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Abstract. This paper reports on an exploratory study of mathematicians’

views on the teaching and learning that occurs in a course designed to intro-

duce students to mathematical reasoning and proof. Based on a sequence of
interviews with five mathematicians experienced in teaching the course, I iden-

tify four modes of thinking that these professors indicate are used by successful

provers. I term these instantiation, structural thinking, creative thinking and
critical thinking. Through the mathematicians’ comments, I explain these

modes and highlight ways in which students sometimes fail to use them effec-
tively. I then discuss teaching strategies described by the participants, relating

these to the four modes of thinking. I argue that teaching aimed at improv-

ing structural thinking tends to dominate, and that courses that introduce
proof, regardless of classroom organization, should address all four modes in a

balanced and integrated way.

1. Introduction

The research reported here addresses the teaching and learning of mathemat-
ical proof through the perspectives of mathematicians who teach a course entitled
Introduction to Mathematical Reasoning. This is a “transition course,” designed to
facilitate the move from calculation-oriented mathematics courses to proof-oriented
courses such as real analysis and abstract algebra. Like other such courses, it in-
volves elementary work on logic, set theory, relations, functions, and various types of
proof (contradiction, mathematical induction, etc.), with some of this done within
mathematical topics such as number theory and combinatorics. One goal is to fa-
miliarize students with the mechanics of proof, so that when they enter upper level
courses they will be able to concentrate on the content.

Research on transition courses has focused largely on two issues. One is stu-
dent learning in such contexts, with a frequent finding that this is less than we
might hope (Moore, 1994). The second is alternative pedagogical approaches to
introducing proof, with researchers investigating collaborative classes (Blanton &
Stylianou, 2003). The study reported here took a different approach, investigating
the teaching and learning that occurs in this particular transition course from the
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perspective of the mathematicians for whom it is part of their regular teaching.
It involved in-depth interviews with five such mathematicians, and I aimed to in-
vestigate the participants’ experiences as they reported them, with no attempt to
establish whether their comments constituted an accurate report of their own or
their students’ behavior in the classroom. This was a deliberate decision, taken for
three reasons. First, because I wanted to establish a relationship with the profes-
sors based on good faith and respect, which would have been difficult if they felt
that their comments and their teaching stood to be negatively evaluated. Second,
because I believe that if the mathematics education community wishes to engage
mathematicians in discussions about their teaching, it needs to understand what
they perceive as their most pressing concerns and to take these seriously. Third,
because the participants have an enormous amount of collective experience that
constitutes a rich source of information about the learning and teaching of proof in
its own right.

This paper begins with a review of the mathematics education literature on
the teaching and learning of proof and a detailed description of the methods used
to collect and analyze the interview data. Following this, the results are reported
in two distinct sections. The first of these, Section 5, describes the four modes
of thinking that I discerned in the professors’ discussions of proving, together with
their comments on their students’ use of these modes. The other, Section 6 describes
the teaching strategies the professors use, relates these to the four modes, and
concludes with the main points of an ongoing debate among the mathematician
participants about what should be the nature of the course. In Section 7, I discuss
ways in which I believe these results should influence our thinking about how we
teach transition-to-proof courses and other advanced mathematics courses. The
paper concludes with a short discussion of some remaining issues and directions of
ongoing research.

2. Previous Work on the Teaching and Learning of Proof

There has been much research on university students’ difficulties with both
constructing and evaluating proofs. Students’ standards of justification may differ
from those of mathematical proof, so that they offer empirical arguments where
deductive ones are required (Harel & Sowder, 1998; Recio & Godino, 2001). Also,
students may be unaware of the importance of definitions in constructing proofs
(Edwards & Ward, 2004; Vinner, 1991), and they often find it difficult to under-
stand or work with many of the definitions of advanced mathematics (Dubinsky,
Elterman, & Gong, 1988; Moore, 1994). This may be partly attributed to the fact
that they have less familiarity with examples of concepts than do their teachers
(Moore, 1994) and less inclination to generate examples in order to facilitate un-
derstanding of a new definition (Dahlberg & Housman, 1997). When evaluating a
proof given by others, students may base their judgment on its surface resemblance
to formal arguments rather than on its content (Segal, 2000). They may not have
the skills necessary to identify the logical structure of a mathematical statement
or proof, particularly when this involves interpreting quantifiers and conditional
statements (Dubinsky & Yiparaki, 2000; Durand-Guerrier, 2003; Weber & Alcock,
2005). As a result, students cannot reliably judge whether a proof establishes a
given result (Selden & Selden, 2003). Overall, they may come to view proofs and
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proving as unrelated to their own ways of thinking about mathematical concepts
and relationships (Moore, 1994; Raman, 2003).

There has been rather less research on how students can come to understand
the nature of proof and master the art of proving. Much of the extant work involves
theoretical arguments (e.g., Simpson, 1995) and case studies (e.g., Pinto & Tall,
2002), both of which suggest that there may be at least two “routes” to proof. One
of these is a “formal” route in which formal routines and manipulations are first
established and later come to be invested with meaning, and the other a “natural”
route in which informal ideas and images are progressively refined and linked to
formal definitions (Pinto & Tall, 2002; Simpson, 1995; Weber, 2001). Suggestions
for ways to improve the teaching of proof tend to reflect one or other of these
routes. Some suggest a systematic approach based on a solid grounding in logic
and its associated linguistic expressions (Epp, 1998, 2003; Selden & Selden, 1999),
or on a presentation or sequence of problems that can lead students to more easily
see the structure of certain proof types (Harel, 2002; Leron, 1985). With a similar
focus on structure, empirical studies have specified skills students need to produce
simple proofs in a given area (Gholamazad, Lijedahl, & Zazkis, 2003; Weber, 2006),
and have investigated technological environments that can focus students’ attention
on the axiomatic development of a mathematical theory (Cerulli & Mariotti, 2003).
Suggestions and research in keeping with the “natural” route to proof tend to focus
on classroom environments in which students and teacher work collaboratively,
investigating problems, formulating conjectures, debating the validity of arguments
and so forth (Alibert & Thomas, 1991; Blanton & Stylianou, 2003; Rasmussen,
Zandieh, King, & Teppo, 2005; Yackel, Rasmussen, & King, 2000).

While we have these suggestions for how to improve the teaching of proof-
oriented mathematics, there have been few empirical studies on how transition
courses are usually taught. Both Moore (1994) and Weber (2004) have reported
on the teaching of individual professors, and on the articulated rationales these
professors give for presenting proof-based material in a certain way. However, I
am not aware of any research that seeks to synthesize the knowledge, views and
methods developed by mathematicians who teach introductory proof courses. This
study takes a step toward addressing this.

3. Research Context

The Introduction to Mathematical Reasoning course described here is offered in
a primarily lecture-based format at a large state university in the United States and
is a prerequisite for the majority of the upper level mathematics courses. Around
100 to 120 students per semester take it, approximately 40 of whom will go on to
be mathematics majors. The course is taught in classes of 20 to 25 students that
meet for two 80-minute periods per week during one 14-week semester. The small
class size allows professors to have relatively close contact with individuals and to
become familiar with their work. The five mathematicians who took part in this
exploratory research were invited to participate because they were teaching the
course during the 2002-2003 academic year, when the interviews took place. Four
of the five had taught the course several times and had also participated in more
and less formal discussions with each other about such things as its design and the
choice of textbook. All had also taught content-based upper level courses at either
the research site or other institutions and they were familiar with the problems
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that Introduction to Mathematical Reasoning was introduced to alleviate. Their
comments reflect direct experience in teaching the course as well as their knowledge
of each others’ views on the course.

4. Methods

4.1. Data Collection. The five participants were interviewed individually,
and the interviews were audio recorded and transcribed. In an initial interview
lasting an hour or more, each was asked first to speak in general about their experi-
ence with the course. They were then asked more specifically about their thoughts
on:

• the most important things students should learn in the course.
• common student mistakes or misunderstandings, and why these arise.
• strategies they used in trying to teach this material, why they used these,

and whether they found them to be successful.
• what they would like to see come out of this research.

It was clear that all of the participants had given considerable thought to the
teaching and learning of proof. They offered many well-articulated conceptualiza-
tions of the problems they had encountered, and reflections upon their attempts
to address these. However, these conceptualizations naturally varied from partic-
ipant to participant, and the pedagogical approaches they reported were designed
in response to individual interpretations of students’ behavior. In addition, there
appeared to be disagreement among the participants on some points. My goal was
to synthesize the issues raised, so that each participant could recognize his or her
own experience while relating this to a coherent overall framework. In order to
accomplish this I analyzed the transcripts of these first interviews in the manner
described by Glaser (1992), as detailed below.

4.2. Data Analysis. First, I added conceptual descriptions to each tran-
script. These were short phrases written to capture the primary conceptual content
of each of the participant’s comments. Concurrently, for each eight paragraphs of
the participant’s speech, I wrote a summary memo. These memos summarized the
content of my conceptual descriptions, thereby providing a condensed version of the
conceptual content of each interview. These descriptions and memos were written
on a rotating basis, switching from one participant to the next after each summary
memo, in order to facilitate synthesis of the ideas raised and to avoid becoming
focused on the opinions of a single participant.

During this process, I also wrote theoretical memos about questions arising from
the data. These typically contained my thoughts on points that needed clarifying,
on possible theoretical relationships between issues raised, and on links to extant
theoretical concepts and empirical studies. All memos were written in an informal
style, the aim being to exhaust ideas rather than to produce a polished product
(Glaser, 1992). However, I took care to indicate, through the language used, which
ideas were grounded in the data and which were my own conjectures, questions
or speculations. At this stage, all memos were kept in one file in the order in
which they were written, and each was headed with a reference to the interview
and line(s) that prompted its writing. An example of a section of transcript and my
accompanying conceptual descriptions and summary and theoretical memos can be
seen in the appendix.
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Next, I sorted the file of memos. I identified the main substantive and/or theo-
retical content of each, and placed it in a new file under one or more short headings
describing this content. Each memo added was assigned a new heading, or added
under one or more existing headings, possibly prompting some reconsideration of
the wording used for these. As this file became longer, these headings and their
associated memos were progressively subsumed under higher-level headings. This
resulted in a flexible system of categories that could be viewed at different lev-
els, and in which lower level headings, together with their memos, could be moved
around as necessary. A separate file was also kept of specific questions that I wanted
to ask in subsequent interviews.

I found this to be a more satisfactory way of managing this exploratory data
than straightforward “coding” of the transcripts. Such coding usually involves clas-
sifying data as it is read, and can tempt the researcher to assign short codes at an
early stage, so that later data becomes skewed into prematurely-specified categories
and the focus is upon labeling rather than upon the relationships between the con-
cepts that the codes describe. The method described here separates memoing and
sorting into two distinct stages, so that at the time of writing the initial sum-
mary and theoretical memos I was free to express each conceptual description and
theoretical question as accurately as possible. The sorting then focuses on the con-
ceptual and theoretical content of the memos, with the eventual category headings
playing the role of short codes. Note that by the time these headings are fixed, they
are automatically attached to references to the relevant data. Naturally, this does
not mean that another researcher would use the same descriptions or ask the same
theoretical questions. But it does avoid an early decision either to focus on some
parts of the data at the expense of others or to prematurely specify terminology. It
thus allows the data as a whole to drive the construction of the category system.

After this process was completed for the initial interviews, I designed second
and third interviews based on the question file, and on reading the main file for
any areas that seemed under-represented given their importance in the emerging
category system. With one exception (Professor 4, who had retired), all of the
professors took part in these follow-up interviews, which again lasted approximately
one hour. I analyzed each new interview in a similar way to that described above: a
file was created of summary and theoretical memos, and once it was completed these
were sorted into the existing system, modifying this system where appropriate.

Finally, a two-hour seminar was arranged in which I presented my main findings
to the four remaining professors and a colleague from mathematics education. This
was an opportunity for all of the participants to respond both to each other’s views
and to my overall formulation of a theoretical framework on the basis of the data.
The seminar was also audio recorded and the participants’ comments analyzed.

4.3. Form of the Results. The participating professors spoke about many
practical issues including ongoing feedback and assessment, the difficulty of finding
an appropriate textbook, the lack of a coherent body of material in the course,
and the need to maintain a certain level of emotional comfort on the part of the
students. However, the discussions were primarily centered around how to account
for the fact that students would frequently make errors in surprisingly simple log-
ical situations, and how to help them to avoid such errors and make progress in
writing correct proofs. As the analysis progressed, therefore, the category that
emerged as core was “reasoning.” This was subdivided into four modes of thinking
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that the professors, as a group, expected a person to engage in while proving, but
with respect to which they often found their students to be lacking. Following lan-
guage used by the professors, I term these modes instantiation, structural thinking,
creative thinking, and critical thinking. This is a coarse breakdown, and I do not
claim that the list is exhaustive, based as it is on self-reports of only five (albeit
experienced) participants. Indeed, it was not the case that each professor placed
equal emphasis on all four modes; each had developed a range of different emphases
in thinking about these issues. However, each recognized all four in the seminar
discussion, and none remarked that any major issue had been neglected. I therefore
put the classification forth as appropriate for this paper’s aims of describing these
professors’ experiences (their goals for student learning, their teaching strategies,
and their concerns about these) and providing a framework for further discussion.

5. Results: Four Modes of Thinking

This section describes the four modes of thinking. Each is defined, as in Table 1,
by its purpose for the prover, that is, by the interim goal during a proof attempt that
its use addresses. To facilitate later discussion, each is also classified as semantic or
syntactic, where I define semantic modes to be those that involve thinking about
the mathematical objects to which a statement refers, and syntactic modes to be
those that involve thinking about and manipulating a statement based on its form
(for more on this classification, see Weber & Alcock, 2004).

In Sections 5.1 through 5.4, each of the four modes are described in detail
through professors’ comments, which also serve to highlight what they would like
students to learn in the course. As mentioned above, the classification into modes
is coarse, so there are cases in which several different skills or strategies would
contribute to the goal of one mode. For the sake of clarity the content of Sections 5.1
through 5.4 is restricted to presentation of interview excerpts. Commentary upon
links with other research is postponed until Section 5.5 and teaching strategies
are discussed separately in Section 6. Throughout the interview excerpts, “. . . ”
indicates a pause or hesitation and “[. . . ]” indicates that one or more short phrases
has been omitted.

Table 1. Four Modes of Thinking

Mode Class Purpose
Instantiation Semantic To meaningfully understand a mathematical statement

by thinking about the objects (particular or generic) to
which it applies

Structural
thinking

Syntactic To generate a proof for a statement by using its for-
mal structure (making formal deductions based on the
statement and/or associated definitions and known re-
sults)

Creative
thinking

Semantic To examine instantiations of mathematical objects in
order to identify a property or set of manipulations that
can form the crux of a proof

Critical
thinking

Semantic To check the correctness of assertions (by checking for
counterexamples and for properties that are implied or
should be preserved)
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5.1. Instantiation. Instantiation is a semantic mode, the goal of which is to
meaningfully understand a mathematical statement by thinking about its referent
objects. I use the term broadly, to include thinking about generic examples or
images as well as particular objects. The professors talked about instantiation as: a
natural response to a new definition, an activity that is necessary for making sense of
a new definition, a way to understand the implications of choosing a certain property
as a definition, and a way of making the material seem less abstract and more
accessible. They noted that students often do not spontaneously instantiate for such
purposes and may resist inducements to do so. The majority of the quotations in
this section come from Professor 1, who had given the most thought to this mode.
Both creative and critical thinking build on the use of instantiations, and their
respective sections include more comments from other professors.

Professor 1 described instantiation as a natural activity that is necessary for
making sense of a new definition.

P1: So one of the things, again, that’s second nature to me but it’s not to
them, is that if I see a definition, I immediately instantiate it. You
know, just try some examples of this definition, and try to fit it in.

P1: What happens is, you know, that you describe a new definition, you
say “let f be a function, let x be a real number, we say that. . . ” and
then “some relationship between f and x holds if . . . blah blah blah.”
So then what they have to do, they have to realize that this definition
only makes sense in the context of, I have to have a function in mind
and I have to have a [number] in mind.

Professor 5 described the way in which instantiations (in this case, imagined
sets of integers and apples) can be used to understand the implications of using a
certain property as a definition.

P5: We started thinking through, um, you know, what are the implica-
tions of defining a set to be simply a collection of unordered objects?
[. . . ] So we think through, what happens with integers, and what
happens with apples and different collections of things, and, um, you
know if you have five apples in a set, is that the same as having one
apple, for example?

Professor 4 described a way in which an instantiation can make the abstract
concept of function seem more accessible.

P4: My guess is that the notion of functions between arbitrary sets is too
abstract for them. I think they can’t. . . picture it. I mean I keep
telling them to try picturing a function as like shooting the elements
of one set to the other set. Make it very physical. Because, if they
can see these things, these things are not hard.

Regarding students’ behavior, Professor 1 noted that his students often do not
instantiate mathematical statements at times when this would be appropriate, and
that he encounters resistance when he encourages them to do so.

P1: And what they’ll do is typically if you have a sequence, you know, if I
have a sequence definition to use in the rest of the problem, and they
don’t understand the definition, they’ll just skip that sentence and go
on. I will. . . they will come in for help on a problem, and five or ten
minutes into the discussion I’ll realize that, that they never bothered
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to process this particular definition. They have no idea what this
means.

P1: I also tell them, things like, before you try to prove a statement,
let’s say it’s a “for all, something,” then, you should look – illustrate.
Write down a few illustrations of this theorem. So pick some exam-
ples, just so you can see how, how this theorem works. So maybe you
don’t see exactly how it’s going to help you do what you have to do,
but trust me, it will. [. . . ] And they just refuse to do this. They just,
they just won’t do it.

5.2. Structural Thinking. Structural thinking is a syntactic mode, the goal
of which is to generate a proof for a statement by using its form; that is, by in-
troducing appropriate definitions and making deductions from either these or the
statement itself according to the rules of logic. The professors talked about struc-
tural thinking as: allowing the logic to drive the steps of a proof, a way to approach
proving systematically, a way to reduce the complexity of the proving process, a
sensible first approach when trying to construct a proof, and a way to handle tasks
such as negating statements involving multiple quantifiers. With regard to stu-
dents’ work, they noted that students often lack skills that are needed for effective
structural thinking. These include knowledge of, and inclination to introduce, rel-
evant definitions, ability to identify the logical structure of a sentence, ability and
inclination to make mathematically correct interpretations of connectives such as
“and” and “or,” care in the precise use of symbols and rules, and ability to write
one’s own statements clearly. In this section we hear from all five professors, with
particular focus from Professor 3 on the importance and advantages of systematic-
ity and precision, and from Professor 2 on the errors students make in the use of
mathematical language.

Professor 1 remarked that it is often possible to make progress on a proof using
structural thinking.

P1: Particularly early on when you’re doing proofs, there’s a certain
amount of steps of the proofs which are just sort of. . . driven by the
logic. You know if you just, carefully write down the definitions of
what you’re doing, and you look at what you’re trying to show, then
you almost have to do certain things, as long as you’ve mastered the
logic.

Professor 3 aims to teach students to systematically make use of this logical
structure. He sees this as a way to make the task of proving easier by reducing the
number of decisions that need to be made.

P3: So what I try is to have things very systematic. [. . . ] We should really
get to the point, where if I give you, if I give the students the definition
of limit, “for all epsilon blah blah blah. . . ,” just mechanically we want
to prove, for all epsilon, blah blah blah. There is only one rule that
enables us to “prove for all epsilon, blah blah blah.” Therefore there
is only one way to start the proof. “Let epsilon be arbitrary, we will
prove blah blah blah.”

P3: My dream is always – I mean it seems to me that when one makes a
thing very minimal in this way, this has a very positive side, which is
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that. . . you know when there is only one thing you can do, then it’s
much easier to know what you can, what you should do.

With regard to the students’ work, Professor 3 noted that students may not
state definitions correctly and Professor 4 commented on the fact that they may
not introduce definitions when this would be appropriate.

P3: For instance, Question: “Define even.” Answer: “Even is when it’s
multiplied by 2.” Things like that.

P4: I mean like for example. . . ah. . . show that two sets are equal. The
only way you can really show that the – you give a definition, sets are
equal if they have the same elements, okay? And. . . so that’s what
they have to show. And they sort of don’t get that. They start with
some formulas, they start some manipulations and they don’t get the
fact that. . . there’s a definition.

Professor 2 commented on students’ lack of experience in parsing sentences,
and offered a variety of instances in which students’ uses of connectives (in this
case, “and” and “so”) are inconsistent with their use in formal mathematics.

P2: There is no formal grammar taught. I – next to none of my stu-
dents had ever heard the word “parse” used about English language.
They’d heard it, some of them knew it from computer programming,
but almost none of them had ever. . . they don’t, they’re unfamiliar
with the names for parts of a sentence.

P2: I was once again surprised at how many kids don’t hear the difference
between. . . “the solutions to this equation are 3 and 4,” and “x is a
solution to this equation if x is 3 and x is 4.”

P2: But students who would say, “we want to prove this, so that. . . ” - it
was never clear to me whether they meant “so we can conclude that,”
or “so we need to verify that.” And there were a lot of proofs which
would be correct, if I could only infer that they meant “so we need to
verify. . . so we need to verify. . . so we need to verify. . . and then this
last one is clearly true so everything stacks up.”

Professor 3 commented on students’ laxity regarding mathematical precision,
in particular their tendency to write symbols incorrectly and to misquote given
rules.

P3: When I tell you that the symbol is this, it’s exactly that. Not the
symbol turned around, or upside down, or– okay. If I tell you that
the rule says this, like there is a rule that says that if a is less than b
and c is less than d, then a plus c is less than b plus d, that’s it. You
cannot change the b plus d into b times d. [. . . ] Whereas the students
seem to think that there is an enormous amount of flexibility.

Finally, both Professors 1 and 3 commented on the way in which an absence of
precision in students’ writing impedes their own efforts to evaluate students’ proof
attempts.

P1: [I say] “So now I want you to read your argument, and I want you to
identify – so there is a place in your argument where you lied to me.
And there must be a critical place.” [. . . ] So of course at this point
they’re not writing proofs. They’re not even writing arguments that
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you can apply this kind of analysis to. I mean it’s sort of so vague or
so diffuse.

P3: Most of the proofs, ideas in the homework. . . I cannot even tell what’s
wrong with them. I cannot even pinpoint the step where it goes
wrong.

5.3. Creative Thinking. Creative thinking is a semantic mode, the goal of
which is to examine instantiations of mathematical objects in order to identify a
property or set of manipulations that can form the crux of a proof. The professors
spoke of two ways to do this: a direct method in which one experiments with an
example in the hope of finding an argument or sequence of manipulations that will
generalize, and an indirect method in which one attempts to build a counterexam-
ple and tries to identify a reason why this cannot be done (an informal analogue of
proof by contradiction). Once again, the professors’ comments indicate that they
consider such thinking natural, but that their students do not use this mode effec-
tively. Reasons include a lack of inclination to instantiate (described in Section 5.1),
incorrect understanding of the kinds of objects for which certain properties might
hold, and the tendency to rely on empirical rather than property-based arguments.
Professors 1, 2, 3, and 5 made comments of this type.

The professors often cited the direct method as a strategy for constructing an
induction argument, as in this comment from Professor 5.

P5: See if you can get from 2 to 3, if you can’t get from n to n plus 1.
The indirect method was described in the context of universal statements, by

Professors 1 and 2.
P1: The way I often think about a proof is that, you know you imagine

this as, try to beat this. Meaning, try to find a counterexample.
[. . . ] If you think about the reason why you were failing to find a
counterexample, okay, then, that sometimes gives you a clue, to why
the thing is true.

P2: Then if it’s an existential statement I look to see whether I can pro-
duce an example. And if it’s a universal statement I probably try to
show that I can’t find a counterexample.

When the interviewer commented that it seems non-obvious that one would try
to prove a statement by thinking about how it could never not hold, Professor 1
explained why he thinks this a natural way to proceed.

P1: So why do I think that this is a natural way to go about it? Um. . . well
I, I’ll make a statement which I haven’t thought about before. The
natural, the sort of natural thing that our brains can do, is sort of
build examples and check them. Okay, and. . . all you, you know if one
thinks of universal statements as saying that it’s really a statement
of impossibility, it’s the negation, right? It’s a statement that you
can’t. . . do something. And the way you understand that you can’t
do it, is by thinking about doing it.

Regarding students’ work, both Professors 3 and 5 cited instances in which a
student did at least cursorily examine instantiations of appropriate objects (num-
bers, in these cases), but failed to make an argument in terms of properties. In
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Professor 3’s case, the student had been asked to establish that 1997 is a prime
number. In Professor 5’s case, a student was addressing an examination question
requiring a proof that if the sum of two primes is odd, then one of the primes must
be 2.

P3: So then I asked her in class, “How do you know that 1997 is prime?”
The idea being that she would say “Well I checked,” in which case
I was going to answer, I was going to say “Okay, you tell me that
you have checked. But why should I accept that?” Okay? That was
going to be the second part, but then I didn’t even get there because
then she said, “It looks like a prime to me.” That’s what she said.

P5: I mean there was one student who just added. . . thirty things to-
gether. . . No, excuse me, she added 2 – she added 2 to every other
integer, and got something prime. Got something odd, or prime or
something like that.

5.4. Critical Thinking. The goal of critical thinking is to check the cor-
rectness of assertions in a proof. In theory this may be achieved syntactically, by
checking the form of the deductions and perhaps providing subproofs (see, for ex-
ample, Selden & Selden, 2003). However, the professors in this study rarely made
comments that related to such a process. Rather, critical thinking emerged as a se-
mantic mode involving searching for possible counterexamples, checking for implied
properties that are false and/or checking for properties that should be preserved.
Regarding students’ work, the professors’ comments indicate that students may not
perform checks using any of these methods, and they express some exasperation
about this. This section includes comments from Professors 1, 2, 3 and 5.

Professor 5 described the process of checking for potential counterexamples as
she tries to teach it to her students.

P5: I taught them to, you know, [make a] mathematical claim, [then]
stop. [. . . ] Think through examples. Have a couple of examples, and
then try to see if there’s something fishy about them, that might not
extend to all possible integers. Ah. . . look for a counterexample.

Professor 1’s comment indicates that in his own work, the choice of what to
check is based on a somewhat sophisticated classification within the domain of
referents.

P1: I guess I classify numbers into numbers which are prime, let’s say,
prime powers, and then there are sort of, “far from [prime],” you
know so they have a few factors. But then they should have. . . but
then there are also square-free numbers. [. . . ] So I have a sort of
classification in mind of different kinds of integers, and I just make
sure that whatever I’m trying, I’m trying with these different kinds.

Professor 2 described the way in which her sensitivity to implied properties
that cannot be true manifests itself.

P2: [If] I’ve said something or written something that is wrong, I will get
a sense of disquiet. [. . . ] Part of it may be that at a semi-conscious or
unconscious level, I’m in the habit of looking for implications of what
I’ve written down. And if those implications are sufficiently absurd,
then it gets up into the conscious level.
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Professor 3 commented upon checking for preservation of properties in the
following remarks about a student’s mis-writing of the binomial formula as

(a + b)n =
n∑

k=0

(
n
k

)
akbk.

He first noted that there is no doubt that the student had worked hard to memorize
the formula, before continuing:

P3: Of course, anybody who has a moderate amount of understanding of
the question, should ah. . . realize for example that if you multiply a
and b by 2, the right side should be multiplied by 2 to the n, and
that – doesn’t quite happen. In other words, there is something very
wrong about those two powers k in there. It just cannot be.

This last is arguably a rather sophisticated way of checking the correctness of
such a formula, and perhaps we would not expect students to use it often. However,
the professors regularly noted that students often appear not to perform checks us-
ing any of these methods. Professor 3 gave the following instance in which checking
for counterexamples would reveal a flaw in the argument.

P3: For instance, problem: “Express the number 30 as the difference of
two squares, or show that it cannot be done.” Answer: “It cannot be
done because 30 is divisible by 6 and a number that is divisible by
6 cannot be written as the difference of two squares.” Well, 12 is 16
minus 4. Ah. . . take any number that’s a difference of two squares,
multiply it by 36, you’ll get a number that’s the difference of two
squares and is divisible by 6, so I mean. . . again I could give you
loads of examples of the same kind.

Professor 3 expressed exasperation at such responses, considering them “obviously
false” on the basis that counterexamples are readily accessible.

P3: I don’t have a clue as to, what gets them to, to say things like that.
In other words I would say, things that are obviously false. To a
normal person with a little bit of mathematical education it would
seem obvious that you could never say such a thing because it’s so
obvious that it’s false. Take any example that you want, you see
clearly that it’s false.

5.5. Relationship to Other Research and Theories. We have now seen
many comments on skills that the professors think students need to develop in order
to produce mathematical proofs effectively. Many of their concerns are reflected
in the mathematics education research literature, and in this section some specific
links are discussed.

Others have observed that instantiation is used by mathematically successful
individuals. Dahlberg and Housman (1997) note that more successful students
spontaneously generate examples in response to a new definition, and in Weber and
Alcock (2004) we observe that mathematicians are able to instantiate concepts like
group and isomorphism in many ways. Pedagogically, Watson and Mason (2002)
argue that student-generated examples can allow students to experience the range
of variation in a concept and explore its boundaries, and Winicki-Landman and
Leikin (2000) and van Dormolen and Zaslavsky (2003) use examples to explore the
implications of basing instruction on different choices of definition. The observation
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that students often do not instantiate is also consistent with the considerable body
of research on students learning mathematics as meaningless manipulations. It is
well recognized that a student who knows “what to do” (Skemp, 1976) can often
correctly complete a wide variety of algebraic calculations without considering their
referent objects (Cerulli & Mariotti, 2003; Sfard & Linchevsky, 1994).

The component skills for structural thinking are widely discussed. In Alcock
and Simpson (2002) we observe that students may not readily interpret “show that x
is an X” to mean “show that x satisfies the definition of X,” and it is recognized that
they often reason instead in terms of their concept images (Edwards & Ward, 2004;
Vinner, 1991). It is also recognized that in everyday situations, context can play a
large role in allowing an individual to interpret a statement containing constructions
such as “if. . . then. . . ” or “for all. . . there exists. . . ,” (Dubinsky & Yiparaki, 2000;
Epp, 2003; Zepp, Monin, & Lei, 1987) and that this can interfere with students’
abilities to make use of logical structures in constructing and validating proofs
(Selden & Selden, 1995, 1999). It is worth noting that effective structural thinking
is “syntactic” in the sense in which we use the term in Weber and Alcock (2004)
– to refer to correct reasoning based on form and logic – and not as this term is
sometimes used to refer to the meaningless manipulation of symbols or ritual use
of a certain format.

The skills associated with creative thinking are not so widely discussed in the
literature. There are many reports about students who accept or offer perceptual
or empirical evidence without going on to abstract some property and construct a
general argument (Chazan, 1993; Harel & Sowder, 1998), but there is less discussion
of how they might make this next step. Certainly the issue is considered impor-
tant; Raman (2003) observes that mathematicians sometimes think about proofs in
terms of “key ideas” that serve to link their formal and informal understanding, and
Rowland (2001) suggests specific principles for using generic examples to help stu-
dents understand and construct general proofs. However, I would contend that in
general we who teach mathematics tend to believe that the creative aspect of proof
construction, the “having a good idea,” is to some degree a matter of talent and is
less open to teaching than other modes. Rowland’s work and the indirect strategy
suggested by the mathematicians in this study suggest that this need not be the
case, and I believe that this might be a fruitful avenue for further investigation.

As noted in Section 5.4, although the goal of critical thinking might in theory be
achieved syntactically, in this study it appeared as a semantic mode, relying heav-
ily on consideration of an assertion’s referent objects and their properties. Checks
based on preserved or implied properties are not widely discussed, though I would
speculate that such an approach requires a more sophisticated and organized knowl-
edge base than checking particular example objects. Counterexample checking is
discussed in the psychological literature; for example, Johnson-Laird and Hasson
(2003) report that people commonly use it to evaluate inferences based on state-
ments about everyday situations. Research in mathematics education indicates that
students do not necessarily make such checks when validating mathematical proofs,
although relatively straightforward questions can prompt an improvement (Alcock
& Weber, 2005; Selden & Selden, 2003). Part of the problem here may be that of
deciding which objects might potentially serve as counterexamples. As we argue in
Weber and Alcock (2005), evaluating a statement like “1007 is prime because 7 is
prime,” requires one to infer a warrant (in the sense of Toulmin, 1969) such as the



86 LARA ALCOCK

general statement “If x is prime then 1000 + x is prime,” and evaluate it across the
range of possible prime numbers. This highlights the complexity of counterexample
checking, especially given the prior structural question of identifying a conditional
statement if not expressed in the standard “if. . . then. . . ” way.

6. Teaching Emphasis

This section discusses teaching strategies used by the participants and their
reflections on these. It is organized so as to highlight which strategies may be
thought of as addressing which mode, although the participants did not divide
up their discussions in this way. The principal observation is that the majority
of strategies are directed at developing the skills needed for effective structural
thinking (the other three modes are therefore discussed first, departing from the
previous order). The participants were aware of this emphasis and expressed mixed
feelings about it. Their opinions are discussed in Section 6.5.

6.1. Teaching Strategies: Instantiation. Of the teaching strategies dis-
cussed, few seem to pertain directly to instantiation. Those that do involve infor-
mally encouraging students to examine particular instantiations, and in one case
(Professor 1), use more formal tasks that require instantiating a range of objects
with different properties.

P4: I mean I keep telling them to try picturing a function as like shooting
the elements of one set to the other set. Make it very physical.

P1: So, what I’ve been trying to do is to have these exercises where the
whole purpose of the exercise is just for them to process a mathe-
matical definition. [. . . ] I have one where I, where I just define what
[. . . ] a partition of a set means. I define it formally [as] a collection
of subsets, such that [1.] the empty set is not one of the subsets,
[2.] for every element of the underlying set there is a subset that
contains it, [3.] for any two sets in the partition the intersection is
empty. [. . . ] And then I just ask okay, construct three examples of
a partition on the set {1, 2, 3, 4, 5}. And then, okay, construct an ex-
ample of a collection of sets on {1, 2, 3, 4, 5} which satisfies the first
two properties but not the third. The first and the third properties
but not the second, the second and the third properties but not the
first.

6.2. Teaching Strategies: Creative Thinking. The five professors cited
few pedagogical strategies that seem to pertain directly to creative thinking. One
device that might provide an appropriate context is an “exploration” phase preced-
ing a proof attempt, as used by Professor 2.

P2: Getting them to write down that thing following the caption “analy-
sis” before they have to write down something following the caption
“proof” seems to help. Giving them permission to just “think out
loud,” without having to jump immediately to a properly structured
proof seems to help.

However, when asked about the specifics of what a student would do in such
a phase, the professors found it difficult to articulate any general principles. Even
Professor 1, who described the heuristic of trying to build a counterexample and
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attending to why this is impossible, noted that he had not systematized this in the
classroom.

P1: I talk to the students about this somewhat, although I haven’t quite
figured out how to make it more systematic. But, the way I often
think about a proof is that, you know you imagine this as, try to beat
this. Meaning, try to find a counterexample. . .

6.3. Teaching Strategies: Critical Thinking. Teaching that pertains to
critical thinking was described more regularly and systematically, at least as regards
searching for possible counterexamples. Most of the professors commented that they
model this search in class, and in one case this is institutionalized by designating
a student whose job it is to try to give such counterexamples (Professor 3 reported
that he assigns this role to a specific student, although he does not require the
writing that he described):

P3: There is supposed to be this person over there that’s designated “cat”
- “creator of arbitrary things,” for the semester. The cat’s job, is that
every time there is an arbitrary thing, he picks one, and writes it down
somewhere, and puts it in a sealed envelope and we don’t know what
it is. [. . . ] The cat’s job, this is made very clear, the cat’s job is to
try to prove me wrong.

Another strategy that pertains to critical thinking is having students consider
false statements and state what it would take to exclude counterexamples. Again
Professor 3 goes further, deliberately including such statements on assignments
with the injunction that students should always be alert to the possibility that
something they are asked to prove could be false.

P1: And so, on the first homework assignment one of the questions gives
six or seven universal propositions, and these are all false. So find a
counterexample, and if possible, find a simple modification so, that
makes it true.

P3: [I] give them lots of problems which they call trick questions. [. . . ]
We have a general principle that ah. . . every time you are asked to do
something, either you do it, or you say that it cannot be done and
you give a reason why.

The professors were also concerned that students should be alert to implied
properties, although the more hesitant nature of these comments suggests that this
is addressed less systematically.

P2: I guess sometimes when we’re trying to construct a proof, and they
suggest something which I think goes in the wrong direction, my
reaction is that “Wouldn’t that imply something that. . . something
seriously wrong?”

6.4. Teaching Strategies: Structural Thinking. The professors’ teaching
strategies aimed at structural thinking were considerably more numerous and well-
articulated, suggesting that the participants use them more systematically. Some
involve rather informal modeling of the introduction of appropriate definitions and
suggesting that this be done in an “exploration” phase.
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P4: If I were to do those in class, the idea would be, how do we approach
a problem like that? Well if f is injective, how do we show f is
injective? Well we say, let’s go back to the definition. If f of a is
equal to f of a-prime, then we have to show that a is equal to a-prime.

P2: They are encouraged to write in rather free-form all the relevant def-
initions and all the apparently relevant theorems, in whatever order
they come. And then when they see. . . think out from that maybe
they can see how to put a proof together.

However, strategies pertaining to structural thinking are predominately based
on a variety of writing guidelines or “rules.” These guidelines pertain to correctly
formulating definitions, to correctly introducing mathematical objects, to laying
out proofs according to certain templates and/or clear general formats, and to
restricting the use of certain terms. Examples of comments on each are given
below.

On correctly formulating definitions:

P3: Every time you’re asked to define [. . . ] something. . . the first thing
you need to ask yourself, because it’s going to matter for what you
write, is what kind of a predicate, that is how many arguments it
has. For example, if you want to define prime, prime is about one
number, it’s something that can be true or false for one integer, and
therefore you should start by saying “Let x be an integer. We say
that x is prime if. . . .” And then comes the condition, right? Whereas
ah. . . divisible is a two-variable predicate. So you would start with
“Let x and y be integers. We say that x is divisible by y if. . . ,” and
then comes the mathematical content.

On correctly introducing objects that will be used in a proof:

P1: If you want to talk about a letter in more than one sentence, then
the first sentence in which that letter appears must be “Let x be a
blah.” And I give them a bunch of rules, which are that they have
to introduce them, they have to give everything a different name, to
introduce it you must list all the properties that that thing has, you
can’t later on sneak in something.

On “templates” for writing certain types of proof:

P5: [I] put out a template for writing inductive proof. You write out the
inductive hypothesis, then you write out, “Show P of n implies P of
n + 1.” So it’s there in front of you. And then you, somehow start
with the left hand side of P [of] n + 1 and then you make logical
deductions and you use the inductive hypothesis. And you work at
it, and you arrive at the conclusion of P [of] n + 1.

On writing of proofs in general:

P5: I gave them some very. . . general guidelines for proofs. [. . . ] One
mathematical claim per line. Um. . . and, and at the very beginning,
to write every logical step from one argument to the next. So that
you can go back and check if the logic is correct.

On restricting the use of certain words or phrases:
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P3: For example, never use the word “any,” because in mathematics it
tends to mean too many things. “Any” can sometimes mean “some,”
it sometimes means “all”. . . . Now the good student would know how
to use the word “any” correctly. But a not very good student is likely
to use it in a way that is ambiguous, so better never to use it.

P2: It’s different from high school English, in which one is warned never
to say “he said” and “she said,” you have to use a much more precise
synonym than “said”. Whereas in mathematical English I’d like them
to just use “implies,” and stay away from all the synonyms for implies.

6.5. Reflections on Strategies for Structural Thinking. The professors
expressed a variety of opinions about the use of guidelines and rules to support
structural thinking. Professors 1 and 3, in particular, had long debated the na-
ture of the course, with Professor 3 believing strongly in a systematic, rule-based
approach and Professor 1 believing the approach should be more investigational,
but feeling compelled to introduce guidelines in response to student errors. Epp
(2003) discusses similar debates. Each professor, however, had seriously considered
the arguments for the opposing view, and the other professors also viewed this as a
complex issue. This section has a different tone as at this point I believe it is more
illuminating to move from a synthesis to a contrast of opposing points of view.

Professor 3 introduced the idea of a very systematic approach, and cited one
of its advantages, as follows.

P3: My own idea as I said is to try to, to tell them. . . to try to get them to
operate in a very systematic way, and systematically tell them that
it’s for their own good. For example, one of the purposes of having
all these rules, these very precise rules, is that you know that a proof
is supposed to be an argument that you give, that should convince
me.

He considers it reasonable to ask for this level of rigidity, since students have not
previously learned to communicate with the precision needed for mathematical
proofs.

P3: And I insist very much on minimizing the number of rules because
I have become convinced that as an antidote to the general. . . amor-
phousness of their work, of the work of their ideas, there is a need to
put a lot of rigidity. [. . . ] Maybe it doesn’t hurt to go to the other
extreme for a while. Once, in one course.

He acknowledged that mathematicians do not think entirely in this way, but
considers it unrealistic to hope to convey this in the time allowed.

P3: Doing proofs, mathematical proofs, is not a matter of analyzing log-
ical structures and statements, and applying the logical rules of in-
ference. [. . . ] That may be the frame, the, the thing that supports
the proof. But the real proof and the real mathematics is not that.
And that should also be conveyed in the course. But of course it’s
too much. That’s wishful thinking.

He also acknowledged arguments in favor of a more investigation-based ap-
proach, but considers this unrealistic given students’ tendency to give inadequate
consideration to their claims and justifications.
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P3: I have doubts, because even when I put moderately challenging prob-
lems, what I always find is. . . that the main obstacle is not that they
don’t know what to do, the main obstacle is that they will do any-
thing. . . and don’t seem to think that it needs justification.

Professor 1, in contrast, originally began the course with the intent of struc-
turing it around investigations of “interesting problems where the answer is not
obvious.” He considered a rule-based approach to be unrepresentative of the way
that mathematicians think when they write proofs.

P1: Although we know in principle that it can be done syntactically, we
can bring it down to some axiomatic system. . . that, in fact, you think
very semantically. I mean you know sort of. . . you’re thinking about
the objects themselves, and you are confident with your ability to
do. . . to do legal reasoning, on this thing. [. . . ] And then you have
some pictures of it, and you are confident of your ability to translate
those mental pictures into things that we all accept as real mathe-
matics.

He argued against treating proving as a syntactic enterprise.
P1: [Professor 3] wants them to understand that proof is basically a syn-

tactic thing which we then, sort of, as we become more sophisticated
we take shortcuts, but he wants them to really understand the syntax
of what they’re doing, and to work on writing it. My problem is that
it’s more of the same. In other words, it encourages the students to
think of mathematics as a syntactic enterprise, rather than trying to
assign meaning to what they’re doing.

However, Professor 1, too, has felt compelled to issue guidelines in response
to student errors (such as that quoted in the previous subsection regarding correct
introduction of objects to be used in a proof, which he hopes will head off “scope”
errors in which a student uses the same letter to refer to two potentially different
objects in a single proof). While he hopes these rules will help students to write
good mathematics, he considers their proliferation to be a problem.

P1: Every time the students demonstrate to me that they, that some
completely natural logical thing to me, that I couldn’t imagine how
anybody could fail – could make this kind of logical error. But they
make it. Okay. So what that does is it causes me to institute some
rule that I announce to the class. Not being able to do this, or must
do this or something like this. [. . . ] The problem is the more, the
longer that I teach the course, the more of these I end up putting in.

As a caveat, it should be stressed that neither of the above professors applies
their rules with absolute rigidity. Both allow for more flexible use of mathematical
language, provided that a certain level of competence is demonstrated.

P1: And I tell them that, as you demonstrate the maturity to me that
you understand these, then we’ll let you relax those rules. And since
it’s a small enough class, well I know your work, and I know which
students have earned the right to relax the rules.

P3: So I give you the rules, and that means that I am making a commit-
ment to accept then what you do, without questioning it, as long as
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you obey the rules. [. . . ] If you don’t do it that way, then it might
still be okay, but now you are taking a risk.

Other professors, too, expressed mixed feelings about a rule-based approach.
There was a concern that proof templates can be useful but that students can come
to rely excessively on them. Professor 5 commented on this.

P5: I don’t think it’s an open and shut case. I think that it’s useful some-
times to bring in [. . . ] a set of guidelines, or. . . almost a template,
for writing a proof. And there is a kind of a template for proof by
contradiction, and there is a template for induction, and there is a
template for. . . proving things using this method of smallest coun-
terexamples and the well-ordering, property. [. . . ] I think that it’s
very instructive to. . . to lay these out and repeat them, so that the
students have a starting point, and are not completely intimidated
and put off and, to the point where they can’t even start. But if you
overdo it, you’re going to end up with. . . sort of robots.

Similarly, Professor 2 expressed concerns about giving the impression that there
is a unique right way to proceed in writing a given proof.

P2: I really got worried about the fact that I was giving the one – the
impression that there was only one right way. Especially in proofs
where if you follow your nose there is a, a single energy-minimizing
path.

In addition to these philosophical issues, there were also concerns about the
effectiveness of a teaching approach that relies heavily on writing guidelines. One
problem is choosing and sticking to rules, as in this comment from Professor 2:

P2: One of the things is to show students what it means to articulate a
bunch of starting facts, and a scheme for deductive reasoning, and to
use those facts to investigate problems. [. . . ] Inevitably we end up
telling them they’re allowed to use everything they know about some
previous material. And “everything they know” is not a well-defined
body of facts. So we get promptly confused as to what, what have
the status of axioms.

Another problem is the difficulty of sticking to precise use of terms in one’s
own speech.

P2: For mathematicians, much of the time, when they say “In general
you can’t count on something being true,” it means there exists at
least one counterexample. Whereas “In general you can’t count on
blah blah” in the ordinary language means that, somehow more than
half the time it’s wrong. And. . . I mean I’ve found myself making
that mistake even though I’ve noticed that it’s a dangerous one.

Finally there were questions about the degree to which students are able to use
the rules effectively in constructing proofs. Professor 2 noted that what is learned
in abstract discussions of predicate calculus may not readily transfer to contexts
with more mathematical “substance.”

P2: What I’m learning is difficult is moving from stuff which has just
the form of predicate calculus, to real live sentences in mathematics.
Where the structure of the sentence is hidden, a little – the student
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gets distracted by the substance of the mathematics, from seeing the
structure.

In all, it seemed that all the participants use some rules or guidelines as scaf-
folding to help their students to avoid logical errors and to write with the required
level of precision. However, they had both philosophical and practical concerns
about the efficacy of this approach.

7. Discussion

So far, I have treated the four modes of thinking separately, covering their mean-
ings, associated teaching strategies, and professors’ concerns about their teaching
and learning in the classroom. In this section, I argue that the four modes may
sensibly be viewed as interdependent and that successful provers switch flexibly
between all four according to their changing goals within a proof attempt. I there-
fore suggest that in teaching proof we should balance attention to the four modes,
highlighting not only how a person is thinking at a given time, but also what they
hope to accomplish by thinking in that way.

7.1. Interdependence of the Four Modes. First, instantiation is arguably
the basis for any semantic work. One needs to instantiate in order to have objects to
think creatively about and in order to subject inferences to counterexample checks.
Instantiation is not strictly necessary for structural thinking, but I would argue
that it can help to clarify the structure of a statement, especially in cases involv-
ing suppressed quantifiers (Selden & Selden, 1995). For example, in a recent real
analysis class, I had a student argue that the statement “Every bounded sequence
contains a convergent subsequence” is false because the sequence 1, 0, 1, 0, 1, 0, 1, . . .
has a subsequence 1, 1, 0, 1, 1, 0, . . . that does not converge. Discussing the fact that
it also has a subsequence 1, 1, 1, 1, 1, . . . that does converge helped to clarify the
fact that the statement contains an implicit existential quantifier.

In the opposite direction, some of the skills associated with structural thinking
are necessary for instantiation. One has to decide what to instantiate, and doing so
involves being able to identify what objects a statement is about and what it says
about those objects. Structural thinking also supports creative and critical thinking
in similar ways. Further, when writing down the results of creative thinking, one
needs to be able to formulate these in appropriately precise language.

Creative thinking does not so much directly support the other modes as fill
gaps in what those modes can achieve. Doubtless there are cases in which a compe-
tent structural approach could generate an entire proof and critical thinking could
adequately check its validity. However, as Weber (2001) argues, in many situations
there are numerous correct deductions that could be made from a given premise and
numerous reasonable approaches that one could try (direct proof, indirect proof,
various proofs by cases, etc.), but few that would lead to a proof. In general, an in-
dividual needs some mechanism for deciding which direction to pursue. Examining
instantiations can facilitate such decisions.

Critical thinking is also not strictly necessary for any given proof attempt. It
might be possible to produce a proof either structurally or creatively without do-
ing any sort of checking. However, mathematicians would surely advise against
this, especially for students who are still learning a mathematical topic. Particular
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risks are that creative thinking can easily lead to over-generalization because in-
stantiations often incorporate properties that do not hold for the whole set under
consideration. Similarly, formal rules can easily be confused; for a true conditional
statement, the contrapositive is always true but the converse need not be. Critical
thinking can help to catch potential errors from such sources.

7.2. Pedagogical Implications. Based on the reasoning of the previous sec-
tion, I argue that each of the four modes of thinking described in this paper is
important in the construction of proofs and should be taught in introductory proof
courses. However, this leaves open the question of how this should be achieved.
Should we teach instantiation first, in order that students develop facility in mean-
ingfully understanding statements? Should we teach structural thinking first, since
students will clearly need to parse statements correctly in order to work sensibly in
the other modes? The latter is implicit in much of the teaching that is discussed
in this study, as well as in the majority of textbooks designed for such courses.
However, I would suggest that in separating out any of the modes and attempting
to teach it in isolation for some length of time, we are neglecting an important part
of the thinking of successful provers – that is, the flexible use of all four modes in
response to changing demands during a proof attempt. To illustrate the signifi-
cance of this, I offer the following outline of a hypothetical proof construction for
the statement that if the sum of two primes is odd, then one of the primes must
be 2 (a question from the course, as mentioned by Professor 5). This is not intended
to be a prescription or a description of an actual attempt. Not every step is neces-
sary and an experienced mathematician or student might skip steps or move very
quickly through some, might make similar steps in a different order, etc. However,
I believe that it is a reasonable characterization of how a competent student at this
level might sensibly respond.

Step 1, Structural: Identify the statement as a conditional with premise “the
sum of two prime numbers is odd” and conclusion “one of the primes must
be 2.”

Step 2, Instantiation: Experiment with examples, confirming that adding two
primes other than 2 gives an even number (5 + 7 = 12, 3 + 11 = 14, etc.).
Perhaps also try adding 2 to other primes, to get a feel for the fact that
this gives odd numbers (5 + 2 = 7, 3 + 2 = 5 etc.).

Step 3, Critical: Consider larger primes to confirm that this still holds (29 +
19 = 58, 53 + 17 = 70, 53 + 2 = 55 etc.).

Step 4, Structural: Set up the first line(s) of a proof, writing “Let x and y
be prime numbers, and suppose x + y is odd, that is, for some integer n,
x+y = 2n+1.” Experiment with manipulating this equation (x = 2n+1−y
etc.) and decide that there is no obvious way forward from here.

Step 5, Creative: Try to construct a case in which neither x nor y is 2 but
their sum is odd. Notice that this is impossible because all primes other
than 2 are odd, and that adding two such together will always give an even
number. Notice also that 2 is even so that when added to another prime
the result is odd.

Step 6, Critical: Check that there are no other primes that are even, so that
no others would also allow an odd sum.

Step 7, Structural: Formulate the first part of argument in appropriate math-
ematical language, writing “If x + y is odd, then x and y cannot both
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be odd.” Perhaps justify this by adding “since if x and y are both
odd, then x = 2a + 1 and y = 2b + 1 where a and b are integers, so
x + y = 2a + 1 + 2b + 1 = 2(a + b + 1), which is even.”

Step 8, Structural: Formulate the second part of the argument in appropriate
mathematical language, writing “So one of x and y must be even, so one
of x and y must be 2, since 2 is the only even prime.” Perhaps justify
the last statement by adding “since if c 6= 2 is even then 2 divides c, so c
cannot be prime.”

Step 9, Critical: Check each deduction in the proof.
An initial focus on the skills needed for structural thinking does not seem to

be misguided for several reasons: students need to learn the linguistic conventions
of mathematics, there are many simple proofs at this level that can be tackled
entirely in the structural mode, it is impossible to correctly prove any statement
without understanding its structure, and teaching syntactic validation of proofs
may avoid potential confusion about when checking a small number of examples is
an appropriate action. However, if the classification into the four modes of thinking
is taken as a reasonable basis for further discussion, then the argument above raises
the question of the degree to which, in the longer term, any approach to teaching
proof:

(a) is balanced with respect to the four modes and
(b) fosters the integrated and flexible use of all four.

It certainly seems reasonable to claim that collaborative classroom environ-
ments, in which students investigate, refine, and prove mathematical conjectures,
address both of these issues reasonably well. Indeed, such environments may di-
rectly impact a number of the failings cited by the professors here because research
indicates that in such situations students will find meaningful ways to understand
statements and to check their own and others’ assertions (Alibert & Thomas, 1991;
Blanton & Stylianou, 2003; Rasmussen, Zandieh, King, & Teppo, 2005; Yackel,
Rasmussen, & King, 2000). However, this does not mean that the potential is
always maximized in such classrooms. Nor does it mean that a lecture-based pre-
sentation could not provide effective instruction in all four modes. I view this as
important because my position as a mathematics educator is not that I would like
to see all mathematicians drastically alter their teaching practices. Rather, I would
prefer to see people think carefully in evaluating the ways in which their own pre-
ferred instructional methods can be used to maximum advantage and to consider
alternatives if and when they identify something that cannot be done well within
their current range of approaches. I hope that this framework provides a coherent
way of making this evaluation of introductory proof courses. I also suggest that it
could provide a basis for metacognitive discussions with students about what they
need to do in order to successfully construct and validate mathematical proofs, and
about how the tasks that they are asked to complete should contribute to this. In
particular, I suggest that an emphasis on the purposes of the modes might help
students to distinguish between stages of proving activity at which instantiating
examples can be useful and stages at which it is insufficient.

8. Directions for Future Research

In addition to the above pedagogical questions, this study also raises questions
for future research. For me the most interesting of these is the question of what
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might account for a perceived split in the student population, as described by
Professor 4:

P4: Basically the class consists of two groups. There are groups that
understand it, and probably hardly need it, and then there are those
who. . . ah. . . really need it, and are not learning it.

This is a controversial comment, but I consider it important to include it as
several of the professors spoke of similar observations. Neither I nor they take it
as a reason to “give up,” and as the evidence above suggests, all those interviewed
were committed to finding ways to help all of their students improve their mathe-
matical reasoning as much as possible. However, it is a reality that students do fail
transition courses despite having succeeded in previous mathematics, and even the
most dedicated teacher may suffer from doubts regarding what they are actually
able to teach:

P3: I think there are many people in this department and in every math
department who think that those things [how to write definitions
correctly, that statements may be proved but noun phrases may not,
etc.] are somehow so obvious that anybody who is not a complete
moron and has some grasp, some ability to do mathematics should
be able to see that. Therefore it is a waste of time to teach that
because, the people who need to be taught are the people who are
hopeless anyhow. [. . . ] And I would have been vehemently opposed
to that idea a few years ago. And now I’m less sure because you
know. . . I’m certainly trying to teach that and I cannot. . . say that it
works, so. . . maybe these people have a point!

It is clearly important that we continue to improve our understanding of factors
that contribute to student difficulties with mathematical proof. My own hypothe-
sis on completing this study was that some students who normally might fail this
course could improve their performance considerably by learning to use instantia-
tions effectively. Not doing so would be consistent with research suggesting that
in earlier mathematics, students can be successful by manipulating mathematical
notation without thinking about its meaning (Sfard & Linchevsky, 1994). At this
level, attempting such an approach would automatically cut a student off from all
three of the semantic modes of thinking described above. With this in mind, a
colleague and I conducted research to investigate whether a tendency to instantiate
forms a consistent distinction between the work of those who fail and those who
succeed in Introduction to Mathematical Reasoning. Preliminary results from this
research (Alcock & Weber, 2005; Weber, Alcock, & Radu, 2005) suggest that the
situation is more complicated: there were both successful and unsuccessful students
among those who tended to instantiate and those who did not. We are continuing
our work on this data in order to better identify factors that contribute to successful
use of both syntactic and semantic modes of thinking during proof construction.
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Appendix A. Sample Transcript, Conceptual Descriptions, and Memos

Throughout, words and phrases likely to become key to the analysis were high-
lighted in bold in order to facilitate quick re-reading of the large amount of text
generated. This is reproduced below as it appeared in the researcher’s notes.

A.1. Sample Transcript and Conceptual Descriptions

Interview transcript
(Professor 1, Interview 1, Lines 118-120)

Researcher’s conceptual
description

P1: Yes so that’s. . . I mean. . . the thing that I’m
still wrestling with in this course, is there’s
a lot of stuff that I’m asking them to master
really very early on. There’s a whole group of
skills. Propositional logic, all of these things
about, the number of skills before you can
even process a new mathematical definition.

Teaching problem that
wrestling with is asking them
to master a lot of skills –
propositional logic e.g. – early
on, because needed before can
process a definition.

I: Right.

P1: What does a mathematician do, you know?
So one of the things, again, that’s second na-
ture to me but it’s not to them, is that if I
see a definition, I immediately instantiate it.
You know, just try some examples of this def-
inition, and try to fit it in. And they don’t
even think, you know – what happens is you
know that you describe a new definition, you
say, “let f be a function, let x be a real num-
ber, we say that. . . ” and then some relation-
ship between f and x holds if, blah blah blah.
So then what they have to do, they have to
realize that this definition only makes sense
in the context of, I have to have a function
in mind and then I can make sense out of
this definition, but if I don’t, then. . . . And
what they’ll do is typically if you have a se-
quence, you know, if I have a sequence defi-
nition to use in the rest of the problem, and
they don’t understand the definition, they’ll
just skip that sentence and go on. I will, they
will come in for help on a problem, and five
or ten minutes into the discussion I’ll realize
that, that they never bothered to process this
particular definition, they have no idea what
this means.

Here we are with instantiation
as a thing that mathemati-
cians do.

Structure of definition ap-
pearing here again as something
mathematician can just rattle off.

What instantiation does is
make sense of definition by
having an object in mind.

Typically students don’t under-
stand the definition, but will
skip it and go on. They come for
help and he realizes a few min-
utes in that they didn’t bother
to process the definition. So
they have no idea what it means.

A.2. Examples of Researcher’s Summary Memos

P1 I1 114-128

Summary memo: teaching problem of asking them to master a lot of skills
needed to process definition and need these early on. Process a definition
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then seems to mean instantiate examples, which is a thing that mathemati-
cians do. Idea that you make sense of a definition by having objects in mind,
and students don’t spontaneously do this. They will skip a definition if they
don’t understand it and try to go on.

P1 I1 114-128

Summary memo: sophisticated tasks set for definition processing. Generate
examples then generate more that have some properties but not others (Ma-
son ref). Partitions as example.

P1 I1 114-128

Summary memo: two more examples of facility on part of professor. Both sort
of spontaneously generating example that models structure of what want to
describe a generic definition and generic statement that would be hard to
negate. Also spontaneously restates more concisely.

A.3. Examples of Researcher’s Theoretical Memos

P1 I1 114-128

I just don’t believe that you need to have these skills in prop logic etc. before you
can even begin to process a definition. I believe that you could do it badly and
then learn them by means of fixing what you are doing. I believe that he’s more on
productive lines with example generation as a means of beginning to process what
is going on, rather than the meta-math. No arguments that that is useful, of course,
but having it as pre-emptive makes me a little uncomfortable because where is the
motivation? Unless you’re doing that teaching about mathematics thing, but even
then I’d say you want something to relate it to. Ah, he says that in the next line.
Well, maybe you do need some parsing skills to even do that. I don’t know.

P1 I1 114-128

Got a slight implicit laziness here in saying that they didn’t bother to process
the definition, but this sounds very much like Dahlberg & Housman in that they
anticipated being able to do something with the statement without doing that. It’s
like operating with the statements rather than any objects. Which, of course, on
some level is what we want because properties are where it’s at. The problem,
again, is that having an idea of the objects seems essential to the mathematician,
probably for helping you with the decision of what to do. And just it being about
something.

P1 I1 114-128

Ah, of course, example generation/instantiation as a way of attacking the abstrac-
tion problem head-on. You have the students make it less abstract for themselves.
This is sort of obvious really. Of course we consider the task so obvious that we
assume they’re thinking in that way anyway.
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