
Fission of a weakly nonlinear interfacial solitary wave at a step  

Roger Grimshaw1), Efim Pelinovsky2), and Tatiana Talipova2) 

1) Department of Mathematical Sciences, Loughborough University, Loughborough, UK 
2) Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Nizhny Novgorod, 

Russia 
 

March 28, 2007 

 

Abstract: 

The transformation of a weakly nonlinear interfacial solitary wave in an ideal two-

layer flow over a step is studied. In the vicinity of the step the wave transformation is 

described in the framework of the linear theory of long interfacial waves, and the 

coefficients of wave reflection and transmission are calculated. A strong 

transformation arises for propagation into shallower water, but a weak transformation 

for propagation into deeper water.  Far from the step, the wave dynamics is described 

by the Korteweg-de Vries equation which is fully integrable. In the vicinity of the 

step, the reflected and transmitted waves have soliton-like shapes, but their 

parameters do not satisfy the steady-state soliton solutions. Using the inverse 

scattering technique it is shown that the reflected wave evolves into a single soliton 

and dispersing radiation if the wave propagates from deep to shallow water, and only 

a dispersing radiation if the wave propagates from shallow to deep water. The 

dynamics of the transmitted wave is more complicated. In particular, if the coefficient 

of the nonlinear quadratic term in the Korteweg-de Vries equation is not changed in 

sign in the region after the step, the transmitted wave evolves into a group of solitons 

and radiation, a process similar to soliton fission for surface gravity waves at a step.  

But if the coefficient of the nonlinear term changes sign, the soliton destroys 

completely and transforms into radiation.  The effects of cubic nonlinearity are 

studied in the framework of the extended Korteweg-de Vries (Gardner) equation 

which is also integrable.  The higher-order nonlinear effects influence the amplitudes 

of the generated solitons if the amplitude of the transformed wave is comparable with 

the thickness of lower layer, but otherwise the process of soliton fission is 

qualitatively the same as in the framework of the Korteweg-de Vries equation.   
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1. Introduction 

The fission of a solitary wave (soliton) is well known for surface waves passing through a zone 

of rapid depth change, when the incident soliton transforms into a group of the secondary 

solitons (Tappert and Zabusky, 1971; Pelinovsky, 1971, 1977; Johnson, 1972). The same process 

was studied theoretically for internal waves by Djordevic and Redekopp (1978) and Helfrich and 

Melville (1986); see also (Zheng et al, 2001).  Fission of internal solitary waves propagating 

along an inhomogeneous thermocline was observed in the Gulf of Aden (Zheng et al, 2001), and 

while propagating across the continental slope in the South China Sea (Liu et al, 2004). 

Sometimes this process is observed with a changing of polarity of solitons (Liu et al, 1998; Zhao 

et al, 2003; Orr and Mignerey, 2003). In these cited papers for internal waves, the width of the 

transition zone is relatively small compared with a characteristic nonlinear length-scale, but is 

relatively large compared with the wavelength. In this case a WKB-type approximation for linear 

long waves can be used to describe the wave transformation in the transition zone.  This feature 

can also be built into a variable-coefficient Korteweg-de Vries equation to describe the 

transformation of internal solitary waves propagating over the continental slope (see, for 

instance, Grimshaw et al, 2004, 2007).   

On the other hand, the case when the background state changes very rapidly, for instance at a 

step in the bottom topography,  the incident  modal internal wave is transformed into reflected 

and transmitted internal waves with many modes, and this process is more difficult for 

theoretical analysis even when the waves are linear. But, if the fluid stratification is modeled as a 

two-layer fluid, there is only one mode present (interfacial waves), and hence there can be no 

scattering into other modes. This simplified process is studied in this paper, where we analyze 

the fission of an interfacial soliton incident on a step.  Linear wave transformation at the step is 

described in section 2. Then in section 3 we use a Korteweg-de Vries equation to study the 

reflected interfacial wave, and show that only a single soliton forms in the reflected field for the 

case of a transformation from deep to shallow water over the step; otherwise for a transformation 

from shallow to deep water, no solitons form in the reflected field which instead contains only 

dispersing radiation. Again using a Kortweg-de Vries equation, in section 4 we examine the 

fission of the transmitted wave, and show that secondary solitons form together with some 

radiation.  But, in contrast with the case of a surface wave, secondary solitary waves may not 

appear at all if the nonlinearity changes its sign after a step, and only radiation is formed.  Some 

effects of cubic nonlinearity on this fission phenomenon are investigated in section 5. Our results 

are summarized in the conclusion. 
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2. Linear long interfacial wave transformation at a step 

Let us consider the problem sketched in Figure 1. The thickness of the upper layer, h1 is 

constant, and the thickness of the lower layer, h2 is varied rapidly from h2- to h2+ in the vicinity 

of  x = 0. The vertical displacement of the interface is η(x,t), and the layer-mean horizontal 

velocities are u1 and u2 respectively. The density jump on the interface is Δρ/ρ, and the 

acceleration g due to gravity is directed down. We will use the Boussinesq approximation (that 

is, the density jump is weak) and the approximation of a rigid upper lid, which are typical for 

oceanographic applications.  

η(x,t) h1

h2-

h2+

 
Fig.1 Geometry of the problem 

In general, the description of the wave field near the step is difficult task (see for instance, 

Baines, 1995); it contains the propagated waves (reflected as well as transmitted) and non-

propagating evanscent modes.  But, in the long wave limit, the characteristics of the reflected 

and transmitted waves can be found from the conservation of pressure (water level) and the mass 

flux in the lower layer at a step, they are 

 

+− = ηη ,      h2−u2− = h2+u2+.                                                      (1) 

 

In linear long wave theory, each dependent variable satisfies the linear wave equation, with a 

speed c given by      
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The wave field is then expressed as a superposition of an incident and a reflected wave in x < 0 

before the step, and a transmitted wave in x > 0 after the step. After taking into account the 

relationhip between the horizontal velocity and the vertical displacement in each wave 

 

u2 = ±
cη
h2

,                                                                     (2) 

 

 

it is straightforward to find the coefficients of reflection R and transmission T 
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Here c+ and c- are values of the long wave speed (2) in x > 0 after the step and in x < 0 before 

the step, respectively. As expected, these expressions are the same as for surface waves, and any 

special features arising for interfacial waves are due to the dependence of the long wave speed 

(2) on the thickness of the lower layer. More specifically, the reflection and transmission 

properties are determined by the speed jump 
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  ,                                                     (5) 

  

where for convenience we have denoted h2- and h2+ by h- and h+ respectively. It is convenient to 

normalize the depth of the lower layer with the thickness of upper layer and let H = h2/h1. As a 

result, the speed jump is a function of two parameters, the initial depth of lower layer H- and the 

depth jump ΔH=h+/h-: 
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The case ΔH <1 corresponds to the wave transmission from deep to shallow water, and ΔH > 1 

to wave transmission from shallow to deep water.  In contrast to surface waves, the result now 

depends on the initial depth of the lower layer before the step, as well as on the depth jump.  
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When ΔH is small (transmission from deep to shallow water) we have the approximate 

expression  

 

)1( −+Δ≈ HHδ .                                                          (7) 

 

In the opposite case of wave transmission from shallow to deep water, if the depth jump ΔH is 

high, we have another approximate expression 
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and for a very large initial depth there is no difference in the speed of propagation across the 

bottom step. This is simply because the speed of propagation of long internal waves is 

determined by the depth of the narrowest layer if the thicknesses are very different. 

The calculated coefficients for the wave transmission and reflection are shown in Fig. 2. As 

expected, when a wave passes from deep to shallow water the transmitted wave is increased and 

the reflected wave is decreased. On the other hand when a wave propagates from shallow to deep 

water, the transmitted wave is decreased, and the reflected wave has the opposite polarity. This 

conclusion is similar to the behavior for the surface waves at a step (all formulas for this case are 

obtained if formally H- = 0). The main new result for an interfacial wave is manifested if the 

initial depth is large; in this case the wave passes through a step with very little change, as 

explained in the previous paragraph. 
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Fig. 2. Transmission and reflection coefficients of long internal wave on step 

 

3. Reflection of a soliton from a step 

First, let us consider the transformation of a Korteweg-de Vries soliton at a step. The Korteweg – 

de Vries equation (KdV) for an interfacial wave in a two-layer fluid has the following form 
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where again we use the normalization of the depth of the lower layer by the thickness of the 

upper layer, and c is the  long wave speed given by (2).  The solitary wave (soliton) solution of 

(9) is  
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The soliton amplitude is positive if H < 1 (elevation soliton), and negative if H > 1 (depression 

soliton). If H = 1, as is well-known, the interfacial solitons do not exist. We will assume that 

(11) describes the incident wave propagating from the left towards the step, and hence H = H-. 

Taking into account that the soliton amplitude is weak (both the nonlinear and dispersive effects 

are weak, but in balance), the process of the wave transformation at the step can be described to 

leading order in the framework of the linear theory of long interfacial waves. The reflection 

coefficient R was calculated in the section 2, and does not depend on the wave scale. This means 

that to leading order after reflection,  in the vicinity of the step, the reflected wave has the same 

shape as the incident wave, but its amplitude is different, so that near the step, 
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This reflected wave, although it has a soliton-like shape, is now not a steady-state soliton, 

because its width is determined by the initial soliton amplitude, and not by the amplitude of 

reflected wave. Instead, the expression (12) should be used now to solve the KdV equation (10) 

(with c replaced with –c).  As is well-known, the KdV equation is exactly integrable using an 

associated spectral problem and the inverse scattering transform. Indeed in the case of soliton-

like disturbances the spectral problem has an explicit solution (e.g. Drazin and Johnson, 1989). 

The answer depends on the sign of the reflected coefficient. If the wave passes from shallow into 

deep water, the reflection coefficient is negative, and polarity of reflected wave is opposite to 

polarity of the incident soliton. In this case no solitons are produced and the reflected wave 

decays into dispersing radiation. If the wave passes from deep into shallow water, the polarity of 

reflected wave is unchanged, and the disturbance evolves into a finite number of soliton, and 

radiation.  Using the explicit results from the KdV equation (Drazin and Johnson, 1989) it is 

easily to show that only one soliton is formed in the reflected wave, and its amplitude is  

 
2

2
1

4
12 ⎥

⎦

⎤
⎢
⎣

⎡
−+= R

A
Asr .                                                (13) 

 

This expression can be called the “soliton reflection” coefficient, and it does not depend on the 

incident wave amplitude. If the depth ratio is small, the linear reflection coefficient is small too, 

and the soliton reflection coefficient is described by the approximate expression 
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A

Aref ≈ .                                                           (14) 

 

Such a soliton is accompanied by large dispersing wavetrain damped. If the depth ratio is high, 

the linear reflection coefficient tends to 1, and the soliton reflects with the same amplitude. The 

dependence of the “soliton reflection” coefficient on the depth ratio and the initial depth of the 

lower layer is shown in Fig. 3. In deepest water the amplitude of reflected soliton is less than in 

shallow water. Polarity of the formed soliton is the same as polarity of the incident wave: 

positive if H < 1 and negative if H > 1. We again underline that the soliton in the reflected wave 

forms only if the incident wave approaches to shallow water, in opposite case the reflected wave 

transforms into damped dispersive train.  
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Fig. 3. Amplitude of soliton formed in the reflected wave 

4. Transmission of the KdV soliton through a step 

A similar approach can be used to calculate the solitary waves formed in the field of the 

transmitted wave. The transformed wave in the vicinity of the step has a soliton-like shape, but 

its parameters are not the same as for the permanent  soliton;  its amplitude differs by a factor of 

T, and its wavelength differs by a factor of  δ = c+/c- ,  since the temporal structure is not 

changed over the step.  Near the step it is given by   

 

 8



.      ηtr = Atrsech
2 3A

4h1

1− H−

H−
2

c−

c+

x

h1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,           .               (15)               TAAtr =

 

In general such a soliton-like disturbance (15) evolves into a group of solitons and a dispersive 

wave train. But solitons can be formed only if the sign of the nonlinear term is not changed after 

passage over the step. The possible existence of transmitted solitons and their polarity is 

displayed in Fig. 4. In shallow water, when both depths are less then the thickness of the upper 

layer, the polarity of the transmitted solitons are positive, the same as the polarity of the incident 

soliton. In deep water, when both depths are bigger than the thickness of the upper layer, all 

solitons will be solitons of depression. 
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Fig. 4. Polarity of solitons formed in the transmitted wave 

If the sign of the nonlinear coefficient is not changed, secondary solitons can be formed in the 

transmitted wave. Their amplitudes can be also calculated from the inverse scattering technique 

using the same scheme as for the reflected wave,    
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where m = 0, 1, 2, … N-1, and N is the number of  transmitted solitons,   
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All ratios in (16) are functions of the depth ratio ΔH and initial depth of the lower layer H- :  
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If the fluid is very deep on both sides of the step (H- >> 1), the wave passes over the step with no 

change in amplitude (T ≈ 1), but the dispersion coefficient “feels” the thickness of the lower 

layer, and the soliton-like pulse nevertheless transforms into solitons with amplitudes described 

by the simplified asymptotic expressions (see Fig. 5) 
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If the wave transforms from shallow to deep water (ΔH > 1), only one soliton is formed and its 

amplitude decreases with increase of the depth ratio. This decrease of the soliton amplitude is 

only due to the increase in the dispersion. If the wave transforms from deep to shallow water 

(ΔH < 1), but the shallow depth is also large, the number of solitons increases, and their 

amplitudes are increased (see Fig. 5). 

Next, if the wave approaches from “real” shallow water or is transmitted into shallow water, the 

result depends also on the initial thickness of the lower layer. In particular, if the thicknesses of 

both layers after a step are almost the same (H+ ~ 1), the nonlinear coefficient (α+) tends to zero, 

only one small soliton can appear, and its amplitude follows from (16) 
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Fig. 5. Internal soliton transmission in deep water 

On the other hand if the soliton approaches from an incident zone with a small value of the 

nonlinear coefficient (α-) to a transmitted zone with “normal” values of the nonlinear coefficient 

(α+), the number of transmitted solitons is large, and the amplitude of the leading transformed 

soliton is 2TA. The intermediate general case is determines by two parameters and it is rather 

complicated. Fig. 6 demonstrates the maximum number of secondary solitons formed in the 

transmitted wave, if the initial depth H- >1 (the maximum determined from all depth ratios, but 

H+ > 1 also). As indicated above, the number of appeared solitons is large if the initial depth is 

close to 1 (a zone with small values of the nonlinear parameter). It is also large when the initial 

depth is large, and this is due to passage from deep to shallow water. The amplitudes of the 

secondary solitons are shown in Fig. 7 for various values of the initial depth and depth ratio. If 

the initial depth is close to 1 several solitons are formed (for instance, for H- = 1.05 there are 

four solitons but the smallest soliton is not visible). If the initial depth is H- = 2, two solitons are 

formed, but one of them is too small and is not visible. For H- = 5 a third soliton has appeared, 

but it is not visible.  At H- = 20 all three solitons are visible 

If the wave passes over a step in the case when both zones are  shallow water (H-, H+ < 1), many 

solitons are generated if the depth of the lower layer is very small (ΔH << 1), and their number is 

described by the approximation  
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Fig. 6. Numbers of secondary solitons formed in the transmitted wave 
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Fig. 7. Amplitudes of solitons in the transmitted wave 

The amplitude of the first soliton tends to 4.  The amplitudes of the first four solitons are shown 

in Fig. 8. Clearly seen is the increase of the secondary soliton amplitudes if the transmitted depth 

 12



is small as seen above in (21). If the initial depth is close to 1 (the zone of small values of the 

nonlinear coefficient) the number of secondary solitons is increased for any depth ratio. 
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Fig. 8. Amplitudes of the secondary solitons formed in the transmitted wave in shallow 

water 

5. Higher-order nonlinear effects for soliton transmission 

over a step 

The Korteweg-de Vries equation is valid for weakly nonlinear waves when the amplitude is less 

than the thickness of both layers. But if the density jump lies near the middle of the fluid depth, 

the quadratic nonlinear term becomes small and high-order nonlinear effects (cubic nonlinearity) 

have to be taken into account. The extension of the Korteweg – de Vries equation for two-layer 

fluid was derived first by Kakutani and Yamasaki (1978), and is given by the extended KdV (or 

Gardner) equation,   
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where the cubic nonlinear coefficient is 
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It is important to mention that cubic nonlinear coefficient is negative for all ratios of the 

thickness of both layers. Steady-state solitary wave solution of the Gardner equation can be 

easily found 
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where γ is a free parameter characterizing the inverse width of the soliton. The soliton amplitude 

is  

B
DA
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and is positive for positive values of the coefficient of quadratic nonlinearity. For the case here, 

when α1 < 0, 0 < B < 1. The soliton amplitude varies from small values (B ≈ 1), when the 

Gardner soliton (24) coincides with the Korteweg – de Vries soliton (11), to the limiting value (B 

≈ 0) 
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when the soliton has a “table-top” shape. 

The influence of the cubic nonlinear term can be demonstrated by two examples of wave 

transformation over a step. First is the case when the incident wave propagates in a zone of a 
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small value of the coefficient of the nonlinear quadratic term and so is described by the Gardner 

soliton (24). After the step the wave has the same shape but with a different amplitude and width 
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If the transformed wave propagates in a fluid with a “normal” (that is, not too small) value of the 

coefficient of the nonlinear quadratic term, expression (28) can be used as an initial condition for 

the Korteweg – de Vries equation. The solution of the associated spectral problem with the initial 

condition (28) cannot be obtained in explicit form as for soliton-like disturbances, but the main 

conclusions are evident. The Gardner soliton (24) is wider than the KdV-soliton at the same 

amplitude (the same is the case for the transformed pulse after a step), and therefore, the number 

of secondary solitons is increased. In particular, if the incident wave is a table soliton with 

amplitude close to the limiting amplitude (27), the number of transmitted solitons can be 

described by the approximate formula 

 

∫
+∞

∞−

≈ dxxxN tr |)0,(| η ,                                                            (29)   

 

and the amplitudes of the first (leading) soliton is  close to  

 

Asol ≈ 2T
α−

|α1+ |
.                                                                (30) 

 

The main difference with the KdV scenario is in the number of transmitted solitons. 

The second example is when a KdV-soliton is incident on the step, but after the step there is an 

anomalously small value of the coefficient of the nonlinear quadratic term. In this case the 

transmitted wave has the KdV-soliton-like shape (15) again in the vicinity of the step. But its 

amplitude is significantly bigger than the limiting amplitude (27). As is shown in Grimshaw et al 

(2002), such a disturbance in general evolves  into one table-shape soliton and, perhaps, also 

smaller KdV-solitons. Their amplitudes can not exceed the limiting value α+/|α1+| (27), and in 

this case we may say that the amplitude of table soliton does not depend on the incident soliton 

amplitude A, in contrast  with the prediction of the KdV theory, see (20). More precisely, the 
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number and amplitude of the transmitted solitons can be found from the discrete eigenvalues of 

the associated spectral matrix problem   

 

Ψ=ΩΨ k ,                     ⎟
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where  
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These parameters are obtained after reducing the Gardner equation (21) to canonical form with 

coefficients 6 in front of each nonlinear term. The spectrum of (31) can be found numerically, 

but one limiting case can be analyzed analytically. If the coefficient of the quadratic nonlinear 

term α+ tends to zero, the effective wave amplitude B tends to infinity, but its effective length L 

tends to zero, and the disturbance (32) can be considered as the  δ-function with effective mass 
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As it can be shown from the analytical result for a rectangular box disturbance (Grimshaw et al, 

2002), only one spectral level exists in (31), and it can be found analytically,  

 

2
)tanh(Mk = .                                                           (34) 

 

The amplitude of the transmitted soliton is expressed through this spectral eigenvalue k (now in 

dimensional variables),  
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If the mass is large, a table soliton is formed; if the mass is small, the a KdV soliton will form; 

this last example was considered early, see (20). If the amplitudes of the KdV and Gardner 

solitons are normalized by the limiting value (27), the following relation between them can be 

found (Fig. 9) 

 

lim

lim
2

lim /2sech1
/2tanh

AA
AA

A
A

KdV

KdVGar

+
= .                                                       (36) 

 

If the amplitude of the KdV soliton is small, the amplitude of the Gardner soliton coincides with 

it, and the effects of the cubic nonlinearity can be ignored. If the amplitude of the KdV soliton is 

large (compared with the limiting amplitude), the amplitude of the Gardner soliton tends to the 

limiting value, and the soliton has a table shape. 
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Fig. 9. Relation between amplitudes of the Gardner and KdV solitons when the wave 

transformed to zone with small values of the quadratic nonlinear term; amplitudes are 

normalized on limiting value (27) 

 

We have analyzed as above the soliton part of the wave field for the transmitted wave. A 

dispersive wavetrain tail is also induced for both the reflected and transmitted waves. But this 

wave tail attenuates with time, and so the solitons will be the main representatives of the wave 

field for large distances. 
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6. Numerical Simulation of Soliton Generation in the 
Transmitted Wave 

To demonstrate the process of the soliton fission, we performed some direct numerical 

simulations of the transmitted wave in the framework of the Gardner equation (22). We assume 

that the initial dimensionless thickness of the lower layer is 10, and after the step is 1.5. The 

transmitted coefficient is T = 1.1 according to (4), and therefore the linear amplification of 

interfacial wave after a step is not too large. The initial soliton amplitude of the incident wave is 

varied from 0.1 (KdV) to 1.0 (Gardner). Numerical solution of the Gardner equation with 

constant coefficients calculated for the case after the step is performed using a finite-different 

scheme described by Berezin (1987). Periodic boundary conditions are applied in the spatial 

domain,  0 < x/h1 <  2000, and the umber of points is 8000. The time step is chosen from the 

Courant criterion. In computing, time it is normalized on h1/(g′h1Δρ/ρ)1/2. 

Fig. 10 demonstrates the generation of secondary solitons in the field of the transmitted wave. In 

the case of weak initial amplitude (0.1) two solitons are generated with amplitudes 0.136 and 

0.027. According to the KdV theory (16) the soliton amplitudes are 0.131 and 0.013. The 

agreement is quite good especially for the first soliton. With an increase in the initial wave 

amplitude, the second soliton disappears, and the first soliton transforms to a table-top soliton 

with an amplitude close to the critical value 0.245, according to (27). Such behavior corresponds 

to the theoretical scenario described in section 5. The amplitude of dispersive tail is also 

increased. 
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Fig. 10. Soliton appearance in the field of transmitted wave 

7. Conclusions 

In this paper we have considered the transformation of a weakly nonlinear interfacial solitary 

wave incident on a step in the framework of a two-layer flow formulation. In the vicinity of the 

step the wave transformation can be described using the linear theory for long interfacial waves, 

and the coefficients of wave reflection and transmission are calculated. A strong transformation 

occurs for transmission into shallower water, and a weak one for transmission into deeper water. 

Far from the step, the wave dynamics can be described by the Korteweg-de Vries equation, 

which is fully integrable. The reflected and transmitted waves in the vicinity of a step have 

soliton-like shapes, but their parameters do not allow them to satisfy the steady-state soliton 

equations. Using the inverse scattering technique it is shown that the reflected wave evolves into 

a soliton and dispersive radiation if the incident wave meets a step from deep to shallow water, 

and conversely, dispersive radiation only if the wave meets a step from shallow to deep water. 

The dynamics of the transmitted wave is more complicated.  In particular, if the coefficient of the 

nonlinear quadratic term in the Korteweg-de Vries equation is not changed in sign after the step, 

the transmitted wave evolves into a group of solitons and dispersing radiation, and qualitatively 

this process is similar to soliton fission for surface gravity waves. If the coefficient of nonlinear 

term changes sign, the soliton is destroyed completely and transforms into dispersing radiation. 

The effects of cubic nonlinearity are studied in the framework of the Gardner equation, which is 

also integrable. Higher-order nonlinear effects influence the amplitudes of the generated solitons 

if the amplitude of the transformed wave is comparable with the thickness of lower layer, but 

qualitatively the process of soliton fission is the same as in the framework of the Korteweg-de 

Vries equation.   
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Although our results are for a very simple two-layer model of the density stratification, and for a 

very simple representation (a step) of an abrupt change in bottom topography, we expect that our 

results will form a useful guide to the behaviour of oceanic internal solitary waves, propagating 

on the oceanic thermocline, incident on the continental shelf from the deep ocean for the 

situation when the wavelength is significantly greater than the horizontal scale of the topographic 

change. In this scenario we have identified those wave and physical parameters which lead to 

substantial fission of the transmitted wave. The alternative case when the horizontal scale of the 

topographic change is much greater than the wavelength can be studied in the framework of a 

variable coefficient KdV, or Garder, equation (see Grimshaw et al, 2004, 2007, for instance).  

Although fission may occur in this case too, the number and amplitudes of the transmitted 

solitons is quite different from those found here, in part due to the role played by the magnitude 

of the transmission coefficient The intermediate case when the horizontal scale of the 

topographic change is comparable with the wavelength is apparently not readily amenable to 

analysis, and requires numerical simulation.   
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