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Abstract: The digital camera is a powerful tool to capture images for use in image 

processing and colour communication.  However, the RGB signals generated by a 

digital camera are device-dependent, i.e. different digital cameras produce different 

RGB responses for the same scene.  Furthermore, they are not colorimetric, i.e. the 

output RGB signals do not directly correspond to the device-independent tristimulus 

values based on the CIE standard colorimetric observer.  One approach for deriving a 

colorimetric mapping between camera RGB signals and CIE tristimulus values uses 

polynomial modelling and is described here.  The least-squares fitting technique was 

used to derive the coefficients of 3× n polynomial transfer matrices yielding a modelling 

accuracy typically averaging 1 Δ E units in CMC(1:1) when a 3× 11 matrix is used.  

Experiments were carried out to investigate the repeatability of the digitising system, 

characterisation performance when different polynomials were used, modelling 

accuracy when 8-bit and 12-bit RGB data were used for characterisation and the number 

of reference samples needed to achieve a reasonable degree of modelling accuracy.  

Choice of characterisation target and media and their effect on metamerism have been 

examined.  It is demonstrated that a model is dependent upon both media and colorant 

and applying a model to other media/colorants can lead to serious eye-camera 

metamerism problems. 
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INTRODUCTION 

With the rapid development of digital computers and image processing techniques, 

images in digital form are becoming increasingly popular for viewing, transmitting and 

printing.  They offer many distinct advantages, such as processing flexibility, reliable 

transmission, ease of storage and retrieval, ease of reproduction, as well as compatibility 

with digital networks and digital computers.  The digital colour camera is a powerful 

tool for image acquisition for use in image processing and colour communications.  It is 

especially appropriate when the scene to be imaged is heavily textured or has a three-

dimension nature.  However, accurate handling of the colour characteristics of digital 

images is a non-trivial task due to the fact that RGB signals generated by a digital 

camera are device dependent, i.e. different digital camera will produce different RGB 

signals for the same scene.  Furthermore, the response is not colorimetric, i.e. the 

resulting RGB values are not a linear transform from device-independent tristimulus 

values based on CIE colour-matching functions.  The reason is that the spectral 

sensitivity of colour sensors used in digital cameras does not correspond to the device-

independent tristimulus values based on the CIE colour-matching functions1.  Besides, 

the spectral sensitivity of the sensors used in different cameras varies largely from one 

another.  Therefore, a transform that defines a mapping between camera RGB signals 

and a device-independent colour space, such as XYZ or CIELAB, is essential for high-

fidelity colour reproduction.  The transform derivation process is known as camera 

characterisation.  With the above in mind, The International Organisation for 

Standardisation (ISO) is actively seeking to develop a standard for digital still camera 

colour characterisation.  An ISO draft working standard2 (ISO 17321) has been 

produced by a joint working group between Technical Committees ISO/TC42/WG18, 

Photography, and ISO/TC130/WG3, Graphic Technology.  However, it is mainly aimed 

for camera manufacturers and testing laboratories, not for ordinary users because the 

standard requires sophisticated and expensive equipment and unrendered camera data. 
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Colour characterisation methods can be generally categorised into two categories: (a) 

spectral sensitivity based and (b) colour target based.  With spectral sensitivity based 

characterisation3, the camera spectral sensitivity needs to be measured using specialised 

apparatus (a monochromator and a radiance meter).  A relationship needs to be found 

between the camera spectral sensitivity and the CIE colour-matching functions.  This 

relationship can then be used to transform camera R, G, B values to X, Y, Z values.  The 

basic idea of colour target based characterisation is to use a reference target that 

contains a certain number of colour samples.  These colour samples are then imaged by 

a digital camera and measured by a spectrophotometer to obtain the RGB values and 

their corresponding XYZ values. Typical methods like three-dimension look-up tables 

with interpolation and extrapolation4,5, least-squares polynomial modelling6, and neural 

networks7 can be used to derive a transformation between camera RGB values and XYZ 

values.  In this study, the colour target based approach was used as this requires only a 

known target and is therefore a more practical method.  Polynomial regression was 

adopted for model derivation.  Although similar technique has been used by Kang6 for 

characterising scanner, there is no research publication for using this method for digital 

camera.  The main difference between digital cameras and scanners is that scanners 

have their own fixed illumination, however, lighting needs to be provided for digital 

cameras.  Although fixed illumination on the scanner might provide more consistent and 

uniform lighting, a particular choice of certain illumination might be able to optimise 

characterisation performance.  Experiments were carried out to investigate the 

following: 

1) The repeatability of the digitising system; 

2) The characterisation performance when different polynomials were used; 

3) The difference in modelling accuracy between using 8-bit or 12-bit RGB data for 

characterisation; 
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4) The number of reference samples required for a reasonable degree of modelling 

accuracy; 

5) The eye-camera (observer) metamerism effect due to the fact that the spectral 

responses of the camera sensors are different from colour-matching functions of the CIE 

standard colorimetric observer. 

   

EQUIPMENT USED 

An Agfa digital StudioCam was used.  It is a 3 ×12 - bit  colour digital camera with a 

resolution of 4500 × 3648 pixels for 36× 29  mm2 area.  The digital data generated is 

directly transferred to a computer via a SCSI interface.  Lens aperture and focusing are 

manually operated; the rest of the scanning process is controlled via Agfa’s FotoLook 

software which operates as a plug-in module for Adobe Photoshop.  The sensors inside 

the scanning engine are tri-linear colour CCD containing 3× 3648 elements.  The 

exposure time can be set automatically or manually for a given aperture.  In our 

experiments, the camera RGB values for each colour patch were calculated by 

averaging RGB values of 90% of the pixels in the patch, excluding those boundary 

pixels. 

The colorimetric data of the reference target were measured using an X-Rite 938 

spectrodensitometer.  This instrument measures spectral reflectance from 400-700nm in 

20nm intervals.  The light source is a gas filled tungsten lamp with a filter corrected to 

approximate D65 illuminant.  It has a 0/45 illuminating/viewing geometry, and features 

a dual-beam, single light pulse compensation method to improve accuracy.  The 

colorimetric data for colour samples on the reference target were calculated under CIE 

1931 standard colorimetric observer and illuminant D50.  The XYZ values for each 

colour patch were taken by averaging three measurements from a spectrophotometer.  

Three measurements were carried out at the same time but at different positions in the 

patch. 
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Two reference targets made of different material were used: an ANSI IT8.7/28 (IT8) 

chart on Kodak Ektacolour Professional Paper and the textile samples selected from The 

Professional Colour Communicator9 (PCC) using reactive dyes on cotton.  All colour 

samples on both IT8 and PCC are more or less evenly spaced throughout the full colour 

gamut of the particular material on which the target has been produced.   

The ANSI IT8.7/2 chart provides 264 colour samples, which cover a large colour gamut 

in CIELAB colour space.  The colour samples on the chart can be divided into four 

sections: 

1. A 24-step grey scale. 

2. 12 colour samples of skin tones. 

3. Series of single dye scales (cyan, magenta and yellow) with equivalent two and three 

dye combinations (red, green, blue and black).   

4. The remaining colours consist of 12 samples at each of 12 hues.  At each hue 

�angle three levels of lightness are selected and four levels of chroma are defined at 

each level of lightness, the outermost being the highest chroma that can be achieved by 

the dye set used for a particular paper. 

The PCC is a loose-leaf file containing 40 pages of small cuttings of dyed cotton 

arranged according to changing lightness, hue and chroma.  It is based on an 

approximate CMC(1:1)10 uniform colour space under CIE illuminant D65 and 1964 

standard observer.  Colour samples are arranged using lightness against chroma axes 

with constant hue angle.  Forty hue angles with a  9
o  interval are used, and each adjacent 

pair of samples has a 5-unit interval either in the lightness or chroma axis.  This 

produces a population of 2095 colour samples. 

 

IMAGE CAPTURE SET-UP 

The set-up of the digital camera and its illumination and viewing environment is critical 

for image acquisition so that the camera can deliver meaningful and repeatable data.  
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This usually includes illuminant, camera exposure, and compensation for the non-

uniformity of the camera lens.  Furthermore, the reproducibility of the digitising system 

and the uniformity of the sensors must be known. 

Illuminant set-up, which consists of uniformity and geometry, is of key importance to 

camera characterisation .  The lighting illuminated onto the reference target needs to be 

as uniform as possible.  It is obvious that if the illumination of each colour patch of the 

reference target is not uniform, the camera responses of a particular colour patch will 

vary according to its position.  In this study, uniformity was investigated using a 

photometer.  The lighting was carefully arranged so that any area within the picture 

frame has the same reading from the photometer.  Illumination and viewing geometry 

can affect perceived colour significantly11.  In our experiment, two lamps (placed about 

1 meter away from the object being imaged) were mounted on each side of a copy stand.  

The viewing/illuminating geometry was about 0/45. 

The combination of lens aperture size and exposure time determines the amount of light 

reaching the camera’s CCD sensors.  Obviously, the signals generated by CCD sensors 

vary if the amount of light reaching CCD sensors is different.  Therefore, both aperture 

size and exposure time were fixed during the period of image acquisition.  Special 

attention was paid to setting the exposure to avoid any "colour clipping", i.e. the 

saturation of one or more of the three RGB channels.  

A camera lens does not uniformly transmit light across its area; the center area usually 

transmits more light.  As a consequence, the center pixels appear to be much brighter 

than those corner pixels when a uniform grey surface is pictured.  According to the 

experimental results obtained, when a uniform mid-grey matt surface was digitised, the 

RGB values of corner pixels are about 25% less than the center pixels.  Therefore, if a 

picture taken occupies the full frame of the camera, a compensation scheme is necessary 

for those pixels where lightness levels turn out to be darker. 
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To check the repeatability of the image capturing system, a uniform grey surface was 

pictured every 30 minutes for a 4-hour period.  The lights were turned on for 30 minutes 

to be stabilised before taking the first picture.  Using a 3×11 matrix derived by the 

characterisation process described later, the original RGB values were first transformed 

to XYZ values and then to CIELAB values.  Table 1 shows the average L∗  values 

recorded during this period.  It can be noted that the lightness values decrease gradually 

as time goes on.  The standard deviation of lightness value, L∗ , is 0.13, which is about 

0.2% of the mean value.  The difference between the beginning and the end of this 4-

hour period is 0.31.  This level of consistency is acceptable and also indicates that the 

lighting is stable and the imaging system repeatable.  

Since the scanning engine inside the camera contains only one array of tri-linear colour 

CCDs, the uniformity of camera sensors was examined by line-scanning a number of 

NCS neutral colours on A4-size semi-glossy paper. The lightness *L  values of these 

samples were ranged from 15 to 90.  Ideally, for each colour sample all pixels on a 

single line should have the same value for each R, G, B channel.  In practice, this will 

not be the case due to a number of varying factors such as the uniformity of the colour 

patches, the uniformity of the lighting, camera CCD variations and quantisation errors.  

The present results show an overall combination of all these parameters having one 

effect on the uniformity of the sensor responses.  Camera RGB values were transformed 

to XYZ values using a 3 ×11 matrix derived by the characterisation process described 

later.  The averaged XYZ value of all pixels in a single line was calculated and 

considered as the standard.  Each pixel’s variation from the standard was calculated 

using CMC(1:1) colour difference formula.  In this study, CMC (1:1) colour difference 

formula was adopted for calculating all the colour differences.  The averaged colour 

difference between each individual pixel’s and the mean tristimulus values was used as 

a measure to investigate the agreement among camera CCD sensors.  For the particular 

set-up used here, the results show that the average colour differences become significant 
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as the lightness values decreases (see Figure 1).  This clearly shows that the effect of 

non-uniformity of CCD sensors becomes worse when the lightness level of the object 

imaged decreases, i.e. the signal-to-noise ratio decreases.  This was also partly 

contributed by the glossiness included in the samples studied.  The darker glossy 

samples were expected to have large variations.  However, the effect of non-uniformity 

was largely reduced when the average RGB values for each colour patch are used for 

characterisation. 

 

POLYNOMIAL REGRESSION WITH LEAST-SQUARES FITTING 

Device characterisation by polynomial regression with least-squares fitting has been 

adequately explained by many other researchers12,13.  Therefore, only a brief description 

is given here.  Suppose the reference target has N colour samples.  For each colour 

sample, the corresponding camera response r, g, b can be represented by a 1 × 3 vector 

ρi  (i=1…N) and their corresponding XYZ tristimulus values can be represented by a 

1× 3 vector xi  (i=1…N).  If only r, g, b values are used in ρi , the transformation 

between RGB and XYZ will be a simple linear transform.  The idea behind using 

polynomials is that vector ρi  can be expanded by adding more terms (e.g. r 2 , g 2 , b 2 , 

etc) so that better results can be achieved.  In this study, the following polynomials were 

studied, 

1. ρi = r g b[ ] 

2. ρi = r g b rgb 1[ ] 

3. ρi = r g b rg rb gb[ ] 

4. ρi = r g b rg rb gb rgb 1[ ] 

5. ρi = r g b rg rb gb r 2 g2 b2[ ] 

6. ρi = r g b rg rb gb r 2 g2 b2 rgb 1[ ] 
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Let R denote an N × 3 matrix of vectors ρi  and H the corresponding matrix of vectors 

xi .  The mapping from RGB to XYZ can be represented by 

 H=MR         (1) 

Where M is the unknown transformation matrix sought.  Of course, the size of matrix M 

changes from 3× 3 up to 3 ×11 depending on the polynomial being solved.  The best M 

should be defined as the one that minimises the colour differences over all colour 

samples.  This requires a uniform colour space and a colour difference formula that 

correctly represents perceived colour differences.  Unfortunately, the XYZ colour space 

does not meet these requirements.  A relatively uniform colour space (such as CIELAB 

or CMC) would be preferred.  However, the mathematics involved is complicated due to 

their non-linearity.  Thus, for mathematical simplicity, least-squares fitting to the XYZ 

colour space is adopted.  This equates to the minimising of 

 E = xi
T − Mρi

T( )
i=1

N

∑
2

        (2) 

The least-squares solution for minimising E is 

 M = RT R( )−1
RTH         (3) 

where RT  denotes the transpose of R, and R−1  the inverse.  In theory, there is no limit to 

the order and the number of terms of the polynomial; in practice, it is constrained by the 

accuracy required, the computational cost and the number of samples available.  Note 

that the current draft of ISO 17321 adopts a 33×  matrix using the root-mean square 

error as a measure of fit.  However, their RGB values were initially linearised based on 

ISO RGB colour-matching functions.  The method used in this study is considered to be 

a lot simpler in terms of computation in comparison to that in ISO 17321. 

Two experiments were carried out to investigate characterisation performance.  In the 

first experiment, all six models were applied to the colour samples of IT8 chart and 

colour samples of PCC respectively to understand the modelling accuracy in terms of 

the degree of polynomial.  For IT8 chart, all colour samples (264) were used to derive 
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the model.  For PCC colour samples, 100 evenly spaced colour samples were chosen at 

10 different hue angles (i.e. neutral,  18o ,  45o ,  81o ,  126o ,  162o ,  198o ,   234o ,   288o , and 

  324o ). Both 8-bit and 12-bit camera RGB values were used to capture IT8 colour 

samples.  The results were used to investigate the accuracy of colorimetric mapping 

with respect to the quantisation level of the pixels' RGB values. 

For practical camera characterisation, it is essential to understand the generalisation of 

the model derived.  That is would the matrices derived by colour samples of a training 

set fit those colours that are not represented in the training.  Theoretically, a matrix 

derived by a training set with more colour samples would be more general for all the 

colours within its colour gamut.  However, in practice it is preferable to use only a few 

training samples to minimise time and effort.  The second experiment investigates the 

accuracy of the matrices derived when different numbers of training samples were used.  

In this experiment only the 3× 11 matrix was applied for characterisation using colour 

samples from the IT8 chart.  The numbers of selected colour samples were 96, 60, 42, 

33 and 24.  A set of 168 colour samples was used to test the performance of each matrix 

derived by different number of training samples. 

 

EYE-CAMERA METAMERISM 

When two colours having a different spectral composition match one another under one 

set of conditions they are said to be metameric and the phenomenon is referred to as 

metamerism.14,15  Usually, different reflectance curves result in different observed 

colours.  However the eye responds to light not on a wavelength by wavelength basis 

but as a result of integrating the colour responses across the visible spectrum, and so 

certain colours with different reflectance curves can appear similar in a particular 

viewing condition.  In terms of colour measurements, metamerism is defined when two 
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colour samples have the same tristimulus values for a specific combination of illuminant 

and observer, but the reflectance curves are different.  

For camera characterisation, metamerism poses a tremendous challenge.  As mentioned 

earlier, because the spectral responses of the RGB sensors of a camera are different 

from the CIE colour-matching functions, the camera system will "see" colours 

differently from those perceived by human eyes, and vice versa.  For example, colours 

that are metameric with respect to human eyes need not be metameric with respect to 

camera sensors.  Two metameric colour samples Q1  and Q2  matching each other under a 

given illumination for human eyes can be expressed as: 

 

S(λ)R1∫ (λ )x (λ )dλ = S(λ )R2∫ (λ)x (λ)dλ  

S(λ)R1∫ (λ )y (λ)dλ = S(λ )R2∫ (λ)y (λ )dλ       (4)
 

S(λ)R1∫ (λ )z (λ )dλ = S(λ)R2∫ (λ)z (λ)dλ  

 

where R1(λ ) and R2 (λ ) are the spectral reflectance of Q1  and Q2  respectively, S(λ)  is 

the spectral power distribution of the illuminant and x (λ ), y (λ ), z (λ ) are CIE standard 

colour-matching functions.  It is clear that, under the same lighting condition, changing 

the observer to one characterised by a different set of colour-matching functions will, in 

general, result in a colour mismatch between the two given colour stimuli.  That is, 

 

S(λ)R1∫ (λ )r (λ )dλ ≠ S(λ)R2∫ (λ)r (λ)dλ  

S(λ)R1∫ (λ )g (λ )dλ ≠ S(λ)R2∫ (λ )g (λ )dλ       (5)
 

S(λ)R1∫ (λ )b (λ)dλ ≠ S(λ )R2∫ (λ )b (λ)dλ  
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where r , g , b  represent the spectral sensitivity of each R, G, B channel of the camera.  

The magnitude of the colour mismatch is directly related to the magnitude of the 

differences between the spectral reflectance, defined by R1(λ )dλ  and R2 (λ )dλ , of the 

two given colour samples under a specific illumination.  Thus, a camera may generate 

two different sets of RGB values at two colour samples, while to human eyes they look 

the same.  This failure to agree on this kind of colour matche is termed eye-camera 

metamerism.  The consequence of this for camera characterisation is that the transfer 

matrices derived are material dependent.  That is to say the transfer matrix derived from 

colour samples of one material achieves its best performance only when it is used for 

predicting colour samples from the same material.  For colour samples made of another 

material or produced using a different set of dyes, the modelling accuracy is generally 

much worse.  The reason for this is that when two colours on two different media have 

the same CIE tristimulus values (i.e. metameric to human eyes) the RGB values 

generated by the camera are often different.  Consequently their transfer matrices 

derived by polynomial regression will necessarily be different.   

It is desirable that one reference target can be used to characterise the camera for colour 

samples of any material for practical reasons.  To investigate this eye-camera 

metamerism effect, two experiments were carried out.  In the first experiment, a matrix 

derived from one particular set of surface reflectance is used to predict other sets of 

surface reflectance, providing an estimation of metamerism between two materials 

“seen” by the camera versus human eyes in terms of colour difference.  Assume that 

there exist two sets of colour samples, each with different spectral composition but 

"seen" to be the same by the camera (having the same camera RGB responses) under a 

given illumination.  As mentioned earlier, once the "observer" is changed from camera 

to CIE standard observer, there is a colour difference between the colour samples.  And 

this colour difference can be considered as the degree of observer metamerism between 

these two materials.  In practice, it is extremely difficult to get the camera RGB values 
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and their corresponding XYZ values of two sets of real, but metameric, colour samples 

which are “matched” by a camera, i.e. RGB1 = RGB2  and XYZ1 ≠ XYZ2 .  In the 

experiment, a 3× 11 transfer matrix for IT8 colour samples was first derived using its 

own colour samples.  Suppose that there exists a set of IT8 colour samples which have 

the same RGB values as colour samples from PCC, i.e. they look identical to the camera 

under the same lighting condition.  As explained, due to this eye-camera metamerism 

they will look different to human eyes, i.e. their XYZ values are different. For PCC 

colour patches, they can be measured to obtain their XYZ values.  For the supposed IT8 

colour patches, their XYZ values can be approximated with the transfer matrix derived 

by characterisation. Two different sets of XYZ values are now available for metameric 

colour samples that have the same camera RGB responses.  Thus, the averaged colour 

difference between these two sets at a given illuminant can be calculated.  In addition to 

the colour samples from IT8 and PCC, a Macbeth ColorChecker was also used in the 

experiment.  The degree of metamerism between an IT8 chart and Macbeth 

ColorChecker is also calculated for comparing with the degree of metamerism between 

the IT8 chart and PCC textile samples. 

The second experiment intended to answer the question of whether using more terms in 

the transfer matrices would reduce this eye-camera metamerism when a matrix derived 

by colours of one media is used to predict colours of another media.  In other words, 

would more terms in the transfer matrices bring about better performance for cross-

media prediction.  In this experiment, matrices of 3 × 3, 3 × 5 and 3×11 were used for 

comparing the results. 

 

RESULTS AND DISCUSSION 

Characterisation by different sizes of matrices 
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Tables 2 and 3 show the results obtained for the IT8 chart and PCC textile samples 

respectively by various sizes of transfer matrices when RGB values are quantised to 8 

bits.  The distributions of the prediction errors generated by each matrix were shown in 

Figs. 2 and 3.  The aim is to discover the connection between modelling accuracy and 

the number of terms used in the matrices.  As expected, the matrix with 3× 11 terms 

produces the best results for both IT8 chart and PCC textile samples with an average 

colour difference, Δ E, of around 1 CMC(1:1) unit.  All Δ E values refer to CMC(1:1) 

hereafter. It is generally believed that more terms in a matrix produce better results.  

However, the results from this study show that this is not always the case.  Predictive 

accuracy actually depends on the particular terms used.  It seems that the terms rgb and 

1 play a significant role in reducing both the average Δ E and maximum Δ E, especially 

when fewer terms were adopted.  For example, adding rgb and 1 to the simplest 3× 3 

linear matrix actually makes it out-perform 3× 6 and 3× 9 matrices. 

To find the link between prediction errors and different colour attributes, Δ E versus 

lightness ( L∗ ),Δ E versus chroma ( ∗C ) and Δ E versus hue angle (h) are plotted in 

Figures 4 and 5 respectively.  The results were obtained when a 3×11 matrix was used.  

Figure 4(a) clearly shows that colour samples with high lightness can be predicted more 

accurately than those with low lightness.  The largest colour differences are produced 

by those very dark neutral colours (lightness less than 10).  The possible reasons for this 

phenomenon are:  

1) The transformation matrices were generated by least-squares fitting camera RGB 

values to XYZ values.  Therefore, the prediction errors are evenly distributed 

throughout XYZ colour space.  However, because of the use of cubic-roots in the 

transformation from XYZ to CIELAB, the same difference in XYZ colour space would 

not remain proportionally the same in CIELAB colour space.  Thus, the perceived 

colour difference increases as XYZ values decreases. 
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2) The RGB signals generated by the camera have a lower signal-to-noise ratio when 

their responses are very low.  That means the signals are less accurate (or noisier) when 

they are low. 

3) Spectrophotometers generally become less accurate when the lightness level of the 

colour measured becomes very low for the same reason as the camera.  Therefore, those 

large errors might/could be a combination of the inaccuracy of both instruments at the 

dark end.  

Figures 4(b) and 5(b) show again that predictions for neutral colours are less accurate.  

Figures 4(c) and 5(c) show that there is no a clear relationship between Δ E and hue 

angle (excluding neutral colours).  In other words, the predictive performance of the 

model is consistent for all hue angles.  However, it should be pointed out that those 

dark, highly saturated colours are also less accurately predicted.  

It seems that the modelling performance for PCC is better than IT8, especially in terms 

of maximum Δ E.  However, in comparing the lightness values of colour samples from 

IT8 and PCC, it can be seen that the darkest colour samples contained by PCC were 

around 20 in lightness, whilst IT8 contains quite a few colour samples whose lightness 

level is well below 15.  It was those very dark colour samples that produce large Δ E 

values. 

 

Characterisation with different levels of quantisation 

Table 4 shows the results obtained for the IT8 chart by various sizes of transfer matrices 

when camera RGB values are quantised to 12 bits.  The results show that the 

improvement over 8-bit data is trivial in both average Δ E and maximum Δ E.  Bit 

depths of RGB values (8 or 12) for this camera don’t make much difference, i.e. there is 

minimal quantisation error.  This could be that the discarded 4 bits contain mostly noise 

however this does not mean that an 8-bit camera will yield similar results.  What matters 

is not just the number of bits but also the signal to noise ratio.  The use of the averaged 
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RGB values of each colour patch helped to improve the accuracy of the 8-bit data.    

Although each individual 8-bit pixel is less accurate than the 12-bit pixel, the accuracy 

of averaged RGB values in 12 bits would only be slightly better than averaged RGB 

values in 8 bits if the noise distribution of 8-bit data was symmetrical about zero. 

 

Characterisation by different numbers of training samples 

Table 5 gives the results obtained when different numbers of training samples were used 

to derive the model.  The total average Δ E increases by about 0.7 units between the 

models derived by 96-sample and 24-sample training sets when the model was applied 

to the same testing set.  The maximum Δ E increases by about 5 Δ E units.  It can be 

seen that modelling accuracy does not improve significantly when the number of 

training samples is over 60.  As expected, the generalisation of the matrices derived 

improves as the number of training samples increases.  This is shown by the consistent 

decrease in the average colour difference when the derived matrix was applied to the 

same testing samples.  

 

Eye-camera metamerism 

Table 6 shows the degree of metamerism calculated between IT8 chart samples, PCC 

colour samples, and Macbeth ColorChecker samples using camera RGB data.  The 

degree of observer metamerism between IT8 and PCC is around 4 Δ E units.  The 

degree of observer metamerism between IT8 chart and Macbeth ColorChecker is around 

2.6 Δ E units under the same condition.  It should be noted that, according to earlier 

experimental results, the derived characterisation model itself has an average prediction 

error of about 1 Δ E unit.  The matrix derived using IT8 gives a better prediction for 

Macbeth ColorChecker chart than for PCC textile samples.  This is most likely due to 

spectral differences between IT8 and Macbeth ColorChecker being less than those 

between IT8 and PCC.  Table 6 also shows the results of predictive performance when 
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matrices of 3× 3, 3 × 5 and 3×11 were used.  It is clear that because of the existence of 

this eye-camera metamerism, the transfer matrices derived by colour samples from one 

particular set of targets or dyes do not produce the same accuracy when they are used 

for predicting colour samples of another material.  Although using more terms in the 

transfer matrix still brings about some improvement, the improvement is much less 

significant compared with the improvement when only one media is involved.  That 

means, for cross-media camera characterisation, the number of terms in the polynomials 

has little impact on metamerism.  From this study, a typical performance of about 2-4 

Δ E units is obtained by using 3 ×11 transfer matrices.  This level of accuracy may 

satisfy some colour reproduction applications that do not require very high colour 

fidelity.  However, for applications which require this metamerism to be completely 

eliminated, a solution lies on multi-spectral imaging,16 where the camera responses 

RGB data can be used to achieve an approximation of the spectral reflectance of the 

colour being pictured.  Once the spectral reflectance of the colour is obtained, its XYZ 

values can be calculated. 

 

CONCLUSION 

This paper has described a method for establishing a relationship between a commercial 

digital camera's RGB responses and CIE colorimetric values.  Modelling accuracy with 

an average 1 CMC(1:1) Δ E unit is typical when a 3× 11 matrix is used.   The black “1” 

and white “rgb” terms seem to be very important especially when small number of 

terms were used.   The generalisation of the model derived improves as the number of 

training samples increases.  To achieve a reasonable accuracy of prediction, 40 to 60 

training samples seem to be a suitable number, and there is a limit to the improvement 

in accuracy made by additional samples.  Choice of characterisation target and media 

and their effect on metamerism have been examined.  It is demonstrated that a model is 

dependent upon both media and colorant and applying a model to other media/colorants 
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can lead to serious eye-camera metamerism problems.  This has particular implications 

for cross-media colour reproduction. 
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Table 1. Lighting intensities recorded over a period of 4 hours. 

Table 2. Model performance by various polynomials for IT8 (8-bit RGB data). 

Table 3. Model performance by various polynomials for PCC (8-bit RGB data). 

Table 4. Model performance by various polynomials for IT8 (12-bit RGB data). 

Table 5. Model performance (3×11 matrix) for training samples and testing samples. 

Table 6. Results of cross-media eye-camera metamerism. 

Figure 1. Uniformity check for CCD sensor responses.. 

Figure 2. Distribution of colour differences by various polynomials (IT8). 

Figure 3. Distribution of colour differences by various polynomials (PCC). 

Figure 4. Results of IT8 by 3×11 matrix a) Plot of lightness versus Δ E b) Plot of 

chroma versus Δ E c) Plot of hue angles versus Δ E (excluding neutral colours). 

Figure 5. Results of PCC by 3×11 matrix a) Plot of lightness versus Δ E b) Plot of 

chroma versus Δ E c) Plot of hue angles versus Δ E (excluding neutral colours). 
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Time 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 

L* 53.53 53.49 53.48 53.34 53.26 53.26 53.25 53.22 53.22 
 

Table 1 

Matrices Average Δ E Maximum Δ E 

3× 3 2.48 14.6 

3× 5 1.67 9.1 

3× 6  1.80 12.8 

3× 8 1.50 8.5 

3× 9 1.54 13.3 

3×11 1.07 6.7 
 

Table 2 

Matrices Average Δ E Maximum Δ E 

3× 3 3.11 13.4 

3× 5 1.40 4.5 

3× 6  2.29 11.4 

3× 8 1.33 4.8 

3× 9 1.33 11.5 

3×11 0.97 3.7 
 

Table 3 
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Matrices Average Δ E Maximum Δ E 

3× 3 2.47 14.2 

3× 5 1.56 6.8 

3× 6  1.79 12.2 

3× 8 1.41 6.4 

3× 9 1.53 12.8 

3×11 0.98 7.3 
 

Table 4 

Training 
samples 

Testing 
samples 

Av. Δ E 
Training 

Max. Δ E 
Training 

Av. Δ E 
Testing 

Max. Δ E 
Testing 

96 168 1.21 7.4 1.16 7.1 

60 168 1.21 6.7 1.16 6.3 

42 168 1.32 6.0 1.28 7.5 

33 168 1.24 5.6 1.50 10.4 

24 168 1.25 5.1 1.85 12.1 
 

Table 5 

Material Metamerism 

 3 × 3 3 × 5 3×11 

IT8 -> IT8 2.48 1.67 1.07 

IT8 -> PCC 4.67 4.43 3.97 

IT8 -> Macbeth ColorChecker 3.24  2.96  2.60  

 

Table 6
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Figure 4 
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