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Driver distraction is a safety-critical issue that has been bought to greater public 
attention with the recent developments of more advanced driver support systems (DSS), 
such as navigation and collision warning. Tasks performed with such systems have the 
potential to distract drivers significantly from the primary task of controlling their 
vehicle, and this may result in an accident. Designers of DSS need to be able to assess 
this distraction potential in the early stages of design. In this respect, the occlusion 
technique and its associated measures are claimed to be reliable indicators of potential 
visual distraction. In particular, it has been argued that the technique provides more 
information concerning the likely visual demand of a system than other economical 
methods based on static task time, such as the 15-second rule. To investigate these 
assertions, a study compared results from an occlusion assessment and a road-based 
assessment. Sixteen experienced drivers carried out a range of tasks using two 
alternative user-interfaces under three conditions: statically, with full vision, statically, 
with restricted vision (occlusion), and whilst driving on a dual carriageway road within 
the UK. It was found that occlusion measures provided more information regarding the 
prospective visual demand of a DSS than did static task times. In particular, the 
resumability ratio assessed how far a task can be progressed whilst in periods with 
vision and without vision. It is concluded that the technique offers advantages over 
other methods, but requires a robust prototype for use as part of a driver-centred design 
process. 
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1. Introduction 

 

The task of driving is widely recognised (e.g. [1]) to comprise of three hierarchical 

levels: strategic (e.g. overall journey decisions); tactical (e.g. lane choices, route 

following); and control (e.g. braking, steering). Novel computing and communications 

technologies, such as navigation systems, adaptive cruise control and collision 

avoidance, aim to support drivers across all levels of the driving task, and hence 

improve the safety, efficiency and comfort/pleasure of the driving experience [2]. Such 

technologies are referred to within the literature using a wide range of terms (and their 

associated acronyms), at various levels of specificity, for example, Advanced Driver 

Assistance Systems (ADAS) [3], Transport Information and Control Systems (TICS) 

[4], and Advanced Traveller Information Systems (ATIS) [5]. In the context of this 

paper, the broad term, Driver Support Systems (DSS) [1] will be used. 

Research investigating the design and evaluation of user-interfaces for DSS has 

not traditionally been a focus for human-computer interaction (HCI) specialists. Indeed, 

a cursory glance through HCI textbooks, journals and conferences reveals that there are 

remarkably few references to work in this area. In particular, it is noteworthy to see that 

a recent review of 102 HCI papers concerning mobile devices [6] provides no mention 

of in-car systems. Instead, the bulk of literature concerning user-interface design within 

the driving context (more commonly referred to as Human-Machine Interface-HMI) is 

present within the Human Factors/Ergonomics, Traffic and Transport Psychology and 

more general Engineering sources.  

An analysis of research concerning in-car user-interfaces (see for instance: [7], [8]) 

indicates there are three core questions that have been addressed: 



 

1. What are the impacts (in terms of safety, efficiency, comfort, etc.) of DSS on 

drivers, passengers, other road users, and for the traffic/transport system as a 

whole?  

2. What is the potential for novel user-interfaces in a driving context, for example, 

speech recognition, head-up displays, gesture-driven interfaces, handwriting 

recognition, and so on? 

3. What methods and measures are appropriate for use in the design and evaluation 

of DSS? 

 

The current paper focuses on the latter question, and, in particular addresses the 

potential for the occlusion technique, a method which aims to provide a cost-effective 

means for assessing the visual demand of a DSS user-interface at early stages in the 

design process, as part of a driver-centred design approach. 

 

1.1 DSS and distraction  

 

Designers of DSS are faced with an atypical situation in user interface design, in that 

the interface being designed is ‘secondary or peripheral to some performance-critical 

primary task’ [9: 86]. As a consequence designers have a responsibility to consider not 

just the ease of interaction with the interface, but the effects that use of the interface 

may have on driving performance and behaviour [9]. The implications of a driver 

engaging in a secondary task that has adverse effects on driving performance are severe, 

and potentially fatal. Driver distraction is an established causal factor in road accidents 



[10], [11], [12]. It is felt that an increase in the number of cars equipped with DSS could 

potentially have an impact on the role distraction plays in automobile accidents 

(particularly if user-interfaces are poorly designed) [12], [13]. 

Driver distraction has been defined in a number of ways. In particular, it has 

been discussed in terms of four distinct types: visual, auditory, biomechanical, and 

cognitive distraction [14]. A distracting activity may comprise of a combination of these 

types [14]. Current DSS typically employ a range of complex displays and controls 

fitted within the vehicle, and, as such, are a potentially worrying source of visual 

distraction, defined as the ‘diversion of visual attention from the road scene’ [15: 10]. 

The user-interfaces for many DSS are ‘largely based on the desktop computing 

paradigm and therefore require the user to engage in highly visually oriented tasks, such 

as scrolling and selecting items from lists, menu orientation, choosing individual 

characters from a large array, and so on’ [8: 266]. 

The potential visual distraction afforded by a device is reliant on two factors: 

how visually demanding a DSS is when used, and driver motivation to engage with the 

device. Visual demand has been defined as the ‘degree of visual activity required to 

extract information from an object to perform a specific task’ [15: 10]. The motivation, 

or the ‘willingness to engage’, property of a system is difficult to measure as it relies on 

many factors that can be hard to quantify. For example, driver motivation may depend 

on: the driver’s familiarity with the DSS; the importance of the secondary task to their 

overall goals at that particular moment in time; and, the wider driving environment, i.e. 

traffic, urban/rural location, day/night, and so on. As a consequence, predictive 

measures of visual distraction, such as the occlusion technique, instead tend to focus on 

the visual demand of a system. 



 

1.2 Predicting and measuring distraction through the occlusion technique 

 

A human-centred design approach requires ways of understanding users’ requirements 

and assessing the appropriateness of alternative user-interfaces, and, in this respect HCI 

offers a diversity of methods [16]. A driver-centred approach will make use of many of 

the same global techniques (for example, questionnaires, interviews, 

guidelines/checklists), but will, by necessity require its own methods (or at least specific 

versions of generic methods) that account for the particular complex, safety-critical 

characteristics of the driving context. 

The occlusion technique has been investigated as a potentially useful measure of 

the visual demand associated with in-vehicle devices. Its premise lies in the assumption 

that, by allowing participants only brief periods of vision, the glance behaviour of 

performing a secondary task in the driving environment is simulated. In the driving 

environment visual attention is shared between the primary driving task and the 

secondary, in-vehicle task. With occlusion the periods where participants are without 

vision is representative of glances to the road scene. This behaviour is simulated by 

using a shutter or goggles to block and reveal the visual scene [17], [14]. If a task can be 

carried out effectively through a series of short glances it is felt that it is acceptable to 

perform whilst driving, as this is an indicator that a task is highly ‘chunkable’, and is 

easy to resume [17].  

Interest in the occlusion technique has been driven by its low cost and ease of 

implementation when compared with more traditional measures of driver distraction, 

such as road and simulator studies [14], [17]. Whilst simulator and road studies require 



detailed planning (e.g. development/selection of appropriate road scenarios), time-

consuming analysis (e.g. eye-glance studies), and expensive equipment (e.g. driving 

simulators/instrumented vehicles), the occlusion technique can be implemented in a 

laboratory setting with the system under investigation only [17]. In addition, the 

technique can be used to evaluate several system properties, such as: ‘chunkability, 

completion time, ease of resumption after interruption and visual complexity’ [14: 36].  

An international standard for the application of the occlusion technique is 

currently in the committee draft stage [15]. Whilst there is potential for various 

configurations of the technique, and a number of different measures can be made and 

reported, the standard seeks to provide a framework for research and the application of 

the method in order to improve comparability between studies.  

In the standard, a number of conditions for study set up are given. The key points 

are as follows:  

• A minimum of 10 participants should be used in any occlusion study; 

• Participants should undergo training in tasks and the occlusion method; 

• Up to 5 practice trials should be undertaken prior to actual trials; 

• Participants should complete 5 trials on each task with full vision (static trials) 

and 5 trials whilst under occlusion conditions; 

• Tasks acceptable for occlusion studies should have static task times of greater 

than 5 seconds; 

• The order of occlusion and static trials should be counterbalanced to avoid 

learning effects; 



• In occlusion conditions, periods where participants are allowed vision are 

referred to as shutter open time. Periods where participants are without vision 

are referred to as shutter closed times (see Fig. 1 and Fig. 2).  

 

[INSERT FIGURE 1 ABOUT HERE] 

[INSERT FIGURE 2 ABOUT HERE] 

 

There has been considerable debate within the research community regarding the length 

of time participants are allowed vision and the duration of occluded periods [17]. The 

draft standard proposes a shutter closed time of 2 seconds and a shutter open time of 1.5 

seconds. 1.5 seconds is felt to be a tolerable time for drivers to glance away from the 

road whilst in motion [18], [19], [20].  

The draft standard proposes that two measures should be reported following 

occlusion trials – the total shutter open time (TSOT), which is the total time that 

participants had vision whilst performing the task, and the resumability ratio (R), which 

relates to the ease of resumption of a task following an interruption. The standard 

provides guidelines on the calculation of these two measures from the trials undertaken 

by each participant [15]. Guidelines include a rationale for the elimination of outliers. 

TSOT can either be recorded computationally, or calculated as follows:  

 

TSOT = (total task timeoccluded / 3.5) * 1.5 

 

R is determined as the ratio of TSOT to total task time with full vision (TTTstatic), such 

that:  



 

R = (TSOT) / (TTTstatic)  

 

The values used in the calculation of R are taken from the mean TSOT and TTTstatic 

values obtained from the five task instances undertaken by each participant.  

 

1.3 Validity of the occlusion technique  

 

A number of studies have sought to assess the validity of the occlusion technique [14], 

[17]. Whilst individual research has demonstrated that the technique has promise, there 

is concern that there has been a lack of coordination between studies [14]. Correlations 

have been found between occlusion measures and a number of measures of driving 

performance, implying that occlusion trials may be a valid substitute for on-road and 

simulator studies [17]. As the draft ISO standard requires that only the TSOT and the R 

ratio be reported, this section will focus on the validity of those measures.  

Studies have shown TSOT to correlate highly with total glance time – the total 

time drivers spend glancing away from the road whilst driving [21], [22]. As TSOT is 

much more easily obtained than total glance time, this is very encouraging [17]. 

Recommendations regarding acceptable values for TSOT have been made; however, 

research suggests that many DSS seriously exceed these [17]. Total glance time has also 

been shown to correlate well with static task time with full vision [23].  

Research has also suggested a strong correlation between total glance time and 

lane deviations, a driving safety measure [24], [22]. However, it is argued that there are 

problems with assessing DSS based on total glance time; high values imply the DSS is 



unsafe, yet if a task is highly chunkable, requiring only short glances, this may not be 

the case [17]. It is suggested that measures of static task time alone are not enough, as 

they fail to discriminate between tasks that require long glances and those that can be 

completed with only short glances [14], [17]. Similar issues have been raised regarding 

total glance time. In an on-road study, Chiang et al. [25] reported average total glance 

times of 34.1 seconds whilst performing a destination entry task. The authors found that 

participants made a similar number of lane exceedences when performing the secondary 

task as in a baseline condition (driving only, with no secondary task to perform). This 

was attributed to the highly interruptible nature of the task. Thus, a task may have a 

high total glance time value but this may be acceptable if individual glances are short. A 

task with a total glance time of 34 seconds comprised of 34 individual, one second 

glances, is more desirable than a task with a total glance time of 17 seconds comprised 

of, for example, three long glances. As TSOT correlates well with total glance time it 

can be inferred that the measure may have similar failings. Therefore, it is proposed that 

static task time, TSOT and total glance time are not necessarily indicative of the impact 

of a task on driving performance [17].   

The occlusion technique seeks to address the shortcomings of measuring TSOT 

with a further measure: the resumability ratio (R). The R ratio is used to evaluate ‘the 

degree to which a task can be done without visual control’ [17: 25]. Care should be 

taken with the measure as it can be negatively affected by the static task time. The draft 

ISO standard suggests that the occlusion technique is only suitable for tasks longer than 

5 seconds in duration. R has been found to be influenced more by static task time when 

static task time is short, than by task complexity [26], [27].  



The majority of studies in this area have aimed to validate the occlusion 

technique using data from simulator trials. Few, in contrast, have compared occlusion 

results with on-road studies (a notable exception is [28]). By measuring driving 

performance variables in a real vehicle, driving on public roads, participants’ behaviour 

will inevitably be more naturalistic than when the same tasks are performed in a 

simulator. Questions have been raised over the validity of driving simulators, that is, 

whether drivers behave in the simulator as they would on the road [29]. 

  Furthermore, there is a lack of research that aims to validate occlusion in its 

intended role, that is, as a design tool enabling a researcher/developer to make design 

decisions regarding alternative user-interfaces. Put simply, if the user-interface for one 

system is favoured over another in occlusion trials, is the same true of data gathered 

from road trials? In addition, does occlusion provide any more significant information 

than simply measuring total task time when stationary? These questions are the basis for 

a road-based evaluation study comparing a destination entry task and a sound 

manipulation task on two DSS under the following conditions: statically with vision; 

statically, with restricted vision (occlusion); and, driving on a dual carriageway. The full 

method and results are discussed below. 

 

2. Method 

 

2.1 Participants 

 

Sixteen licensed drivers took part in the trials. The mean age was 41.2, SD=19.8, range 

22 to 68. There was an even split between genders. Driving experience was noted by 



annual mileage (see table 1 for a summary). Participants had held full driving licenses 

for an average of 22 years (SD=19, range: 5 to 54).  Participants were paid for their 

time.  

 

Table 1: driving experience of 
participants 

Annual Mileage Participants 
0 to 1 000 1 

1 001 to 5000 3 
5001 to 10 000 7 

10 001 to 15 000 2 
15 001 to 20 000 2 

20 000 + 1 
 

 

2.2 Equipment 

 

The trials were conducted in a Honda Civic. Static trials and occlusion trials were 

performed in the stationary vehicle. The road trials took place on a section of the A50 in 

Leicestershire/Derbyshire, United Kingdom; a two-lane dual carriageway restricted by 

the national speed limit of 70 mph. Participants were instructed to try and maintain a 

speed of 70 mph throughout the trial, traffic permitting. Two systems were assessed in 

the study. System A incorporated a commercially available, integrated navigation 

system / entertainment system with the vehicle’s original heating, ventilation and air-

conditioning (HVAC) controls. System B was a prototype system, which combined 

navigation, in-vehicle entertainment and HVAC controls. The trial car was equipped 

with four cameras to record: the driver’s face; the road scene ahead; the system controls 

and display; and, the overall driver cockpit environment (see Fig. 3). In the occlusion 

trials, PLATO (portable liquid-crystal apparatus for tachistoscopic occlusion) goggles 



were used as a means of achieving occlusion [30]. These goggles are commonly used as 

a means of achieving occlusion [17]. A laptop computer is used to determine the 

translucency/transparency of the goggle lenses at the regular intervals required by the 

draft standard [15].   

 

[INSERT FIGURE 3 ABOUT HERE] 

 

2.3 Tasks 

 

Two tasks were selected for the trials based on the comparability between systems and 

their suitability for occlusion. In particular, the draft ISO standard requires that tasks 

assessed by the occlusion technique have static task times of greater than 5 seconds. The 

first task involved the navigation function of each system, and required participants to 

select a destination from a stored list and confirm it. The second task involved 

manipulation of the sound characteristics within the vehicle, such as adjusting the levels 

for treble, bass, balance and fade. Both tasks could be satisfactorily completed on each 

system and were in excess of the 5 seconds stationary task time necessary to be eligible 

for occlusion.  

 

2.4 Trial setup and process 

 

Prior to the occlusion and road trials, participants were made familiar with the car and 

its controls and fully trained in the use of the system. In a repeated measures design, 

each participant completed two trials, one for each system, with a delay of around 2 to 4 



weeks between trials. This was felt to minimise any learning effects regarding trial 

procedure. To avoid order effects, half of the participants completed the trials with the 

order System A – System B, whilst the other half followed the order System B – System 

A.  

The occlusion trials were conducted whilst sat in the vehicle, which was 

stationary. The procedure for the occlusion trials followed that given in the most up-to-

date version of the draft standard available at the time of the trials [31]. Participants 

were trained in the tasks and given five practice trials in order to familiarise themselves 

with the task/system. An assessment was made of their ability to perform the tasks to a 

satisfactory level before the full occlusion trial. Five task instances were undertaken 

with full vision and five under occlusion conditions, as per the draft standard. Ordering 

of static versus occluded trials was counterbalanced to minimise learning effects.  

In the road trial, participants drove a 20-minute route twice whilst performing 

several tasks, including the two examined using occlusion. Video data was analysed on 

the second trip, in order to ensure participants were fully competent in the tasks.  

 

3. Results 

 

A number of technical issues were encountered during the trials that reduced the initial 

dataset of 16 participants. The quantity of participant data under each condition is 

detailed in table 2.  

 

 

 



Table 2: number of participant data for each condition 
 Static task time Occlusion measures Road trial measures 
 Navigation 

Task 
Sound 
Task 

Navigation 
Task 

Sound 
Task 

Navigation 
Task 

Sound 
Task 

System A 14 15 15 15 13 14 
System B 14 15 12 11 14 14 
 

Comparisons were made between the following measures: 

1. Static task time 

2. TSOT  

3. R  

4. Total Glance Time 

5. Glance frequency 

6. Total on-road task time 

7. Proportion of on-road task time spent with eyes off the road 

8. Average glance duration 

 

Measures 1, 2 and 3 were all obtained during the occlusion trials following the 

procedure outlined in the draft occlusion standard [15]. Measures 4, 5, 6, 7 and 8 were 

all obtained from the road trials based on video analysis. Measures were selected by 

requirement (e.g. the occlusion measures) and based on measures used in previous 

research (see section 1.3). The results were analysed between systems for each task – 

i.e. is System A better/worse than System B? – and between tasks on each system – i.e. 

on System A, is task 1 better/worse than task 2? Two sample t-tests were conducted to 

assess differences in values.  

 

 



3.1 Results between systems for navigation task 

 

The navigation task on each system required participants to access a stored list of 

destinations, select a specified destination and finally, confirm it as their choice. The 

results are summarised in table 3. For this task, no significant differences were found 

between either system in any of the conditions, leading to the conclusion that neither 

system is more or less acceptable than the other. As no significant differences were 

found, it is not possible to draw any firm conclusions regarding the validity of the 

occlusion technique at this stage. However, it can be noted that the results from the 

occlusion study are in keeping with the outcome of the static task time results and those 

from the road study.  

 

Table 3: Comparison of results for System A and System B for Navigation task showing means and 
standard deviations (in brackets) 

  Occlusion On-road 
 Static 

task 
time 

Total 
Shutter 
Open 
Time 

Resumability 
Ratio 

Dynamic 
Task 
Time 

Total 
Glance 
Time 

% task 
time 
‘eyes 
off 
road’ 

Glance 
Frequency 

Single 
Glance 
Time 

System 
A 

11.0 
(4.36) 

9.3 
(2.75) 

0.94 
(0.33) 

21.4 
(10.37) 

12.7 
(5.90) 

61.8% 11.5 
(3.91) 

1.08 
(0.20) 

System 
B 

11.4 
(3.11) 

9.4 
(1.78) 

0.84 
(0.20) 

22.0 
(8.97) 

12.9 
(5.26) 

60.7% 11.1 
(3.93) 

1.17 
(0.24) 

Design 
decision 

Neither Neither Neither Neither Neither Neither Neither Neither 

 

 

 

 

 



3.2 Results between systems for sound settings task 

 

The sound task required participants to manipulate sound settings such as the treble, 

bass, balance and fade levels. The results are summarised in table 4. For this task 

significant differences were found between the systems in all but one measure, mean 

single glance time. The majority of the measures favour System A, however two 

measures – the R ratio (t(24)=3.08; p<0.01) and the proportion of task time spent with 

eyes off the road (t(26)=2.17; p<0.05) – favour System B.  

 

Table 4: Comparison of results for System and System B for Sound task showing means and standard 
deviations (in brackets). Shaded areas indicate a significant difference in favour of the corresponding 

system. 
  Occlusion On-road 
 Static 

task 
time 

Total 
Shutter 
Open 
Time 

Resumability 
Ratio 

Dynamic 
Task 
Time 

Total 
Glance 
Time 

% task 
time 
‘eyes off 
road’ 

Glance 
Frequen
cy 

Single 
Glance 
Time 

System 
A 

13.2 
(3.90) 

9.1 
(3.73) 

0.67 
(0.17) 

16.4 
(6.60) 

9.8 
(4.53) 

60.8% 8.8 
(3.12) 

1.10 
(0.21) 

System 
B 

26.4 
(5.98) 

13.9 
(3.32) 

0.51 
(0.12) 

30.4 
(11.21) 

14.4 
(5.91) 

49% 12.7 
(4.05) 

1.12 
(0.31) 

Design 
decision 

System 
A 

System 
A 

System B System A System 
A 

System 
B 

System 
A 

Neither 

 

3.3 Results between tasks for System A 

 

Table 5 compares the results for each task on System A, and provides a decision on 

which task is most suitable for use whilst driving based on each measure. Although 

almost all measures suggest there is no significant difference between the two tasks on 

this system, the R ratio indicates a preference for the sound task (t(21)=2.61; p<0.05), 

and this is replicated in the glance frequency (t(23)= 2.01; p<0.05).  



Table 5: comparison between tasks for System A showing means and standard deviations (in 
brackets). Shaded areas indicate a significant difference in favour of corresponding task. 

  Occlusion On-road 
 Static 

task 
time 

Total 
Shutter 
Open 
Time 

Resumability 
Ratio 

Dynamic 
Task 
Time 

Total 
Glance 
Time 

% task 
time 
‘eyes off 
road’ 

Glance 
Frequen
cy 

Single 
Glance 
Time 

Nav 
task 

11.0 
(4.36) 

9.3 
(2.75) 

0.94 
(0.33) 

21.4 
(10.37) 

12.7 
(5.90) 

61.8% 11.5 
(3.91) 

1.08 
(0.20) 

Sound 
task 

13.2 
(3.90) 

9.1 
(3.73) 

0.67 
(0.17) 

16.4 
(6.60) 

9.8 
(4.53) 

60.8% 8.8 
(3.12) 

1.10 
(0.21) 

Design 
decision 

Neither Neither Sound task Neither Neither Sound 
task 

Sound 
task 

Neither 

 

3.4 Results between tasks for System B 

 

Table 6 compares results for each task on System B, similar to the table in the previous 

section.  

 

Table 6: Comparison between tasks for System B showing means and standard deviations (in 
brackets). Shaded areas indicate a significant difference in favour of corresponding task. 

  Occlusion On-road 
 Static 

task 
time 

Total 
Shutter 
Open 
Time 

Resumability 
Ratio 

Dynamic 
Task 
Time 

Total 
Glance 
Time 

% task 
time 
‘eyes off 
road’ 

Glance 
Frequen
cy 

Single 
Glance 
Time 

Nav 
task 

11.4 
(3.11) 

9.4 
(1.78) 

0.84 
(0.20) 

22.0 
(8.97) 

12.9 
(5.26) 

60.7% 11.1 
(3.93) 

1.17 
(0.24) 

Sound 
task 

26.4 
(5.98) 

13.9 
(3.32) 

0.51 
(0.12) 

30.4 
(11.21) 

14.4 
(5.91) 

49% 12.7 
(4.05) 

1.12 
(0.31) 

Design 
decision 

Nav 
task 

Nav 
task 

Sound task Nav task Neither Nav task Neither Neither 

 

There was no significant difference discovered between the tasks for three measures: 

total glance time, glance frequency, and single glance time. Three measures showed a 

preference for the navigation task: static task time (t(20) = -8.35; p<0.001); TSOT (t(15) 

= -3.97; p<0.005); on-road task time (t(25)= -2.19; p<0.005). Two measures showed a 



significant difference in favour of the sound task: R (t(18)=4.83; p<0.0005) and the 

proportion of task time with eyes off the road (t(26)=2.05; p<0.05). 

 

4. Discussion 

 

4.1 The validity of the technique 

 

The occlusion technique aims to provide designers of DSS with unique information 

about the visual demand of a particular task/system. It is suggested that measures of 

static task time alone are not enough, as they fail to discriminate between tasks that 

require long glances and those that can be completed with only short glances [14], [17]. 

From the results of this study it is apparent that the occlusion technique does provide 

more useful information about design features than static measures, in particular with 

the measure known as the resumability ratio (R). Contrary to expectations, in the results 

reported, the R ratio did not relate to any difference in single glance durations. Instead 

the measure was found to be sensitive to the proportion of a task that could be 

completed non-visually (section 4.3 discusses the implication of this finding in more 

detail).  

Key to the occlusion technique’s success in assessing potential visual demand is the 

ease of implementation. There are few techniques that can inform designers early 

enough in the design process so that changes can be effectively made to designs. It is 

possible that the occlusion technique can be implemented slightly earlier than 

assessments that rely on simulator or road trials; however, the technique does require a 

usable prototype, and therefore is still only really applicable to later stages of design. 



Despite this, the occlusion technique still has its advantages. It is likely to be less 

expensive than simulator or road studies and the analysis is much more efficient. The 

draft ISO standard suggests that the technique can be used in a variety of locations, 

including in a laboratory [15]. Therefore a prototype need only require working controls 

and display. This differs in particular to road trials, where the physical constraints of the 

vehicle place restrictions on prototype systems. Stevens et al. [17] suggest that there are 

advantages and disadvantages to conducting occlusion trials in laboratory settings. 

Although cheaper to run, participants are not performing tasks in their intended 

locations, i.e. in a vehicle. No studies, at the time of writing, have compared results 

obtained in a laboratory with those from a vehicle.  

 

4.2 Total Shutter Open Time (TSOT) 

Although significant differences were found in TSOT values in two cases, the preferred 

task/system was the same as suggested by the static task time value. No differences 

were found in static task time values that weren’t replicated in the TSOT values. TSOT 

can still be viewed as a useful measure; however, on its own it does not appear to 

provide enough new information to make the occlusion technique worthwhile. As was 

discussed earlier, TSOT has been shown to correlate strongly with total glance time. 

However, there are doubts regarding this measure’s relation to driving performance 

[17]. 

 

4.3 Resumability ratio (R)  

 



In three of the above cases the R ratio is inconsistent with the majority of other 

measures. For the results between systems on the sound task (Table 4) and the results 

between tasks for System B (Table 6), the R ratio shows a significant difference in 

favour of the opposite task/system to the TSOT. For the results between tasks on 

System A (Table 5), there is a significant difference between the R values but no 

significant difference for the TSOT. This suggests that the value of R is potentially the 

most useful piece of information provided by the occlusion technique, providing 

designers/researchers with some more detail than static task time measures alone.  

Higher values of R are said to indicate that participants have difficulty 

completing the task in the brief periods of vision available during occlusion trials [15]. 

The logical conclusion to draw is that a system or task with a higher R ratio will result 

in participants making longer glances whilst driving in order to complete the task. 

However, it has been suggested that drivers will generally self-regulate their glance 

behaviour, and will only tolerate glances of up to 1.5 seconds duration. After this, 

attention will be returned to the forward view regardless of whether or not a goal has 

been achieved [18]. In this study, despite significant differences between values of R, 

no significant differences were detected between the values for single glance duration in 

road trials. In all cases, average single glance duration is just above 1 second. This 

supports Wierwille’s [18] assertion that glances should ideally be no more than a 

second, but longer glances of up to 1.5 seconds will be tolerated when information can 

be gathered in that time. 

Although no effect was found on single glance durations, in two cases a 

significant difference was found in the proportion of task time spent with eyes off the 

road, consistent with the difference found in the values of R. This suggests that in both 



the occlusion trial and the road trial, participants were capable of completing large parts 

of a task without vision. That is, in the occlusion trial participants were able to further 

their progress in a task significantly during the periods where vision was occluded. In 

the case of the sound task on System B, this is highly logical. The task was long in 

duration, as it required multiple button presses. Many of these button presses were 

repetitive in nature, and, as such, participants were able to comfortably continue the task 

whilst their vision was occluded, in the occlusion trials, or whilst looking at the road 

ahead, in the road trial. For the equivalent task on System A, participants were less 

aware of the mode the system was in without looking to the display. In addition, System 

A had a time out feature that returned the display to the main menu after a short period 

of inactivity. This may have resulted in more glances being made for reference purposes 

than for the equivalent task on System B.  

The results emphasise that R is dependent on two factors of a system. Namely, 

how much of a task can be completed in brief periods of vision and how much can be 

done whilst deprived of vision. A low R ratio does not necessarily imply shorter glance 

durations as opposed to a higher value, but may suggest that large quantities of a task 

can be completed whilst not looking to the system. In section 1.1, it was suggested that 

visual distraction is influenced by two properties of a DSS: visual demand and the 

driver’s motivation to use the system. The two occlusion measures, TSOT and R, are 

felt to be reliable measures of the visual demand of a DSS.  

 

4.4 Road trial issues 

 



On-road studies are viewed as highly effective and accurate ways of measuring 

distraction, providing the opportunity to assess DSS in real world driving conditions 

[14]. However, such studies are infrequently conducted for several reasons: they are 

costly to run and time consuming; real-world traffic and environmental conditions are 

unpredictable; and there are ethical considerations when asking participants to engage in 

tasks that may be potentially unsafe [14]. The analysis of road trial results can also be 

time consuming. For this study, video data was captured that required frame-by-frame 

analysis in order to record glance data. Without expensive analysis tools, video data 

analysis can be very resource intensive [14].  

 

4.5 Prototype issues 

 

A number of technical difficulties were encountered with the prototype System B 

throughout the course of the trials. Issues included the build quality of the prototype and 

problems with the prototype software. Careful planning of task orders was necessary in 

order to minimise the effects of software problems and participants were asked to be 

reasonably gentle in their handling of the prototype to avoid build quality issues. The 

prototype was not fully functional, although it was possible to complete all tasks in a 

meaningful way. Green [32] states that when evaluative methods require fully 

functional systems, any problems with the system are identified too close to production 

to make changes to the design. This is a major drawback to road-trial and simulator 

evaluation studies. It is the experience of this study that there are similar drawbacks to 

the occlusion technique. However, given the ease of application of the technique and the 



efficiency of the data analysis, it could potentially be used to assess existing system 

designs in order to help formulate guidelines and standards for good design.  

 

5 Conclusions 

 

This paper details a study aimed at assessing the validity of the occlusion technique to 

measure visual distraction through comparison of results between two systems and an 

on-road evaluation. The key questions were:  

1. Do results from occlusion trials indicate a similar preference for a system to 

results gathered in an on-road study? 

2. Does occlusion provide any more information than measures of static task time 

alone?  

 

The results indicate that occlusion is a valid tool for the assessment of potential 

visual demand of a system. Trends predicted by occlusion were mirrored in the results 

from the on-road study. It was demonstrated that the technique provided more 

information than measurements of static task time alone through the R ratio. In addition, 

it was felt that the technique was much more efficient to run in practice than road trials. 

The analysis of data for occlusion is also far less time consuming.  

It was felt that clarification might be necessary regarding the information 

provided by R. This measure was found to be not necessarily indicative of average 

glance durations. The R ratio is reliant on two factors: the amount of information that 

can be obtained during periods of vision and the amount of a task that can be completed 

without vision. A low R ratio, therefore, does not necessarily mean shorter glance 



durations, but can suggest that large portions of the task can be completed without 

vision. This finding does not suggest the R ratio is any less important, as it still relates 

to the visual demand of a system; however, it should be considered when applying the 

technique. 

As yet, there are no acceptable (or limiting) values for the measures TSOT and 

R. Research should address this issue. Potential studies could examine whether 

acceptable values could be variable: that is, a higher TSOT may be acceptable when R 

is below an agreed level. Similarly, a greater R ratio may be acceptable when TSOT is 

small. If the occlusion technique is to be used in the practical development of new DSS, 

this issue needs to be addressed.  

Of the two systems assessed in this study, one was a prototype, which presented 

many problems throughout the course of the study. The occlusion technique is built 

around user trials, and therefore requires either a very advanced prototype or fully 

working model for trials to be successful. Given the difficulties experienced in this 

study, doubt is cast over the application of the technique in earlier stages of design. 

However, the technique could be used to assess existing DSS with a view to forming 

standards and guidelines.  
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FIGURE CAPTIONS 
 

Figure 1: Occlusion goggles, shutter open  

 

Figure 2: Occlusion goggles, shutter closed 

 

Figure 3: Camera views 


