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Abstract. Many mathematicians and curriculum bodies have argued in favour of the theory
of formal discipline: that studying advanced mathematics develops one’s ability to reason
logically. In this paper we explore this view by directly comparing the inferences drawn
from abstract conditional statements by advanced mathematics students and well-educated
arts students. The mathematics students in the study were found to endorse fewer invalid
conditional inferences than the arts students, but they did not endorse significantly more valid
inferences. We establish that both groups tended to endorse more inferences which led to
negated conclusions than inferences which led to affirmative conclusions (a phenomenon
known as the negative conclusion effect). In contrast, however, we demonstrate that, unlike
the arts students, the mathematics students did not exhibit the affirmative premise effect: the
tendency to endorse more inferences with affirmative premises than with negated premises. We
speculate that this latter result may be due to an increased ability for successful mathematics
students to be able to ‘see through’ opaque representations. Overall, our data are consistent
with a version of the formal discipline view. However, there are important caveats; in partic-
ular, we demonstrate that there is no simplistic relationship between the study of advanced
mathematics and conditional inference behaviour.

Keywords: advanced mathematical thinking, conditional inference, logic, reasoning, repre-
sentation systems, theory of formal discipline

One of the original rationales for placing mathematics at the heart of the
school curriculum was the idea that studying mathematics develops one’s
abstract logical thinking skills (e.g. Davis, 1970). This is a variant of what
Thorndike (1924) called the Theory of Formal Discipline, the idea that the
study of certain disciplines benefits reasoning generally. Oakley (1946) typ-
ified this view, writing that “the study of mathematics cannot be replaced by
any other activity that will train and develop man’s purely logical faculties to
the same level of rationality.” (p.19). Similar views are still widespread today:
when discussing the utility of studying undergraduate level mathematics, the
QAA (2002) – the UK quality assurance agency for higher education – stated
that “[mathematics] graduates are rightly seen as possessing considerable
skill in abstract reasoning, logical deduction and problem solving”. Compa-
rable arguments have been made at the school level. In a report on post-14
mathematics in the UK, Smith (2004) argued that “mathematical training
disciplines the mind, develops logical and critical reasoning, and develops
analytical and problem-solving skills to a high degree” (p.11).

† This is a preprint of a paper which appeared in Educational Studies in Mathematics,
67(3), 187-204. The final version is available at: http://dx.doi.org/10.1007/s10649-007-9098-9
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These widely held views appear to contradict the beliefs of early psy-
chologists. Thorndike and Woodworth (1901), for example, had found that
“improvement in any single mental function rarely brings about equal im-
provement in any other function, no matter how similar” (p. 250). Instead they
suggested that studying abstract systems such as mathematics or Latin has no
impact upon students’ logical reasoning skills (Thorndike, 1924). However, in
a later study of science, humanities and psychology undergraduates, Lehman
and Nisbett (1990) found a moderate correlation (r = 0.31) between the
number of mathematics courses a student took during their studies and their
improvement on a conditional inference test (taken once at the start of their
degree course, and once at the end). Conditional inference (drawing conclu-
sions on the basis of statements of the form ‘if p then q’ and a premise)
is clearly fundamental to formal logical reasoning, and Lehman and Nis-
bett suggested their findings provided some support for the theory of formal
discipline.

Establishing the veracity of the formal discipline view is not only of theo-
retical interest, it has potentially important policy implications. In a survey of
early twentieth century US mathematics curricula, Stanic (1986) noted that
changes to curricula were substantially related to changing attitudes towards
the theory of formal discipline. More recently, Smith (2004) cited the formal
discipline view as evidence for the utility of mathematics in a report to the UK
government. Amongst other policy recommendations which followed from
this conclusion, Smith advocated implementing university tuition fee waivers
for mathematics students, and targeted salary increases for school mathemat-
ics teachers. In short, firmly establishing the accuracy (or inaccuracy) of the
formal discipline theory could have clear educational policy implications and
it should be regarded as an important goal of mathematics education research.

Surprisingly, given the importance and long history of these ideas – which
date back at least as far as Plato – there have apparently been no previous
studies which have directly and systematically interrogated the theory of for-
mal discipline by comparing the conditional inference behaviour of advanced
mathematics students with those from other disciplines. The primary goal
of this paper then, is to fill that gap by directly comparing how success-
ful mathematics and arts students draw inferences from abstract conditional
statements.

1. Conditional inference and mathematics.

Given a statement ‘if p then q’ there are four inferences which are com-
monly drawn, only two of which are logically valid; the different inferences
are summarised in Table I. In standard logic, the modus ponens (MP) and
modus tollens (MT) inferences are valid, whereas the denial of the antecedent
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Table I. The four inferences.

MP DA AC MT

Conditional if p then q if p then q if p then q if p then q
Premise p not-p q not-q

Conclusion q not-q p not-p
Type affirmative denial affirmative denial

Validity valid invalid invalid valid

(DA) and affirmation of the consequent (AC) inferences are invalid.1 Those
inferences which, from the rule ‘if p then q’, lead to positive conclusions
(i.e. conclusions without negated components) are known as ‘affirmative’
inferences, whereas those which lead to negative conclusions are referred
to as ‘denial’ inferences. Despite their invalidity, DA and AC inferences are
often made in day-to-day life. For example when a political party announces
that “if our opponents win, interest rates will rise”, they are hoping that the
electorate will make the DA inference: that voters will infer that if they win,
interest rates will not rise.

1.1. CONDITIONAL INFERENCE IN MATHEMATICS EDUCATION.

While there are other skills involved in logical reasoning performance,
conditional inference is clearly an important component. Given this, it is
unsurprising that a number of educational researchers have focussed on
how conditionals are dealt with by secondary school students (Hoyles and
Küchemann, 2002; O’Brien et al., 1971; O’Brien, 1972), undergraduates
(Durand-Guerrier, 2003; O’Brien, 1973; Stylianides et al., 2004), and teach-
ers (Damarin, 1977; Eisenberg and McGinty, 1974). In this section we briefly
review the main findings of those studies which have looked at university
students’ conditional inference behaviour.

O’Brien (1973) studied the conditional inference behaviour of undergrad-
uates taking an introduction to mathematics course. He gave his participants
a series of conditionals set in different contexts (e.g. “if Sue screams, Jim
will jump”) together with a minor premise (“Jim did not jump”) and asked
them whether inferences could be made (“did Sue scream?”). O’Brien found
that only 3 participants (from a sample of 60) reasoned normatively across
all the tasks. One particular source of difficulty was the MT inference: across

1 DA and AC are not the only invalid inferences participants can draw. For example, ‘if
p then q, p, therefore not-q’ is a further possible invalid inference. No previous study has
shown evidence that such inferences are widely drawn and we follow the conventions set in
the literature by not considering them.
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the study only 57% of these inferences were endorsed, compared to nearly
100% for MP. Importantly, O’Brien found that the frequency that the MT
inference was drawn by depended upon the context in which the rule was
situated. Instead of behaving normatively, approximately half of O’Brien’s
(1973) participants used what he termed ‘child logic’: they consistently drew
all the inferences: MP, DA, AC and MT. O’Brien accounted for this by sug-
gesting that many college students interpret an ‘if p then q’ conditional as
a ‘p if and only if q’ biconditional. However Durand-Guerrier (2003), using
conditionals set in various different mathematical contexts, found that few
students consistently interpreted the conditional in this fashion. Instead, she
argued that whether this interpretation was made related to the participant’s
background knowledge of the context in which the particular conditional was
set.

In a later study, Stylianides et al. (2004) investigated the differences
between mathematics undergraduates’ and education undergraduates’ be-
haviour when drawing DA and MT inferences from contextualised condition-
als (in what they called a ‘verbal context’). They also presented participants
with a proof validation task to assess MT inferences in a ‘symbolic context’
(in our terms, both these versions were contextual, as responses could have
been influenced by prior knowledge). They concluded that, when drawing
conditional inferences, participants’ mathematical backgrounds interact with
the context in which the conditional is set.

There are, however, several difficulties with Stylianides et al.’s (2004)
study which render it hard to interpret their results. First, the control group of
education students who participated in the study had apparently taken several
core proof-based undergraduate mathematics modules which had emphasised
logical thinking. Consequently, in the absence of a genuine control group,
it would be hard to draw conclusions from the study about the relationship
between logical thinking and the study of advanced mathematics. Second,
the two contexts used in the study – verbal and symbolic – were studied
using non-isomorphic tasks: one used a conditional inference task2 and one
used a proof validation task. It would be hard, therefore, to conclude that
any between-contexts differences were due to factors related to context rather
than to the task structure. Third, the dichotomous data reported in the paper
appear to have been analysed using parametric statistical methods. Neverthe-
less, Stylianides et al.’s observation that the context in which a conditional
statement is situated affects how participants draw inferences from it is im-
portant and certainly correct (e.g. Newstead et al., 1997). Given this, it should

2 To further complicate interpretation, two different rule types were used in the verbal
context task. For the MT inference a rule of the form ‘if p then q’ was used, whereas the
DA inference used an ‘if not-p then q’ rule. As the current study demonstrates, the presence
or absence of negated components in conditional statements has a large effect upon whether
inferences are made.
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be noted that neither O’Brien (1973), Durand-Guerrier (2003) or Stylian-
ides et al. used genuinely abstract materials (in the sense that participants’
responses could not have been influenced by their prior knowledge of the
context).

1.2. CONDITIONAL INFERENCE IN PSYCHOLOGY

Given the long history of the formal discipline view, and given the finding that
the context in which a task is set interferes with the analysis of participants’
underlying logical behaviour, it is perhaps surprising that no previous study
has directly compared the conditional inferences that are drawn by advanced
mathematics students and students of other disciplines, from purely abstract
materials (i.e. with materials far removed from a specific context).

There have, however, been numerous psychological studies on conditional
inference using such materials. These studies have tended to involve social
science undergraduates, and much theory has been built up to account for the
data resulting from them (e.g. Evans, 2007; Johnson-Laird, 2006; Oaksford
and Chater, 2007). Given the proliferation of theories in this domain, it is
important to emphasise that our goal in this paper is not to intervene in de-
bates between the various reasoning theorists, instead we seek to study the
relationship between conditional inference behaviour and the advanced study
of mathematics.

Typically an abstract conditional inference task in these studies involves a
series of imagined letter-number pairs. Participants are given a rule such as
“if the letter is D then the number is 4”, together with a premise of the form
“the number is not 4”, and are asked to decide whether or not a conclusion
(e.g. “the letter is not D”) necessarily follows. An example of a trial from
a conditional inference task is shown in Figure 1. In the so-called negations
paradigm the task is varied by rotating the position of negatives in the rule
giving a total of 16 possible inferences. These possibilities are summarised
in Table II. Two main effects which hinder logical behaviour have been iden-
tified in existing studies which use this experimental paradigm: the negative
conclusion effect and the affirmative premise effect.3

The negative conclusion effect refers to the finding that participants tend to
draw more inferences with negative conclusions than they do inferences with
affirmative conclusions. That is to say that the inference ‘if A then 3; not-
3; therefore not-A’ is made more often than the inference ‘if not-A then 3;
not-3; therefore A’ despite, in this case, both being valid MT inferences. This

3 Due to differing theoretical interpretations of these effects some researchers have used
different terminology. The negative conclusion effect is also sometimes referred to as negative
conclusion bias, or as the double negation effect. Similarly, the affirmative premise effect has
been called affirmative premise bias, or the implicit negation effect (e.g. Evans and Handley,
1999; Oaksford et al., 2000). We have attempted to adopt theoretically neutral terminology.
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This problem concerns an imaginary letter-number pair. Your task is to decide
whether or not the conclusion necessarily follows from the rule and the premise.

Rule: If the letter is not H then the number is 1.
Premise: The number is not 1.
Conclusion: The letter is H.
© YES (it follows) © NO (no, it does not follow)

Figure 1. A typical conditional inference task (for the rule ‘if not-p then q’, the inference MT,
and with an explicitly negated premise ‘not-q’).

Table II. The four inferences with and without negated premises (Pr) and conclusions (Con).

MP DA AC MT
Conditional Pr Con Pr Con Pr Con Pr Con

if p then q p q not-p not-q q p not-q not-p
if p then not-q p not-q not-p q not-q p q not-p
if not-p then q not-p q p not-q q not-p not-q p

if not-p then not-q not-p not-q p q not-q not-p q p

effect has been robustly found on both denial inferences (DA and MT), but is
only weakly observed (if at all) on AC, and never on MP (Schroyens et al.,
2001). One account of this surprising finding maintains that it is caused by the
difficulty participants have with the logical equivalence between not-(not-p)
and p (Evans et al., 1995; Evans and Handley, 1999; Schroyens et al., 2000).
This is because on both denial inferences, affirmative conclusions require
participants to take one extra logical step. To clarify, consider making an MT
inference from the two conditionals above: (i) ‘if A then 3’ and (ii) ‘if not-A
then 3’. Given the premise not-3, to draw a valid inference with statement
(i) requires drawing one logical inference (MT). But given the same premise,
reaching a valid inference with statement (ii) requires an extra step: MT to
deduce not-(not-A) and then an application of the equivalence of not-(not-p)
and p.4

The affirmative premise effect refers to the finding that participants tend
to endorse more inferences from affirmative premises than from negative
premises. It tends to primarily be observed when those negative premises
are represented implicitly. That is to say that the inference ‘if not-A then

4 An alternative account for the negative conclusion effect states that it is a consequence
of a preconscious bias in favour of negative conclusions (Pollard and Evans, 1980). Oaksford
et al. (2000) pointed out that, for any p, the probability of not-p tends to be greater than that
of p. Consequently, they suggested that there could be an inbuilt cognitive reluctance to draw
positive inferences, as they are more likely to be wrong (although see Schroyens et al., 2000).
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3; A; therefore not-3’ is made more often than the inference ‘if A then 3; R;
therefore not-3’, even though they are both instances of drawing, invalidly, the
DA inference. Evans and Handley (1999) suggested that this was caused by
the difficulty of recognising that the premise was relevant to the conditional
when it is implicitly negated. So the premise ‘R’ is less obviously ‘about’ the
conditional ‘if A then 3’ than the premise ‘A’ is ‘about’ the conditional ‘if
not-A then 3’. This account is discussed in greater depth later in the paper.

Evans and Handley (1999) brought the negative conclusion and affirma-
tive premise effects together in what they termed the ‘two hurdle’ account.
They noted that if a conditional inference is to be made two hurdles need to
jumped. Firstly, the reasoner must see that the given premise is relevant to the
conditional statement. If this hurdle is passed, and the reasoner believes that a
legitimate inference can be made, on some occasions there is a further hurdle:
the reasoner must be able to convert statements of the form not-(not-p) into
the statement p. It is only if both hurdles are successfully traversed that an
inference can be made.

In sum, several mathematics education studies have investigated math-
ematics students’ conditional inferential behaviour on contextual materials,
and several psychological studies have looked at the conditional inference
behaviour of well-educated but non-mathematical participants on abstract
materials. No study, however, has considered the conditional inference be-
haviour of mathematics students using abstract materials and, in particular,
whether this might differ from non-mathematical participants. This is a curi-
ous omission, for two reasons. First, the studies which have looked at the
contextual conditional reasoning of mathematics students have found that
the context is a confounding factor; so if one wishes to study the underlying
logical behaviour of participants it would be prudent to strip away as many
extraneous contextual factors as possible. Second, many commentators and
curriculum bodies have argued for a version of the formal discipline view, by
suggesting that studying mathematics at an advanced level develops students’
abilities for abstract conditional reasoning. Despite this claim being widely
made, there have been few empirical studies which have directly investi-
gated it, and none have directly compared mathematics and non-mathematics
students’ abstract conditional inference behaviour.

Specifically, then, the goal of this study was to examine the formal disci-
pline theory via two main research questions: (i) Do advanced mathematics
students draw more normative inferences from abstract conditional state-
ments than students who have not studied advanced mathematics? (ii) Do
successful mathematics students exhibit either (a) the negative conclusion
effect or (b) the affirmative premise effect? If Thorndike and Woodworth
(1901) and the early psychologists were right, and a training in mathematics
has no effect upon abstract logical reasoning skills, one would expect there
to be few differences between the extent to which mathematics and non-
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mathematics students are affected by the negative conclusion and affirmative
premise effects. If, however, the theory of formal discipline (and Lehman
and Nisbett’s (1990) findings in support of it) is correct, and if studying
mathematics does develop abstract logical reasoning skills, one might expect
mathematics students to exhibit reduced negative conclusion and affirmative
premise effects.

2. Method.

When designing a study to answer the research questions set out above,
several factors are relevant. Of special concern is that, by most accounts, a
large component of conditional reasoning behaviour is determined by pre-
conscious cognitive processes (e.g. Evans, 2007). Indeed, by some accounts,
all reasoning behaviour is determined in this way (e.g. Oaksford and Chater,
2007). Preconscious cognitive processes are, by definition, unavailable for
participants to report upon concurrently, and so verbal protocol analyses
may be at best unhelpful, and at worst misleading (Nisbett and Wilson,
1977; Wason and Evans, 1975). Further, there is some evidence that asking
participants to ‘think aloud’ when tackling tasks which have a large non-
conscious component may detrimentally interfere with their success rates
(Schooler et al., 1993). Given these factors, we adopted a purely quantitative
task-based approach, and adapted the materials and procedure used by Evans
et al. (1995).

Each participant was presented with 32 reasoning problems of the form
shown in Figure 1. Half of the questions pertained to the inferences shown in
Table II, whereas the remaining half were identical in form, except where ex-
plicitly negated premises had been replaced with implicitly negated premises
(i.e. premises such as ‘not-3’ were replaced with, for example, ‘7’). The
lexical content of the rules were generated randomly, and the order of the
problems was randomised for each participant. Participants were tested in
groups without time restriction, and were presented with a problem book
with six pages of problems, and a page of instructions – shown in Figure
2 – adapted from those used by Evans et al. (1995).

Participants were 65 paid volunteers, consisting of 34 arts and social sci-
ence (henceforth arts) undergraduates, and 31 mathematics undergraduates
(on either single honours programmes, or joint honours programmes which
contained a substantial proof-based mathematics component). None of the
arts students were on programmes of study which involved taking proof-
based mathematics modules. The mathematics students, in contrast, had all
taken a compulsory module on the Foundations of Mathematics (based on
Johnson, 1998). Along with sections on set theory, functions and cardinality,
the course contained several hours of formal teaching about mathematical
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This experiment is concerned with people’s ability to reason logically with sentences in var-
ious forms. You will be presented with a total of 32 problems on the attached pages. In each
case you are given two statements together with a conclusion which may or may not follow
from these statements. Your task in each case is to decide whether or not the conclusion
necessarily follows from the statements. A conclusion is necessary if it must be true, given that
the statements are true. Each problem concerns an imaginary letter-number pair and contains
an initial statement or rule which determines which letters may be paired with which numbers.
An example of a rule of similar form to those used would be:

If the letter is B then the number is not 7.
In each case you must assume that the rule holds and then combine it with the information
given in the second statement. This will concern either the letter or the number of an imaginary
pair, for example:

The letter is Y.
The number is not 4.

If the information concerns the letter the conclusion will concern the number and vice-versa.
A full problem looks something like this:

If the letter is X then the number is 1.
The letter is X.
Conclusion: The number is 1. © YES © NO

If you think the conclusion necessarily follows please tick the YES box, otherwise tick the
NO box. The experiment consists of this instructions page, and six pages of problems. Please
work through the problems in order and make sure you do not miss any. Do not return to a
problem once you have finished and moved on to another.

Figure 2. The instruction page of the booklet given to participants.

logic, including universal and existential quantification, contradiction proofs,
contrapositive arguments and so on. (Note that there is no reason to believe
that this course, in itself, would make students more likely to reason norma-
tively: Cheng et al. (1986) found that attending a complete term of lectures
on logic had no effect on (non-mathematics) students’ performance on logical
reasoning tasks).

3. Results.

We present the results of this study in three sections. First we discuss the over-
all inferential behaviour of the participants; second we look at the negative
conclusion effect; and finally we consider the affirmative premise effect.

3.1. OVERALL RESPONSES.

The number of normatively correct responses was calculated for each par-
ticipant: these ranged from 12 (41%) to 32 (100%). As shown in Table
III, the mathematical group had a higher mean number of normative an-
swers (Mean = 26.6, Std. Dev. = 4.1) than did the arts group (Mean =
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Table III. The mean number of each inference made by
each group, with the statistical significance of the differ-
ences (t-tests). ∗difference significant at the 0.001 level.

MP DA AC MT total correct

Arts 7.56 3.88 5.68 4.91 18.91
Maths 7.84 1.03 1.77 5.52 26.55

t 1.93 5.29∗ 7.12∗ 1.21 7.23∗

18.9, Std. Dev. = 4.4), a difference significant at the 0.001 level. Recalling
that each type of inference occurred 8 times in the test, considering each type
separately indicates where this difference originates. There was no significant
difference between the mean number of MP or MT inferences made by each
group: MP inferences were almost always drawn by both groups, whereas
MT inferences were drawn around two-thirds of the time for each group.
In contrast, the mathematics students made significantly fewer invalid (DA
and AC) inferences than the arts students, both ps < 0.001. In line with
Durand-Guerrier’s (2003) observation that few students consistently behave
in accordance with what O’Brien (1973) termed ‘child logic’, we found that
only one participant (an arts student) endorsed every inference.

3.2. THE NEGATIVE CONCLUSION EFFECT.

The number of inferences made by participants with negative and affirmative
conclusions is shown in Table IV. To conduct the analysis we calculated
a Negative Conclusion Index (NCI), defined by the number of inferences
endorsed on arguments with negative conclusions minus the number of in-
ferences endorsed on arguments with affirmative conclusions. Thus, since
the number of each type of both valid and invalid inferences with negative
and affirmative conclusions was equal, a participant exhibiting no negative
conclusion effect would be expected to attain an overall NCI of zero, and a
participant who did exhibit the effect would be expected to have a positive
NCI. For each group the significance of the negative conclusion effect was
assessed by comparing the NCIs to zero using a one-sample Wilcoxon signed
ranks test.5 Overall, both groups showed a strong effect (both ps < 0.001).
A similar analysis was conducted for each type of inference in turn. The
arts group showed a significant effect on the denial MT, p < 0.001, and
DA, p = 0.004, inferences; but no significant effects on either MP or AC.

5 In view of the large number of comparisons (ten) being made in this set of Wilcoxon
signed-rank analyses, we set a more stringent α-value of 0.01, rather than the normal 0.05.
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Table IV. The percentage of inferences with negative and affirmative conclusions
made by each group (Art – arts, Mat – mathematics), collapsed across premise-type
(explicit/implicit negatives).

MP DA AC MT Overall
Art Mat Art Mat Art Mat Art Mat Art Mat

Neg Concl 94 97 63 37 76 25 76 85 77 61
Aff Concl 93 97 40 10 65 19 46 52 61 45

The mathematics group showed a significant effect on the MT inference,
p < 0.001, but none on either MP, DA or AC.

To further explore these data, we adopted a similar procedure to that fol-
lowed by Evans and Handley (1999). Participants’ NCIs were subjected to an
analysis of variance (ANOVA) with two within-participant factors (inference-
type and negation-type), and one between-participants factor (group). The
negation-type factor referred to whether the inference involved explicitly
negated premises or implicitly negated premises. Given the finding that the
negative conclusion effect was only significant on denial inferences, the
inference-type factor was obtained by collapsing the four inferences into two
categories: affirmative (MP and AC) and denial (DA and MT). Consequently
the indices ranged from −4 to 4, giving a reasonable approximation to the
continuous distribution assumption of ANOVA. As predicted by the literature,
there was a significant effect for inference-type, F(1, 63) = 33.9, p < 0.001,
with a mean NCI for denial inferences of 1.75 compared to 0.28 for affir-
mative inferences. The mean NCIs for each group, for each inference-type
are shown in Figure 3. There was no significant effect for negation-type,
nor were there significant inference-type×group, negation-type×group or
inference-type×negation-type×group interaction effects, all Fs < 1.

In sum, both the mathematics students and the arts students exhibited the
negative conclusion effect: they were more likely to endorse denial inferences
with negative conclusions than they were with affirmative conclusions. Fur-
thermore, there were no significant differences between the degrees by which
each group was affected.

3.3. THE AFFIRMATIVE PREMISE EFFECT.

To test for the affirmative premise effect we again followed the procedure
used by Evans and Handley (1999), by calculating an Affirmative Premise
Index (API). This was given by the number of inferences endorsed on argu-
ments with affirmative premises minus the number of inferences endorsed
on arguments with negative premises. Thus a participant who showed no
affirmative premise effect would be expected to have an API of zero, and a
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Figure 3. The mean NCIs for each group, for each inference-type. Error bars represent ±1 SE
of the mean.

participant who did show such an effect would be expected to have a positive
API. A participant who exhibited the standard effect from the literature (of
exhibiting a larger affirmative premise effect on inferences with implicitly
negated premises) would be expected to have a higher API on inferences
with implicitly negated premises than on inferences with explicitly negated
premises. Equally, a participant who exhibited no such difference would be
expected to have equal APIs for the two negation-types.

Table V shows the percentage of inferences made from affirmative
premises and negative premises, for each of the two negation-types. For
each group the significance of the affirmative premise effect was assessed by
comparing the APIs to zero using a one-sample Wilcoxon signed ranks test.6

Overall, the arts group followed the pattern predicted by the literature and
showed a large significant affirmative premise effect on implicitly negated
premises, p < 0.001, and a significant, but smaller, effect on explicitly
negated premises, p = 0.002. However, no significant effects were found for
the mathematics group on either negation-type. Considering each inference
separately showed significant effects for the arts group on MP (implicit),
p = 0.002, AC (implicit), p < 0.001, DA (implicit), p = 0.008, and DA
(explicit), p = 0.002. The mathematics group showed no significant effects
on any inference.

The main analysis followed a slightly different route to that used for
the NCIs. Due to Schroyens et al.’s (2001) observation that the affirmative

6 As with the NCI analysis, we set a more stringent α-value of 0.01 for this set of Wilcoxon
signed-rank comparisons.
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Table V. The percentage of inferences with affirmative and negative premises made
by each group (Art – arts, Mat – mathematics), for each premise negation-type.

MP DA AC MT Overall
Art Mat Art Mat Art Mat Art Mat Art Mat

Explicitly negated premises
Aff Prem 100 100 56 18 85 32 66 68 77 54
Neg Prem 94 100 41 13 66 15 59 68 65 49

Implicitly negated premises
Aff Prem 100 100 60 15 88 31 74 71 81 49
Neg Prem 84 92 37 6 44 11 56 76 52 42

premise effect tends to be slightly stronger on invalid inferences, we re-
placed the inference-type factor with a validity factor. Consequently the APIs
were subjected to an ANOVA with two within-participant factors (validity
and negation-type), and one between-participants factor (group). As before,
the negation-type factor referred to whether the inference involved premises
which were explicitly or implicitly negated, whereas the new validity factor
came from collapsing inferences into those which are valid (MP and MT)
and those which are invalid (DA and AC). As with the NCI analysis, then, the
indices ranged from −4 to 4.

As predicted by the literature there was a significant effect for validity,
F(1, 63) = 22.5, p < 0.001, with a mean API of 0.36 for valid inferences
compared to 1.54 for invalid inferences. There was, however, no validity×

group interaction, F < 1. Importantly, there was a significant negation-
type×group interaction, F(1, 63) = 4.04, p = 0.049. This interaction is
shown visually in Figure 4. The arts group showed a large difference in affir-
mative premise effects between the two negation-types, with a difference be-
tween the mean APIs of implicitly and explicitly negated premises of +0.91,
t (33) = 2.67, p = 0.012. In contrast the difference for the mathematics
group was only +0.04, t (30) = 0.12, NS. No significant validity×negation-
type, F(1, 63) = 3.18, NS, or validity×negation-type×group, F < 1,
interaction effects were found.

In sum, the arts students in the sample exhibited the standard affirmative
premise effect. They endorsed more inferences with affirmative premises than
they did inferences with negated premises, with a larger effect when these
negated premises were expressed implicitly compared to when they were
expressed explicitly. In contrast, however, the mathematics group exhibited
no effect on either the implicit or explicit negation-types.
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Figure 4. The mean APIs for each group, for each negation-type. Error bars represent ±1 SE
of the mean.

4. Discussion.

4.1. SUMMARY OF MAIN FINDINGS.

The main goals of this study were to (i) determine whether advanced math-
ematics students draw more normative inferences from abstract conditional
statements than students who have not studied advanced mathematics; and,
(ii) to investigate whether successful mathematics students exhibit the two
main effects which have been found to interfere with normative logical
behaviour when drawing conditional inferences; namely (a) the negative
conclusion effect, and (b) the affirmative premise effect.

The picture which emerged was unexpectedly mixed. Our data showed
that those students with experience of advanced mathematics did indeed make
more normatively correct choices on an abstract conditional inference task
than those without such experience. Interestingly, however, the only signif-
icant difference between the two groups came on the invalid AC and DA
inferences. In short, the mathematics students were better than the arts stu-
dents at rejecting invalid inferences, but not significantly better at endorsing
valid inferences. In particular, this finding replicates and extends O’Brien’s
(1973) finding that many mathematics students have difficulty with MT in-
ferences (in our study 69% and 61% of MT inferences were endorsed by
the mathematics and arts groups respectively; in O’Brien’s study, albeit with
contextualised materials, the equivalent figure was 57%). We also replicated
Durand-Guerrier’s (2003) finding that O’Brien’s ‘child logic’ is consistently
used by very few students.
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With respect to the negative conclusion effect, our data showed that both
the groups tended to endorse more denial inferences with negative conclu-
sions than they did denial inferences with positive conclusions. The difference
between mean NCIs for denial and affirmative inferences was approximately
equal for the two groups, suggesting that both were affected by the negative
conclusion effect by similar degrees.

In contrast, there was a between-groups difference with regards to the
affirmative premise effect. The arts group showed the standard effect: they
endorsed more inferences with affirmative premises than they did inferences
with negated premises, and the effect was larger when those negations were
represented implicitly. The mathematics group, in contrast, showed no effect.
Crucially, there was a significant negation-type×group interaction for APIs,
suggested that the affirmative premise effect did manifest itself differently for
the two groups.7 In the remaining two sections of this discussion we consider
issues surrounding the negative conclusion and affirmative premise effects,
and suggest links between our results and recent theories on mathematical
representations.

4.2. THE NEGATIVE CONCLUSION EFFECT.

The negative conclusion effect refers to the tendency of participants to en-
dorse more inferences which lead to negative conclusions than those which
lead to affirmative conclusions. As predicted by the literature, the arts group
in our study exhibited this effect on denial inferences. But, despite making
more normatively correct responses overall, the mathematics group also ex-
hibited the effect on denial inferences, by a similar degree of magnitude to
the arts students.

As discussed, one mechanism which has been proposed to account for the
negative conclusion effect is related to the difficulty of making the deduc-
tive step from not-(not-p) to p. Consider, for example, the two inferences
in Figure 5. The mental logic account of reasoning proposes that MT is an
application of MP with a contradiction argument (Braine and O’Brien, 1998).
Figure 5, supposing this process, shows the inferential steps required for each
inference.8 The righthand inference (with a positive conclusion) requires the
extra step of double negation compared to the lefthand inference (with a neg-
ative conclusion), perhaps making the inference harder to complete. It is of
course well known that students have difficulty negating complex quantified

7 Note that this interaction cannot be accounted for by the mathematics group’s tendency
to endorse fewer invalid inferences than the arts group. If this were the primary reason for the
negation-type×group interaction, one would also expect a significant inference-type×group
interaction effect, whereas actually this effect did not approach significance, F < 1.

8 An essentially identical analysis (in the sense that it invokes a double negation process
to account for the negative conclusion effect) can be made using the mental models theory of
reasoning (Johnson-Laird, 2006).
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Rule: If the letter is T then the number is 6. Rule: If the letter is not T then the number
is 6.

Premise: The number is not 6. Premise: The number is not 6.
Conclusion: The letter is not T. Conclusion: The letter is T.

Inferential steps: Inferential steps:
Given: (i) ‘if T then 6’ and (ii) ‘not-6’. Given: (i) ‘if not-T then 6’ and (ii) ‘not-6’.
Suppose (iii) T. Suppose (iii) not-T.
Infer (iv) 6, by MP and (iii). Infer (iv) 6, by MP and (iii).
Infer (v) 6 and not-6, by (ii) and (iv). Infer (v) 6 and not-6, by (ii) and (iv).
Conclude not-T, by contradiction of (v), and
(iii).

Conclude (vi) not-(not-T), by contradiction
of (v), and (iii).
Conclude T, by double negation of (vi).

Figure 5. Two MT inference tasks, one with an affirmative conclusion (right) and one with a
negative conclusion (left), together with the steps needed to make the inference (according to
mental logic theorists).

statements in mathematical contexts (e.g. Barnard, 1995; Dubinsky et al.,
1988), but we are aware of no previous study which has found successful
mathematics students having difficulty with the negation of abstract ‘not-p’
statements, albeit when under the large cognitive load of holding in mind
several previous inferential steps.

4.3. THE AFFIRMATIVE PREMISE EFFECT.

The affirmative premise effect refers to the phenomenon of participants en-
dorsing more inferences with affirmative premises than negative premises.
The effect tends to be stronger when negative premises are represented im-
plicitly (i.e. as ‘8’ rather than ‘not-1’). In this paper we have reported evidence
that arts students exhibited, as predicted by the literature, an increased ef-
fect for inferences with implicitly negated premises over explicitly negated
premises; but, in contrast, we found that participants with a background in
proof-based mathematics exhibited no effect at all. In this section we consider
one account for this effect, and on its relation with advanced mathematical
study.9

Evans and Handley (1999) suggested that the reason why the affirmative
premise effect is substantially larger on inferences with implicitly negated
premises is that participants see fewer implicitly negated premises as rele-
vant to the conditional than they do explicitly negated premises, and so they

9 It should be reemphasised that there is considerable debate about the mechanism behind
the affirmative premise effect, and our goal here is not to intervene in disputes between reason-
ing theorists (interested readers can consult the discussions between Evans, 2002; Oaksford,
2002; and Yama, 2001).
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Rule: If the letter is H then the number is 1. Rule: If the letter is H then the number is 1.
Premise: The number is not 1. Premise: The number is 8.
Conclusion: The letter is not H. Conclusion: The letter is not H.

Figure 6. Two MT inference tasks, one with an explicitly negated premise (left) and one with
an implicitly negated premise (right).

make fewer inferences. In short, participants fall at the first hurdle of the
‘two hurdles’ account. The crucial factor here appears to be the way premises
in conditional inference tasks are represented. The nature of mathematical
representations, and their influence on the learning of mathematics has re-
ceived considerable attention in recent years, and in the discussion below we
draw parallels between our work and contemporary studies on mathematical
representations.

Lesh et al. (1987) introduced the notion of transparent and opaque
representations of mathematical concepts. In their terms, an opaque repre-
sentation emphasises some aspects of the concept, whilst de-emphasising
others; whereas, in contrast, a transparent representation neither adds nor
takes away meaning from the underlying concept. Zazkis and Gadowsky
(2001) argued that a single representation may be transparent with respect to
certain properties, but opaque with respect to others. For example, one way
of representing the number 1007 is 1000+7, another way is 53×19. The first
representation emphasises that 1007 is larger than 1000, but de-emphasises
that it is divisible by 53 (it is transparent with respect to magnitude, but
opaque with respect to divisibility). The second representation has the reverse
property (it is transparent with respect to divisibility, but opaque with respect
to magnitude). Zazkis and Liljedahl (2004) argued that the reason students
have considerable difficulties with understanding prime numbers and prime
factorisation is because of the lack of a transparent representation system for
primes, and similar observations can be made of higher level mathematics.
In the domain of knot theory, for example, the Tait Conjectures remained
unproved for much of the twentieth century, but upon the discovery of new
and more transparent ways of representing knots – the Jones and HOMFLY
polynomials – the conjectures were quickly solved.

Kirshner and Awtry (2004) noted that representation systems for some
mathematical concepts may be opaque in a slightly different way: rather
than de-emphasising certain valid properties, they may emphasise other in-
valid properties. Kirshner and Awtry suggested that many of the widely
documented ‘mal-rules’ applied by students when making algebraic manip-
ulations are a consequence of such effects. For example, both the mal-rule
am+n

= am
+an , and the actual rule a(m + n) = am +an are salient: the left

and right sides of the equations appear naturally similar. Kirshner and Awtry
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found that students were more likely to accurately complete transformations
if they had this saliency property. No such difference, however, was found
for students who has been taught algebra with a representation system which
eliminated these saliency features. Complementary results were published by
Landy and Goldstone (2007), who found that the internal spacing of algebraic
expressions can affect their opaqueness/transparency.

The affirmative premise effect could, then, be reconceptualised using the
terminology adopted by Lesh et al. (1987). In the example given in Figure
6, the notation ‘8’ is an opaque representation for the concept not-q; in con-
trast, the notation ‘not 1’ is a transparent representation, as it shares salient
features with the conditional ‘if p then q’: the presence of 1. In short, Evans
and Handley’s (1999) account of the affirmative premise effect suggests that
participants struggle to see through the opaqueness of the notation used in
the implicitly negated component of the task, in exactly the same way as the
students studied by Kirshner and Awtry (2004), Lesh et al., and Zazkis and
Liljedahl (2004) struggled to see through the opaqueness of the notations used
in their tasks. However, the crucial difference between our study, and those of
other researchers who have looked at opaque and transparent representations,
is that unlike the arts students, the mathematics students in our sample (all
undergraduates who had been highly successful at school level mathemat-
ics) were apparently not affected by the opaqueness of the representation of
implicitly negated premises: they exhibited no affirmative negation effect on
either negation-type.

All these disparate studies point in the same direction: towards the specu-
lative hypothesis that one characteristic of successful mathematical thinking
is an ability to override the attentional biases that are generated by opaque
representations. This study suggests that mathematics students are not af-
fected by the opaqueness of implicit negations on an abstract conditional
inference task. Similarly Kirshner and Awtry (2004), Lesh et al. (1987) and
Zazkis and Liljedahl (2004) have shown that one of the primary difficulties
weak students have with mathematics is related to exactly these types of
opaque representations. It seems reasonable, therefore, to speculate that the
ability to ‘see through’ opaque representations is a characteristic of mathe-
matically successful students. Expert/novice differences in the deployment
of attention whilst engaged in mathematical activities would appear to be a
fruitful area for future research.

5. Conclusion.

Many curriculum bodies and commentators have supported a form of the
theory of formal discipline by expressing the view that studying mathemat-
ics facilitates abstract logical reasoning. Despite the sceptical views of early

CondInf10b_dist.tex; 9/02/2008; 14:48; p.18



19

psychologists towards this position (e.g. Thorndike and Woodworth, 1901),
Lehman and Nisbett (1990) found a slight correlation between the number of
mathematics courses taken by science and humanities students during their
degree and their improvement on a test of conditional reasoning. To inves-
tigate this view, we directly compared the inferences drawn by mathematics
and arts undergraduates from abstract conditional statements. The overall pic-
ture we found was mixed. Successful mathematics students endorsed fewer
invalid inferences than a control group of arts students, but they did not en-
dorse more valid inferences. We paid particular attention to two effects which
have been found to interfere with normative logical behaviour: the negative
conclusion effect and the affirmative premise effect. It was found that both
the arts and mathematics students in our sample endorsed significantly more
inferences which led to negative conclusions than they did inferences which
led to affirmative conclusions. In contrast, only the arts group exhibited the
affirmative premise effect: they endorsed more inferences with affirmative
premises than they did inferences with negative premises. This was not the
case with the mathematics group.

One unresolved question is related to the cause of these between-groups
differences. Whilst we have found a correlation between the study of ad-
vanced mathematics and a different pattern of responses to an abstract
conditional inference task, we have not established the causal relationship
posited by the formal discipline view. There are two reasonable hypotheses.
Perhaps, as suggested by those who support a form of the theory of formal
discipline (Oakley, 1946; Smith, 2004), exposure to the study of higher level
mathematics brings about the development of certain logical skills: in par-
ticular the ability to recognise invalid inferences, and to see through opaque
representations. An alternative hypothesis, however, is that there is a sub-
set of the population who are naturally skilled in these areas, and that it is
this subset who are disproportionately filtered into studying mathematics at
advanced levels. Although our cross-sectional data do not allow us to dis-
tinguish between these hypotheses, in view of Lehman and Nisbett’s (1990)
findings we feel there is more support for the formal discipline view, albeit
with important caveats. In particular it is clear that there is no simplistic rela-
tionship between advanced mathematical study and abstract logical reasoning
skills: the idea that mathematicians are simply ‘better’ at abstract logic is too
simplistic (indeed, there are some areas where they are not, apparently, any
better). But, equally, we have also demonstrated that theories which posit no
relationship are also too simplistic. We found that in some crucial aspects of
conditional inferential reasoning mathematics undergraduates behave more
normatively than arts undergraduates, whereas in some other aspects they do
not. Determining whether these differences are developed, and, if they are,
at which curriculum stage they develop, would be a valuable goal for future
research.
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