observer is increased. Using these in

(66), we find that the two contributions separate, leaving

Et = Erb + Ed, (68)

where

Erb = C lim
q→∞

∫
Ω

− Im

[
φrb

(
∂φrb

∂n

)∗]
ds (69)

and

Ed = C lim
q→∞

∫
Ω

− Im

[
φd

(
∂φd

∂n

)∗]
ds. (70)

To show that the cross terms make no contribution, one must first observe that any integral

along ω2 and ω5 involving φrb disappears in the limit q →∞, due to the exponential decay

as |y| is increased, On the remaining sections of Ω, we apply an argument similar to Jordan’s

lemma. For example

lim
q→∞

∫
ω1

φrb

(
∂φd

∂n

)∗
ds ≤ lim

q→∞

(
max

(x,y)∈ω1

∣∣∣∣∂φd

∂x

∣∣∣∣) ∫ ∞

a

|φrb| dy = 0, (71)

since the last integral is finite, and φd → 0 as x → ∞. The symmetry of the integrand in

(69) about y = 0 now shows that

Erb = −2C

∫ ∞

a

Im

[
φrb

(
∂φrb

∂x

)∗]
x=q

dy + 2C

∫ ∞

a

Im

[
φrb

(
∂φrb

∂x

)∗]
x=−q

dy, (72)

and an explicit formula is then obtained by using the modal form of the RB wave (27) in the

above. Recall that the left- and right-propagating modes are present for x� 0 and x� 0,

respectively. Since q ∈ Z, equation (16) shows that

eikq cos ψ̃je−ikq cos ψ̃p = 1 (73)

for all j, p ∈ Z, and hence

Erb = −4C|Γ+|2
∞∑

j=−∞

∞∑
p=−∞

cos ψ̃pÃjÃp

| sin ψ̃j + sin ψ̃p|
eika(sin ψ̃j+sin ψ̃p). (74)

This double series is exponentially convergent and therefore its evaluation presents no diffi-

culty.

Equation (70) can be reduced to a real line integral by deforming the contour Ω into a

circle of radius q. A simple calculation then shows that

Ed =
2C

π

∫ π

−π
|D(θ)|2 dθ, (75)

in which D(θ) is the diffraction coefficient given by (62). This last integral must be evaluated

via quadrature. Computed values of Erb/Et for the symmetric and anti-symmetric modes
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Figure 11: Proportion of incident energy radiated to infinity by the symmetric RB waves.

The source is positioned at (X, Y ) = (0,−1).
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Figure 12: Proportion of incident energy radiated to infinity by the antisymmetric RB waves.

The source is positioned at (X, Y ) = (0,−1).
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are shown in figures 11 and 12, respectively, for varying wavenumber, and three different

scatterer sizes. As k is increased, the proportion of radiated energy carried by the RB waves

grows to a maximum and then drops sharply to zero as the cut-off is approached. At the cut-

off, Erb = 0 since the RB modes are then reduced to standing waves. In the case a = 0.49,

the antisymmetric mode accounts for a particularly large proportion of the radiated energy

when k ≈ 2.9. This is again in agreement with the result for the large finite array shown in

figure 9, where the effect of the circular waves is relatively small.

7 Conclusions

The computation of the scattered field that results when an infinite periodic array of closely-

spaced rigid circular cylinders is excited by an acoustic line source presents significant com-

putational challenges due to the fact that surface waves are excited along the array. The

solution is not periodic and sums over all the cylinders in the array are inevitable in the

solution process. Typically these converge very slowly.

In this paper we have shown how the amplitudes of the surface waves that are excited can

be computed accurately and efficiently without having to solve the full scattering problem.

Interestingly, the amplitudes of the left- and right-propagating surface waves are the same,

whatever the source position. The directional dependence of the overall scattered field has

also been deduced. By subtracting off the effect of the surface waves with their computed

amplitude we can reduce the overall problem to an infinite system of equations in which the

coefficients decay like |p|−3/2, p being the number of the cylinder in the array. Of particular

interest is the proportion of the incident energy that propagates to infinity along the array

and we have shown that this can be significant. For cylinders which are almost touching it

can be more than 50%.
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A Schlömilch series and their derivatives

The Schlömilch series

σn(α) =
∞∑
j=1

[e−ijα + (−1)neijα] Hn(jk) (A1)

can be expressed in a form amenable to numerical evaluation using methods found in [13, 14].

Note that

(−1)nσn(−α) = (−1)nσ−n(α) = σn(α). (A2)
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Thus, with ψj defined as in (16), for n = 0, we have

σ0(α) = −1− 2i

π

(
C + ln

k

4π

)
+

2

k sinψ0

+
∞∑
j=1

(
2

k sinψj
+

2

k sinψ−j
+

2i

π|j|

)
, (A3)

where C is Euler’s constant. For n > 0,

σ2n(α) = 2(−1)n

(
e2inψ0

k sinψ0

+
∞∑
j=1

[
e2inψj

k sinψj
+

e−2inψ−j

k sinψ−j

])

+
i

π

n∑
j=0

(−1)j22j(n+ j − 1)!

(2j)!(n− j)!

(
2π

k

)2j

B2j

( α
2π

)
, (A4)

and

σ2n−1(α) = 2i(−1)n

(
ei(2n−1)ψ0

k sinψ0

+
∞∑
j=1

[
ei(2n−1)ψj

k sinψj
+

e−i(2n−1)ψ−j

k sinψ−j

])

+
2

π

n−1∑
j=0

(−1)j22j(j + n− 1)!

(2j + 1)!(n− j − 1)!
B2j+1

( α
2π

)
, (A5)

where Bn(·) is a Bernoulli polynomial. The convergence of these series can easily be accel-

erated; see [14]. Derivatives with respect to the variable α are available directly from the

identities

dψj
dα

= − 1

k sinψj
, (A6)

and

d

dα

(
eiqψj

k sinψj

)
=

eiqψj

k2 sin3 ψj
(cosψj − iq sinψj), (A7)

which hold for all values of j and q. Finally, from equation (16), we note that ψj = 0 and

ψj = π correspond to the points

α = k − 2jπ, (A8)

and

α = −k − 2jπ, (A9)

j ∈ Z, respectively. It now follows from (17) that these are order one (square root) branch

points of the function σn(α).
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Mech. Anal., 8:323–332, 1961.

[14] C. M. Linton. The Green’s function for the two-dimensional Helmholtz equation in

periodic domains. J. Engng. Math., 33:377–402, 1998.

23



[15] D. V. Evans and R. Porter. Trapping and near-trapping by arrays of cylinders in waves.

J. Engng. Math., 35:149–179, 1999.

[16] C. M. Linton. Schlömilch series that arise in diffraction theory and their efficient com-

putation. J. Phys. A, 39:3325–3339, 2006.

[17] Ivar Stakgold. Green’s Functions and Boundary Value Problems. John Wiley & Sons,

2nd edition, 1998.

[18] C. M. Linton and I. Thompson. Resonant effects in scattering by periodic arrays.

Submitted.

[19] D. G. Crighton, A. P. Dowling, J. E. Ffowcs Williams, M. Heckl, and F. G. Leppington.

Modern Methods in Analytical Acoustics. Springer-Verlag, London, 1992.

24


