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ABSTRACT

Inherent safety is that which is intrinsic to a chemical plant. Chemical plants should be designed to be

acceptably safe and it is better if this can be achieved through inherent safety, which can not be compromised,

rather than engineered safety. The earlier that inherent safety is considered, the greater are the benefits. The

choice of chemical route, that is the raw materials and the sequence of reactions that converts them to the

desired products, is a key early design decision that influences the inherent safety of a plant. The inherent

safety must be quantified in order to choose the optimum route from a number of alternatives.

A trial inherent safety index has been developed for ranking alternative chemical routes by inherent

safety. The physical properties of the chemicals involved, and the conditions in the reaction steps are

parameters in the index calculation procedure. The index has been tested on a number of routes to methyl

methacrylate (MMA).

In order to verify and improve the index, a panel of experts was asked to rank the routes, and to make

comments about the index and how it could be improved. This expert judgement exercise used three

questionnaires and a group meeting to elicit the required information. Statistical methods were used to analyse

the results from the questionnaires. The experts agreed closely among themselves on the rankings. The

rankings from the trial index and the rankings from the experts matched closely.

A new index was produced based on the comments of the experts and further research. The new index

is more structured than the trial index, and separation and storage steps are included in addition to reaction

steps. The inherent safety of the routes to MMA has been assessed with the new index.

Developing a method for quantifying the inherent safety of chemical routes has proved to be a large

and difficult task. Further research is needed to decide how the interactions between parameters affect the

assessment of inherent safety. The ultimate goal is a computerised tool that could be used in the early stages of

industrial process development.
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1. CHAPTER 1 - INTRODUCTION

The initial brief for this research was to produce an automated system to assist in

the conceptual design of chemical plants. It would cover developing a design from an

initial feasibility study through to process flowsheets. It was thought that this would be a

three step process. The first step would simply calculate the added value of a product,

that is, check if the product was worth more than the raw materials. The next stage

would be a more detailed cost estimation, based on 'shortcut' estimates of raw materials

consumption, utilities usage and capital requirements. The final stage would be a

detailed conceptual design of the plant including flowsheet, mass and energy balances,

and detailed costings. This system was to be built using artificial intelligence methods

and tools to produce an 'expert' system for the conceptual design process.

In examining current literature on expert systems for chemical process and plant

design, and other design methodologies, for example Douglas' hierarchical design

method (1987), two points became evident. Firstly, that as designs were developed they

should be continually checked for viability in order to sanction further development.

This checking was nearly always done on an economic basis, making sure that the plant

would be profitable. Secondly, very few of the systems and method presented attempted

to assess how safe the plant built from the proposed designs would be, or did not even

mention safety at all. The only checks on safety were to use conventional hazard

assessment techniques, when the design was sufficiently developed. No attempt was

made to see how the level of safety changed through the course of the design, in order to

exert pressure to improve it. Safety issues tended to be passed over in the early stages, in

the belief that the Hazard and Operability studies (HAZOP) (Lees, 1980)would find all

the hazards. In order that designs could be compared in a similar manner to economic

comparisons, a measure of safety was needed. With this in place, the designs could be

compared and contrasted for both economic viability and safeness. As well as making

sure the proposed design was profitable, a continuing level of safeness could be assured.

Having considered these points, the basis for the research was changed. It was

decided that trying to develop a suitable measure of safety was a large enough problem to

tackle by itself, without trying to incorporate it into an automated design system. After

further discussion, the broad problem of safety assessment was refined to quantification

of inherent safety. Inherent safety (Kletz, 1991) is that which is intrinsic to something.

For example, a bungalow is more inherently safe than a house according to Kletz. This

is because the majority of accidents in the home are caused by stairs. Stairs can be made

safer by adding on safety features, for example hand rails, child-gates or non-slip carpets.

The inherently safer choice is to remove the stairs, that is to live in a bungalow. The
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inherent safety philosophy is to remove hazards rather than try to control them or not to

have them there by design.

Kletz (1991) suggests methods by which chemical process plants can be made

inherently safer. Smaller inventories of hazardous materials, less extreme process

conditions, or less hazardous chemicals should be used. All of these methods aim to

remove a hazard wherever possible, rather than adding on engineered safety. If a

measure of safety that could be used in the very early stages of a design was available,

then the inherent safeness of the design could be assessed before any additional safety

measures were added. In this way a preliminary design could be assessed and then

modified to give the best possible built-in safeness.

The stage of plant design when a measure of inherent safety could be used most

effectively was carefully considered and it was decided that quantification of inherent

safety would be of greatest benefit very early on in the design process. Then, a design

would still be defined in very broad terms, allowing it to be easily changed to improve its

inherent safety. However, early safety assessment is not generally practised because

HAZOP has been such a great success. Methods for assessing safety existed for use

during and after a piping and instrumentation diagram had been produced, for example

fault tree analysis (Lees, 1980). So a method was needed for use before that stage.

However, in order for the method to produce meaningful results, the stage must have

sufficient information for the method to use. The point chosen to assess the inherent

safety was when the choice of chemical route was being made, that is where the chemical

reactions, reactants and products were being chosen. This was considered the earliest

point at which an assessment could be made.

The aim of the research was fixed as: to develop a method for assessing the

inherent safety of chemical process routes. The method would assess inherent safeness of

a route. Alongside this assessment a preliminary economic estimate for the route could

be calculated. Then both the economic and safety assessments could dictate whether a

design is to be developed, or aid in the choice of which routes to develop into more

detailed process designs, from a set of alternative routes.

Kletz claims that as inherently safer plants are smaller and safer, then they should

cost less to build and run. A secondary aim of the research was to use the new method to

investigate Kletz's claim.

Chapter 2 introduces the concept of inherent safety and inherently safer design,

with examples of how inherently safer design is of benefit. It covers how the design

develops through the design process, how the design can be made more inherently safe
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by following the principles of inherently safer design. It also covers the arguments for

assessing inherent safety at the route choice stage.

Chapter 3 reviews how inherent safety may be assessed. Present methods for

assessing safety are examined to determine whether they could be adapted to assess

inherent safety.

Chapter 4 introduces the work on developing an Inherent Safety Index (151).

Individual parameters for assessing inherent safety are examined, along with how they

could be quantified or 'scored in relation to inherent safety. Possible methods for

combining the individual scores into an 'index' are discussed. The first trial Inherent

Safety Index is presented. The chapter concludes by describing test data, for processes

producing methyl methacrylate (MMA), and presents the results of the first trial of the

Inherent Safety Index.

Chapter 5 covers the topic of expert ranking. Having obtained results from the

trial index, a panel of experts were consulted about the results, to see if they agreed.

This was done with a series of questionnaires and a meeting of the panel of experts. The

chapter covers the ideas behind expert ranking, the development of the questionnaires,

the results from them, and the analysis and discussion of the results.'

Chapter 6 presents the development of a new ISI. Reasons are given for why a

new index was needed, based on comments and suggestions made by the experts about

the first trial index. Areas for development are discussed, along with possible ways in

which to improve the new index. The chapter ends by describing the new index.

Chapter 7 presents example calculations of how to use the new index and the

results from the new index which is tested using the MMA route data. Also presented is

a regression analysis of the results of the trial index compared with preliminary

economic estimates of the MMA routes. The chapter finishes with discussion about the

new index.

Chapter 8 presents the conclusions from the work, along with recommendations

for further research and development of the index.

The author recognises, and it must be stated at this point, that some parts of the

methods developed in the research have an arbitrary basis. This work is only a small part

of a much larger and more complex problem. It would not have been possible to explore

all the fields that must provide a foundation for assessment of inherent safety. Rather a

framework for inherent safety assessment has been produced. As the other fields which
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require further work are developed, then the arbitrary elements within the framework

presented here can be replaced. The methods suggested are a starting point for

development and experimentation to produce more refined methods.
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2. CHAPTER 2-INHERENT SAFETY AND INHERENTLY SAFER DESIGN

2.1 Introduction

There is a great need to make chemical plants safer. History shows that chemical

plants have the potential for large scale death and destruction when accidents happen.

Public pressure and government legislation put pressure on and present challenges to

designers to make plants safer. It is claimed that inherent safety costs nothing to add in

and should be a realistic tool to make designs and plants safer.

Following the incidents at Flixborough (Lees, 1980) and later at Bhopal, papers

were published suggesting methods by which these incidents could be prevented from

happening again. Most advocated adding more trips, alarms, fire protection or other

safety equipment. All but a few missed a simpler alternative - inherent safety.

In this chapter, the concepts of inherent safety (IS) and inherently safer design

(ISD) are discussed. Where possible, real life examples are used to illustrate some of the

ideas behind IS and ISD. The benefits and disadvantages of ISD are contrasted.

2.2 What is inherent safety?

For several decades, Inherent Safety has been promoted by Dr. T.A.Kletz. He

advocates chemical plants that use less hazardous materials, in smaller quantities, at

lower temperatures and pressures. This is said to be inherently or intrinsically safe. The

term 'inherent' is used in preference to 'intrinsic' only because "intrinsically safe" has a

technical meaning in relation to machinery. A plant that is made safer by adding control

equipment is said to be extrinsically safe. Rogers and Hallam (1991) give an alternative

definition of inherently safe: "An inherently safe process can be considered as one which

by virtue of its design does not produce a hazard if a fault occurs." This has a slightly

different emphasis than Kletz's definition. Kletz talks of firstly avoiding the hazard and

if this is not possible, reducing the size of the hazard as much as possible. Rogers and

Hallam talk of making a process inherently safer outside normal operation.

There are many everyday examples of inherent safety or lack of IS in the home.

Kdetz's example is stairs. Stairs are responsible for more accidents in the home than

knives or electrical equipment. The extrinsic way of making stairs safer is to add hand-

rails, put in landings, make steps shorter or make risers less steep. The inherently safer

alternative is to live in a bungalow. The hazard, that is the stairs, is removed.

2.3 Process design stages

The process of designing a chemical plant moves from the first idea for a product

through to the plant start up. It is possible to break this process down into distinct stages.
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At each stage the level of detail in the design increases. The design process is not a

once-through process, it is iterative. At various stages it may be necessary to review the

design and return to an earlier stage. This could be due to the unviable economics of the

proposed design, problems with materials of construction, or poor energy integration.

The stages below are one example of the possible breakdown of the design process.

2.3.1 Product design

Coulson and Richardson (1985) identified the first stage of the design as more of

a marketing task than an engineering task. A market niche is recognised and a product is

designed for it. The product may be a new drug, a new type of plastic or a new soap

powder. The level of detail is simply the specification for the product needed.

2.3.2 Research and development

Having chosen a product, the design process moves to the chemists. They will

research and develop a suitable chemical to meet the specification of the product. In

doing so, the raw materials needed and the methods for producing the chemical form the

next level of the design. This is known as a chemical route. More than one chemical

route could be possible for the product.

2.3.3 Preliminary design

if more than one route is possible, the 'best' is chosen on the basis of estimates of

the economics of the process. The economic estimates show if the process will be

economically viable. The chosen process may then be scaled up from the chemistry

laboratory to a pilot plant for further exploration.

2.3.4 Flowsheet

The flowsheet incorporates the major process equipment, for example reactors,

plant items for effecting separations, heat exchangers, etc. Process flowsheet design is

usually done using automated flowsheeting software which calculates the sizes of the

major process items and the flowrates of streams between items.

2.3.5 Piping and Instrumentation Diagram

The piping and instrumentation diagram (P&ID) is a further development of the

flowsheet. In addition to the major plant items and major streams, piping, valves and

pumps are included. Pneumatic and electrical lines are added to show the control

equipment for the process.

2.3.6 Detailed design

The P&ID is progressively developed. Accurate sizes of the major and minor

plant items are calculated, along with pipes. The physical plant layout including building

and infrastructure are designed.
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2.3.7 Equipment design

The larger plant items, for example reactors or distillation columns will be

designed from the specifications of the detailed design.

Having identified the broad stages of a process design, it is now possible to

examine ISD and see how the above design stages interact with the ideas behind

inherently safer design.

2.4 Inherently safer design

Kletz has developed several key design strategies for making designs inherently

safer. Many examples of these ideas are given in his book 'Cheaper, safer plants"

(1984). These strategies may be summarised by six keywords:

Elimination

Intensification

Substitution

Attenuation

Simplification

Limitation of effect

2.4.1 Elimination

Elimination of hazards is the ultimate aim of an inherently safer design.

Elimination as a strategy has the greatest benefit when the chemical reaction path is

being chosen, than at other stages in the design. At this stage, changes can be made to

the choice of reactants and reactions before the design becomes too far advanced.

The process used at Bhopal, India, provides a very good example of how a

hazardous intermediate could be eliminated (Kletz, 1988). The plant produced the

insecticide Carbaryl via an intermediate chemical, methyl isocyanate (MIC). The MIC

was kept in intermediate storage, of which 25 tonnes escaped causing at least 2000

deaths and many more injuries in 1984. The reaction route used in the plant was as

follows:

CH 3 NH 2 + COd 2 -	 CH3OCN	 +	 2HC1

methylamine + phosgene - methyl isocyanate + hydrogen chloride

OH	 OCONHCH3

CH 3OCN +	 -

methyl isocyanate + a - naphthbl 	 - carbaryl
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An alternative route to carbaryl exists which uses the same raw materials, but

avoids methyl isocyanate.

OH	 OCOCI

+COCl2	 -4	 +HCI

cx - naphthol + phosgene	 -5	 chloroformate + Hydrogen chloride

Ococi
	

OCONHC

	

+ CH1NH2 -	 +HC1

chioroformate + methylamine 	 - carbaryl	 + Hydrogen chloride

This process is inherently safer than the one used at Bhopal because the MIC has

been eliminated. However, both routes use phosgene, which is a very dangerous

chemical in its own right, and therefore should still be considered as inherently unsafe.

2.4.2 Intensification

If it is not possible to eliminate a hazardous material from a process, then less of

it should be used or stored. Often plants have large inventories of hazardous chemicals

because reactions are slow or conversions are low, for example the per pass conversion

of cyclohexane in the Flixborough plant was only 6%. Instead of using large inventories,

reduce them by improving mixing or heat transfer, increasing reaction rates or use of

catalysts.

A good example of how inherent safety is improved by inventory reduction is the

manufacture of nitro-glycerine (Kletz, 1991). The reaction proceeds in the presence of

concentrated sulphuric acid.

	

C 3 H 5 (OH) 3 + 3HNO, -	 C 3 H (NO 3 ) 3 + 3H2O

glycerin	 + nitric acid -	 nitro - glycerine + water

The reaction is very exothermic, and good mixing and cooling are essential to

prevent an explosive runaway reaction. Until the 1950s, the reaction was carried out in

one tonne batch reactors, with an operator watching the temperature as an indicator of a
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possible runaway reaction. To stop him falling asleep and keep his attention on the task

at hand, he was provided with a one legged stool to sit on.

In the redesign of the process, extrinsic safety equipment could have been added

to control the process. However, a more inherently safer approach was chosen. The one

tonne reactor was replaced with a continuous reactor similar in design to a gas ejector.

The reaction was very fast, but good mixing was the rate limiting factor. In the gas

injector, the reaction took place very quickly because of the good mixing. The residence

time was reduced from 120 minutes to 2 minutes. The reactor inventory was reduced

from 1000 kilograms to 1 kilogram.

Consideration of intensification has a large effect at the route stage, as it allows

for the reduction in process inventories without the need for re-design of yrocess

equipment.

2.4.3 Substitution

In substitution, an alternative chemical is used in place of a hazardous chemical.

It is also possible to replace a hazardous operation with a more inherently safe one, for

example Higee distillation replaces conventional distillation columns (Kletz, 1991). An

extreme form of substitution is to replace several reaction steps 'or a whole route to

produce the required product. The ultimate form would be to completely change the

required product.

Acrylonitrile can be produced by reacting acetylene with hydrogen cyanide

(Puranik et al, 1990):

C 2 H 2 +	 HCN	 - CH2=CHCN

acetylene + hydrogen cyanide -* acrylonitrile

This uses hydrogen cyanide and acetylene, both very hazardous chemicals, as raw

materials. However, there is an alternative route via propylene and ammonia:

2C 3 H 6 + 2NH 3 + 302 - 2CH2 =CHCN + 6H20

propylene + ammonia + oxygen -	 acrylonitrile	 + water

This is the main reaction, but even though the catalyst is highly selective, there is

a side reaction that produces hydrogen cyanide:
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C 1 H 6 + 3NH 3 + 302 -*	 3HCN	 + 6H20

propylene + ammonia + oxygen - hydrogen cyanide + water

By changing the raw materials, the significance of the hydrogen cyanide in the

process has been reduced from that of a major raw material to a small by-product. With

the addition of a second reaction step the hydrogen cyanide is no longer a raw material or

by-product and is only present as a small volume intermediate.

2C 2 H 4 +	 2HCN	 + °2	 2CH2=CHCN + 2H20

ethylene + hydrogen cyanide + oxygen -	 acrylonitrile	 + water

Substitution is applicable not only to the process chemicals, but also to service

fluids. For example, heat exchangers could use water instead of potentially flammable

cooling oils. Solvents used in separations can be substituted. For example, super-critical

carbon dioxide, used in the food industries for decafeination of coffee or oil extraction,

can replace hexane or ethanol which are more toxic and are flammable.

2.4.4 Attenuation

Hazards can be reduced by changing the conditions under which a reaction

occurs. Chemicals can be made safer by storing them in less hazardous forms.

Reactions that are operated away from temperatures where runaway reactions are

possible are less hazardous. Operating away from flammable limits reduces the risk of

fires or explosions. Storage of liquids in refrigerated conditions at atmospheric pressure

should be preferred to pressurised storage.

Vinyl acetate can be produced by reacting ethylene or acetylene with acetic acid

and oxygen (Puranik et al, 1990). This occurs in the vapour phase at 1 atmosphere and

100-200°C.

2CH 2 =CH. + 2CH 3COOH + 02 - 2CH 2 =CHCOOCH 3 + 2H20

ethylene	 +	 acetic acid	 + oxygen ->	 vinyl acetate	 ^ water

The per pass conversion of this reaction is only 10 to 15%. The problem with the

reaction is that it requires the storage of large amounts of corrosive acetic acid as a raw

material, and the unreacted acetic acid must also be recovered. An alternative reaction

exists, using the same raw materials, but this reaction occurs in the liquid phase at 30

atmospheres and 100 - 150°C. The conversion is 95 to 98%.
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2C1-1 2 = Cl-I 2 + CFI 3COOH + 0 2 	-* CH 2 =CHCOOCH 3 + H 2 0 + CH1CI-I0

ethylene	 + acetic acid + oxygen -4	 vinyl acetate	 + water + acetaldehyde

2CH 1CHO + 02 — 2CH1COOH

acetaldehyde + oxygen —>	 acetic acid

The acetic acid is recycled back to the first reaction. By changing the reaction

conditions, from a gas phase to a liquid phase reaction, the acetic acid is now an

intermediate, rather than a raw material, so it does not need to be stored, and the need for

acid recovery is also removed.

It should be noted that attenuation may work against intensification. Lower

temperatures and pressures may lead to a drop in conversion that consequently leads to

an increase in inventory. Using materials diluted in solvents or inerts leads to an

increase in overall inventory but not in the inventory of the hazardous material.

However in its more dilute state, there may be improved reaction kinetics or better

mixing, and the overall effects may be less hazardous.

2.4.5 Simplification

As rhemical plants grow more complex, more trips, alarms and protective

equipment are added to defend against identified hazards. Operation becomes more

complicated, there is more equipment to maiutain, there is more chance for human error

and consequently greater chance for something to go wrong.

There is often a simpler way to reduce or remove hazards than adding protective

equipment. By making the plant simpler by design, it becomes a more inherently safe

plant. Kletz gives many examples of how simple design changes can lead to a safer plant

without the need for additional equipment, and conversely, how a small hazard can

become a large problem by the addition of too much extra equipment.

Kletz gives an example of what he calls a 'modification chain', where the

consequences, in terms of complication of the design, of an initially small design change

are nor foreseen.

He starts with a manhole cover that could leak flammable vapour.
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Figure 2.1-Manhole cover, stage 1

To this a 4 metre tall vent was added to protect passers by.

Figure 2.2 - Manhole cover, stage 2

In case of a fire, a flame arrestor was fitted.

Figure 2.3 - Manhole cover, stage 3

To clean the flame arrestor, an access platform was added

Figure 2.4 - Manhole cover, stage 4

And finally, hand rails were fitted to the access platform
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Figure 2.5 - Manhole cover, stage 5

Thus instead of stopping the leak by perhaps improving the seals on the manhole

cover, the chain of modifications leads to an over complicated solution to the problem.

The simple solution to dealing with hazards in a design is to add on protection

and control measures. Each add on measure may lead in turn to more add on measures

and eventually escalate to create a very complicated method of control. A better and

simpler solution may be reached by exploring methods which remove the hazard in the

first place.

2.4.6 Limitation of effects

In addition to applying the above strategies to a design, methods are applied to

limit the effects of potential hazards. These methods are used when the size of a

potential hazard has been reduced as much as practicable, but there is still potential for

something to go wrong.

For example, if several chemicals are charged to a reactor in a certain order, there

is the possibility of adding chemicals in an incorrect order, thus causing an unwanted

reaction. If the chemicals are charged into more than one reactor, so that a chemical can

only react with the correct chemicals, the possibility of unwanted reactions is removed.

Limiting the addition of energy, by lowering temperatures or pressures can

reduce potential hazards. The incident at Seveso, Italy, in 1976 (Kletz, 1991)

demonstrates the consequences of not limiting temperatures. 2,4,5-trichlorophenol was

reacted at 158°C. It was known that a runaway reaction could occur at a temperature as

low as 185°C. The reactor was normally heated by steam at 190°C, but due to reduced

demand the steam temperature rose to 300°C. It is believed that this permitted

inadvertent over-heating at the surface of the liquid in a partially filled reactor and a

runaway reaction started. The relief from the reactor spread dioxin over the surrounding

area rendering it uninhabitable. If steam below 185°C had been used, the runaway could

not have occurred.	 -
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2.5 When to consider inherent safety?

Safety should influence design decisions from the moment the product is

conceived, through until the plant is commissioned. In terms of the design stages

discussed earlier, as the design progresses from stage to stage, the possibility for making

the plant more inherently safe decreases. Therefore the benefits to be gained from

inherently safer design decrease as the complexity of the design increases (Figure 2.6).

Thus changes to a design need to be made early to be of most benefit. Inherently safer

plants are so because hazards have been removed or avoided. It is easy to remove a

potential hazard when the design for the plant is still only at a conceptual stage. Once

the flowsheet has been fixed, the choices of chemicals, reactions and inventories have

been made. From this point on, the safety measures will be largely extrinsic, that is

additions of trips and relief systems etc.

Conception	 Preliminary	 Flowsheet	 P&ID	 Derailed
Design	 Design

Design Stage

Figure 2.6 - Graph of relative benefit of inherently safe design versus design stage

Opportunities for changes later on in the design to improve inherent safety are

less likely because the design will be too inflexible. Changes to one part of the design

may unavoidably affect others and cause problems. Design changes at a late stage are

also more costly and time consuming. Changes made earlier on in the design may only

cost an hour or two in a flowsheet design package, but changes to a piece of equipment

at the detailed stage could be measured in days, weeks, or even months and be very

expensive.

2.6 Benefits of inherently safer design

2.6.1 Safer Plant

The conventional method for dealing with hazards is to add extra safety features,

this is extrinsic safety. A hazard is controlled or contained, or the likelihood of an

accident happening is reduced. The problem is that the hazard is still present. There
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may still be a large inventory of a highly hazardous material present, which could escape

and explode or poison humans, animals or plants.

If the above methods are applied to the design of the plant, potential hazards can

be removed or reduced. The plant is made inherently safer. Either there is no longer a

hazard to control, or if there is a hazard, it has been reduced to a level at which control is

more successful.

Moreover the plant is safe under both normal conditions and in circumstances of

deviation from normal. For example, changing a reactant improves safety under normal

conditions, whereas removing the potential for a runaway reaction is dealing with a

potential deviation.

In either case, the important point about inherently safer designs is that the as-

built chemical plants are safer.

2.6.2 Cheaper plant

There are several ways in which inherently safer design can make plants cheaper.

The first is by intensification. In general, the cost of plant items decreases with size.

Smaller inventories need smaller process vessels. Therefore, plants with smaller

equipment should cost less to build.

Added-on extrinsic safety equipment adds cost to a plant. If a plant is inherently

safer, the extra equipment is not needed. There is a hidden extra cost of safety

equipment. Trips and alarms need to be tested and maintained, which costs money.

These hidden costs can double the expected cost of safety equipment

Inherently safer plants present less of a problem for the public and local

authorities. The choice of land increases, and thus the cost of land decreases. Inherently

safer plants may attract lower insurance premiums. Plants that are simpler cost less to

run, because they need fewer operators and less maintenance. Plants using less energy,

because of simpler designs cost less to run.

2.7 Overall safety

When looking for ways to improve inherent safety, it is important to take a wider

view than just looking at the design for the chosen process. Often by improving the

inherent safety of the chosen design, a hazard is exported to another process, which may

be at a different site or the responsibility of someone else. The hazard has not been

removed or controlled, but passed on to someone else to deal with. For example, when

Flixborough was rebuilt, the oxidation of cyclohexane was replaced with the
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hydrogenation of phenol. But the production of phenol involves the oxidation of cumene

to cumene hydroperoxide. This process is just as hazardous as the cyclohexane

oxidation. The dangers inherent in the original Flixborough process were not removed,

just exported to another place.
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3. CHAPTER 3 - QUANTIFYING INHERENT SAFETY

3.1 Introduction

In chapter 2, the concepts of inherent safety and inherently safer design were

introduced. This chapter reviews some of the ways in which inherent safety might be

assessed. Some existing methods for assessing safety are examined to see if they can be

adapted to assess inherent safety.

Safety can be described in both qualitative and quantitative terms. For example,

a fault tree gives probabilities of events happening, this is a quantitative assessment of

safety. Something can be described as more explosive, more toxic or more corrosive,

but only in qualitative terms. But so far no methods have been proposed to say that

something is safer in a quantitative manner, therefore allowing for the possibility of

assessing how design changes improve the inherent safety.

3.2 Current methods for assessing safety

3.2.1 ICI 6-stage Hazard Study procedure

Id has recognised the need for a thorough investigation of safety at an early

stage in the design of a process and developed a 6 stage procedure to study safety at

points throughout the development of a design and the consequent plant (Duxbury &

Turney, 1989). Two safety studies were introduced prior to the conventional Hazard and

Operability study of a piping line diagram, and three more studies afterwards.

Hazard Study 1 is carried out at the project exploration stage or the research and

development stage. It looks at the properties of all the chemicals that are involved in the

process. Any possible interactions between chemicals are investigated so that the

chemistry of the process is fully understood.

Hazard Study 2 is carried out when the process flow diagram is available.

Different sections of the plant are subjected to scrutiny to identify potential hazards. This

is done by looking for 'top events', that is potential fires, explosions or large scale

hazards. Fault tree analysis is carried out wherever possible, to estimate the probabilities

of the 'top events, from 'base events', for example pump failures.

Hazard Study 3 is a conventional Hazard and Operability study carried out on a

detailed Piping and Instrumentation diagram.

Hazard Study 4 is a review by the plant manager to ensure that all previous

Hazard Studies are complete and have been implemented and recorded properly and that

operating and emergency procedures are in place.
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Hazard Study 5 covers more local hazards on the plant such as access and exits,

machine guards and provision of safety equipment.

Hazard Study 6 is a final review of the plant during and after commissioning.

This identifies unexpected changes to the plant from the original design intent and

ensures that modifications carried out during commissioning are assessed for safety.

Between studies 1 and 2 there is the potential for an additional study. Study 1

concentrates on assessing the chemicals in a process. Study 2 then looks at the process

flowsheet. Between these two studies the choice of chemical route is made. The

additional study would look at the inherent safety of the potential routes, to help choose

which route(s) should be developed into a flowsheet. This may be done alongside an

economic assessment of the routes. Hazard Study 1 and this intermediate study could

easily be used to assess several different potential routes to produce a chemical.

3.2.2 Dow and Mond indices

The Dow Chemical company developed a safety and loss prevention guide (Dow,

1980), for the assessment of potential hazards. The 'Fire and Explosion Index" is used

to calculate a value to express the potential hazard of a new chemial plant. The higher

the value, the more unsafe the plant. The index is calculated using the Piping and

Instrumentation Diagram, and a detailed plant equipment layout. The results are used as

a guide to adding on safety equipment.

The ICI Mond division developed the Dow index into the Mond Fire, Explosion

and Toxicity Index', (ICI, 1980). The main improvements included the consideration of

toxicity, scores for good design and safety equipment, and the compilation of separate

indices for fire, internal explosion and aerial explosions.

The calculation of the Mond index develops in stages, each more detailed than

the previous one.

1. An assessment is made of each process unit using a method similar to the Dow

index.

2. The individual indices for fire, explosion and toxicity are calculated, and

compared with levels of acceptable risk.

3. The design is reviewed to see if the factors used to calculate the indices can be

reduced by design changes.

4. Off-setting factors are applied for features of good design, for example fire

protection or control equipment.
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5. The off-setting factors modify the original indices to give the final hazard

indices.

3.2.2.1 Calculating the Mond Index

The method for calculating the Mond index is as follows:

Division of a plant into units.

A unit is defined as a separate physical entity. It is separated from other units by

walls, bunds or distance. A unit can be a reactor, separation unit, storage, pipework, or

anything which can be divided from the rest of the plant.

Determination of the material factor.

The key material is the one which represents the greatest fire or explosion hazard.

The material factor for the key material is calculated from the heat of combustion or

decomposition. This can be modified to take into account mixtures or reactive

combinations of chemicals. It does not have to be the material with the highest inventory

in a unit. If a material is particularly reactive or flammable compared to another, but

there is only a small amount, then the more abundant material is the key one. However,

if the more abundant material presents only a low hazard or is inert, the less abundant,

more hazardous material is taken as the key. If more than one material is considered

hazardous, several assessments can be made on the unit and the worst taken.

Special material hazards.

These are hazards of the material which depend upon the circumstances of use

and are not particular properties of the material. For example, the mixing and dispersion

properties of the chemical, the viscosity of the material, whether it is prone to

spontaneous heating or polymerisation, or whether it is explosive. It covers any

properties which can be considered unusual and merit additional factors.

General process hazards.

This factor is dependent on the type of process in a unit, or operations associated

with that unit, for example transportation of materials to and from the unit.

Consideration is given to whether the process is batch-wise or continuous. If it is a batch

process, could the use of the unit for a different reaction introduce additional hazards?
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Factors are added for the manner in which a unit is filled or emptied, or how material is

moved to and from the unit.

Special process hazards.

In a similar manner to special material hazards, these are factors which depend

upon the operations in the unit. The factors consider extremes of operating conditions,

that is very high or low temperatures and pressures. An assessment of the effects of

corrosion can be included. If the unit is subjected to cyclic changes, for example

pressure cycling in a batch, the potential for fatigue failure of the unit can be assessed. If

a reaction is particularly difficult to control, for example one which is highly exothermic

and subject to runaway, this can be penalised. There are several factors associated with

particular fire and explosion hazards, for example dust explosions, operating within

flammable limits, electrostatic hazards and ignition sources.

Quantity hazards.

A single factor is assigned for how much of the key material is in a unit.

Layout hazards.

The two key values for assessment are the height and the plan area of the unit,

and the height at which material is present. Aspects of containment and drainage are

considered including the domino effect', that is the collapse of structures onto adjacent

units, or the spread of burning liquids, which can spread a fire through the plant. The

height of the unit and the elevation with respect to adjacent units correlate with the

potential for this.

Toxicity hazards.

The assessment of toxic hazards in the Mond Index relates to large releases

following a fire or explosion. The material with the lowest Threshold Limit Value

(TLV) is used for the factor. This may not be the key mat rial identified for fire and

explosion factors.

Indices calculation.

Firstly, the Overall inde,, based on the Dow index, is calculated.
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The Fire Potential index gives an indication of the duration of the fire. This is

based on an assumption that only 10% of the quantity of material is burned in the fire.

The Internal Plant Explosion index is a measure of the hazard due to a unit

catching fire or exploding.

The Aerial Explosion index is a measure of the effect of fire or explosion due to

material which has escaped from the unit, for example a cloud of flammable material.

The Unit Toxicityindex is a measure of the influence of toxicity on the control

and supervision of the unit, when dealing with fires and explosions.

Finally, the Overall Risk Rating modifies the Overall index, using the above four

indices (Fire Potential, Internal Plant Explosion, Aerial Explosion and Unit Toxicity).

For each of the above indices, factors are identified which either reduce the

frequency of incidents or reduce the magnitude of incidents. These factors represent

improvements to safety from good design, for example control systems or fire fighting

equipment. The indices are then recalculated using modifiers for the safety improving

measures. The new Overall index indicates the improvements in safety due to the design

changes. However many of the factors are contributed to extrinsic safety factors, and

thus improvements in safety from inherently safe factors are not accounted for.

3.2.3 Other Methods

There are many established methods for the identification and evaluation of

hazards. The most commonly used identification method is the Hazard and Operability

study (HAZOP). This uses detailed information about the plant, chemicals, operating

procedures and equipment specifications. The plant is analysed piece by piece, applying

various keywords representing deviations from normal operation, for example NOT,

MORE, REVERSE, to each piece in turn and evaluating possible outcomes of the

deviation. The output is a list of potential hazards and possible methods to mitigate their

effects or actions to investigate their acceptability.

The HAZOP technique is a very thorough, formal method for identifying hazards.

However, from the point of view of assessing inherent safety, the method requires too

much information. A HAZOP is possible only when the design is at the equipment

specification stage, when the opportunities to incorporate many inherently safer features

are limited.
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In a similar manner to using keywords, checklists (Wells, 1980) are used to

question the reasons behind a design. They are intended to prompt lateral thinking about

the design and possible alternatives. The problem with them is that they are either too

general, for example: how can the process be changed to improve the safety?', or too

specific, for example: 'can HIGEE be used instead of distillation?'.

There are many methods for the quantification of identified hazards. Such

methods include Failure Mode and Effect Analysis , Fault Tree Analysis and the

Epidemiological approach (Lees, 1980). The methods assess the likelihood of a hazard

occurring. However; as with HAZOP, the information required, for example equipment

failure rates, stems from a detailed design, therefore the methods are not very useful in

inherent safety assessment.

3.3 Current methods for assessing inherent safety

3.3.1 Tyler et al

ICI Mond Division worked on a way to use the Dow and Mond indices for

making inherent safety assessments at an earlier stage in the design of a process

(Dransfield et ai, 1981, Tyler, 1985). They first identified that not all of the indices were

useful in assessing inherent safety. The ones that can be used are the Overall index, the

Internal Plant Explosion Hazards index, and the Unit Toxicity index. A preliminary

flowsheet, a plant layout and estimates of vessel sizes are needed. Each unit is analysed,

the results being an assessment of each unit and an overall assessment of the inherent

safety. This highlights the potentially highest hazards and makes selecting the safest

units and processes easier.

The quantitative result from calculating the index is converted into broad bands

describing the potential hazard. These range from light to very high. Thus the

quantitative result, which could be used for comparison, is converted back into a

qualitative result.

A more important drawback from the point of view of applying it very early is

the information that is needed to make the assessment. This includes both the plant

layout and the size of units, which suggests that the design is at a quite advanced stage,

beyond the preliminary design stage, and probably past the flowsheet stage. This means

that the design will be too inflexible to the changes necessary to improve inherent safety.

A criticism of both Mond and Dow indices is the time needed to complete a plant

assessment. The claim by the authors of 30-60 minutes to assess a unit is quite

reasonable, but assessing 6-10 units a day by a team of 4 people is still a lot of work for
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an estimate of inherent safety, especially if several alternative processes are to be

covered.

3.3.2 Mansfield Friendliness index

Mansfield (1992) proposed a very simple index to assess the inherent safety and

environmental friendliness' of a process. It takes into account safety, health and

environmental factors. It consists of five factors combined in the following equation to

give an index for the plant:

(EHF + PHF) * AF * PSF * CSF
	

(3.1)

where

EHF, Environmental Harm Factor, is a measure of the combined quantity of a

discharge stream and its 'quality', that is the level of toxicity and persistence. This is

assessed for all effluent streams.

PHF, People Harm Factor, is a similar measure to EHF, The 'quality' factor takes

into consideration toxicity, fire and explosion risks and is combined with the quantity as

an inventory/throughput ratio. This is assessed for each hazardous material in the

process.

AF, Attenuation Factor, scales the temperature and pressure of the process.

PSF, Process Simplicity Factor, looks at the complexity of various processes

present.

CSF, Control Simplicity Factor, is a log scale of the total number of reaction

stages, additions of chemicals to the plant, heat boundaries where energy is added or

removed, pressure boundaries, unit operations, transfer devices and recycle streams.

Few details were published, only the broad outline of the index.
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4. CHAPTER 4- A TRIAL INHERENT SAFETY INDEX

4.1 Introduction

Having reviewed the current methods for assessing safety and inherent safety,

this chapter describes how a new index for assessing inherent safety was designed. It

examines possible parameters that can contribute to the assessment of inherent safety and

possible methods for combining them into an index. A trial Inherent Safety Index is

described together with the method of using it. The index is tried out on some test data

and the results presented. Finally, some of the shortcomings of the index and possible

improvements are discussed.

4.2 Purpose of the index

An index was proposed to score how potentially safe or unsafe a chemical route

is. Therefore it is an Inherent Safety Index (151). This index is designed to indicate a

quantitative assessment of the inherent safety of a chemical route. It is not designed to

be extremely accurate, hence it is defined as an index, giving an indication of the level of

inherent safety. It is quantitative in order to remove the subjectiveness from the

comparison of the routes.

The index actually gives a measure of inherent danger. The opposite of inherent

danger is safety therefore lower values indicate a more inherently safe route. It is more

logical to define a measure of inherent danger as it will always have a lower bound of

zero. The safest chemical plant is an empty field. There is no upper bound of inherent

danger, a plant can always be made more dangerous. Thus the score from the index will

increase as the inherent danger increases.

The purpose of the index is threefold. Firstly, it scores chemical routes to allow

them to be compared against each other by how inherently safe they are. Secondly, it is

an additional method to compare chemical routes to a common product, rather than just

looking at economic evaluations. 	 Finally, it allows for the impact of changes to the

chemical route to be assessed.

The index is intended to act as a guide. It does not lead to hard and fast

recommendations on which route should be chosen. The aim is to narrow down the

number of potential routes to examine, and allow more time for the chosen routes to be

explored further. It should be simple to use and should not take a great deal of time to

assess a route.

4.2.1 Ranking of routes and economic comparison

Conventionally new routes are assessed by their economics only. The capital

costs of the new plant and the cost of production per tonne are readily estimated for
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proposed designs. This allows the routes to be ranked by how cheap they are to build

and run, but often this is the only criterion which is used to compare alternative routes.

Safety is often relegated to 'other constraints", for example Hutton et al (1990).

It is not that there is no wish to assess the safety of the routes, it is that there is no easy

way to do a comparative assessment of safety. If there were such a method to rank

routes by safety, this could be used in conjunction with the economic assessment. This

is one aim of the proposed new index.

A further use for the index is to investigate the claim made by Kletz, that

inherently safer plants are cheaper. If it is possible to rank the routes by how safe they

are, they can be compared with an economic ranking to see if safer means cheaper.

4.2.2 Assessing design changes

A final use for the proposed new index is to see what impact a change made to a

route has on the overall inherent safety of the route. For example, if a raw material is

changed, or extra reactions are added with different intermediates, how is the

improvement, or deterioration, of the safety in the route assessed? With the index, it is a

simple matter to calculate the inherent safety score before and after the change, and see

the impact on the overall safety.

4.3 The chemical route

The chemical route is defined as a series of reaction steps which convert raw

materials to a required product(s) and waste(s), via intermediate chemicals. The physical

properties of the chemicals and the reaction conditions needed to convert the chemicals

from raw materials to product can be quantified and assessed. Once the chemical route

is known, the inherent safety can be assessed.

The chemical route contains the minimum information with which to assess the

inherent safety. Once this stage is passed, the flowsheet is defined, and thus the

possibilities for affecting the inherent safety decrease. Thus the greatest benefits from

assessing inherent safety can be made at this stage. From the point when the flowsheet

is complete, the reactants, intermediates and inventories are fixed. After this point safety

becomes more and more extrinsic. Therefore, changes should be made to enhance

inherent safety prior to the flowsheet definition. If more information about the route is

required, further design work may be needed. Therefore the chemical route is the most

practical point to assess inherent safety, without the need for any design work.

4.4 Parameters influencing inherent safety

If a route is looked at in more detail, there are several key items to it. Firstly,

there are the chemicals. These are either raw materials, intermediates, products or waste
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materials. Each has a large number of physical properties by which they may be

assessed. Secondly, there are the reaction conditions. Each reaction step will have a set

of reaction conditions. Each step is assessed by these conditions. Finally, there are other

aspects of the route, for example the number of reaction steps in it, which may be

assessed.

A list of the possible parameters which could be used to assess inherent safety

was compiled. Each of the following parameters is looked at individually for their

benefits and disadvantages. However, the parameters can also interact with each other.

A good example presented by Kletz is an interaction between reactor inventory and

pressure. If a reactor has a small inventory and operates at a high pressure, then when a

leak occurs the pressure will expel all the inventory, but this will only be a small amount.

If a reactor has a large inventory and operates at a low pressure, when a leak occurs the

pressure will only be enough to expel a small amount. However, if a reactor operates

with an intermediate inventory and pressure, then when a leak occurs the loss will be

greater. There may be combinations of two or more parameters, which make the

combined safety assessment better or worse than the individual contributions. However,

without first understanding how individual parameters may affect the inherent safety, it

is not possible to say how interactions may further affect the inherent safety. Having

decided how each parameter influences the inherent safety of a route, it is then possible

to see how each parameter could be quantified.

4.4.1 Inventory

As the chemical route is made up of reaction steps, for the trial index the

inventory is the amount of material present in the reactors. The inventory of a reactor

will depend on the residence time of the reactor, which is related to the reaction rate and

reaction conversion, and throughput. Inventory is an important parameter when

assessing any potential route. One of the key methods to improve inherent safety is

intensification, that is the reduction of inventories of hazardous materials. Large

inventories of hazardous materials are inherently unsafe and their score should reflect

this. The higher the inventory, the higher the score, starting from zero inventory giving

zero score. The problem is in breaking up the range of inventory into sensible divisions.

4.4.2 Temperature

Firstly, this gives an indication of the thermal energy present in a reacting

mixture. A high temperature indicates a high energy content. This energy could emerge

in either a fire or an explosion.

Secondly, the temperature of the reaction may affect the phase of chemicals in it.

For example, if the boiling point at atmospheric pressure of a liquid is below the reaction
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temperature, that chemical may flash off if the pressure is released and could form a

flammable cloud.

Finally, both high and low temperatures affect the properties of materials of

construction. Low temperatures cause steels to become brittle, hence special grades are

required. Similarly, high temperatures cause steels to weaken, therefore special high

temperature steels are needed.

The temperature scale could be divided into two separate scales, both starting

from zero. The score should increase to an upper limit as the temperature increases.

Also an increasing score for sub-zero temperatures is needed, to cover the problem of

low temperature materials of construction. The Dow and Mond indices both take the

lower limit as -25°C.

4.4.3 Pressure

Pressure is also an indicator of the energy present in a vessel. This energy could

cause materials to escape from its container at very high rates, leading to the release of

large amounts of hazardous material in a very short time. The energy could be released

in an explosive manner by transferring the energy to fragments of the container, forming

missiles.

Low pressure also causes problems. Anything operating below atmospheric

pressure and suffering a leak, will have an influx of air. This mixes with the vessel

contents and could form an explosive mixture.

As with temperature, the pressure scale must be divided into two scales, starting

at zero gauge pressure or atmospheric pressure. On one scale the score increases with

increasing pressure up to an upper limit. The other smaller scale covers vacuums.

4.4.4 Conversion

The conversion is the fraction of the reactants which react. So the higher the

fraction the better. A low conversion leads to two possible outcomes. Either the

throughput needs to be increased to make the required amount of product, or there is a

recycle around the reactor. In both cases the inventory of the reactor increases, which is

less inherently safe.

Conversion may be treated in two ways. It could modify the value of the

inventory. This would be done before the route is scored. The alternative is to score the

value of conversion. A low value would get a high score. This assumes that the

inventory is estimated with respect to a 100% conversion and the score for the inventory

is penalised afterwards for a poor actual conversion.
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4.4.5 Yield

Yield is defined as the product of the reaction conversion and the reaction

selectivity to the product. The yield is the overall efficiency of the reaction to turn

reactants into products. A high yield is good for inherent safety because more reactants

are turned into the required product. A low conversion leads to the problems above. A

low selectivity leads to the same problems but for a different reason. A low conversion

means that there is a lot of unreacted material, whereas a low selectivity means that the

reactants are turned into an undesired, possibly hazardous, product. As yield

incorporates conversion, the same arguments can be put forward in respect of how it

could be scored.

4.4.6 Toxicity

Toxicity is a measure of how physiologically harmful a chemical is. There are

many different ways to measure how toxic a chemical is. The toxic effects of a chemical

may be measured over both the short term and the long term. An example of a chemical

which has short term, or acute, effects is chlorine, whereas a chemical which has long

term, or chronic, effects is vinyl chloride, which is carcinogenic.

There are many different scales on which chemicals are classified for toxicity.

They depend on two factors; the concentration of the chemical, expressed in parts per

million (PPM) or mg/rn3 and the exposure time, in seconds through to hours. The

combination of the two is called the dose. Some scales relate to levels of concentration,

for example Threshold Limit Value, others relate to doses associated with specified

lengths of time, for example Lethal Dose 50 (LD50). The lower score limit is zero,

whatever the units used. The scale of scoring depends upon the units used.

4.4.7 Flammability

Flammability is a measure of how easy it is for something to burn. There are

several ways in which flammability can be expressed.

Firstly there is the flash-point. This is the lowest temperature at which the

chemical is ignited by a naked flame. Many chemicals have flash-points which are

below normal ambient conditions, for example petrol.

Secondly, there are the flammability limits. These are the lowest and highest

concentrations of a material in air, at which it will burn when ignited. Not only are the

two values important on their own, but so also is the flammable range, that is the

difference between the upper and lower flammable limits. A chemical with a large range

is more hazardous. Chemicals -which have a very low lower limit will form explosive

mixtures if only a small amount escapes from a vessel. Chemicals with a very high
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upper limit will form explosive mixtures if only a little air enters a vessel. The

combination of both the upper and lower limits and the range gives a good idea of how

flammable a chemical is.

Finally there is the auto-ignition temperature. This is the temperature at which a

material will spontaneously combust, without an ignition source.

There is no continuous measure for flammability. A material is either flammable

or it isnt. There are criteria to decide whether a material is in a flammable state,

depending upon its boiling and flash points and what temperature it is kept at. A score

for flammability will be one score depending on whether the material is flammable or

not.

4.4.8 Explosiveness

There are two types of chemical explosion. Firstly, there is detonation. This

occurs with explosives such as T.N.T. The energy of the explosion is in the form of a

supersonic blast wave. Large clouds of flammable mixtures can also detonate if the

conditions are correct.

Secondly, there is deflagration. This occurs when large quantities of flammable

materials burn in an explosive manner. The flame front moves at subsonic speeds and

produces a slow blast wave. However, the blast wave is still large enough to produce

considerable damage.

The most damaging explosions come from large clouds of flammable material,

which escape and find an ignition source. Flixborough (Lees, 1980) is an example of

the destruction which can result from a large flammable cloud.

The explosiveness of a material is estimated from its upper and lower explosive

limits. This is how much or how little of a material must mix with air to form an

explosive mixture. The range goes from 0 to 100 %. The limits could be scored on their

own or combined in some manner, for example the explosive range might be used.

4.4.9 Corrosiveness

Chemicals which attack materials used in the plant may cause hazards. They

require special containment to make them safer to handle. Such chemicals include

strong acids, highly reactive gases, for example chlorine, and solvents which attack

plastics. Some chemicals become more corrosive in different forms, for example,

hydrogen chloride gas becomes much more corrosive when it dissolves in water. It is

not only chemical corrosion which causes problems. Particularly abrasive materials can

cause pitting and hence weaken pipes and process equipment.
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The corrosive material may not only be a problem on its own, other parameters,

for example toxicity, may make the material a big hazard. Corrosion could lead to loss

of containment and this could release the hazardous materials.

Corrosiveness can be measured on a continuous scale. However as corrosion is

usually quoted in mmlyear, due to the slow rate at which it occurs, it may be simpler to

assign a score for corrosion if it occurs or not.

4.4.10 Side reactions

Side reactions, in addition to the main reaction, cause problems in two ways.

Firstly, reactants are used up but not turned into the required end product. This lowers

the yield and leads to the problems associated with low yield described above. Secondly,

side reactions produce unwanted chemicals. These may be more hazardous than either

the reactants or required products. Side reactions are avoided or limited by changing

reaction conditions to favour the product.

Side reactions can occur at the same time as the main reaction or they can occur

when reaction conditions deviate from normal. Both present problems. Unwanted

chemicals must be separated out and dealt with. Reactions which occur due to

deviations may lead to more serious problems, for example runaway reactions.

There are two possibilities for how to treat side reactions. One is to score them

simply by number, the more side reactions there are the higher the score. An alternative

is to consider them on a mass basis, for example as a ratio of the amount of material

formed as side products compared with the amount of product.

4.4.11 Waste and co-products

Waste and co-products differ from side reaction products, in that waste and co-

products are unavoidable by-products of the main reaction. Even if they are not

hazardous, they must be dealt with. Some may be usable in another process, but

consideration must be given to chemicals which must be disposed of to ensure that it is

done so in a safe manner.

These are treated in a similar manner to side reactions. It is probably better to

consider a mass ratio of waste and co-products to desired product, to penalise processes

which produce more waste than desired product.

4.4.12 Reaction rate

The reaction rate indicates how fast a reaction happens. The reaction rate has a

large effect on the hold-up in a reactor. If the reaction is fast, then only a small amount

Page 38



will need to stay in the reactor before it becomes the product. A slow reaction will mean

that the chemicals must remain in the reactor for a long time before turning into product.

This leads to a large inventory of material in the reactor. Changes to the reaction

conditions to improve the reaction rate are preferred over large inventories. A fast

reaction can also be a problem. A fast exothermic reaction generates heat at a rate which

makes controlling the reaction difficult. Any temperature deviations may rapidly lead to

a runaway reaction if the rate of cooling can not be increased. So there has to be a

balance. Too slow reactions lead to large inventories. A too fast, exothermic reaction

which is insufficiently cooled may lead to possible runaway reactions.

The scoring of the reaction rate in isolation will be difficult and will need to be

considered along with other parameters such as the heat of reaction. It could be possible

to have a score if the reaction rate could contribute to a potential runaway reaction.

4.4.13 Catalytic action

A catalyst improves the reaction rate. Some reactions may not be viable without

a catalyst as they may happen too slowly. Catalysts are also used to limit reactions to

reactors, that is so they cannot continue in pipes or other parts of a plant. Materials used

as catalysts can also be a hazard, for example heavy metals. Certain reactions are

catalysed by corrosion products, for example, rust may induce afi unwanted reaction.

The score could reflect the improvement in reaction rate or increase in yield over the

uncatalysed reaction.

4.4.14 Heat of reaction

The heat of reaction indicates how much energy is given out, in the case of an

exothermic reaction, or taken in, in the case of an endothermic reaction, by a reaction.

Most reactions are exothermic. A high heat of reaction indicates a very energetic

reaction. A high exothermic heat of reaction indicates that a runaway reaction is more

likely. If adequate cooling is not maintained on an exothermic reaction, the reaction

mixture heats up, which increases the reaction rate, then the situation may escalate to a

runaway reaction which could lead to an overpressure. A high heat of reaction,

combined with fast reaction kinetics, can give a problem with temperature control.

The score for heat of reaction should increase as the heat of reaction increases. It

could be scored with reference to the value of the heat of reaction. Alternatively the

score could be based on the type of reaction, for example condensation or oxidation

reactions. This method recognises that different reactions produce different amounts of

heat. There may also be a smaller scale to cover endothermic reactions, indicating the

need for external heating which may cause a hazard.

Page 39



4.4.15 Phase

The reaction phase affects the size of an incident, when a release of material

occurs from a reactor or storage vessel. Reactions either take place in a liquid phase, or a

gas or vapour phase. Kletz favours reactions in the gas or vapour phase. If a leak occurs

from a gas phase reaction, the amount of material released is much less than from a

reactor containing a liquid phase reaction, for the same reactor volume and hole size.

For storage vessels it is preferable to store liquefied gasses refrigerated and at

atmospheric pressure rather than at ambient temperature and under pressure. Leaks from

refrigerated storage are smaller as there is little pressure difference to expel material, and

heat absorbed from the surroundings by the leaking chemical may aid in dispersing it.

It is possible to say that gas phase reactions are generally safer, because less is

lost in a release than a liquid phase reaction. However, the reaction being in the gas

phase may reduce the reactor inventory compared to the same reaction happening in the

liquid phase. Therefore the benefits of a gas phase reaction over a liquid phase reaction

show up in a reduction in reactor inventory, and thus a separate score based on the phase

alone may not be necessary.

4.4.16 Phase change

A change of reaction phase can present problems. Evolution of large amounts of

gas or vapour can lead to overpressure. The precipitation of solids can lead to blocked

pipes or other process equipment. Both of these cases are more likely to be a problem

when reactions deviate from normal.

This should be a score to penalise any reaction phase change such as evolution of

gases or precipitation of solids, which would require special processing.

4.4.17 Viscosity

The viscosity of a material is an indication of its ease of mixing. A high viscosity

gives problems due to insufficient mixing, for example, poor heat transfer from the

chemicals to heat transfer surfaces or vice-versa. This can lead to hot spots in reactors,

possibly giving rise to runaway reactions under certain conditions. Poor mixing limits

the speed of reactions, leading to higher inventories.

The viscosity affects the mixing in a process and thus the reaction kinetics. It is

difficult to say if a higher viscosity is more unsafe than a low one. Thus a score is

needed to penalise a process which may suffer from viscosity related problems, for

example chemicals which increase rapidly in viscosity when heated, for example

sulphur.
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4.4.18 Number of steps

The number of reaction steps in a route is a very simple measure of the

complexity of the necessary plant. More steps implies more equipment, more

intermediate chemicals and thus more chance for something to go wrong. Thus more

steps gives a more unsafe process by virtue of having more step scores to combine.

Therefore it may not be logical to assign an additional score to reflect a large number of

steps.

4.4.19 Uniformity of steps

Reaction conditions across each step of a route are unlikely to be consistent.

Temperatures and pressures will vary from step to step. To accommodate these changes,

equipment will be added to increase or decrease temperature, for example heat

exchangers, or to increase or decrease pressure, for example compressors or turbines.

All of this additional equipment adds complexity and a need for control. If conditions

are kept approximately constant then the complexity is reduced.

The degree of variability between the route steps could be a modifier to the final

route score. When a process which has step conditions with large variations between

them is penalised more than a uniform process.

4.5 Scoring of the parameters

The parameters fall into two categories. Firstly, there are the parameters which

give a binary (yes or no) score depending upon whether the parameter does or does not

indicate an inherent danger. These are chosen as flammability, corrosiveness, reaction

rate, catalytic action, phase, phase change, and viscosity. Secondly, the rest of the

parameters start from a point which can be scored as zero. The score can then increase

as the value of the parameter increases. These are inventory, temperature, pressure,

conversion, yield, toxicity, explosiveness, side reactions, waste and co-products, and heat

of reaction.

Two possible methods are discussed below for how the parameters may be

scored.

4.5.1 Matrix method

The first method, which has been called the Matrix method is presented by

Humphrey (1987). He uses his method to estimate Beta Factors for common cause

failures. The first task is to decide what are the contributing factors to the problem. In

the case of inherent safety, to which this method has not been applied, these are the

parameters presented earlier. In the example presented by Humphrey, the parameters

which contribute to Beta factor estimation are first weighted in importance as follows:
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Separation	 8

Similarity	 6

Complexity 6

Analysis	 6

Procedures	 10

Training	 5

Control	 6

Tests	 4

Each parameter is then divided into a number of sub-divisions, in this case 5.

Thus the matrix has 8 rows, one for each parameter, and 5 columns, 'a' to e'. The total

for column 'a' should correspond to 0.3, the worst beta factor. The total for column 'e'

should correspond to 0.001, the best beta factor. Using the relative weightings of the

parameters and assuming a divisor for all the values of 50000, columns 'a' and 'e' are

filled in. The intermediate values in the other columns are fitted using the equation

y=AeBx	 (4.1)

although a linear fit or any other suitable equation could be used. For each

column, a criteria is formulated for the parameter. For column 'a', the criteria represent

the worst case for the parameter, for column 'e' the criteria represent the best case for the

parameter. The final scoring matrix is as follows:

a	 b	 c	 d e

Separation 2400 580 140 35 8

Similarity	 1750 425 100 25 6

Complexity 1750 425 100 25 6

Analysis	 1750 425 100 25 6

Procedures 3000 720 175 40 10

Training	 1500 360 90 20 5

Control	 1750 425 100 25 6

Tests	 1200 290 70 15 4

To use the matrix, for each parameter, a criteria which bests fits the problem is

chosen. The beta factor is calculated by adding together the score for each parameter,

depending upon the criteria 'a' to e, and dividing the total by 50000.

4.5.2 Step scoring method

The second method is that of Taylor (1980). He presents a step scoring method

for rapid capital cost estimation. His method differs from that of Humphrey in several

ways. Firstly, the factors chosen do not all have the same number of subdivisions.
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Secondly, all the factors are fitted to a common linear scoring scale, but are moved up or

down the scale to adjust the relative weight of the scores. Finally, the scores for

parameters can be placed either side of a zero score, so that factors can contribute a

negative score, for example for a factor which improved the safety. Thus the score for a

parameter could move from negative, indicating an improvement to the inherent safety,

through to positive, indicating a deterioration in the inherent safety.

4.5.3 Reasons for rejection of Matrix and Step scoring methods

Both methods have some points which make them unsuitable as the only method

for scoring the routes. The matrix method has two problems. Firstly, in order to fit all

the parameters into one matrix, some parameters may need their contribution to the total

score weighted more than others. However, at this stage in the development of the index

it is not known if any parameters should be weighted more than others for their

assessment of inherent safety. Secondly, the matrix method requires that the parameters

must all be sub-divided into the same number of sub-divisions. This may lead to some

parameters having too many or too few divisions for the range of the parameter.

Therefore the divisions could be arbitrarily too small or too large. A small problem with

the step scoring method is that the negative score part may not be used. Both methods

also do not deal with parameters which only have a score if they do or do not meet a

certain criterion.

The method devised to score the parameters in the index was to first choose the

parameters to be scored. Next each parameter was assigned a scoring table. The steps

are scored using the table for each parameter and finally the scores for each step are

added together to score the route.

The parameters each have a scoring table. Leaving the parameters on a common

scale could lead to some confusion. If two different parameters have the same score it

could be interpreted as meaning they have the same effect on the inherent safety, for

example temperature having the same effect as pressure. It may be possible at a later

stage to equate different parameters to a common scale of inherent safety, but at this

stage it is safer to treat the parameters separately. As each parameter has its own scoring

table, it can have as may sub-divisions as required.

4.5.4 Parameters chosen for trial Inherent Safety Index

Although there were nineteen different parameters which had been identified, it

was felt that this was too many for the first attempt at formulating an indicator of IS. So

seven of these nineteen parameters were chosen to form the first trial index. The basis

for choosing the parameters was that they should be known at the process route stage and

that they have a large influence on the inherent safety of the route.
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Having decided upon the parameters to use for the trial index, a set of scoring

tables was compiled, one for each parameter.

4.5.5 Temperature

Temperature is an indicator of the heat energy content of a system. The higher

the temperature, the higher the energy content. This energy may make a hazard more

likely to occur, and also increase the magnitude of the hazard.

Temperature (°C)	 Score

T < -25 10
-25	 ^ T < -10 3

-10	 ^ T < 10	 1
10	 ^ T < 30 0

30 ^ T < 100 1

100 ^ T < 200 2

200 ^ T < 300 3

300 ^ T < 400 4

400 ^ T < 500 5
500 s T < 600 6
600	 T < 700 7

700	 T < 800 8

800 ^ T < 900 9

900 ^ T	 10

Table 4.1 - Temperature scoring table

For the positive temperatures, the temperature range was divided into ten equal

steps for a score range of ten. The scores for negative temperatures account for material

of construction problems at low temperatures.

4.5.6 Pressure

Pressure is an indicator of the energy present in a system. As with temperature,

high pressures are more hazardous and increase the magnitude of the resultant effects.
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Pressure (psi)	 Score
0	 -	 90	 1
91	 -	 140	 2
141	 -	 250	 3
251	 - 420	 4
421	 -	 700	 5
701	 -	 1400	 6
1401 -	 3400	 7
3401 -	 4800	 8
4801 -	 6000	 9
6001 -	 8000	 10
+1 point per 2500 psi

Table 4.2 - Pressure scoring table

The pressure table is based on the pressure graph from the Mond index. The

pressure of 8000 psi corresponds to a score of 150 from the graph in the Mond index.

The score range has been reduced from 150 to 10 points.

4.5.7 Yield

The yield of a reaction indicates how much extra inventory or flow is needed to

meet the required product rate. A low conversion and hence a low yield will often mean

that a recycle stream is needed which increases the inventory of the reaction step.

Therefore a low yield should be viewed as bad for inherent safety.
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Yield (%)	 Score
100	 0
90	 - 99 1
80	 - 89 2
70	 - 79 3
60	 - 69 4
50	 - 59 5
40	 - 49 6
30	 - 39 7
20	 - 29 8
10	 -	 19 9
0	 - 9	 10

Table 4.3 - Yield scoring table

The range of the yield has simply been divided into ten steps.

4.5.8 Inventory

Chemicals are present in varying quantities around the chemical plant, in

different size pieces of equipment. For a chemical route only the reactions are known

about and therefore inventory estimation is limited to the reactor inventory.

The estimate used here for the inventory of a chemical is based on the annual

throughput, an 8000 hour per year production rate, a nominal hold-up of one hour

(unless known) and a 100% yield for the step. A 100% yield is used as the actual yield is

used as a separate parameter. The production rate is calculated for each step from the

stoichiometry of the reactions, working backwards through the steps from the product

rate required to satisfy the plant capacity assuming a 100% yield.

Inventory (Tonnes) 	 Score
0.1	 -	 250	 1
251	 -	 2500	 2
2501	 -	 7000	 3
7001	 -	 16000	 4
16001	 -	 26000	 5
26001	 -	 38000	 6
38001	 -	 50000	 7
50001	 -	 65000	 8
65001	 -	 80000	 9
80001	 -	 100000	 10

Table 4.4 - Inventory scoring table
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The table is based on the quantity factor charts from the Mond index. The

continuous graph has been broken down into ranges, and the maximum score reduced

from 1000 to 10.

Inventory contributes to the chemical score because the mass of a chemical could

be the factor which makes it the most hazardous, compared with the other chemicals

present in a step.

4.5.9 Toxicity

TLV (ppm)	 ________ Score
______	 TLV < 0.001	 8
0.001	 ^ TLV < 0.01	 7

0.01	 ^ TLV < 0.1	 6

0.1	 ^ TLV < 1.0	 5

1.0	 TLV < 10.0	 4

10.0	 ^ TLV < 100.0	 3

100.0	 ^ TLV < 1000.0 2

1000.0 ^ TLV < 10000.0 1

1.0%	 ^ TLV	 0

Table 4.5 - Toxicity scoring table

This table is based on a table in the Mond index. TLV data may not be the ideal

measure of toxicity in all situations, but the TLV data is readily available.

4.5.10 Flammability

There is a difficulty in giving a degree of flammability to a chemical. But an

indication of whether a potentially flammable chemical is in a flammable state

depending upon its physical properties can be given.

Flammability	 Score
Non-combustible	 0

FP>60°C	 1

37.7°C<FP<60°C 2

FP < 37.7°C	 3

BP> 37.7°C	 ________

FP < 37.7°C	 4

BP< 37.7°C	 ________

FP = Flash point
BP = Boiling point

Table 4.6 - Flammability scoring table
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This table is based on one from the Dow index which is used to determine the

material factor for the chemical.

4.5.11 Explosiveness

The propensity of a chemical to explode is indicated by its ability for forming an

explosive mixture with air. The easier it is to form an explosive mixture, the more likely

is an explosion.

Explosiveness	 __________

S = (UEL - LEL)%	 Score

0	 ^S<	 10	 1

10	 S<	 20	 2

20	 ^S<	 30	 3

30	 S<	 40	 4

40 ^S<	 50	 5

50 ^S<	 60	 6

60 ^S<	 70	 7

70 ^S<	 80	 8

80 ^S<	 90	 9

90	 ^S<	 100	 10

Table 4.7 - Explosiveness scoring table

L.E.L and U.E.L are lower and upper explosive limits respectively. The

combination of a low lower limit and a high upper limit represent the worst case.

Therefore the difference between the two can be considered indicative of the explosion

hazard, a large difference means a large risk. The maximum range has been divided into

ten steps.

4.6 Index Structure

The score for a reaction step is divided into two parts. The first part is the

process score. This is the score for the reaction parameters, that is temperature, pressure

and yield. The scores for the three parameters are summed to give the process score.

The second part is the chemical score. This is the score for the hazard due to

properties of the chemicals, that is inventory, toxicity, explosiveness and flammability.

The scores for the four parameters are summed to give a score for each chemical in the

step. The chemical score for the step is taken as the highest score out of the chemicals in

the step, that is the score for the most hazardous chemical, in a similar manner to the

Dow and Mond indices.
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The process score and the chemical score are summed to give the step score. The

Inherent Safety Index for the route is the sum of the step scores. A high score implies an

inherently unsafe process.

4.7 Details of the test routes

The index was tested on six routes to methyl methacrylate (MMA). There were

two reasons for choosing MMA. Firstly there was access to a commercial report (Chem

Systems, 1989) which detailed both the chemical and process aspects of the routes. In

addition the report included cost estimates for the processes. These would be used to test

whether the inherently safest routes are also the cheapest routes. Secondly, there was a

good mix of potentially dangerous chemicals and processes among the routes.

Full details of the routes, including individual reaction step process conditions,

the chemicals present, and the physical and chemical properties, are given in appendix A.

A brief description of each route, including the main chemicals and reaction steps is

given below for each route.

4.7.1 Acetone Cyanohydrin (ACH)

This is the conventional process for MMA manufacture. Hydrogen cyanide is

produced by the Adrussow process. This is reacted with acet.one to give acetone

cyanohydrin (ACH). This is treated with sulphuric acid and heated to give

methacrylamide. The final step is to react methacrylamide with methanol to produce

MMA. The sulphuric acid is recovered from the ammonium bisulphate by-product.

4.7.2 Ethylene based via methyl propionate (C2IMP)

Ethylene (C2) is reacted with carbon monoxide in the presence of methanol to

yield methyl propionate (MP). Methylal (dimethyl formal or modified fomaldehyde) is

used to condense the methyl propionate to MMA.

4.7.3 Ethylene based via propionaldehyde (C2/PA)

Ethylene (C2) is reacted with carbon monoxide and hydrogen to yield

propionaldehyde (PA). This is condensed with fomaldehyde to give methacrolein. The

methacrolein is oxidised to methacrylic acid. Finally the methacrylic acid is reacted with

methanol to give MMA.

4.7.4 Propylene based (C3)

Propylene (C3) is reacted with carbon monoxide in the presence of hydrogen

fluoride to give isobutyryl fluoride. This is followed by hydrolysis to isobutyric acid.

Hydrogen fluoride is recovered for recycle. The isobutyric acid is oxydehydrogenated to

methacrylic acid. The methacrylic acid is reacted with methanol to yield MMA.
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4.7.5 Isobutylene based (i-C4)

Isobutylene (i-C4) is oxidised first to methacrolein and then to methacrylic acid

in two stages. The methacrylic acid is reacted with methanol to yield MMA.

4.7.6 Tertiary butyl alcohol based (TBA)

Tertiary butyl alcohol (TBA) is oxidised first to methacrolein and then to

methacrylic acid in two stages. The methacrylic acid is reacted with methanol to yield

MMA.

4.8 Scoring of the routes

Each route is broken up into reaction steps. For each step, starting from the last

step, first the hourly throughput is calculated, from the stoichiometry and the required

product flowrate.

For each step. the form of the reaction is

where

A = chemical species A

nA = number of moles of species A

If chemical P is the main product of the reaction, whose flowrate is known and

whose molecular mass is M, then

F F•n•M
M

where

F = flowrate of species X, tThr

F = flowrate main product, tfhr

M = molecular mass of species X, g mo!1

The inventory of the chemical species X in the reactor is

I =F, •H

(4.10)

(4.11)

where

= inventory of chemical X, tonnes

H = hold-up time, hours
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If the hold-up in the reactor is not known, a hold-up of 1 hour has been assumed

here.

4.8.1 Example

The reaction in step 4 of the ACH route is:

CH 2 = C(CH 3 )CONH2 +CH 2 = C(CH 3 )CONH 2 H 2SO 4 +2CH 1 OH+H 2SO 4 -

2CH 2 = C(CH 1 )COOCH 3 +2NH4HSO4

Methacrylamide + Methacrylamide Sulphate + Methanol + Sulphuric Acid -

Methyl Methacrylate + Ammonium Bisuiphate

A = Methacrylamide	 n = 1 MA = 85
B = Methacrylamide Sulphate n 8 = 1 MR = 183
C=Methanol	 n=2 M=32
D = Sulphuric Acid	 n = I M = 98
E = Methyl Methacrylate 	 = 2 M = 100
F = Ammonium Bisulphate 	 nF = 2 MF = 115

Table 4.8 - Molecular weights of chemicals used in example calculations

Species E is the main product, with flowrate FE = 6.25 t/hr (based on 50000

t/year and 8000 hlyear), then flowrates and inventories are, assuming a hold-up of 1 hour

FA = (6.25 * 1 * 85) /( 2 * 100) = 2.66 t/hr,

F8 = (6.25 * 1 * 183) / (2 * 100) = 5.72 t/hr,

F = (6.25 * 2 * 32) / (2 * 100) = 2.00 tJhr,

FD = (6.25 * 1 * 98) / (2 * 100) = 3.06 t/hr,

FF =(6.25*2* 115)/(2* I00)=7.19t/hr

'A = 2.66 t

'B = 5.72 t

= 2.00 t

1D3.06t

The inventory of the chemicals present is calculated as above for each step. Each

chemical is then scored using the scoring tables for each parameter. The chemical with

the highest score from all the steps is designated as the step chemical score.

Taking step 1 of the ACH route:

Methane + Ammonia + Oxygen - Hydrogen Cyanide + Water

The scores for hydrogen tyanide are:

Page 51



Inventory: 1.69 tonne scores 1 on the inventory table.

Toxicity : TLV = 10 ppm scores 3 on the toxicity table.

Explosiveness : U,E.L - L.E.L = 40 - 5.6 = 34.4 scores 4 on the explosiveness

table.

Flammability : FP < 37.7°C, BP < 37.7°C scores 4 on the flammability table.

The step score for hydrogen cyanide = 1 + 3 + 4 + 4 = 12

This is larger than the scores for CH4, NH3, 02 and H7 SO4, so it is used as the

chemical score.

Again for each step, the parameters for the process are scored.

Taking step 1 of the ACH route:

Methane + Ammonia + Oxygen - Hydrogen Cyanide + Water

Temperature: 1200°C scores 10 on the temperature table.

Pressure : 3.4 atm scores 1 on the pressure table.

Yield: 64% scores 4 on the yield table.

Process score for the step = 10 + 1 + 4 = 15

So the step score = Chemical score + Process score = 12 + 15 = 27

4.8.2 Scores for MMA routes

The table below shows the toxicity, flammability and explosiveness scores for

each chemical. The inventory score is not listed because this depends upon the reaction

step and some chemicals occur in different amounts in different steps.
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_____________ __________ SCORE FOR __________
CHEMICAL	 TOXICITY	 FLAMMABILITY	 EXPLOSIVENESS

Acetone	 2	 3	 2
Acetone Cyanohydrin	 3	 1	 1
Ammonia	 3	 0	 2
Ammonium	 -	 -	 -
Bisuiphate_________________ _________________ _________________
Carbon dioxide	 1	 0	 -
Carbon Monoxide	 3	 4	 7
Ethylene	 1	 4	 4
Formaldehyde	 5	 4	 7

HMPA	 -	 -	 -
HMPASE	 -	 -	 -
Hydrogen	 1	 4	 8
Hydrogen Cyanide	 4	 4	 4
Hydrogen Fluoride	 4	 -	 1
Isobutylene	 1	 5	 -

Isobutyric Acid	 2	 2	 1
Isobutyryl Fluoride	 -	 -	 -
Methacrolein	 2	 4	 -
Methacrylamide	 -	 -	 -
Methacrylic acid	 -	 1	 -
Methane	 1	 4	 2
Methanol	 2	 3	 4
Methyl Methacrylate	 3	 3	 2
Methyl Propionate	 -	 3	 2
Methylal	 2	 3	 2
Nitrogen	 1	 0	 -
Oxygen	 0	 0	 -
Propionaldehyde	 -	 3	 2
Propylene	 1	 4	 1
Sulphur dioxide	 4	 -	 -
Sulphur trioxide	 7	 -	 -
Sulphuric Acid	 4	 -	 -
Tertiary Butyl Alcohol	 3	 3	 1
Water	 0	 0	 -

HMPA - 2-hydroxy-2-methyl propionamide

HMPASE - 2-hydroxy-2-methyl propionamide sulphate

Table 4.9 - Breakdown of chemical score for each chemical in MMA routes
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The table below shows the breakdown of the process scores for each step.

_______ _______ ____________ SCORE FOR __________

	

ROUTE STEP 	NO. TEMPERATURE PRESSURE	 YIELD
	ACH	 1	 10	 1	 4

	

_____ 2	 1	 1	 1

	

_____ 3	 2	 2	 1

	

_____ 4	 2	 2	 0
__________	 5	 10	 1	 0

	_____ 6	 5	 1	 1

C2/MP	 1	 2	 7	 2

	

_____ 2	 -	 -	 -
____	 3	 4	 -	 2

	

C2/PA	 1	 2	 3	 1
____	 2	 2	 6	 1
____	 3	 4	 -	 5

	_____ 4	 1	 2	 3
C3	 1	 1	 7	 1

	

_____ 2	 1	 3	 1
	_____ 3	 4	 1	 3

____	 4	 1	 2	 3

	

i-C4	 1	 4	 -	 6

	

_____ 2	 4	 1	 5

	_____ 3	 1	 1	 3

	

TBA	 1	 4	 1	 2

	

_____ 2	 4	 1	 5

	_____ 3	 1	 1	 3

Table 4.10 - Breakdown of process score for each step in MMA routes

The table below shows the chemical score, process score and total step score for
each step, including which chemical had the highest score in each step and thus provides
the chemical score.
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CHEMICAL WITH CHEMICAL	 PROCESS	 STEP

ROUTE STEP NO. HIGHEST SCORE	 sCORE	 SCORE	 SCORE

ACH	 1	 HCN	 13	 15	 28

______	 2	 HCN	 13	 3	 16

_____ 3	 ACH	 6	 5	 11

______	 4	 Methanol	 10	 4	 14

______	 5	 Methane	 8	 11	 19

_______	 6	 Sulphur trioxide	 8	 7	 15

C2/MP	 1	 CO	 15	 11	 26

_______	 2	 Methanol	 10	 -	 10

_______	 3	 Methanol	 10	 6	 16

C2/PA	 I	 CO	 15	 6	 21

_______	 2	 Formaldehyde	 17	 9	 26

_______	 3	 Methacrolein	 7	 9	 16

_______	 4	 Methanol	 10	 6	 16

C3	 1	 CO	 15	 9	 24

_______	 2	 Isobutyric acid	 7	 5	 12

________	 3	 Isobutyric acid	 7	 8	 15

_______	 4	 Methanol	 10	 6	 16

i-C4	 1	 Methacrolein	 7	 10	 17

_______	 2	 Methacrolein	 7	 10	 17

_______	 3	 Methanol	 10	 5	 15

TBA	 1	 TBA	 8	 7	 15

_______	 2	 Methacrolein	 7	 10	 17

_______	 3	 Methanol	 10	 5	 15

Table 4.11 - Breakdown of scores for each step in MMA routes
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The graph below shows the scores from table 4.11. The graph actually shows

inherent danger. A high score indicates a more inherently dangerous route.

Inherent Safety Index for MMA routes

ACH	 C2IMP	 C2/PA	 C3	 i-C4	 TBA

Route

Figure 4.1 - Process score, chemical score and index for MMA routes

4.9 Discussion

Intuitively it would be expected that the ACH route should have a high index

value because it uses HCN. Likewise the two ethylene-based routes (C2/PA and C2/MP)

and the propylene-based route (C3) would be expected to do badly, because they involve

carbon monoxide. It is logical that the C2/MP route has a lower index value than the

other two, because it has one less processing step (3) than the other two (4). It would be

expected that the two C4-based routes (i-C4 and TBA) have similar indices, because they

are virtually the same process. They both involve an oxidation reaction, which

contributes significantly to their score. The ACH process, which has the highest score,

uses HCN, H,SO4 and SO3 and has the most steps (6); it is not surprising that it has the

highest index value, that is it is predicted that it is the most inherently unsafe process.

4.10 Relation of inherent safety to cost

One of the original aims of the research was to examine the assertion that the

most inherently safe plants are also the cheapest. There are two key values in an

economic estimation of a new process. These are the capital cost of the plant and the

cost of production of the required product.
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The capital cost is the money that must be spent to design, build and commission

the plant. It is the cost of the vessels, pipes, pumps, buildings, etc., that is all the

necessary hardware of the plant. This money also includes the cost of control and safety

equipment.

The cost of production are all the costs associated with running the plant and

producing the product. These include the cost of raw materials, power and other

utilities, labour costs, and other financial costs, for example insurance.

These costs can be compared for each route with the ranking of their inherent

safeness.

4.10.1 Explanation of cost data

Data has been used for plants in Western Europe in mid-1988, producing 50000

tonnes per year of MMA. The costs in German deutschmarks (DM) used to do a cost

and safety comparison are presented in table 4.13

The capital costs, raw material costs, utilities costs and labour costs are actual

costs for operating plants or, if no plant exists, are estimates made from design studies

for the 6 plants, but the maintenance costs and overheads are estimated using generic

factors. The various costs are as follows:

ISBL - Inside Battery Limits Capital Cost (Million DM) - This is the total capital

cost of the main plant items, for example reaction vessels, distillation columns, heat

exchangers, etc.

TFI - Total Fixed Investment (Million DM) - This is the sum of the ISBL and

Outside Battery Limits Capital Cost (Offsites). Offsites include utilities, offices,

laboratories and other buildings.
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The costs below are DM per tonne of product (MMA).

Raw materials (DM/t) - This is the total cost of the raw materials required to

produce a ton of the main product less any credits for saleable by-products that are made

in addition to the main product.

Variable (DM/t) - These are any cost which directly depend on the production

rate. They include raw materials costs, by-product credits and utilities costs.

Non-capital (DM/t) - These are costs which are not related to the capital costs. It

includes the variable costs and the labour costs.

Direct cash (DMIt) - This is the non-capital costs plus maintenance costs

(estimated as 4% of ISBL), direct overheads (75% of labour) and interest on the working

capital.

Full cash (DM/t) - This is the direct cash plus general plant overheads (50% of

labour and maintenance), insurance and property tax (1% of TFI). This is the total cost

of production per tonne.

20% ROl - 20% Return on Investment (DM/t) - This is the full cash cost of

production plus a 20% return on the total fixed investment.

No. of steps - This is not a cost but the number of reaction steps in the route.

	

Route ISBL TFI	 Raw	 Variable Non-	 Direct Full 20% No. of
	______ ______ ______ material _________ capital	 cash cash ROl steps

ACH	 166.4 244.7	 813	 1016	 1125	 1286	 1433 2412	 6

	

C2IPA 114.7 176.4	 925	 1054	 1122	 1231	 1332 2038	 4
C3	 100.4 184.7	 639	 768	 836	 930	 1026 1765	 4

C2IMP 77.1	 112.8	 716	 874	 929	 1005	 1074 1525	 3
i-C4	 120.5	 168.7	 765	 819	 869	 982	 1078 1753	 3
TBA	 115.6 178.1	 655	 668	 722	 830	 927 1640	 3

Table 4.12 - cost estimates for MMA routes in DM per tonne of MMA
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Route Chemical score Process score Index score
ACH	 58	 45	 103

C2/PA	 49	 30	 79
C3	 39	 28	 67

C2/MP	 35	 17	 52
i-C4	 24	 25	 49
TBA	 25	 22	 47

Table 4.13 - scores for MMA routes from trial index

4.10.2 Regression analysis

Linear regression has been used to investigate whether there is any correlation

between inherent safety, as measured by the trial index, and the costs, in table 4.12.

Table 4.14 lists values of the R2 statistic, expressed as a percentage, obtained when the

above costs, as the dependent variables, are regressed against the independent variables:

chemical and process scores and index values.

The R2 statistic is defined as follows (Draper & Smith, 1981). Let:

SSM be the sum of squares of the deviations in the actual values of the dependent

variable from their mean,

SSR be the sum of squares of the deviations of the predicted (from the regression

line) values of the dependent variable from the mean of their actual values,

SSE be the sum of squares of the deviations of the actual values of the dependent

variable from their predicted values.

Then:

SSM = SSR + SSE
	

(7.1)

This shows that some of the variation in the dependent variable about its mean

can be ascribed to the regression line (SSR) and the rest to the actual values not lying on

the line (SSE). There is a good correlation if SSR is a lot greater than SSE. This is

equivalent to the ratio:

R2 = SSR

SSM (7.2)
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being close to 1 (or 100%). A value of 100% for R 2 indicates a perfect

correlation, while 0 tells us that there is no correlation; a value greater than 70% is

normally taken to indicate a good correlation for this type of data.

COST	 CHEMICAL	 PROCESS	 INDEX SCORE
___________	 SCORE - SCORE	 ___________

ISBL	 27.8	 81.5	 51.7
TFI	 34.4	 86.7	 58.9

Raw Materials	 34.3	 20.5	 31.1
Variable	 68.6	 34.8	 58.7

Non-capital	 76.7	 44.2	 68.6
Direct cash	 78.8	 56.4	 76.3
Full cash	 80.6	 65.9	 82.1
20% ROT	 72.1	 95.6	 90.1

No. of steps	 80.9	 92.4	 94.6

Table 4.14 - regression values (R2) arising from cost versus safety analysis

Looking first at the correlations with the chemical score, it is surprising that the

R2 value for raw materials is not significant. It could be thought that more hazardous

chemicals are more costly to produce and transport, and would tberefore have a high

correlation between cost and safety.

Apart from the raw materials, the chemical score is significantly correlated with

the non-capital costs and the costs of production, that is direct cash, full cash and 20%

ROT.

Looking next at the process scores, the ISBL and TFI correlate well. The process

score reflects the need for plant items which can deal with high temperatures and

pressures, and their size is partially related to the yield. Thus plant items will cost more

as they have to be designed and built to deal with more extreme process conditions. The

ISBL and TFI are directly related to the size and strength of plant items, as larger and

stronger items cost more to build. Thus the good correlation between the process score

and the capital costs agrees with practice. The process scores do not correlate

significantly with the costs of production until a large proportion of capital related costs

are added.

The index score is not correlated significantly to just the capital costs. Neither is

the index score correlated significantly to the costs of production which include the

variable costs. However, when the costs of production include more capital related

costs, for example direct cash and full cash, the correlation is significant. The best cost
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correlations to the scores and index are obtained for the 20% ROI cost of production,

which has large contributions from both non-capital and capital-related costs.

However, the best correlations are between the scores and index and the number

of process steps. This is consistent with the calculation of the index as a sum of step

scores and agrees well with the idea that increasing complexity in a route decreases

inherent safety.
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5. CHAPTER 5- EXPERT JUDGEMENT

5.1 Introduction

This chapter covers a part of the research that is important in its own right,

having its own discussion and conclusions, but is also an important contribution to the

work as a whole.

Having created an inherent safety index and used it on some test routes, the index

and the results from testing it were given to a group of experts for their opinions and

ideas about what had been done, and how it could be improved.

The chapter deals firstly with how experts should be consulted in a structured

manner, that is the subject of expert judgement. Secondly, it explains why experts are

needed to help in this exercise and what kncrwledge is i iom kiem. ii'tiX', i

looks at the chosen method of eliciting the required information, that is a series of

questionnaires and a meeting of the experts. It then presents the results from the

questionnaires and an analysis of the results. Finally, it discusses what the exercise has

shown and how the results can be used in developing the research.

Later in the chapter the phrase 'expert ranking' is used. Expert judgement covers

the general topic of how information is elicited from experts and analysed. Expert

ranking is the particular task that the experts have been set in this research, that of

ranking of the MMA routes according to inherent safeness.

5.2 What is expert judgement?

Expert judgement is a method of obtaining knowledge from experts, which

cannot readily be obtained from other sources. There are three types of information that

are elicited from the experts. Firstly, there are the factual answers to specific questions,

secondly, there is the reasoning behind their answers, and thirdly the form in which they

give their answers, for example probabilities or rankings. All three types of information

are important and are necessary for a satisfactory result.

There are several methods by which the judgement of experts may be elicited

(Lees, 1994); each has its merits and disadvantages. These include the single interview,

the group interview and the Delphi method.

The single interview method uses only one expert. It is good for obtaining

detailed answers to questions and is useful for observing the expert's reasoning

processes, but there is no interaction between experts discussing the problem and it is

time consuming.
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The group meeting method can resolve differences and lead to consensus answers

as a result of discussion amongst the experts, but it may also suffer from group bias or

disagreement.

In the Delphi method, a group of experts is used, but each works in isolation.

This is free from group bias but the group interaction and discussion of ideas is lost.

There are a number of documented methods for eliciting rankings. The method

of paired comparisons allows experts to rank a number of items in an easier manner than

ranking them all at once. The expert is asked to give his or her preference between a pair

of items. The results from choosing between the pairs of items are combined to give the

ranking of all the items. Two methods are available; that of Saaty (Lees, 1994) and that

of Hunns and Daniels (1980). Saaty's method gives a weight to each item ranked but

these weights only indicate the order of items in a ranking, that is we cannot say for

example that item A is three times more desirable than item B. Hunns' method gives a

relative ranking of items on a linear scale.

Lees states that the choice and number of experts are important factors in the

expert judgement exercise. The experts should come from a divrse background, but

within the area of research, in order that there is no undue influence from any one

individual. The number should be between 5 and 9, the lower bound is necessary for

diversity and the upper bound is a manageable maximum number of experts.

5.3 Why use expert judgement?

One problem with the index is that it is not possible to say whether the ranking

of the MMA routes is 'correct'. An expert can say that the ranking 'looks right', based on

the information on the routes. For example he or she can see if the chemicals used are

more toxic in one route compared with the other routes. However this process needs to

be formalised to be of value, and to give an alternative ranking with which to compare

the index.

Having tested the index on the MMA routes, several weak aspects have been

recognised, which need further development. Expert judgement is being used firstly to

provide additional rankings of the routes with which to compare the existing index-based

ranking. Secondly, the exercise can provide information about the methods and

procedures used to determine the rankings. Additional information about the features and

hazards in each route will help to strengthen the index in these weak areas and to

calibrate it to give sensible rankings. The methods used by the experts to compare
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features and to formulate their rankings may also aid in defining a better structure for the

index.

5.4 Method used for expert judgement

A panel of 8 experts was assembled. The experts came from academic and

industrial backgrounds, with a strong interest in safety, including inherent safety. It was

assumed that the experts were the type of people whose views and experience of inherent

safety would be worthy of consideration. The panel consisted of:

Prof. F.P.Lees -	 Loughborough University

M.Kneale -	 Independent consultant

Prof. H.A.Duxbury - Independent consultant/Loughborough University

Dr. T.A.Kletz - 	 Independent consultant/Loughborough University

C.C.Pinder -	 BP Chemicals LtdlLoughborough University

W.H.Orrell -	 Independent consultant

M.L.Preston -	 ICI Engineering

Dr. A.G.Rushton - Loughborough University

In order to test the index, the panel of experts was asked to rank the MMA routes.

The results were analysed in order to answer two questions.

Firstly, does a composite ranking, that is an average ranking across all the

experts, agree with the index.

Secondly, are the individual rankings from the experts consistent with each other,

that is, is there general agreement on the final composite ranking.

Accepting that the experts are indeed experts, then if their composite ranking

agrees with the index, and there is consistency between their individual rankings, then

the index is validated for the test case of MMA routes.

In order to elicit the experts judgement and opinions on the inherent safeness of

the routes a set of questionnaires was devised for the experts to complete and a panel

meeting was planned to discuss the results. The experts were given the minimum

information about our chemical routes which it is believed would be known at the

beginning of a feasibility study.

The initial plan was to have three questionnaires. However, the process of

analysing and devising the questionnaires was considered to be iterative. If the results of
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the third questionnaire dictated that a fourth or fifth was needed, then more would be

produced.

Questionnaires 1 and 2 were used to elicit rankings from the experts and to check

that they were consistent in their rankings. Questionnaire 1 asked the experts to rank the

routes for MMA by looking at the routes as a whole. In questionnaire 2, the individual

steps in each route were examined Then a composite ranking was built from the

assessments of the individual steps If there was any great difference between the

rankings from the two questionnaires, then the rankings would be subject to further

examination and further questionnaires would be devised.

Questionnaire 3 elicited opinions about the trial index, and suggestions for

improving it or forming a new index.

The final part of the exercise was a meeting of all the experts on the panel. This

was to discuss the results of the questionnaires, and perhaps to remedy any discrepancies

in the results, or disagreements between the experts. It was also used to discuss ideas

about a new index.

5.5 Questionnaires

It was suggested by Lees (1994a) that before the experts could rank the routes,

they should have some criteria by which to compare them.

5.5.1 Criteria for ranking routes

In order to rank the routes, criteria are needed against which they can be ranked.

Marshall (1987) and Lees both distinguish three main criteria. Marshall defines them as

1. Major loss of life

2. Widespread injury

3. Widespread damage

Lees suggested

1. Major hazard - A large toxic or flammable release and possible explosion, that

affects the surrounding area and causes loss of life.

2. Medium scale event - A small explosion or irplosion, which leads to loss of

production and bad publicity. Loss of life is possible but due to 'bad luck'.
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3. Unplanned event - This causes disruption to the local population, with alarms

and evacuations. The event is newsworthy. It may not be dangerous in terms of loss of

life, but leads to loss of production and claims for compensation.

Marshall suggests that loss of life is a good measure of the scale of an incident.

However, there is the problem of whether to include deaths which occur some time after

the initial incident, for example people dying from injuries several months afterwards.

The recorded number of deaths depends on how an incident has been reported.

Another possible measure is number of injuries, but this also has problems

associated with it. There is a wide scale of seriousness of injuries. They could be

categorised, for example as major and minor injury, but the division may be difficult to

place. There is also the problem of dealing with crippling injuries, for example those

caused by toxic chemicals, again it is the time element which affects whether crippling

injuries are reported in the incident reports.

A third measure which could be used is financial loss. Sums of money can be

derived from:

1. Compensation for loss of life

2. Compensation for loss of income while injured

3. Compensation for damage to plant and equipment

4. Insurance payouts

A possible method for how the three types of measure could be combined is

suggested by the author. The scale of hazard could be derived by combining the three

types of measure for the scale of an incident. For example

Loss of life and Injury and Loss of money=
	

Major hazard

Injury	 and Loss of money
	

Medium hazard

Loss of money
	

Minor hazard

This gives three criteria for ranking routes. However they require a financial

value to be put on injury and loss of life. This was deemed to be outside the scope of the

project and ultimately these suggestions were rejected.

For simplicity, the three measures suggested earlier by Lees were used.
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5.5.2 Route data

Prior to sending out the questionnaires, the experts were sent data on the MMA

routes, including process conditions and chemical properties. This was to allow them to

familiarise themselves with the routes. Details of the MMA routes are listed in appendix

A.

Samples of the three questionnaires used are listed in appendix B.

5.5.3 Questionnaire 1

The experts were asked to rank the six routes with respect to the three criteria,

using their 'gut feeling. They were requested not to spend more than two hours

completing the questionnaire. In this way the experts could give a ranking of the routes

based on an overall impression of their safety, without paying undue attention to

individual step details.

The introduction to the questionnaire states the ranking criteria. The first section

is to rank the six MMA routes with respect to the criteria. There is also an additional

criterion called 'overall' which was intended to elicit a ranking over all the three criteria.

The experts were asked to assign a score of 1 for the safest route through to 6 for the

least safe route. This gave a ranking which was compared with the ranking from the trial

index.

In section two, the experts were asked to list the features of each route that were

important in their assessment of inherent safety. They were asked to assign a measure of

importance to each feature, with a score of 1 for high importance through to 5 for low

importance. They could list as many features as they wanted. The results of this section

were designed to elicit the features that experts look for when assessing inherent safety.

This would help in highlighting extra parameters for the index or weighting the scoring

of existing parameters.

In section three, the experts were asked to state the reasons behind their rankings

with respect to each of the four criteria. This would show if the expert's assessment of

inherent safety was influenced by the size of a potential hazard. For example, would the

experts rank the routes differently if they were looking at the potential to cause large

scale damage compared to looking at the potential to cause small scale 'nuisance'

incidents.

In the final section the experts were asked: what data was incomplete or missing,

what they would have done with the missing data if they had had it, and what they did to

deal with its absence. This section tried to gain some idea of what data was absolutely
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necessary, and what the experts did in assessing the inherent safety, given that data about

some chemicals and route steps was missing.

Finally, the experts were asked if they had any general comments at this stage of

the exercise.

5.5.4 Questionnaire 2

In the second questionnaire there was only one section. The data for the steps in

the routes was presented, with the individual reaction steps in a random order. Some

steps are common to more than one route and these were presented only once in this

questionnaire. The experts were asked to score each step, assigning a score of 1 for the

most inherently safe through to 5 for the least inherently safe. They were asked to look

at the steps in isolation from the route of which they were a part. In later analysis the

scores were added up for all the steps in each route, to give a 'composite score for each

route. These scores provided another ranking of the routes. This ranking was compared

with the ranking from both the index and from questionnaire 1. The comparison with

questionnaire 1 is part of the index validation procedure.

5.5.5 Questionnaire 3

The third questionnaire concentrated on eliciting comments and suggestions on

both the trial index and its development. The questionnaire was divided into five

sections. The first section presented the scoring tables of the present index and the

scoring method for a route, with an example. The experts were asked to comment on

both the method and the individual tables. For the scoring tables, the experts were asked

to comment on the ranges of the parameters, the scores assigned to those ranges, and

comment generally. If they thought that the tables were inappropriate, they were asked

to suggest alternatives. A separate page was given for each of the seven parameters.

In the next section, the experts were asked for their opinion of which parameters

were important in assessing inherent safety of reaction steps. One half of the section

asks for a 'yes or no' indication of whether the expert considered the parameter essential

for an inherent safety assessment. The second half asked the experts to give a score for

how important they considered the parameter to be. This would show which parameters

should be included in the development of the index. The experts were asked to suggest

further parameters and provide a scoring table.

The experts were asked to list any interactions between parameters that they

considered would affect an inherent safety assessment. This could help in deciding how

to combining the various parameters or how to combine the scores for the parameters.
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The next section was similar to the previous section except that the experts

should consider parameters that they considered were important in assessing the inherent

safeness of separation steps. The format of the table was the same, but it had more space

for experts suggestions.

The final section presented to the experts a possible structure for developing the

index. They are given a description of a proposed 'four factor' index . Details of this

new index will be covered in the following chapters. The experts were asked to

comment on and make suggestions about the proposals for the new index.

The questionnaire finishes with two questions. The first asked the experts about

the circumstances in which they consider intermediate storage is needed. This would

indicate if any additional route steps would be needed to estimate the hazards from

intermediate storage. The second asked for what they consider is a practical measure of

toxicity, to replace the use of TLV.

5.5.6 Panel meeting

The panel meeting was organised to follow questionnaire 3. The findings from

the first two questionnaires were presented and discussed. The outcome from the third

questionnaire was used to lead a discussion about how the new index should develop.

The experts were asked about the structure discussed above, what parameters should

definitely be included, how they should be included into the proposed structure and how

they could be scored.

5.6 Methods for the analysis of the questionnaires

This section presents, analyses and discusses the results from the three

questionnaires and the panel meeting.

5.6.1 Correlation and regression

Statisticians make a distinction between correlation and regression. Taking two

sets of data from an experiment, X and Y, the Y variable is a random variable in both

correlations and regressions. For a regression analysis of the data, X is described as a

fixed variable. This means that the values for X are fixed prior to the experiment and the

Y values come from the results. Therefore it is possible to define a relationship between

X and Y which allows for the prediction of future values of Y if the experiment is

repeated. Regression analysis shows how well the data fits the relationship.

In a correlation analysis, both X and Y are random variables, and thus a

correlation analysis looks for a degree of correlation between the two data sets, but does

not look for a relationship to fit the data to.
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For analysing the rankings from both the experts and the trial index, a correlation

analysis is needed to see how well they agree but not to define a relationship between

them.

5.6.2 Tied data

Sometimes raw data is ranked but there are tied scores. The following method,

which is described by example, can be used to rank the tied data (Howell, 1992).

Consider a set of data arranged in increasing order:

2, 3, 4, 5, 5, 7, 9, 12, 12, 12, 14, 16

The lowest value (2) is ranked 1. The next two values (3 and 4) are ranked 2 and

3. The two tied values (5) can occupy either position 4 or 5, so they are given the

average rank of (4 + 5)12 or 4.5. Values 7 and 9 are ranked 6 and 7. The next three tied

values would occupy positions 8, 9 and 10 and so are all given position 9. Thus the

values are ranked:

value: 2, 3, 4, 5, 5, 7, 9, 12, 12, 12, 14, 16

rank: 1,2,3,4.5,4.5,6,7, 9, 9, 9, 11,12

5.6.3 Pearsons Product-Moment Correlation coefficient

There are several methods that can be used to analyse the rankings. Firstly, there

is Pearson's Product-Moment Correlation Coefficient (Howell, 1992). The relation

between two sets of data X and Y is measured by a correlation coefficient r. The

coefficient ranges from 1 to -1. A high positive value shows a strong relation between X

and Y, a high negative value shows a strong but inverse relation. A value of zero means

no relation. r can be defined as follows.

Firstly define the sum of squares of the deviations of the values of X from the

mean of X as

(N	
2

N	 2	 N

ss,,	
-	 =	

x,2 -
	

(5.1)

and the sum of squares of the deviations of the values of Y from the mean of Y as
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(5.3)

(5.4)

(5.5)

(5.6)

(N \2

N ___

= d Y 2 - __________
N

(5.2)

and define the sum of products of the deviations of the values of X and Y from

the means of X and Y respectively as

NN	 __________

sp	
=' 

N

where

X1 = ith value of data set X

= ith value of data set Y

N = number of items

±xi
= j=I

N

y =
N

then define r as

- sPxY

r- ______

Pearson's coefficient may be used on any raw data that might be related.

5.6.4 Spearman's correlation coefficient for ranked data

Spearman's coefficient (Howell,1992) is a development from Pearson's

coefficient for use on ranked data.

It is known that the sum of the first N integers is N(N + 1)12. Similarly, the sum

of the squares of the first N integers is N(N + l)(2N + 1)16. If X and Y are replaced

by N(N + 1)/2 and X2 and Y2 are replaced by N(N + 1)(2N + 1)16 in the above

Pearson's formulae, and D is defined as the difference between the X and Y ranks, then

Spearman's coefficient, r, is defined as:
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(5.7)

(5.8)

N

6 D,2

'-I

N(N2_l)

where

D1=X1-Y1

However, if there are any tied data in the rankings, the formula is invalid because

the set of N rankings no longer consists of the first N integers and so the replacements

for the sums and sums of squares are incorrect. In this case Pearson's formula should be

used to test the rankings.

5.6.5 Kendall's coefficient of concordance

Pearson's and Spearman's coefficients are both used to assess the relation

between two sets of data (X and Y). To assess the relation between more sets of data,

Kendall's coefficient of concordance (Gibbons, 1976) is used.

A rank is the position of an item in the ranking. Firstly, it is assumed that the

data consists of k sets of n ranked items, for example k experts ranking n routes. The

data is arranged in a table of k rows and n columns. In this case, each column

corresponds to a route and each row corresponds to an expert. The intersection of row i

with column j is expert i's rank for route j. Each row will have the first n integers

appearing in it, assuming there are no equal ranks, thus the sum of the row elements will

be:

n(n+l)
l+2+"+n=

2

The total of all the ranks in the table is kn(n + 1)/2, and the average total of the

ranks in a column is k(n + 1)/2. This is the average total rank a route would have if the

ranking was done randomly.

Let R 1 , R2 , ... R be the actual totals for each column, that is the total rank for

each route. The sums of squares of the difference between the actual total rank and the

(5.9)

average total rank is:

,, r	 k(n+1)]2
S	 R3

2
(5.10)
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S is a measure of the agreement between the rankings from each expert, S is

small for poor agreement and large for good agreement.

For a perfect match between all the experts, the column that had total rank 1

would be composed entirely of is, the column for total rank 2 would be composed

entirely of 2 s, etc, that is all the experts agree on all the ranks. Thus the column sums

are:

lk,2k,3k,...,nk

The sums of squares of these column sums is:

nr
Ijk_k1) 

2

2 ]
=k2[

r	 (n+1J_ 2

= k2n(n2 - i)

12

(5.11)

Kendall's coefficient of concordance, W, is the ratio of the sums of squares for

actual agreement, S, to the sums of the squares for perfect agreement:

12S
w

k2n(n2 —1)

- 12[R _k(n+1)/2] 2

	
(5.12)

-	 k2n(n2_1)

W has a value between 0, for no concordance, and 1, for perfect concordance.

The expression can be rearranged for convenience to give:

W can be used to define an average Spearman's coefficient by:

- kW-1
r

k—i
(5.14)
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This represents the average value obtained if r is calculated for all the possible

pairs of rankings, that is comparing expert 1 to 2, 1 to 3, ... , 2 to 3, 2 to 4, etc.

5.7 Results

5.7.1 Questionnaire 1

The experts' replies to questionnaire 1 are listed in appendix C.

The experts were asked for a 'gut feeling' ranking of the six MMA routes. The

rankings should be an overall impression of the relative inherent safety of the routes.

The experts were also asked to tell us how they went about ranking the routes.

5.7.1.1 Section I - Ranking of routes

In section I the experts ranked the routes according to the three criteria and

overall. These are the rankings with which the trial index were compared. Tables 5.1 to

5.4 below present the rankings from questionnaire 1 for all the experts in respect of

criteria A, B, C and overall respectively. A '1' denotes the safest and a '6' represents the

least safe route according to the expert. The last row lists the sum of the ranks over all

the experts for each route. The columns (routes) of the tables have been ordered from

safest to least safe based on the sum of the ranks. Tied rankings have been averaged as

discussed earlier.

_______ _____ ______ ROUTE	 _____ _____
EXPERT TBA	 i-C4 C2/MP C2/PA ACH	 C3

1	 1	 2	 3	 4	 5	 6
2	 1	 2	 3	 4	 6	 5
3	 1	 2	 4	 6	 5	 3
4	 1	 2	 4	 3	 6	 5

5	 1	 2	 5	 4	 3	 6
6	 1	 2	 3.5	 5.5	 3.5	 5.5

7	 1.5	 6	 1.5	 3	 4	 5
8	 1	 2	 3	 5	 4	 6

SUM	 8.5	 20	 27	 34.5	 36.5	 41.5

Table 5.1 - Rankings for Criterion A from questionnaire 1
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_______ ______ ______	 ROUTE	 ______ ______
EXPERT TBA	 i-C4 C2/MP C2IPA	 C3	 ACH

1	 1	 2	 3	 4	 6	 5
2	 1	 2	 3	 4	 5	 6
3	 1.5	 3	 1.5	 4	 5	 6
4	 1	 2	 3	 4	 5	 6
5	 1	 2	 3	 5	 6	 4
6	 3.5	 3.5	 3.5	 1	 6	 3.5
7	 3	 3	 3	 5	 1	 6
8	 1	 2	 3	 5	 6	 4

SUM	 13	 19.5	 23	 32	 40	 40.5

Table 5.2 - Rankings for Criterion B from questionnaire 1

_______ ______ ______	 ROUTE	 ______ ______
EXPERT TBA	 i-C4 C2/MP C2/PA ACH	 C3

1	 1	 2	 3	 4	 5	 6
2	 1	 2	 3	 4	 6	 5
3	 2	 1	 3	 5	 4	 6
4	 1	 2	 3	 4	 6	 5
5	 1	 2	 3	 5	 4	 6
6	 1.5	 3.5	 3.5	 1.5	 5	 6
7	 2	 2	 2	 4.5	 6	 4.5
8	 1	 2	 3	 4	 6	 5

SUM	 10.5	 16.5	 23.5	 32	 42	 43.5

Table 5.3 - Rankings for Criterion C from questionnaire 1

_______ ______ ______	 ROUTE	 ______ ______
EXPERT TBA	 i-C4 C2/MP C2/PA ACH	 C3

1	 1	 2	 3	 4	 5	 6
2	 1	 2	 3	 4	 6	 5
3	 1	 2	 3	 5.5	 5.5	 4
4	 1	 2	 3	 4	 6	 5
5	 1	 2	 5	 4	 3	 6
6	 1	 2.5	 4	 2.5	 5	 6
7	 1.5	 3	 1.5	 5	 6	 4
8	 1	 2	 3	 4.5	 4.5	 6

SUM	 8.5	 17.5	 25.5	 33.5	 41	 42

Table 5.4 - Rankings for Overall Criterion from questionnaire 1

For the four tables above, the Kendalls coefficient and the average Spearman's

coefficient have been calculated for each criterion. In addition the Pearson's coefficient
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has been calculated for each criterion, by comparing the totals for each route with the

route scores from the trial index The results are tabulated below.

Criterion W 	 _________________	 r
A	 0.623	 0.614	 0.701
B	 0.570	 0.509	 0.83 1
C	 0.813	 0.787	 0.798

OVERALL	 0.796	 0.767	 0.789

Table 5.5 - Correlation coefficients for each criteria from questionnaire 1

The values of W and i show that there is greater agreement among the experts

for the C and overall criteria, than the other two. Apart from criterion B, the general

level of agreement between the experts is good. The value of r shows that match

between the scores from the trial index and the sums of the rankings for each route is

best for criterion B. This presents a problem in that although the average ranking by the

experts for criterion B is closest to the ranking from the trial index, the level of

agreement between the experts for criterion B is the worst. The important point is that

the two initial questions have been answered affirmatively.

Composite ranking of MMA routes and comparison with index.

For each criterion, the ranks for each route, according to all the experts, are added

together. These are the column sums in the above tables. The route with the highest

total is the one with lowest inherent safety and thus has a composite ranking of 6 for that

criterion. The composite rankings derived from questionnaire one are given below.

RANK EXPERT RANKINGS BY CRITERiON	 INDEX
________ A	 B	 C OVERALL RANKING

1	 TBA	 TBA TBA	 TBA	 TBA

2	 i-C4	 i-C4	 i-C4	 i-C4	 i-C4

3	 C2/MP C2IMP C2IMP	 C2/MP	 C2/MP

4	 C2/PA C2/PA C2/PA	 C2/PA	 C3

5	 ACH	 C3	 ACH	 ACH	 C2IPA

6	 C3	 ACH	 C3	 C3	 ACH

r	 0.829 I 0.943 I 0.829 I	 0.829	 I
Table 5.6 - Composite rankings for questionnaire 1
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The values of the Spearman coefficient represent the closeness of the match

between the experts' composite ranking and the trial index ranking. There is an

interesting anomaly. The match for criterion B is better than for the other criteria,

whereas the agreement between the experts, as measured by the average Spearman

coefficient , is the worst for criterion B. This echoes the results in table 5.5 where the

raw scores from the trial index are compared with the sums of the ranks for each route.

Given the complexity and lack of definition of the inherent safety assessment

problem and the simplicity of the trial index, the match between the rankings of the

experts and those for the trial index is very good. The difference in scores between the

least safe two routes of the expert ranking is only one or two points. Therefore, the

match would be closer if just one expert changed the positions of two routes. Again the

two initial questions have been answered affirmatively.

An important result is that the rankings for the different criteria are almost

identical. The small differences in individual experts' rankings between the different

criteria average out across the panel. This suggests that either the inherent safety of the

route and the scale of a potential hazard are not related or that the experts could not

usefully distinguish between the routes using the criteria. This was discussed further in

the panel meeting.

5.7.1.2 Section II - Key features of each route

In section H the experts identified important features of the individual routes and

ranked them on a scale of 1 to 5. This helped decide what are the important features for

assessing inherent safety.

Methods used for rankings

It was apparent that the experts used two distinct methods for ranking the routes.

Most experts identified the key features of each route and scored them between 1 and 5.

The scores were then added up and the total used to rank the routes. Some of the

features that were scored included temperature, pressure, and toxicity. This method of

scoring key features does at least compare favourably with the trial index, and shows that

the method is not completely divorced from expert judgement.

Other experts based their final rankings on an overall impression of inherent

safety in the route. They listed the features that they looked for, but did not assign any

score to them only an overall score for the route. They may have mentally scored them,

but this was not indicated in their answers.
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One expert suggested that Section two should have come before section one. The

experts might have found the ranking easier, as required in section one, if they had first

been asked to decide what factors affected the inherent safety, as required in section two.

There are several features of inherent safety which were picked out and which

are common to all the routes.

1. All the experts looked for instances of flashing liquids or conditions which

would cause liquids to flash off.

2. Experts readily identified highly flammable or potentially explosive chemicals

as key chemicals in a route.

3. Partial oxidations were present in nearly every route. This was picked out as

being significant, as was the presence of oxygen.

Particular features for each route, additional to the common features, are now

itemised.

ACH

1. HCN, ACH, SO2, SO3 - toxic hazard. These were considered to be very

important hazards by all.

2. Large number of steps. This is assumed to mean a large number of steps

compared with the other routes. This was given low importance. It is possibly an

indirect measure of the complexity of the route.

3. The presence of a strong acid was given low importance.

4. Several experts said pressure was of low importance. However, others said that

high pressure combined with the toxicity of some of the chemicals gave a hazard of high

importance. This indicates the need to consider combination or interaction of

parameters.

5. Low yield. This may imply a high inventory or the need for recycles.

6. Gas phase reactions were described as good for inherent safety

C2JMP
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1. Toxicity of CO was assigned high importance.

2. High pressures, again in conjunction with the potential for liquids to flash was

given high importance.

C2/PA

1. Toxicity of CO and HCHO was given high importance.

2. Hydrogen and ethylene were highlighted as highly flammable.

C3

1. HF and CO were highlighted as highly toxic.

2. HF was highlighted as a heavy gas.

3. the Combination of HF and water presented a handling hazard or the need for

exotic' materials of construction.

4. Propylene was highlighted as highly flammable.

5. Low yield.

i-C4

1. Isobutylene was highlighted as highly flammable.

2. Unstable intermediates.

3. Low yield was given high importance.

4. Low pressure was regarded as good.

TBA

No particular features were highlighted in addition to the general ones.
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5.7.1.3 Section III - Reasons for ranking by criteria

In section III the experts gave reasons for their rankings with respect to the three

criteria and overall inherent safety. This shows whether the scale of potential hazard has

an effect on their assessment of inherent safety.

Only one expert gave the same ranking for all the four criteria.

Criterion A

Most of the experts looked for a large inventory of material which would flash

off on release. Only two experts added anything about toxicity. The main threat is that of

a large fire or explosion. The search for large flammable inventories agrees well with the

given criterion.

Criterion B

Some experts included the reasons from criterion A before defining new ones.

Toxic release appears to be more important under this criterion than large

amounts of flashing liquids. The comments suggest that the experts have looked for

things which would cause small explosions or localised toxic releases. This is in

contrast to very large releases which may affect people offsite. Once again the reasons

given by the experts agree well with the criterion.

The number of steps was also mentioned more than once. This could imply that

the number of steps increases the risk of an event happening. The larger number of steps

could produce more small on-site events as opposed to a large event which may effect

the whole site. For example, having more reaction steps leads to more connections

between different parts of the process. This in turn leads to more places where leaks

could occur, for example valves or flanges. Thus the chance of a small leak occurring

and causing a localised hazard is increased.

Criterion C

Once again, reasons from A and B were included first. Half of the answers

mentioned toxics or toxicity. This included toxics from possible fires, or substances

which, although non-toxic, could be considered noxious, for example effluent waste

streams.
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The suggestion is that this criterion covers situations where anything, even if only

slightly toxic, could penetrate beyond the site boundary.

Again, the reasons given by the experts match with the criterion well.

Overall

The 'overall criterion was not defined in either questionnaires 1 or 2. This meant

that the interpretation of it was left to the individual experts. The experts gave sensible

definitions of their overall criteria. From their answers to section III, four chose to use

their ranking with respect to criterion A, one chose to use the ranking with respect to

criterion B, the remaining two used the same reasons for all four criteria, but did not say

what they were.

It is possible to say from looking at the experts tables of rankings from

questionnaire one, that the methods that appear to have been used for the overall

rankings are as follows.

One has the same rankings for all four criteria. 	 *

Two have the same rankings for the 'overall criterion and the criterion that they

chose to represent the overall criterion, for example the positions of routes in the overall

criterion are the same for criterion B, because criterion B was chosen to represent the

overall criterion.

The remainder of the experts have added up the three criteria scores, A+B^C, for

each route and used the total to rank the routes in the overall criterion. This lead to some

of the routes having equal rank in the overall criterion.

5.7.1.4 Section IV - Missing data

In section IV the experts described how they coped with incomplete route data.

This shows if there are any parameters which have been missed and how missing data

can be overcome.

1. 6 out of 8 experts listed the need for inventory or throughput. The only

inventory data given was the total annual throughput. The throughputs of individual

chemicals could have been calculated from the given data. However the two hour limit

on completing the questionnaire prevented this. This confirms the comments made

earlier about inventory.	 -
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2. Boiling points of mixtures. This could be used to see if a mixture would flash

off.

3. Did °2 mean air or pure oxygen? Pure oxygen would be more of a hazard

than air, when performing partial oxidations and other reactions. This is a process detail

which would probably be known.

4. Gas toxicity needed in addition to TLV. This problem would be dealt with in

questionnaire 3 and in discussion with the panel.

5. Knowledge of relative risks of particular processes, for example oxidations,

carbonylations, hydrolysis.

6. Layout. At the route choice stage, the plant layout could not be known.

7. Flammability data.

5.7.2 Questionnaire 2

The experts' replies to questionnaire 2 are listed in appendix D.

The experts had to rank the inherent safeness of the reaction steps in the routes,

by giving each step a score on a scale from 1 (inherently safest) to 5 (least inherently

safe).

5.7.2.1 Step ranking results

Firstly, the individual steps from questionnaire two were reformed into their

respective routes. All the step scores were added up to give scores for each route. Then

for each criterion, the scores for each route, from each expert, were added up. Tables 5.7

to 5.10 show the route scores from each expert and the totals for each route.
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_______ ______ ______	 ROUTE	 ______ _____
EXPERT TBA	 i-C4 C2/MP C2/PA	 C3	 ACH

1	 7	 7	 7	 10	 13	 17
2	 10	 10	 12	 13	 16	 20
3	 8	 9	 9	 15	 10	 17
4	 5	 4	 5	 6	 8	 10
5	 6	 6	 8	 8	 11	 12
6	 5	 8	 1	 13	 11	 17
7	 7	 10	 7	 9	 11	 9
8	 5	 6	 8	 8	 9	 15

SUM	 53	 60	 66	 82	 89	 117

Table 5.7 - Data for Criterion A from questionnaire 2

_______ ______ ______	 ROUTE	 ______ ______
EXPERT TBA	 i-C4 C2IMP C2/PA	 C3	 ACH

1	 7	 7	 7	 10	 13	 17
2	 10	 10	 12	 13	 16	 20
3	 7	 7	 8	 12	 17	 27
4	 8	 7	 6	 9	 9	 18
5	 5	 7	 9	 10	 13	 16
6	 5	 8	 10	 13	 11	 16
7	 7	 8	 6	 9	 11	 13
8	 5	 6	 8	 8	 9	 15

SUM	 57	 60	 66	 84	 99	 142

Table 5.8 - Data for Criterion B from questionnaire 2

_______ _____ _____	 ROUTE	 _____ _____
EXPERT TBA	 i-C4 C2/MP C2/PA	 C3	 ACH

1	 7	 7	 7	 10	 13	 17
2	 10	 10	 12	 13	 16	 20
3	 10	 9	 8	 15	 16	 20
4	 5	 3	 5	 7	 9	 12
5	 8	 7	 9	 10	 13	 16
6	 5	 8	 10	 13	 11	 16
7	 ii	 11	 10	 13	 14	 19
8	 5	 6	 8	 11	 13	 17

SUM	 61	 61	 69	 92	 105	 137

Table 5.9 - Data for Criterion C from questionnaire 2
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_______ ______ ______	 ROUTE	 ______ ______
EXPERT TBA	 i-C4 C2/MP C2/PA	 C3	 ACH

1	 7	 7	 7	 10	 13	 17
2	 10	 10	 12	 13	 16	 20
3	 8	 8	 8	 14	 14	 21
4	 6	 5	 5	 7	 9	 13
5	 7	 7	 9	 9	 12	 15
6	 5	 8	 10	 13	 11	 16
7	 8	 10	 8	 10	 12	 14
8	 5	 6	 8	 9	 10	 16

SUM	 56	 61	 67	 85	 97	 132

Table 5.10 - Raw data for Overall Criterion (Rounded average of A, B & C) from
questionnaire 2

The average route scores are significantly higher for some experts than others.

This is because some experts are consistently scoring the steps one or two points higher

than the others. Two experts may agree that one step is more dangerous than another,

but one expert may score both steps one or two points higher than another expert. Thus

the experts may agree on the order of how safe all the steps are, but they perceive the

overall level of inherent safety differently or use the scoring scale differently.

For example, in the overall criterion table experts 3 and 4 have ranked the routes

almost identically, but the average route scores are 9 and 13.5 respectively and the

average score per step are 2.5 and 3.5 respectively. The second expert, number four, has

on average scored all the steps one point higher than number three.

This is an interesting result in that it shows that the assessment of inherent safety

can still be subjective, for example in interpreting the scoring scale, even when there is

an agreement on the order of a particular set of chemical routes.

For each criterion, the scores are converted into rankings from 1 to 6, a 1

representing the lowest rank or the most inherently safe, through to a 6 for the highest

rank or the least inherently safe. The routes are ordered from most inherently safe to

least inherently safe based on the sums of the ranks over all the experts.
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_______ ______ ______	 ROUTE	 ______ ______
EXPERT TBA	 i-C4 C2/MP C2/PA	 C3	 ACH

1	 2	 2	 2	 4	 5	 6
2	 1.5	 1.5	 3	 4	 5	 6
3	 1	 2.5	 2.5	 5	 4	 6

4	 2.5	 1	 2.5	 4	 5	 6
5	 1.5	 1.5	 3.5	 3.5	 5	 6

6	 1	 2	 3	 5	 4	 6
7	 1.5	 5	 1.5	 3.5	 6	 3.5
8	 1	 2	 3.5	 3.5	 5	 6

SUM -	 12	 17.5	 21.5	 32.5	 39	 45.5

Table 5.11 - Rankings for Criterion A from questionnaire 2

_______ ______ ______	 ROUTE	 ______ ______
EXPERT TBA	 i-C4 C2/MP C2IPA	 C3	 ACH

1	 2	 2	 2	 4	 5	 6
2	 1.5	 1.5	 3	 4	 5	 6
3	 1.5	 1.5	 3	 4	 5	 6
4	 3	 2	 1	 4.5	 4.5	 6
5	 1	 2	 3	 4	 5	 6
6	 1	 2	 3	 5	 4	 6
7	 2	 3	 1	 4	 5	 6
8	 1	 2	 3.5	 3.5	 5.	 6

SUM	 13	 16	 19.5	 33	 38.5	 48

Table 5.12 - Rankings for Criterion B from questionnaire 2

_______ ______ ______	 ROUTE	 ______ ______
EXPERT i-C4	 TBA C2/MP C2/PA	 C3	 ACH

1	 2	 2	 2	 4	 5	 6

2	 1.5	 1.5	 3	 4	 5	 6

3	 2	 3	 1	 4	 5	 6
4	 1	 2.5	 2.5	 4	 5	 6
5	 1	 2	 3	 4	 5	 6
6	 2	 1	 3	 5	 4	 6
7	 2.5	 2.5	 1	 4	 5	 6
8	 2	 1	 3	 4	 5	 6

SUM	 14	 15.5	 18.5	 33	 39	 48

Table 5.13 - Rankings for Criterion C from questionnaire 2
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_______ ______ ______	 ROUTE	 ______ ______

	

EXPERT TBA	 i-C4 C2IMP C2/PA	 C3	 ACH
1	 2	 2	 2	 4	 5	 6
2	 1.5	 1.5	 3	 4	 5	 6

3	 2	 2	 2	 4.5	 4.5	 6
4	 3	 1.5	 1.5	 4	 5	 6
5	 1.5	 1.5	 3.5	 3.5	 5	 6
6	 1	 2	 3	 5	 4	 6
7	 1.5	 3.5	 1.5	 3.5	 5	 6
8	 1	 2	 3	 4	 5	 6

SUM	 13.5	 16	 19.5	 32.5	 38.5	 48

Table 5.14 - Rankings for Overall Criterion from questionnaire 2

For the four tables above, the Kendall's coefficient and the average Spearman's

coefficient have been calculated, and are tabled below. In addition, the Pearson's

coefficient found for each criterion by comparing the route sums with the trial index

scores are tabulated.

Criterion	 W	 r
A	 0.764	 0.730	 0.903
B	 0.643	 0.592	 0.933
C	 0.883	 0.866	 0.928

OVERALL	 0.854	 0.834	 0.932

Table 5.15 - Correlation coefficients for each criteria from questionnaire 2

The level of agreement between the experts for questionnaire 2 is higher for all

the criteria than for questionnaire 1. As with questionnaire 1, criteria 'C' and 'Overall'

show higher levels of agreement than the other two, with criterion B having a much

lower level. The order of ranking of the four criteria, based on W and r, is the same for

questionnaire 1 and questionnaire 2.

The Pearson's coefficients for the criteria show a very good agreement between

the total of the experts' rankings and the trial index scores. The coefficient values are

higher than for a similar comparison made with the results of questionnaire 1, showing

that rankings derived from questionnaire 2 results match the trial index more closely than

questionnaire 1. Therefore we have confirmed the affirmative answers to the two initial

questions.
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5.7.2.2 Composite ranking of MMA routes and comparison with index.

For each criterion, the scores for each route, from each expert, are added together.

The route with the highest total is the one with lowest inherent safety. The composite

rankings derived from questionnaire two are given below.

RANK EXPERT RANKINGS BY CRITERION INDEX
	________ A	 B	 C OVERALL RANKING

1	 TBA	 TBA	 i-C4	 TBA	 TBA

2	 i-C4	 i-C4	 TBA	 i-C4	 i-C4

3	 C2/MP C21MP C2/MP	 C2/MP	 C2/MP

4	 C2/PA C2/PA C2/PA	 C2/PA	 C3

5	 C3	 C3	 C3	 C3	 C2IPA

6	 ACH ACH ACH	 ACH	 ACH

r6	 0.943 I 0.943 I 0.886 I	 0.943	 I
Table 5.16 - Composite rankings for questionnaire 2

The values of the Spearman coefficient represent the closeness of the match

between the experts' ranking and the trial index ranking. The agreement is better than for

questionnaire 1. As with questionnaire 1, the match between critçrion C and the index

is worse than that for the other criteria, but oddly the agreement between the experts, as

measured by the Kendall's coefficient and the average Spearman coefficient, is the

highest for criterion C.

5.7.2.3 Discussion

As with questionnaire one, the match between the derived expert rankings and

the trial index is very good and is slightly better than for questionnaire 1. There is a

difference in the order of the two least safest routes between the two questionnaires.

However this may be due to the different method used to calculate the final ranking. In

questionnaire 2, the summation of the individual step scores into route scores, followed

by the summation over all the experts leads to larger scores than the summed expert

route ranks of questionnaire 1. The method used for questionnaire 2 penalises routes

with more steps. For example in the rankings derived from questionnaire 2, the ACH

route has a much higher score than the other routes, because it has the highest number of

steps.

5.7.2.4 Spread of step scores

As a further measure of the level of agreement between the experts, for each

criterion, the spread of scores for each route step has b en plotted. In addition the mean

score for the step is also plotted, this is the total score over all the experts divided by the

number of experts. A large spread of scores for a step indicates a poor agreement, a

Page 88



5

4

0

U)

2

1

•HIGH

• LOW

A MEAN

5

4

0
3

U)

2

1

h
•HIGH

• LOW

A MEAN

small spread a good agreement. However, if the mean score is near to either end of the

spread, this indicates that most of the experts agree on one value in the spread.

Therefore a large spread of scores with the mean near on end does not represent poor

agreement. The three graphs below show the results for each criterion in questionnaire

2.

A A A A A A C2 C2 C2 C2 C2 C2 C2 C3 C3 C3 C3 i- i- i- T T T
CCC CC C/M/M/M/P/P/P/P 1 2 3 4C4C4C4B B B
HHHHHHPPPAAAA	 123AAA
1234561231234	 123

Step

Figure 5.2 - Mean and spread of scores for each step of criterion A

A A A A A A C2 C2 C2 C2 C2 C2 C2 C3 C3 C3 C3 i- I- i- T T T
CCC CC C1M/M/M/P/P/P/P 1 23 4C4C4C4B B B
HHHHIIFiPPPAAAA	 123AAA
1234561231234	 123

Step

Figure 5.3 - Mean and spread of scores for each step of criterion B
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Step

Figure 5.4 - Mean and spread of scores for each step of criterion C

As can be seen from the graphs, the least spread is two points, the most four

points. Most of the steps have an average score between two and three points. The

average score for most of the steps is between two and three points. This is where the

effect from the number of steps takes effect. If the steps are all very similar, as they

appear to be from these results, then the ranking will be biased by the number of steps in

each route. However, because of this spread of scores amongst the panel, the overall

match of the experts' ranking and the index is very good.

5.7.2.5 Comparisons of rankings between questionnaires 1 and 2 by expert

The reason for ranking the routes by two methods was to see if the experts were

consistent. Given that the method by which they were asked to do the compare the

routes were different, one being a 'gut feeling' ranking, the other being more calculated,

a good match between the results would show that they rank consistently using different

methods.

It would have been better if the experts had done the second questionnaire

without help from the first. But on a few of the questionnaire 2 replies, the experts had

worked out which step came from which route. Therefore some of the questionnaire 1

rankings may have influenced the second questionnaire. In future rankings, it would be

better for the experts to rank the steps before the whole routes. This may give better

results as the experts would be building up their rankings, from parameters to steps and

from steps to routes, in a more logical manner.
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In the tables below, the columns labelled Qi are the rankings from questionnaire

I and the columns labelled Q2 are the rankings from questionnaire 2.

Epert	 1	 2345678
Route	 QI Q2 QI Q2 QI Q2 Qi Q2 QI Q2 Qi Q2 Ql Q2 Qi Q2
ACH	 5	 6	 6	 6	 5	 6	 6	 6	 3	 63.56	 43.546
C2/MP	 3	 2	 3	 3	 4	 2.5	 4	 2.5	 5	 3	 3.5	 3	 1	 1.5	 3	 3.5
C2/PA	 4	 4	 4	 4	 6	 5	 3	 4	 4	 4 5.5 5	 3 3.55 3.5
C3	 6	 5	 5	 5	 3	 4	 5	 5	 6	 55.54	 5	 665
i-C4	 2	 2	 2	 1.5	 2	 2.5	 2	 1	 2	 1	 2	 2	 6	 5	 2	 2
TBA	 1	 2	 1	 1.5	 1	 1	 1	 2.5	 1	 2	 1	 1	 1	 1.5	 1	 1

Table 5.17 - Comparison of rankings between questionnaires 1 and 2 for criterion A

Expert	 1	 2345	 67_8_

Route	 Qi Q2 Qi Q2 Qi Q2 QI Q2 Qi Q2 QI Q2 Ql Q2 QI Q2
ACH	 5	 6	 66	 6	 6	 6	 6	 4	 6 3.5 6	 6	 6	 4	 6
C2IMP	 3	 2	 3	 3	 1.5	 3	 3	 1	 3	 3	 3.5	 3	 3	 1	 3	 3.5
C2/PA	 4	 4	 4	 4	 4	 4	 4 4.5 5	 4	 1	 5	 5	 4	 5 3.5

C3	 6	 5	 5	 5	 5	 5	 5 4.5 6	 5	 6	 4	 1	 5	 6	 5
i-C4	 2	 2	 2	 1.5	 2	 1.5	 2	 2	 2	 1	 3.5	 2	 3	 3	 2	 2
TBA	 1	 2	 1	 1.5	 1.5	 1.5	 1	 3	 1	 2	 3.51	 3	 2	 1	 1

Table 5.18 - Comparison of rankings between questionnaires 1 and 2 for criterion B

Expert	 1	 23456_78
Route	 QI Q2 QI Q2 Qi Q2 QI Q2 Qi Q2 QI Q2 Qi Q2 Qi Q2
ACH	 5	 6	 6	 6	 466	 6	 4	 6	 5	 6	 6	 6	 6	 6
C2IMP	 3	 2	 3	 3	 3	 1	 3	 2.5	 3	 3	 3.5 3	 2	 1	 3	 3
C2IPA	 4	 4	 4	 4	 5	 4	 4	 4	 5	 4 1.5 5 4.5 4	 4	 4
C3	 6	 5	 5	 5	 6	 5	 5	 5	 6	 5	 6	 4 4.5 5	 5	 5
i-C4	 2	 2	 2	 1.5	 1	 2	 2	 1	 2	 1	 3.5	 2	 2	 2.5	 2	 2
TBA	 1	 2	 1	 1.5	 2	 3	 1	 2.5	 1	 2	 1.5	 1	 2	 2.5	 1	 1

Table 5.19 - Comparison of rankings between questionnaires 1 and 2 for criterion C

Expert	 1	 2	 3	 4	 5	 6	 7	 _8_

Route Qi Q2 QI Q2 QI Q2 QI Q2 Q1 Q2 Q1 Q2 QI Q2 QI Q2
ACH	 5	 6	 6	 6	 5	 6	 6	 6	 3	 6	 5	 6	 5	 64.56

C2/MP	 3	 2	 3	 3	 3	 2	 3	 1.5 5	 3	 4	 3	 3	 1.5 3	 3

C2IPA	 4	 4	 4	 4	 54.54	 4	 4	 4	 2	 5	 43.54.54
C3	 6	 5	 5	 5	 44.55	 5	 6	 5	 6	 4	 6	 5	 65

i-C4	 2	 2	 2	 1.5	 2	 2	 2	 1.5	 2	 1	 2	 2	 2	 3.5	 2	 2
TBA	 1	 2	 1	 1.5	 1	 2	 1	 3	 1	 2	 1	 1	 1	 1.5	 1	 1

Table 5.20 - Comparison of rankings between questionnaires 1 and 2 for Overall
criterion
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The Pearson coefficient has been calculated for each expert, for each criterion.

This gives a measure of the agreement between the questionnaire 1 and 2 rankings. The

average value for each expert and each criterion is given.

CRITERION

A
B
C
D

AVG

1

0.880
0.880
0.880
0.880

0.880

2

0.986
0.986
0.986
0.986

0.986

3

0.84 1
0.868
0.657

0.892

0.8 15

EXPERT

4	 5

	

0.812	 0.618

	

0.754	 0.829

	

0.899	 0.77 1

	

0.812	 0.618

	

0.819	 0.709

6

0.736
-0.169
0.4 12
0.638

0.404

7

0.926
0.334
0.939
0.896

0.774

8	 AVG

	

0.783	 0.823

	

0.783	 0.658

	

1.000	 0.818

	

0.899	 0.828

0.866

Table 5.21 - Pearson coefficient for each expert for each criteria

The level of agreement for each expert is very good, apart from expert 6. The

very low and negative values indicates that the rankings from that expert are not well

correlated. The negative value also means that the average agreement for criterion B is

lower than the others.

The above results show that the individual experts generally have a high level of

agreement when ranking by two different methods. If this is combined with the high

level of agreement between the results from questionnaires 1 and 2 and the trial index,

then the results indicate that the trial index is validated, for the case of the MMA routes.

The order of the routes in questionnaire 2 is correlated with the number of steps.

Routes TBA, i-C4 and C2/MP have 3 steps, routes C3 and C2/PA have 4 steps, and the

ACH route has 6 steps. To see how much the number of steps affects the results, the

total scores for each route, for each criterion from questionnaire 2 are divided by the

number of steps. The routes are ordered from lowest average score, representing most

inherently safe, to highest average score, representing the least inherently safe.
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_____	 CRITERION ________ ORIGINAL MODIFIED
RANK - A	 B	 C	 OVERALL INDEX	 INDEX

______ TBA	 TBA	 TBA	 TBA	 TBA	 TBA
2	 i-C4	 i-C4	 i-C4	 i-C4	 i-C4	 i-C4
3	 C2IPA	 C2/PA	 ACH	 C2IPA	 C21MP	 C3
4	 C2/MP	 C2/MP	 C2/PA	 ACH	 - C3	 ACH
5	 ACH	 ACH	 C2/MP	 C2/MP	 C2/PA	 C2/MP
6	 C3	 C3	 C3	 C3	 ACH	 C2/PA

r	 -	 0.714	 0.714	 0.486	 0.543
original___________ ___________ ___________ ______________

r	 -	 0.429	 0.429	 0.6	 0.486
modified_________ __________ __________ ____________

Table 5.22 - Rankings from questionnaire 2 modified for number of route steps

In the table above, the column headed 'Modified index' is the ranking obtained

from the trial index, with the total step scores divided by the number of steps, giving the

average step score.

'r5 - original' are the correlation coefficients obtained by comparing the trial index

ranking with the questionnaire 2 rankings, modified by the number 6f steps.

- modified' are the correlation coefficients obtained by comparing the ranking

from the trial index, modified by the number of steps, with the rankings from

questionnaire 2, modified by the number of steps.

Comparing the Spearman coefficients for 'r - original' and r from table 5.16,

removing the influence of the number of steps has reduced the level of correlation

between the questionnaire 2 rankings and the trial index ranking. Removing the

influence of the number of steps from the trial index ranking, reduces the level of

correlation even further. This implies that the number of steps has a strong influence on

the ranking of the routes in the methodology of questionnaire 2 but this does not affect

the conformity result found from questionnaire 1. The number of steps is an indicator of

the complexity of the routes, and more complex routes are more inherently unsafe. By

removing the influence of the number of steps, the correlation is greatly reduced. This

means that the experts could be assessing individual steps in a different manner than the

index. In order to test this the individual step scores from the trial index are compared

with the individual step scores from each expert.
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_________ _____ _____ _____ EXPERT _____ _____ _____

CRITERION	 1	 2	 3	 4	 5	 6	 7	 8

A	 0.311	 0.256	 0.212	 0.567	 0.478	 0.411	 0.565	 0.172

B	 -0.286 0.098	 0.212	 0.567	 0.478	 0.203	 0.591	 0.010

C	 -0.187	 0.184	 0.212	 0.547	 0.478	 0.203	 0.591	 0.021

Table 5.23 - Pearson's coefficient from comparing trial index step scores with
individual experts step scores

The very low scores for some of the experts confirm the above deduction that the

experts are assessing steps in a different manner than the trial index. However, this

should be expected. The trial index may have a more structured method in calculating a

step score than the experts use. The experts may score a step on an overall impression of

how inherently safe the step is, whereas the index scores the step in more detail. The

results from questionnaire 3 may show how the experts are assessing individual route

steps and may serve to improve a new index.

Taking the above findings into consideration, it is clear that the number of steps

in a route is an influential factor in deciding how inherently safe the route is. However it

is important to refine the methods by which the steps are scored so that any measure of

route inherent safety is not arbitrarily related to the number of steps but that the number

of steps is accounted for in a defined manner.

5.7.3 Questionnaire 3

The experts replies to questionnaire 3 are listed in appendix E.

In the first part of the questionnaire, criticism of the trial index was requested

about both the method used and the individual parameters. Suggestions for alternative

parameters to use in place of unsuitable ones were requested. The second part aimed to

find out what parameters are important in assessing the inherent safety of reaction steps

and their relative order of importance. Similarly, important parameters for assessing

separation steps were asked for. The final part asked for opinions on the proposed new

index. It was intended that through discussion this would be developed into something

more useful than the trial index.

5.7.3.1 Current index comments

There were only a few comments on the method of the old index. These were:

Why not use the Dow index?' This has been discussed in the introductory

chapters.

How do you decide if-the relationships are additive or multiplicative?' This

question was answered in the panel meeting, which is discussed later.

Page 94



Why is only the highest chemical score used'? This reflects the method used in

both the Dow and Mond indices, which use the chemical which presents the worst

hazard in the step.

5.7.3.2 Comments on specific parameters

Inventory

The general consensus is that the table of scores should focus on the range 0 to

250 tonnes, because anything above 250 tonnes is probably oil storage. However, the

other more realistic suggestion is to have the inventory itself as a multiplicative factor

and not an additive score. This coincided with the ideas for the new index which are

introduced later.

Flammability

There is agreement on checking if the chemicals in question are stored or used

above their flash point or boiling point. Also the degree of flash, that is how much

material would flash off in a release, could be calculated.

Explosiveness

Several suggestions were made for this table. The simplest was to ignore it, as

most explosive ranges are similar. The second was to have a simple yes or no answer to

the question is the material flammable/explosive through the range in which it is used?'.

Finally, it was shown that the L.E.L. and the range is more important than just the range.

In an example, given by one expert, ammonia turns out to be less safe than ethane or

pentane using the explosive range, whereas ethane and pentane have lower L.E.L's and

are therefore more hazardous.

Ammonia: explosive range = 27 - 16 = 11

Ethane: explosive range = 12.5 - 3 = 9.5

Pentane: explosive range = 7.8 - 1.4 6.4

Ammonia, having the highest L.E.L, requires a richer mixture in air before it will

ignite. Therefore it will ignite after ethane or pentane, and is therefore safer.

Toxicity
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It is agreed that TLVs are not the best measure for short term toxic hazards.

Short Term Toxic Limits (STTL) or probits are suggested. The other suggestion is to use

Lethal dosage, in particular LD50.

Pressure

Comments varied on this table. One suggestion is to bias the scores towards

lower pressures. Another expert suggests that it scores a well known process, the ACH

route, too high and thus the scores should be biased towards higher pressure. Another

suggestion is to consider it combined with volume to give a measure of energy, or

perhaps combined with temperature. It is also considered important to estimate how it

affects leak rates.

Temperature

The importance of the effect of low and high temperatures on materials is

recognised. However, the relation between temperature and flashing liquids seems more

important than absolute temperature. A combination of both, using temperature to

calculate the degree of flash, and also penalising very high temperatures and sub-zero

temperatures for material problems, seems sensible.

Yield

It is agreed that scoring yie%X on is o'n is irre\e'%' ant. X wiYi oe useei in

calculating the inventories.

5.7.3.3 Relative importance of parameters for ranking reaction steps

The experts were asked to indicate the importance they attached to the various

parameters used to assess process routes. In the table below a 5 means the parameter is

very important and a 1 means unimportant. The parameters have been ordered according

to their total score. The column labelled 'Essential' gives the number of experts who

consider the parameter essential for assessing inherent safety. The total score for each

parameter represents its relative importance. There were no results from expert number

4.
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___________ ___ ___ ___ EXPERT ___ ___ ___ ____ _______

Parameter	 1	 2	 3	 4	 5	 6	 7	 8	 Total Essential

Inventory (*)	 5	 5	 5 _____ 5	 5	 5	 5	 35	 7

Toxicity (*)	 5	 5	 5 _____ 5	 5	 4	 5	 34	 7

Chemical	 5	 5	 2	 5	 5	 3	 5	 30	 7
Stability_____ ______ ______ ______ ______ _____ _____ _____ _______ ____________
Temperature (*)	 3	 2	 5 _____ 5	 5	 3	 5	 28	 7
Pressure (*)	 3	 3	 5 _____ 3	 5	 3	 3	 25	 7
Flammability (*)	 4	 5	 5 _____ -	 5	 4	 2	 25	 7
Explosiveness (*)	 5	 5	 5	 -	 -	 4	 3	 22	 7
Flash point	 3	 2	 2 ____ -	 5	 4	 2	 17	 4
Side Reactions	 2	 -	 -	 ____	 5	 5	 -	 5	 17	 3
Waste streams	 2	 3	 2 _____ 4	 4	 -	 -	 15	 3
Reaction phase	 2	 -	 -	 4	 4	 2	 -	 12	 3
Yield(*)	 1	 1	 3	 -	 -	 -	 5	 10	 3
Recycles	 3	 -	 -	 -	 3	 -	 -	 6	 0
Mitigation	 5	 -	 -	 -	 -	 -	 -	 5	 0
Temperature	 -	 -	 -	 -	 -	 -	 5	 5	 1
relative	 to
atmospheric
boilingpoint	 _____ _____ _____ _____ _____ _____ _____ _____ _______ ___________
Mat. Corrosion	 4	 -	 -	 -	 -	 -	 -	 4	 0
Complexity	 4	 -	 -	 -	 -	 -	 -	 4	 0
Human factors	 3	 -	 -	 -	 -	 -	 -,	 3	 0

Table 5.24 - Scores for importance of parameters for measuring inherent safety

The parameters in the table marked with an asterix were the parameters that were

in the trial index. Apart from yield, the table confirms that the choice of the seven

parameters for the trial index was a good choice in that it agrees with the expert view.

Importance of each parameter for separation steps

The experts were asked to fill out a similar table for the importance of parameters

in separation steps. The parameters were given identical scores in both tables for

reaction steps and separation steps. Thus the table is identical to the one for reaction

steps and is not repeated here. It is only possible to conclude from the tables of results

that the experts consider that there is no difference between reaction steps and separation

steps when considering inherent safety. Some experts clearly stated that they did not

consider there to be any difference.

5.7.3.4 Analysis

The table above indicates what the panel consider are the important parameters

for assessing inherent safety. This is an aid for choosing which parameters should be

included in the new index. However, just because a parameter is low in importance , this

does not mean it should be excluded. It could be included in the index, but its
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contribution to the index be weighted lower than other parameters. As the table compiles

the results from individual experts, a parameter suggested by only one expert may be a

parameter suggested by the rest of the experts but worded differently. For example,

'temperature relative to atmospheric boiling point' may have been considered as just

'temperature' by the other experts. The table was open to discussion in the panel

meeting, and some of these low importance parameters were pushed up or down the

table.

From the comments about separation steps, most of the parameters and methods

proposed for assessing reaction steps can be used for separation steps. A different

method will be needed for assessing the inventory of a separation step, depending on the

type of separation process. Parameters which are reaction specific, for example reaction

rate or heat of reaction, will not be used.

5.7.3.5 New index structure

Development of the new index was proceeding in parallel with the expert ranking

work. One of these developments was a new four part structure for the index, the details

of this are covered in the following chapter. The proposed structure for the new index,

as presented to the experts, was

Inventory * Hazard Coefficient * Probability of Release * Effects Multiplier (5.15)

where the '' means 'combined with' and does not necessarily imply

multiplication.

The proposed new index structure met with many favourable comments. There

was one particular comment that the effects multiplier may be too subjective. This is

discussed further in the next chapter. A suggestion for the final index value was to take

the 4th root, that is

Inventory * Hazard Coefficient * Prob. of Release * Effects Multiplier (5.16)

One expert said that 'multiplication is said to create dimensionality, whereas

addition destroys it'. Combining parameters by multiplication retains the units of the

combined parameter. In order to add terms they must have the same units or be first

rendered dimensionless.

The suggestion in equation 5.16 above makes the score proportional to both

inventory and probability of release, which was considered good by the experts.
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5.7.4 Expert Panel meeting discussion

Five out of the eight experts attended the panel meeting. There were two main

parts to the proceedings. In the first part the results and analysis of questionnaires 1 and

2 and the comparisons between the two questionnaires, were presented. The experts

commented on the findings. In the second part, the results from questionnaire 3 were

used to lead a discussion on developing the index. One of the aims was to try to get the

experts to fit the parameters they had ranked to the proposed four factor structure.

Throughout the meeting, a portable tape recorder was used to record the

proceedings. Below are the experts' comments and suggestions which came out of the

meeting. A white board was used, with columns marked on it to represent the four

factors in the proposed new index. A scale down the side of each column indicated the

relative importance of the parameters in the factor. The parameters were written on

'post-it notes' and placed on the white board, the higher up the board, the greater the

importance.

mportance Inventory	 Hazard

Coefficient

LI

LI

White board

Probability	 Effects

of release	 Multipler

LI LI

'Post-It' note

Figure 5.5 - Diagram of white board used in panel meeting
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5.7.4.1 Questionnaire 1

The experts were presented with the data collated from the first questionnaires.

The rankings of the results, in both tabular and graphical form, were shown along with a

comparison with the results from the trial index and figure 5.1 showing the number of

occurrences of keywords.

The first point raised related to the terminology of 'Expert throughout the

exercise. It was agreed that the panel had relevant expertise or experience within the

safety field, and that their opinions would carry weight. However they were not to be

considered experts in performing an inherent safety assessment of chemical routes. The

ranking exercise would be considered more valuable if the experts were more practised

in inherent safety assessment of chemical routes. More practice would help in the

development of rules for doing the rankings.

Some problems were highlighted in completing questionnaire 1. Firstly, there

was not enough time to fill in the questionnaire. More time was needed either to do

more calculations or to devise rules to do the rankings. The assessments may have been

more quantitative if more time was available.

With respect to the initial premise about using the agreement between experts to

validate the index, it was accepted that agreement between the experts' ranking and the

index would validate the index. However, disagreement between the experts, as opposed

to disagreement with the index, may only indicate that the experts could not satisfactorily

perform the ranking, given the reasons above.

The analysis of the questionnaires shows that the experts nearly all identified the

same features when doing the ranking. But the experts considered this as not very

extraordinary. It would have been more surprising if the experts came up with different

reasons. Even though the experts identified the same features they may have weighted

their assessment of each feature differently, but still arrived at the same ranking.

The experts were asked to comment on why the rankings for each criterion used

in the questionnaires were the same. Two answers arose. Firstly, the experts had

difficulty distinguishing between the different criteria. Secondly, the experts made

distinctions between the criteria, but the inherent dangers in the routes could give the

same spread of effects for each criterion.
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Another criterion of long term toxic emissions was suggested. This would

differentiate between short term and long term toxic hazards, which may have produced

a different ranking.

5.7.4.2 Questionnaire 2 and comparison between questionnaires 1 and 2

The experts were presented with the rankings from the second questionnaire, in

both graphical and tabular form, along with comparisons with the trial index and the

rankings from questionnaire I.

An important issue arising from questionnaire 2 was the validity of simply adding

together the step scores. This gave equal weight to each step in the routes. Some of the

panel suggested that this is not necessarily valid. They suggested that a two step route is

not necessarily twice as bad as a one step route. One expert suggested that from a

practical point of view, more steps means more pipe 'or, aricX as pipes accoun\. br '1Y1

of leaks, more steps can be considered more unsafe. However if the steps are all of

similar inherent danger, then the number of steps is a dominating factor in the safety

assessment.

A similar point was raised about the comparison between questionnaires 1 and 2.

This assumed that the experts applied equal weighting to the steps in questionnaire 1.

Some experts might not have done this.

As more time was allowed to do questionnaire 2 than questionnaire 1, the experts

questioned the validity of the comparison between the rankings of the two

questionnaires. As the results from the two questionnaires are quite similar, the results

would suggest that the comparison is valid.

There was some general discussion about the overall problem of assessing

inherent safety at an early stage. The experts suggested that if there were only a few

rules that could be devised, and the problems to be assessed were obvious, then an

algorithmic approach to solving the problem was possible, but whatever the approach to

the problem, it was better than avoiding it. One expert stated that simply adding scores

for disparate hazards was not a justifiable solution.

A particular comment was made with respect to the ACH route. Two experts had

down -graded' their assessment of the hazards in the light of past experience of working

on plants making ACH.

Page 101



5.7.4.3 Questionnaire 3

Table 5.24 (Score for importance of parameters for measuring inherent safety)

was presented to the experts as a starting point for the discussion. Figure 5.5 was

prepared on a white board and the aim of the layout explained to the experts.

The meeting moved on to discuss the structure of the new index and its

parameters. The following questions were raised regarding how to devise the new index

How were different parameters distinguished?, 'Should parameters have linear

relationships between them and their score?', 'Where does a parameter influence the

overall assessment?', 'How do you scale the assessment of a parameter?', 'How do

parameters interact?'

The panel were asked to start discussing the individual parameters in relation to

the table of importance. They were asked where each parameter should fit into the four

parameter model that was suggested. However they thought it would be better to decide

first on how the parameters were to be treated and scored before trying to fit them to the

model.

Low temperature was considered to be more of a problem than high temperature,

giving problems with steels that become brittle at low temperatures.

Controllability was put forward as an additional parameter. If the reaction

kinetics were against you, for example the presence of a highly exothermic reaction, then

active control would be needed.

Corrosion was considered to be similar to the low temperature embrittlement

problem. Corrosive materials could be designed for in a similar way as for low

temperature processes. But if corrosive materials got into part of the plant not designed

for it, or part of the plant were replaced with incorrect materials, then problems could

arise. Two subsets of corrosion were suggested as 'susceptibility to air' and 'susceptibility

to water'. These two were considered common enough to affect most processes.

However, no suggestions on how to score the suggested new parameters were

forthcoming.

There was general disagreement that hazards would be proportional to inventory.

A mixture of small inventories of several chemicals was considered more hazardous than

the same total inventory of one chemical.
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Several different toxicity measures were mentioned including Lethal Load (LL50)

Lethal Dose (LD50), Maximum Exposure Limit (MEL), Short Term Exposure Limit

(STEL) and Lethal Concentration (LC 50). The LC50 could be used with a fixed time for

exposure of 10 or 30 minutes or a time in which somebody could physically do

something to save themselves. However, a suitable measure of toxicity must have the

relevant data available for all of the chemicals in the route to be of any use. The

difference between short term and long term toxic hazards also needs to be considered.

As a general method to deal with some of the parameters, a series of 'Landmark

values' was suggested. These would be quantitative values based on qualitative issues.

For example, looking at the reaction temperature relative to chemical boiling points or

flash points, to see if chemicals would flash on release.

A suggestion for dealing with inventory was to look at the chemical at ambient

conditions and then modify any score for the chemical from the actual process

conditions.

The problems of constructing a suitable index were highlighted. These included:

deciding on 'suitable scenarios or dimensions of inherent safety', deciding landmark

values relative to the chosen scenario for turning "breakpoint measures" into quantitative

values, and inventing rules to do the hazard study with.

It was suggested that this type of index would fit in well between ICI's Hazards

Studies 1 and 2.

5.8 Discussion and conclusions

The expert judgement/expert ranking exercise had two main aims. Firstly to

obtain a ranking of the MMA routes from the experts, with which to compare the

ranking from the trial inherent safety index. Secondly to elicit ideas and information

from the experts on how to develop the index.

For the first aim, the two questionnaires have given rankings which are very close

to that of the trial index. A very important point was raised at the meeting of the experts

with regard to how the rankings from questionnaire 2 are derived. A simple assumption

was made when devising questionnaire two. When the scores for the individual steps are

added together to give a route score, this assumes that the steps all contribute the same

weight to the route score. This is also true in the trial index. At the moment the index is

a linear combination of the step scores. Some of the experts do not think this is

necessarily true, as can be seen from the transcription of the meeting. Suggestions that

two steps may be three times as bad as one step, were put forward. A linear relationship
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between number of steps and score for the route is not always valid. It was suggested

that there should be an extra score depending upon the number of steps to bias routes

having large numbers of step. However, if the steps were all weighted equally, then the

number of steps must be the dominating factor in comparing routes. This goes some way

towards explaining the good match between our index and the questionnaire 2 rankings.

But the match between the index and questionnaire 1 is also close. This implies that the

experts, when completing questionnaire 1, must have been doing something similar to

adding steps together to get their route rankings. In the absence of a better or simpler

alternative to combining the steps, it is assumed that the steps have equal weighting and

the step scores are added together.

For the second aim, the third questionnaire has provided some useful results.

There was good support for the proposed index structure. There was some doubt about

actually implementing some of the four parts; they may still be too subjective to be

useful.

What has become clear from comments about the trial index has been coined the

'apples and pears' problem. Most of the experts agree that there are problems combining

factors, or scores for factors, that are not related, for example adding scores for

temperature and pressure together.

There is an additional problem in deciding which of the 'landmark values' for

different parameters have the same score. For example, should a pressure of 10 bar and

a temperature of 300°C both have a score of 25? The interaction of parameters is a large

problem which will be considered further in developing the new index. Overall, the

expert judgement exercise has produced results consistent with the first index. It has

also produced many suggestions for improving the trial index.
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6. CHAPTER 6- AN IMPROVED INHERENT SAFETY INDEX

6.1 Introduction

This chapter covers the development of an improved inherent safety index.

Firstly, it deals with the problems and weak areas in the trial index. Secondly, it

examines the new 'four factor' index introduced in chapter 5 in more detail. It presents

the idea behind the overall structure of the index, with suggestions and ideas for the

individual factors. Finally, it presents the index in its present state.

6.2 Problems with the trial index

Following critical examination of the trial index, and taking into consideration

the comments that the experts made both in the questionnaires and at the meeting,

problems have been identified with the trial index. The weak areas of the index were

identified and work done to improve them. This was aided by the suggestions made by

the experts in the questionnaires and at the meeting. This section discusses some of the

issues arising from the examination of the trial index.

6.2.1 Poor inventory estimation and scoring

It has been established that inventory is one of the most important factors

affecting inherent safety. Therefore, reliable, estimation of inventory is important. At an

early stage it is not possible to estimate it accurately. However, this in not crucial as the

index is only used as a guide to choosing the inherently safest route. If the larger plant

items have inventories of several tonnes, trying to calculate the inventory to the nearest

kilogram is unnecessary, when what is needed is an estimate.

The treatment of inventory in the trial index suffers from two main problems.

The first relates to the scoring table. The table is based on the graphs used by the Mond

index. The trial index uses the scores for inventory divided into a scale of one to ten.

The problem lies in the division of the inventory scale for the ten divisions. The

inventory range for a score of one goes from 0.1 tonnes to 250 tonnes. In the scoring of

the MMA routes, all the inventories for the steps came in this range. The experts

recognised the problem with this table. The higher scores have inventory ranges which

are almost all related to large scale storage vessels, for example refinery crude oil storage

tanks.

The suggestion which came from the expert ranking exercise was to increase the

scores for the range 0 - 250 tonnes. Anything above 250 tonnes was likely to be a

storage vessel. For reaction vessels, 250 tonnes was to be considered the upper limit for

scoring purposes. Therefore, 250 tonnes should score 10, in a revised scoring table.
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The second problem is with the assumption made about reactor hold-up times. In

the absence of reaction hold-up time data, a hold-up of one hour was assumed.

However, based on a study of data for various reactions, reaction times vary from a few

seconds to a few hours. The assumption of one hour hold-up times can lead to a reactor

inventory estimate being incorrect by several orders of magnitude. Therefore, a better

method to estimate the hold-up time.

Both the Dow and Mond indices treat inventory as a distinct score. This line of

approach was followed in the trial index. The experts suggested that inventory should

not be treated as a separate parameter. It is better to use inventory in combination with

other parameters, so that the size of hazard relates directly to the inventory. This would

directly relate step score to the inventory in the step. The greater the inventory of a

hazardous chemical the more inherently dangerous is the step. In the new index the

inventory should be used explicitly, in combination with other parameters, to give a

direct measure of a hazard.

6.2.2 Simplistic division of parameter ranges and scores

A major criticism made by the experts, was that some of the parameter scoring

tables were arbitrary. The experts suggested that some of the tables be modified to move

the scores more or less towards the ends of the parameter ranges. For example the

temperature table should be biased towards temperatures above 6000 C. In order to

improve these tables, a more accurate way is needed to relate the score to the value of the

parameter, to reflect the influence on inherent safeness due to that parameter.

6.2.3 Methods for 'weighting parameters and combining parameter scores

All the scores for the parameters in the index contribute equally to a step score. 5

out of the 7 parameters in the trial index are scored out of 10. However, it was suggested

in the questionnaires that the scores for parameters which exert more of an influence on

inherent safety should be weighted more than less important ones. For example,

obviously the score for the toxicity of a chemical should have more weight than the score

for its viscosity. What was needed was some way of finding common levels of inherent

safety across different parameters. One of the aims of the questionnaires, was to find out

if certain parameters are more important than others. The scores for the parameters were

weighted accordingly based on the perceived levels of safety and this is reflected in the

new scores for the parameters.

How this weighting is applied depends upon how the parameters are scored and

how the scores are combined. It could, for example, be a multiplicative factor applied to

the sum of the scores from a group of parameters. An alternative is to change the range

of scores for some parameters to bias the scores for the parameter higher or lower than

other parameters.
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An initial aim was to keep the index structure simple. Therefore the scores for

the various parameters were added. Although this means that the index is simple to use,

the experts agreed that simply adding together scores for disparate parameters and

hazards was not appropriate. A better method was needed in which parameters of a

dissimilar nature could be scored and combined together more appropriately.

Instead of giving an arbitrary score to a parameter, the parameter could be used to

calculate a physical quantity. These quantities can then be compared across routes or

combined together across steps. For example, it may be possible to calculate a potential

blast radius for a mass of chemical, based on an equivalent mass of TNT. The total

equivalent mass of TNT could be calculated for all the chemicals present and this

converted into the total blast area. Alternatively, the blast area could be calculated for

individual chemicals and the largest area taken. The latter method would mean that the

worst chemical is used for the step score. Whichever method was used, the parameters

would have a common unit of comparison, or a common quantity with which they can be

combined, and not just an arbitrary score.

6.2.4 The method of combining step scores

An important point raised at the expert panel meeting, was how the scores for

steps should be combined together to give a route score. The method used in the trial

index is to simply add them together. It was agreed that the number of steps was a broad

indicator of the complexity of the route. Therefore, if the steps all have an equal score,

the number of steps is the deciding factor for which route is the inherently safest.

However it was the view that there might be occasions where the score for a route with

ten steps should be more than twice the score for a five step route. A factor could be

included to weight the sum of the step scores, biasing routes with a large number of steps

higher than routes with only a few steps. This would then be an additional measure to

reflect the higher complexity of the route.

6.3 Development of the improved index

The trial index has a very simple structure consisting of adding scores looked up

in tables. In order to improve the index, and to allow for its possible future expansion, it

was felt that the index should have a more deterministic structure.

The new index should reflect the areas for development discussed earlier. It

should be related to inventory. It should combine related parameters, either scoring them

directly or by relating them to a common physical quantity. It should allow for future

inclusion of additional parameters. A four factor structure was devised for the improved

index.
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6.3.1 Four factor structure

A four factor structure is proposed to assess the inherent safety of a route reaction

or separation step with respect to the toxic or fire and explosion hazards posed by a

chemical:

Inventory * Hazard Assessment * Probability of release * Effects modifier (6.17)

The '*' means 'combined with in some way' and not necessarily multiplication.

These combining functions will depend upon how the factors are structured. For

example, if they are all scores then addition is most appropriate, whereas if inventory is

in tonnes and hazard assessment is in hazard per tonne then multiplication is more

appropriate.

6.3.1.1 Inventory

This is a more rigorous estimation of the inventory of a chemical in the route step

in tonnes or kilograms. In addition to the reaction steps, the inventory in storage vessels

and separation steps are estimated.

6.3.1.2 Hazard assessment

This includes fire and explosion, and toxic effects. It is a quantitative assessment

of how much damage could be caused for each of the three hazards, on a unit inventory

basis. Combining this with the inventory would give a result which is related to both

inventory and the degree of the particular hazards. It could be, for example, a T.N.T.

equivalent or the Mortality index for the hazard.

6.3.1.3 Probability of release

This is derived from parameters such as propensity for runaway reaction,

corrosiveness, extremes of pressure or temperature. These parameters are assessed to

give a measure of the likelihood of a hazardous incident in the step. A high value would

indicate that a hazardous event is more likely to happen.

6.3.1.4 Effects modifier

This quantifies how much the hazard could be amplified or attenuated by process

conditions or other circumstances, for example materials used under conditions which

could lead to flashing in the event of a leak, or toxic materials which are persistent, such

as dioxins.

6.3.2 Inventory estimation

Inventory is recognised as a key factor influencing inherent safety. Inventory can

be assessed by estimating it. However, it is not possible to do detailed estimates of the

inventory because necessary data is not available, being limited to the expected yearly
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output of the process, the reaction stoichiometry, and conversions and selectivity of the

reactions. From this an estimate of the inventory of any major containers, that is

reaction vessels, storage vessels and separation vessels must be generated. There are

other sources of inventories, for example pumps, pipes and heat exchangers. However it

is not possible to estimate how many pumps or heat exchangers are needed, nor their

size, nor how much pipe work is needed to build the plant at the route stage. This

information will only become available as the design reaches a P&ID diagram or even

more detailed design. Therefore, only the major inventories in the route are estimated.

This is not to say that the minor inventories are inherently safe. The combined

inventory of all the minor plant items could be quite substantial. But individual items

may only have inventories of a few kilograms, compared to a reactor which may be

several tonnes. It is not realistic to calculate an inventory of a few kilograms, when

larger estimates may only be accurate to 500 kg.

6.3.2.1 Calculation of feed and product rates

In order to calculate the feed and product rates for each step, the yearly output

expected from the plant is required along with the assumed average operating hours per

year. Douglas (1987) gives the average operating hours as:

Continuous - 8150 hours/year

Batch - 7500 hours/year

From these two values the hourly production rate of the main product is

calculated. To calculate the feed and product rates for the route steps, the stochiometric

factors for the chemical reactions in each step, the molecular weights of all the chemicals

present, and the reaction step yields are required. The calculations chain backwards

through the steps, starting with the step where the main product is formed. The feed and

by-products for that step are calculated. If a feed chemical is produced in a previous

step, that feed rate forms the product rate in the previous step and the calculations are

repeated until all feed and product rates have been calculated.

Some assumptions about recycles must be made. The information about the

reaction yield, defined as the product of the conversion and the selectivity, coming from

the laboratory, relates to a single pass through a reactor. This yield may be too low for

economic operation of a plant. Therefore, recycles are used to increase the overall

conversion of the reaction. The required overall reaction conversion is not known at the

route stage. Therefore, the size of the recycle is not known.
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For simplicity it is assumed that economic optimisation would tend to minimise

raw material consumption which implies that there is a recycle around the reactor which

gives an overall conversion of 100 %.

This assumption is made because the details for calculating recycles would only

be known at the process design stage. This method represents the simplest way in which

the inventory can be calculated with sufficient accuracy and is consistent with the desire

for simplicity in the index. As simplicity in the overall index is important, the above can

be justified because it is the best possible result that can be obtained from the data

available.

Given the above assumptions, and referring to figure 6.1 below, where flows are

in mass/hour, the flow into a reaction step is found from a mass balance:

mass of reactants in (F) = mass of products out (P) 	 (6.18)

The flow into the reactor, this being the sum of feed and recycle streams, is

calculated from:

mass of reactants in (F^R)= required mass of desired product out (P) I yield of

reaction (X)
	

(6.19)

Pec cle R

Feed	

F+R	
Ieactor	 ) Produci

Yield X

Figure 6.1 - example recycle

There will generally be more than one raw material and more than one product.

A certain amount of the desired product is needed, as either the main product or as feed

to the next step.

Example

The reaction in step 4 of the ACH route is:

CH 2 = C(CH 1 )CONH 2 i-CH 2 = C(CH 3 )CONH 2 •H2SO4 +2CH 3 OH+H 2 SO 4 -

2CH 2 = C(CH 3 )COOCH 3 +2NH4HSO4
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Methacrylamide (MMAm) + Methacrylamide Sulphate + Methanol + Sulphuric Acid -

Methyl Methacrylate (MMA) + Ammonium Bisuiphate

SULPHUJ,C ACID	 DESIRED PRODUCT

ACH I MMA

STEP 4 FAMMONIUM
BISULPHATE

-I'
METHANOL

ADDITIONAL PRODUCT

Figure 6.2 - example reaction step

A = Methacrylamide	 A = 1 MA = 85
B = Methacrylamide Sulphate n = 1 M fl = 183
C=Methanol	 n=2 M=32
D = Sulphuric Acid	 n = 1 M 98
E Methyl Methacrylate	 = 2 ME 100
F = Ammonium Bisulphate	 = 2 MF = 115

Table 6.1 - Molecular weights of chemicals used in example calculations

Species E is the main product, with flowrate FE = 6.13 tlhr (based on 50000

tiyear and 8150 h/year), step yield = 100%. The other flowrates are:

FA =6.l3* 1*851(2* 100)=2.60

FB = 6.13 * 1 * 183 / (2 * 100) = 5.58

Fc 6.l3*2*321(2* l00) 1.96

FD =6.l3* 1*98/(2* 100)=3.00

FF = 6.13 *2* 115 /(2 * 100) = 7.05

where

F = flowrate of species x, t/hr

In this example the flowrates into the reaction step and into the reactor are the

same, since the yield is 100%.

6.3.2.2 Storage

Storage is split into two categories, intermediate storage, and raw material and

product storage.	 -
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Intermediate storage

Intermediate storage is placed between reaction and separation steps. It is used to

help control the process (for example to act as a buffer where reactions are producing

and using chemicals at different rates), to help in start-up or shut-down of the process, or

simply for the convenience of the operators.

At the route choice stage of the development process, it is not possible to say

where intermediate storage will be placed or how much will be needed. Decisions about

intermediate storage are made at the detailed design stage, when the process flowsheet is

available. In any case provision for intermediate storage goes counter to the principle of

inherently safer design. Therefore, for the purpose of the index, intermediate storage is

left out of the inventory estimation. If the user of the index wishes to include

intermediate storage at this stage, they can use the method for raw material and product

storage.

Raw material and product storage

It is important to contrast the need for raw material and product storage, which is

required for logistic reasons, that is that materials cannot continually be transferred to

and from a site as needed, with intermediate storage, which can be avoided.

The user of the index must decide whether a chemical is to be stored. Certain

chemicals, for example hydrogen cyanide, are not stored or transported because they are

extremely hazardous. In this case they would be produced on site or supplied as a by-

product from another plant on site. For the case of a small production plant, this will

count as additional steps in the route to be assessed. For the case of the chemical being a

by-product, the inclusion of a whole separate process in the assessment would mean that

the potential route would have an index equivalent to two separate routes. In this case

the analysis would be done for the other plant and does not affect the new plant.

Therefore it would be more sensible to say that the chemical in question is not stored and

thus does not contribute a step to the index.

The conditions under which the chemicals are stored will have an effect on how

much is released by a vessel leak. The worst case is pressurised storage at a temperature

above the atmospheric boiling point of the chemical. A better option is liquefied storage

of gases at low temperatures. However, the manner in which the chemical is stored will

be decided at the detailed design stage. Therefore the worst case must be assumed and

so for the purpose of assessing the potential hazard of a storage step it is assumed that all

the contents of the vessel escape.
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To calculate the potential number of deaths, the inventory of the storage vessel

must be known. This will depend upon the usage or production rate, on either an hourly

or daily basis, and for how long it will be stored. Once again, this decision will be taken

at a more detailed design stage. However, for purposes of the new index, it is assumed

that the chemicals are stored for 14 days.

After calculating all the flow rates for the reaction steps, calculate any storage

inventories for raw materials and products as

Storage inventory (kg) = 14 days * daily flow rate (kg/day) 	 (6.20)

This inventory is then used in the four factor calculations.

6.3.2.3 Reactor sizing

The calculated mass flow into the reaction step is used to calculate the inventory.

The size of the reactor is determined by the flow rate of the material entering it and the

residence time. If the residence time is not known it can be calculated using the

following equation:

6_ v_V	 Vi

F/PFA/CA vS (6.21)

where

0 = reactor residence time, s

F,FA = flowrates, total and of reactant A, kg/s

V = reactor volume, m3

p = average chemical density, kg/rn3

CA = concentration of A in feed kg/rn3

V volumetric feed rate, m3/s

S = space velocity, 1/s

To calculate the inventory on a mass flow basis:

Q=F* e
	

(6.22)

where

Q = inventory, kg

Example
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Continuing the previous example:

Total flowrate into reactor = 2.6 + 5.58 + 1.96 + 3.00 = 13.14 t/hr

Step residence time, 0 = 1 - 2 hours

Therefore required inventory for step 4 reactor is

13.14 * 0 =	 13.14 t, for 0 = 1

26.28 t, for 0 = 2

6.3.2.4 Separation inventory estimation

In the trial index only the reactor inventory is estimated. For the new index in

addition to storage inventory, it was decided to estimate the inventory of separation

steps. Even if a route only has one reaction step, it is necessary to separate the products,

and unreacted feed materials from each other. This could mean several separation steps,

all with potentially hazardous inventories. The separation steps will have a throughput

similar to that of the reaction steps, and therefore if the separation steps have similar or

larger residence times, they will have similar or larger inventories. However, the

separation steps will need detailed process design to determine the type of separation

step required. Therefore, for the new index, some easily identifiable separation types are

examined.

It was decided to estimate the inventories of distillation columns most rigorously

because they represents a large proportion of separation operations. Furthermore,

distillation involves an input of heat to make liquids flash, and is therefore hazardous. It

was chosen as an operation which can be classed as inherently unsafe.

There are other separation processes, for example liquid-liquid separation, other

vapour-liquid separations, or solids separation, for example filtration. More detailed

inventory estimation for these types of separation is a future refinement of the index.

6.3.2.5 Estimation procedure

For each reaction step, first look at the yield for the step. If the yield is greater

than 95%, then assume that the reactants remaining are in insignificant amounts

compared to the reaction products. Therefore no separation step are required for

separating products and reactants. Separation steps may still be needed if the reaction

step has more than one product.
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This assumes that the required purity of the product streams will be no greater

than 95%, and therefore several separation steps would be needed to remove the small

amounts of unwanted reactants. This is a design decision which cannot be reasonably

based on the amount of information present from the routes, unless the user of the index

decides otherwise.

Looking at each chemical in turn, either reactants or products, decide how the

chemical may be separated. If the chemical can be separated by a simple vapour/liquid

separator, for example a flash drum, let the inventory of the separation for that chemical

be 5 minutes times the total mass flow of all the chemicals to be separated.

If the chemical may be separated by liquid/liquid separation or any special

technique, for example aezotropic distillation, let the inventory of the separation be 15

minutes times the total mass flow of all the chemicals to be separated.

The values of 5 and 15 minutes are based on estimates from Coulson and

Richardson (1985) for distillation processes.

If two chemicals may be separated by binary distillation, then use the method

detailed below to calculate the inventory for the separation of the to chemicals.

As a chemical is removed from the chemicals to be separated, reduce the total

mass flow to the next separation by the mass flow of the chemical last removed.

Abdon Zomosa (1983) has devised a method for the rapid sizing of columns for

cost estimation. It calculates the major dimensions and flows through the column, and

with the addition of a few extra steps, it is used to give an estimate of the inventory in a

column, both liquid and vapour. Below is a description of the steps in Zomosas method

adapted for inventory estimation. He uses a series of nomographs to aid in the quick

calculation of various equations.

Step 1 - Minimum reflux ratio

Rm_J	
XD[1+(a-1)XFI—aXF

(6.23)
-	 rn	 XF(al)(1-XF)

where

Rm = minimum reflux

a = relative volatility at top of column
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X mole fraction of more volatile component

subscript D = distillate stream

subscript F = feed stream

L = reflux rate (lb/h)

D = distillate rate (lbTh)

Assume that XD = 1, that is pure distillate. This gives:

Rm =
	 = X F (a - 1)	

(6.24)

Step 2 - Optimum reflux ratio

The optimum reflux ratio occurs between 1.1 - 1.5 * Rm . Zomosa suggests an

average is 1.3 or 1.4 Rm.

R= 1.3 or 1.4* Rm	 (6.25)

where

R = reflux ratio

A value of 1.4 is used for future examples.

Step 3 - Number of trays

The number of trays at total reflux is based on the Smoker equation (1942).

Knowing X 0, X and a , use nomograph 1 from appendix F to give 5m•

where

S m = number of trays at minimum reflux.

X = mole fraction of more volatile component in bottoms stream

Step 4 - Trays at given reflux ratio

The number of theoretical trays is based on R, Rm and 5m, and is calculated

from Gilliland (1940) or Erbar-Maddox (1961) correlations, or using nomograph 2 in

appendix F.	 -

Page 116



where

S = number of theoretical trays at given reflux ratio

Step 5 - Overall tray efficiency

Overall tray efficiency is given as 60 - 70%.

Step 6 - Actual number of trays

SA=S/E

where

S A = actual number of trays

E = tray efficiency

Step 7 - Column vapour velocity

This is based on the Brown-Souders method (1934)

G = C{SV(5L -o)Ij°•

(6.26)

(6.27)

where

G = allowable vapour velocity (lbfh.ft2)

C = coefficient derived from tray spacing and liquid surface tension = 600 (ft/h)

öL,v = Liquid and Vapour density (lb/ft3)
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Step 8 - Column diameter

d = [D(R + 1)/0.785G}°5
	

(6.28)

where

d = column diameter (feet)

Step 9 - Column vapour inventory

Coulson and Richardson (1985) give the plate spacing as 0.15m to im. Take

0.5m as an average value then:

(6.29)H = SP * SA

where

H = height of column (rn)

SP = plate spacing (m)

S A = number of plates

By simple geometry and assuming a cylindrical column:

H * * (dJ2)2 * uv (6.30)

where

Iv = vapour inventory (kg)

Step 10 - Column liquid inventory

Coulson and Richardson give the plate weir height as 40 - 90 mm, take 50mm as

typical. They also give the proportion of a plate which is for the down corner as 12%.

SA * * (dJ2)2 * H * AD * öL
	

(6.31)

where

TL. liquid inventory (kg)

weir height (m)

AD fraction of plate remaining after loss of downcomer area = (plate area -

down corner area)/plate area = 0.88
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The above assumes that the trays and other internals have negligible volume.

Step 11 - reflux drum and reboiler

There is also an additional inventory in the reflux drum and the reboiler. Coulson

and Richardson state that the reflux drum should have between 5 and 15 minutes hold-up

to allow for process fluctuations. Therefore, taking a typical hold-up time of 10 minutes,

the additional inventory in the reflux drum is:

'RD = L'/6
	

(6.32)

where

'RD = reflux drum inventory (kg)

U = reflux rate (kg/h)

For the reboiler, it is assumed that there must be sufficient inventory in the

reboiler to supply the distillate and reflux vapour flow, again assuming 10 minutes hold-

up time as for the reflux drum. The inventory of the reboiler is:

(6.33)'RB = (L'+D')/6

where

'RB = reboiler inventory (kg)

D = distillate rate (kg/h)

Step 12 - Total inventory

The total inventory for the column is:

'TOTAL = 'L + Lv + LRD + LRB (6.34)

where

'TOTAL = Total column inventory (kg)

The inventory of each component in the column:

= FRAC, * 'TOTAL
where

= Inventory of component x in column (kg)

FRACX = mass fraction of component x in feed stream (%)
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This assumes the average composition of the contents of the column is equal to

the feed stream.

6.3.2.6 Example

An example is given in Zomosa's paper.

Feed - 20% benzene / 80% toluene, 20000 lb/hr.

Product - 99% Benzene tops, 99% toluene bottoms (all are mass percentages)

The column operates at atmospheric pressure.

Step 1 - Minimum reflux ratio

Let Abenzene, B=toluene

A mixture of 99% benzene and 1% toluene boils at 82.2°C.

The vapour pressures of benzene and toluene at 82.2°C are:

1A-81' mmllg
Hg

Therefore relative volatility = 2.6

Taking a basis of lOOlb of feed

Benzene in feed = 20/78 = 0.26 lb-mol

Toluene in feed = 80/92 = 0.87 Ib-mol

Total feed = 0.26 + 0.87 = 1.13 ib-mol

XF=O.26/l.l3 = 0.23

From nomograph I - 	 = 3.0

Step 2 - Optimum reflux ratio

Using eqn 6.9 - Optimum reflux ratio R = 1.4 * Rm

R = 4.2

Step 3 - Number of trays

Number of theoretical steps at total reflux

XD=O.99, X=0.01, Relative volatility = 2.6

Gives Sm = 10 from nomograph 2

Step 4 - Trays at given reflux ratio

R/R+1 = 4.2/5.2 = 0.80

Page 120



R 1 /R 111+1 = 3/4 0.75

S m/S = 0.58 from nomograph 3

S= 10/0.58 = 17.2

Steps 5&6 - Actual number of trays

Given efficiency = 60%

Using eqn. 6.10- SA 17.2/0.6 = 28.8, say 29

Step 7 - Column vapour velocity

Liquid density 50 lb/ft3

Vapour density = 0.17 lb/ft3

Liquid -vapour = 49.83 lb/ft3

Eqn. 6.11 gives G = 1700 lb/h.ft2

Step 8 - Column diameter

The column diameter is found using nomograph 4

d=48 in. = 1.2m

Step 9 - Column vapour inventory

Number of plates = 29

0.5m gap between plates

Height = 0.5 *29 = 14.5m

Vapour inventory = 14.5 * 0.6 * 0.6 * 3.1415 * 2.72 = 44.6 kg
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Step 10 - Column liquid inventory

Liquid inventory = 28 * 0.6 * 0.6 * 3.1415 * 0.05 *0 . 88 * 800 = 1114.7 kg

Step 11

Distillate rate = 1787 kg/h (from mass balance)

Refluxrate=R* D=4.2 * 1787=7547.4kg/h

Reflux drum inventory = 1787/6 = 297.8 kg

Reboiler inventory = (1787 + 7547.4)/6 = 1555.7 kg

6.3.3 Hazard assessment

There are three types of major hazards to be considered: fire, explosion and toxic

release. They must be assessed separately, because the physical effects of each are

different. Then there is the problem of combining the individual assessments in some

manner, to give an overall hazard assessment.

The ideal solution would be a common measure for all three hazards. In

addition, to fit in well with the four factor structure, a measure of hazard per unit

inventory is preferable. This would then scale the assessment of the hazards with the

inventory. The next sections cover some of the possible methods for assessing the three

types of major hazard.

6.3.3.1 Marshall

Marshall (1987) gives an introduction to the problems of quantifying hazards and

safety. His arguments focus on what constitutes a major hazard; for example, is it loss of

life and, if so, is it one death or one hundred deaths? He gives three levels of potential

hazard:

Major loss of life

There are problems in assessing loss of life, such as whether to include deaths

which occur after the initial incident, for example dying from injuries several months

afterwards. The total number of attributed deaths depends on how an incident has been

reported.

Widespread injury

Injuries also have problems associated with them. Injuries may be categorised

into major and minor injuries, thus having two levels of assessment Toxics can have

long lasting effects, for example asbestosis, and thus depend upon the time span for
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reporting the incident. He also asks how a crippling injury or the effects of radiation are

classified.

Widespread damage

This is measured in monetary terms, that is by loss of property or insurance

claims.

His conclusion is to use potential loss of life as the primary measure of the size of

hazard, as this is a measure which is easily and clearly recognised.

6.3.3.2 Probit method

A probit equation (Lees, 1980) relates the intensity of a hazard, for example heat

radiation, to the degree of damage which results from it. The result from a probit

equation, called simply the probit, is the percentage of the vulnerable source which

sustains injury or damage. The general equation for a probit is:

Y=k 1 +k2InV
	

(6.35)

where

Y probit value

V = measure of the intensity of the hazard

k 1 , k2 = constants relating to type of hazard

The constants are obtained by fitting data relating the intensity of the hazard and

the degree of damage or injury.

For fires the variable used in the probit equation is

V = Radiation intensity (W/m2) * Time (s)
	

(6.36)

Marshall gives an extensive list of equations to calculate the intensity of various

types of fire. Therefore, it is relatively easy to calculate the probit value for a potential

fire.

For explosions the probit variable is

V = Peak Overpressure (N/m2)
	

(6.37)
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But this is calculated from a scaled distance which is related to the mass of

explosive and the distance from the explosion, and thus the pressure is related to

distance. It would be necessary first to calculate the distance at which an injury or death

occurred, next to calculate the scaled distance, and from this calculate the overpressure.

Finally the probit is calculated. The probit is related to distance from the explosion and

thus a distance would need to chosen at which to assess the hazard which adds to the

complexity.

For toxic releases, the probit variable is

V = Concentration (ppm) * Length of time of release(s) 	 (6.38)

It is very difficult to model a toxic release. Data about the release, the prevailing

weather conditions, the local geography and local population are all needed. Thus, any

method used would be too advanced to be used in a simple probit calculation. The other

problem is that constants for the probit equations are only available for chlorine and

ammonia.

Even if the probit is easy to calculate, the result is a proportion of the vulnerable

source, that is people or property, which is damaged or injured. The information about

process location, local population or number of employees is not known at the route

stage. Therefore the absolute number of people affected cannot be calculated. If the

vulnerable source is assumed constant for all the routes, the individual problems with

calculating the three probits still limit its use at the route stage.

6.3.3.3 Poblete et a!

The work of Poblete, Lees and Simpson (1984) describes a short cut method for

calculating the number of injuries from a given radius of a hazard. The equation derived

is:

N1 = it r d
	

(6.39)

where

N1 = number of people injured

r50 = radius at which the probability of injury is 0.5 (m)

d = population density (people/rn2)

However, some of the calculations require the use of probits. The calculation of

the radii, r 0 , for hazards suffer from the problems with probits discussed above, in terms

of information needed and the calculations that need to be done. The authors accept that
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their method does not fit well with physical models for toxic releases. Thus it is not

suitable for the simple estimates that the index requires.

6.3.3.4 Simmons et al

Simmons et al (1974) define theoretical estimates of the number of fatalities

involved in crashing 90 tonne rail cars full of chlorine. This is limited in its use, as it can

not be applied to other types of hazards or even other toxic materials.

6.3.3.5 Wilson approach

Wilson (1980) proposes to compare hazards using a damage zone. This

compares how much material is needed to damage a 1 sq km area. This may be by fire,

explosion or toxic hazard. Marshall disputes its validity, because it compares directly

disparate hazards. He also criticises the simple criteria used to assess each type of

hazard. Wilson also tries to compare directly, the effects of both short term and long

term hazards.

6.3.3.6 Mortality index

The concept of the mortality index was first applied during the second world war,

to assess the success of bombing Germany. Marshall (1977) was the first to apply it to

assessing chemical hazards. The idea is to derive a relation between the number of

deaths caused by a hazard, and the mass of material (explosive, toxic or flammable)

causing the hazard. The mortality index is defined as the number of fatalities per tonne of

hazardous material.

Marshall examined historical records from the first and second world wars,

covering bombings and the use of early chemical weapons. He developed the following

empirical relationships from this data.

For explosives:

M1 'D x Q'3
	

(6.40)

where

M 1 = mortality index, fatalities per tonne of explosive

P = population density in thousands per sq. km .

Q = mass of explosive, tonnes

For vapour cloud explosions and fireballs:

M 1 =3PDxQV3 (6.41)
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F=M1* Q

where

Q = mass of flammable material, tonnes

For toxics, Marshall's research concluded that the mortality index was invariant

with mass released. Therefoie he gives the mortality index directly for four chemicals

(in fatalities per tonne)

Chlorine M 1 = 0.5

Mustard gas (bis-2-chloroethyl sulphide) M 1 = 0.8

Ammonia M 1 = 0.02-0.052

Methyl isocyanate M 1 = 12.5

The number of potential fatalities is calculated by multiplying the mortality index

for the hazard by the mass of the hazardous material:

where

F = number of fatalities

This makes the number of fatalities proportional to Q 2 'for explosions.

The empirical equations derived by Marshall for fire and explosion are consistent

with theoretical analysis of the effects of the hazard. If a fire or explosion produces a

hemispherical area of effect, then:

r 3 oc Q
	

(6.43)

where

r = radius of effect (m)

Q = mass of fire or explosive hazard (tonnes)

The number of fatalities will depend on the circular area covered by the

hemisphere. The area is proportional to the square of the radius:

F oc r2
	

(6.44)

where

F = number of fatalities (people)
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Thus, combining the two equations:

FocQ2
	

(6.45)

This is the result obtained by Marshall from analysis of the data.

6.3.3.7 Radius of effect

The scale of hazards could be compared by a radius of effect. For the mass of

hazardous material, a fire, explosion and toxic radius could be calculated. For fire, the

radius is where the intensity of the fire would cause fatal burns to people. For explosion,

the radius is where the overpressure would cause rupture of internal organs or worse.

For toxics, the true radius is where the concentration in the hemisphere is equal to a

lethal dose or TLV.

The problem with toxics is that a hemispherical release can not be assumed in a

manner similar to a fire or explosion. The weather and other factors have a large

influence in the shape of a toxic cloud when released. For fire and explosion, the radius

of effect requires extensive calculations and assumptions, based on the shape of the

fireball or explosion, or incident angles of radiation. This is avoided to keep the index

simple to use.

6.3.4 Relating hazards to the Mortality Index

The problem with assessing the hazards is that it is difficult to compare the three

types of hazard on a common scale. The effects of fires and explosions could be

estimated from the mass of hazardous material using some of the methods above, and

these can then give a comparable scale of hazard. But there is the problem with working

out the scale of hazard for a toxic release.

A solution is to use the mortality index. Although it is based on historical data,

some of it from military sources, it does give a simple figure for a hazard, that is the

number of possible deaths. This puts all hazards on a comparable scale.

There is still a problem in using the mortality index for assessing toxic hazards.

An alternative method is needed to deal with toxics because the mortality index only

exists for four chemicals. If it was possible to find a relation between the mortality index

and an alternative measure of toxicity, for example TLV or lethal doses, then this

relation could be used to give the mortality index for other chemicals.

6.3.4.1 Toxicity

As an alternative to the mortality index, Marshall (1981) has suggested

considering the number of lethal doses for quantifying toxic hazards. His idea is to
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categorise chemicals by how much is required to produce lO or lO lethal doses, based

on the LD 50 value of the chemical. This represents a threshold value above which an

inventory is considered a major hazard.

The LD50 value may be used in a slightly different way. The mass of a toxic

material in a reactor or storage vessel is converted into a number of lethal doses.

Assuming one lethal dose can kill one person, then toxic hazards can be compared.

Furthermore toxic hazards can be directly compared with fire and explosion hazards,

because both are then measured by the number of deaths.

The LD50 value is a dose, expressed in milligrams per kilogram of body weight,

which will kill 50% of an exposed population. It is quoted for various animals,

including rats and mice, and for varying methods of application, for example oral dosage

or skin application.

An assumption is now made which must be viewed in light of what the index is

aiming to achieve. The assumption is that the doses used on the test animals scale up to

give the same effects on humans. This assumption must be treated with caution. Some

chemicals cause different effects in humans than in test animals. The benefit in making

this assumption, is that masses of hazardous chemicals can be converted to numbers of

doses that would have a certain effect on a human.

The number of possible human lethal doses is:

PLD=
M H •LD50
	 (6.46)

where

PLD = number of possible lethal doses

Q = mass toxic chemical, mg

LD50 = Lethal dose, mg of chemical 1kg of body weight

MH = average mass of person = 70 kg

A scaling function or factor may be necessary, as an example shows:

The number of lethal doses from 1 tonne of formaldLhyde, LD 50 = 800 mg/kg:

PLD = 1,000,000,000/ (70 * 800) = 17857.1
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Realistically, it would be very difficult to kill this many people from a release of

formaldehyde. For example 300 tonnes of ammonia (LD50 = 350 mg/kg) only killed 12

people in Montana, Mexico (Marshall, 1987), whereas the number of possible lethal

doses is 12.2 * 106 . The value is not representative of the hazard as the method

overestimates greatly the number of potential deaths from a release. Therefore the

method is rejected and another possible method is suggested.

Comparing the mortality index of the chemicals that Marshall has calculated,

with the LD 50 values in the graph below ( Methyl isocyanate has been left out as the

mortality index is calculated from only one incident, where there was a very high

population density near to the plant), it is possible to derive a relationship.

0	 50	 100	 150	 200	 250	 300

LD5O value
(mg/kg)

Figure 6.3 - graph of LD5O versus mortality index

If a straight line is fitted through the data points, it would intercept the x-axis

between 200 and 400 mg/kg. This would imply that any chemical with an LD 50 value

greater than 400 has a mortality index of zero. This cannot be so, because the chemical

would kill someone if given in sufficient quantity. The graph, and the problem suggest

an inverse relationship between LD 50 and mortality index. As the value of the LD50

decreases, representing increasing toxicity, the value of the mortality index should

increase. A linear relationship would have intercepts on both axes, representing limits of

LD50 and mortality index.

A better model is to assume that the curve becomes asymptotic to both axes. As

the toxicity decreases, and the LD50 value increases, the mortality index should approach

zero, when a chemical becomes nontoxic. Moving in the opposite direction there is a
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limit on LD 50 which is that of the most toxic substance available and the curve will be

asymptotic to this value. Practically this would be zero as the LD 50 of very toxic

materials approach zero. Therefore, based on the above assumptions, a possible

relationship between LD 50 and mortality index is:

LD 50 * Mortality Index = Constant
	

(6.47)

Using the information from the graph above, a suitable constant can be estimated.

Chemical	 LD50 (mg/kg)	 Mortality index	 LD50 * Mortality
_____________ ___________________	 (deaths/t)	 index

Ammonia	 300	 0.052	 15.6

Chlorine	 100	 0.18	 18.0

Mustard gas	 20	 0.8	 16.0

Table 6.2 - Sample data for toxicity relationship

The average value of LD50 * mortality index is 16.5. Therefore the relationship

LD 50 *Mortality Index = 16.5
	

(6.48)

can be used to give an estimate of the mortality index for a chemical, knowing its

LD50 value.

There is another small problem with some chemicals. Some are classed as

simple asphyxiants. They do not do any chemical damage to the body but simply

deprive it of oxygen. In order for harm to come to someone, they would have to be

placed in an atmosphere consisting of a high proportion of the asphyxiant. This is not a

problem if a large amount of an asphyxiant escapes into the atmosphere, but is more

likely to kill people in enclosed spaces, for example during maintenance of vessels.

Therefore, it is not possible to calculate the mortality index or the number of deaths that

could occur from asphyxiants, but there may not be as many compared to an explosion or

toxic release.

6.3.4.2 Fires

To calculate the mortality index for a fire, the mass of flammable material that

will contribute to the hazard is needed. The total inventory of the reactor or vessel can

be used, but to be more accurate, the mass of flammable vapour produced should be

used. This assumes that the vessel is under conditions where a proportion of any liquid

in it will flash off when a leak or failure occurs. If the vessel is full of vapour then all of

it will escape. King (1990) gives an equation for calculating the amount of flammable
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2Q L C P (TI —T2)
Q=

H
(6.49)

_QHf
QE -

TNT

(6.51)

vapour that will be produced immediately from a liquid at a temperature above its

atmospheric boiling point:

where

Q = mass of flammable vapour released (kg)

QL = mass of liquid (kg)

C = specific heat at (T 1 + T2)/2 of liquid (kJ/kg.°C)

T 1 = liquid temperature (°C)

T2 = atmospheric boiling point of liquid (°C)

H = heat of vaporisation of liquid at T 2 (kJfkg)

The quantity of vapour released is arbitrarily doubled to allow for entrainment of

liquid spray. The maximum mass of vapour is equal to the mass of liquid. For liquefied

flammable gasses with boiling points below ambient temperature:

QV=QL
	 (6.50)

6.3.4.3 Explosions

For explosions involving flammable liquids or materials other than recognised

explosives, a measure of the explosive capability is needed for the mortality index

calculation. The quantity of flammable material available to explode, Q,, is first

calculated as for fires.

King gives a further equation to calculate the TNT equivalent of the mass of

flammable vapour:

where

QE equivalent mass of TNT (tonnes)

H = heat of combustion of vapour (kJ/kg)

f= explosive yield factor

HINT = heat of combustion of TNT = 4652 (kJ/kg)
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The explosive yield factor is based on studies of vapour cloud explosions, and is

taken as 0.05. This allows for vapour which burns before the main explosion and other

vapour which escapes from the cloud.

6.3.5 Combined fire and explosion

In the new index, fire and explosion are treated as one hazard and not considered

as separate hazards. The reason for this is as follows. Explosions are considered to be

internal explosions, that is explosions which occur inside reaction vessels or other plant

items. This may be caused by a runaway reaction or a thermal decomposition of a

chemical. It could also be a rapid overpressure of the vessel, which is too great for any

pressure relief equipment. The important factor is that it leads to a rupture of the vessel

or plant item. This event may be violent enough to cause injury or death. This is often

due to fragments of the plant item forming missiles which hit people. However, the

injuries and damage caused by this type of explosion will be localised in effect, perhaps

only within tens of metres of the plant item. The more important result is that the plant

item is now releasing its contents.

When a release occurs a flammable vapour cloud will form. If this cloud

explodes, the effects will, in general, be much greater than those of an internal explosion.

Large vapour cloud explosions can destroy much of a chemical plant, and possibly have

effects outside the plant boundary. It is this difference in the magnitude of effect

between internal explosions and vapour cloud explosions which lead to the index only

considering vapour cloud explosions.

When calculating the size of the possible vapour cloud, the amount which flashes

off is only dependent on the process conditions and the physical properties of the

chemicals. There is no additional allowance for material which evaporates due to

additional heat from fires in the ruptured plant item, because the amount of heat

generated is difficult to estimate.

6.3.6 Probability of release

The first two factors of the proposed structure estimate a measure of the effect of

a possible hazardous event, in terms of a number of possible deaths. The third factor,

probability of release, is derived from parameters which nfluence the likelihood of a

release occurring.

In both this factor and the effects modifier factor, scores are assigned to the

various parameters in each factor. As discussed earlier in this work, most of the scores

for the trial index and the developing index are based arbitrarily. The scores are not the
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final scores for the index. They are scores which are intended to be modified as the

index is used and developed. Thus it is not intended to imply that because two

parameters have the same score for particular values, that they represent an equal level of

inherent safety. The relative scores between parameters is based on the relative

importance of the parameters as judged by the experts in the expert judgement exercise.

6.3.6.1 Temperature

The initial idea about temperature as a parameter, which lead to the scoring table

in the trial index, was that temperature indicated the heat energy content of a system, and

thus the higher the temperature the greater is the likelihood of a hazardous event

occurring.

Liquids at higher temperatures are more likely to be hazardous by being turned

into vapour or a flashing liquid, or by exceeding the temperature where a runaway

reaction may occur. Both high and low temperatures may necessitate using-non-standard

materials of construction in the plant giving scope for error. If plant items are replaced

with ones which are not designed for the temperature range, problems can occur. The

temperature of a reaction in one step may also affect the steps around it. Therefore, the

temperature of the reaction step should have a score assigned to it, which reflects the

need for special materials of construction and the scope for error that this introduces.

Both Dow and Mond indices have a method for assessing the flammability of a

material. This gives a relative assessment of how flammable a material is. However, it

does not mean that the material is in a hazardous state, that is the material may not be at

a temperature above its flash point. It is more important to compare the process

temperature with the materials flammable properties. For example:

Process temp. > Auto ignition temperature

worse than

Process temp. > Boiling point

worse than

Process temp. > Flash Point

worse than

Process temp. <Flash point

To some extent, a material which will flash has been dealt with in the hazard

assessment parts. However, if the material is above its auto ignition temperature, a score

should be assigned to reflect this possible danger.
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6.3.6.2 Pressure

The basis for the pressure scoring table in the trial index is similar to that for

temperature, that is, high pressure implies high potential energy content. Even if vessels

are designed to deal with these pressures, a high pressure can make a release more likely.

Both the Dow and Mond indices state that design standards change for pressure

vessels above 3000 psi. The scoring table in the trial index was based on the charts from

the Mond index, which increased more steeply after 3000 psi. The Dow index has a

score that increases up until 3000 psi. It then has a constant score for 3000 - 10000 psi,

and another highest score for anything over 10000 psi. The pressure scoring table has

been amended to account for these changes in design standards. The range up to 3000

psi is based on the graph from the Mond index. For example:

Pressure PSI	 Score

0	 -	 75	 1
75	 -	 100	 2
100	 -	 150	 3
150 -	 200	 4
200 -	 300	 5
300 - 400	 6
400 -	 600	 7
600 -	 850	 8
850	 -	 1500	 9
1500 - 3000	 10

	

3000 - 10000	 15
	10000 ± _____	 20

Table 6.3 - example scoring table for pressure

High pressure is also detrimental when leaks occur. It makes the leak rate higher,

and in the case of pressurised storage of liquefied gases, can lead to rapid formation of

explosive clouds. Lees (1980) gives a graph to show how pressure difference affects

mass flow through an orifice, for gases, vapours and liquids. The calculations of actual

flowrates from ruptured vessels are very extensive. The pressure difference, contents of

the vessel, shape and size of the orifice all effect how to calculate the flowrate and type

of flow. Because the calculations are complicated, in the interest of simplicity

estimation of leak rates is not included in the index.

6.3.6.3 Exothermic and endothermic reactions

Both the Dow and Mond indices have a factor for the type of reaction occurring,

but they do not give any values, in terms of joules per gram, for the exotherm of the
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reaction. King (1990) states values of the heat of reaction for various types of reaction.

There are some inconsistencies between the two sources. Some types of reaction are

grouped differently in the Dow and Mond indices than by King. However, the groups

due to King are more useful, as he assigns ranges of exotherm values to each group. The

groups are:

AH R ^ -3000 kJlkg - extremely exothermic, for example: direct oxidation of

hydrocarbons, chlorination reactions, ethylene polymerisation

-1200 ^ AHR > -3000 kJ/kg - strongly exothermic, for example: nitration, propylene,

styrene, butadiene polymerisation

-600 ^ LHR > -1200 kJ/kg - moderately exothermic

-200 ^ AH > -600 kJ/kg - mildly exothermic, for example: condensation and

polymerisation reaction of molecules 60-200 M.W.

200 ^ AHR > -200 kJ/kg - thermally neutral, for example: aqueous reactions forming

precipitates, esterification between organic acids and alcohols

AHR >200 kJlkg - endothermic, for example: cracking and dehydrogenation of

hydrocarbons, metal oxide reduction

Example scores are shown below:

Heat of reaction / Extent of exotherm	 Score

	

AHR ^-3000 kJ/kg - Extremely exothermic	 20

-1200 ^ AHR > -3000 kJlkg - Strongly exothermic	 15

-600 ^ AHR > -1200 kJ/kg - Moderately exothermic	 10

	

-200 ^ AHR > -600 kJ/kg - Mildly exothermic 	 5

	200 ^ HR> -200 kJ/kg - Thermally neutral	 0

AHR> 200 kJ/kg - Endothermic	 5

Table 6.4 - example scoring table for heat of reaction

6.3.6.4 Chemical and reaction stability

Any instability in the reaction which is inherent, as opposed to caused by

variations in the process conditions, increases the chance of a hazard occurring.

There are certain classes of chemicals which are considered to be unstable. An

obvious example is explosives. To a lesser extent, any chemical which is self oxidising
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presents a hazard, for example peroxides. Any chemical in a route, which presents a

hazard by itself, should be highlighted and scored according to the degree of potential

instability. Unfortunately, there is no measure of chemical stability. However, as the

experts considered chemical stability to be a very important parameter, a maximum score

of, for example, 20 can be assigned to unstable chemicals.

In a similar manner, potentially unstable reactions can be identified. A good

example is partial oxidation reactions. These have the potential to become a full

oxidation and therefore cause a release.

A similar problem was brought out in the expert panel discussion. A measure of

controllability of the reaction was proposed as a parameter. It was intended to highlight

difficult to control reactions, or reactions which could easily runaway. Reactions

operating close to the conditions at which runaway could occur were classed as

potentially hazardous. King classes a reaction which can have a 300°C temperature rise

as a hazard.

In addition to highlighting unstable chemicals, any reactions which are classed as

unstable, or operate close to a point at which they can become unstable, should be

quantified according to the degree of potential instability. This is 'an area which would

benefit from more extensive research, that is beyond the scope of this present work. For

the present, the scoring is left up to the user of the index, again with a maximum score

of, for example, 20.

6.3.6.5 Corrosiveness

Corrosion can lead to weakness, and eventually holes, in plant items, which in

turn lead to leaks and releases of material. Corrosion is not a problem if the plant items

are constructed from suitable materials. However, if unsuitable materials are used for a

section of the plant, or plant items are replaced with ones made of unsuitable material,

corrosion problems will arise. Certain chemicals are highly corrosive, for example

strong acids, oxidising agents, or halogens. If any highly corrosive chemicals are

present, highlight these and assign a score up to a maximum of, for example, 5.

At the panel meeting it was pointed out that hydrogen chloride (HCI), when dry,

will not attack mild steel. However, if a small amount of water is present, mild steel is

rapidly attacked by HC1. Similar corrosion problems can occur when water forms an

electric pathway between metals of different electric potential. It was suggested that

there should be a parameter which indicated the 'susceptibility to water'. The same was

suggested for air, that is any situation where air enhanced the effects of corrosive

materials should be penalised. Therefore, situations where air or water can increase or
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start corrosion, should be recognised and assigned a score up to a maximum of, for

example, 5.

6.3.6.6 Probability of release from storage

Compared to reaction steps, storage steps are low risk (Lees, 1980). There is no

heat input or output, or heat generation. Generally storage conditions are less severe

than reaction conditions. Therefore the probability of a release from storage is much less

than that from the process. However, the inventory of storage steps is considerably

greater than process steps. The large amounts of chemicals in storage can not be ignored

because they are relatively unlikely to be released. There is always public concern over

large storage vessels in chemical plants. Although storage vessels themselves are low

risks compared to process steps, they are at risk from process related hazards, because of

their proximity to the process.

It is possible to estimate the probability of a release from storage from a more

detailed design of a process. However at the route stage there is insufficient information

to estimate a likelihood of release. Therefore, in order that the large number of possible

deaths from storage steps is not reduced by a very small probability of release factor, it is

assumed that the probability of release factor is one for storage steps. This reflects the

large scale hazard that storage inventories represent.

The probability release factor is defined as:

-	 Sum of probability of release scores for the step

Maximum possible probability of release score for step

if all the parameters contribute their maximum score, the factor has a value of 1.

Theoretically this implies that a release will occur, but practically it indicates that the

step is very hazardous and is very likely to cause a release.

The maximum possible score is 105. For storage steps, let FPOR = 1 assuming

that all the contents is released.

6.3.7 Effects modifier

In the fourth factor, the parameters modify the assessment of the inherent safety.

They reflect physical or chemical properties, which may influence how a chemical acts

after release or how a process behaves after malfunction. The same point raised earlier

in the probability of release factor about the basis for parameter scores applies to the

effects modifier.
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6.3.7.1 Flammability limits

In the first index the measure of flammability was found by taking the difference

between upper and lower flammable limits. This was based on the assumption that a

large flammable range is undesirable. The experts suggested using the lower limit,

because this indicates flammable materials from the viewpoint of chemical releases.

A different suggestion was also raised in the questionnaires. Most flammable

chemicals have very similar flammable ranges. Instead of scoring the size of the range,

score the step if the reaction occurs within the flammable range of any chemical in the

step.

6.3.7.2 Vapour density

The buoyancy of a gas effects its dispersion characteristics and the formation of

explosive or toxic clouds. Some gases, for example hydrogen, are very buoyant and

therefore disperse quickly. Others, for example carbon dioxide or hydrogen fluoride, are

very dense gases and tend to stay at ground level, forming pockets of gas which are slow

to disperse.

Dispersion of gases and vapours is good for inherent safety. The density of air

can be taken as a breakpoint for scoring. For example:

Gas or vapour density <<density of air - good, gas disperses - score -10

Gas or vapour density density of air - score 5

Gas or vapour density > >density of air - bad , poor dispersion - score 20

6.3.7.3 Chemical odour and colour

Some chemicals have distinct odours or colours. This is a benefit if any escapes

from a vessel. The effects of large releases are decreased if the chemical can be detected

and thus the chance of taking evasive action is increased. This does not necessarily

apply to all toxic chemicals. If the chemical is highly toxic, the sniff which identifies it

may be enough to kill. But for some of the less toxic chemicals, which require a large

dose, any indication of its presence can be helpful. It must be assumed that the majority

of chemicals are clear or odourless. Therefore chemicals with colour or odour should be

scored as a benefit to the step. For example:

Clear or odourless gases - no score.

Strong odours or colour in gas - score -5

6.3.7.4 Mixing and viscosity

This is related indirectly to the heat of reaction and reactor control. Poor mixing

can cause hot spots in reactors or poor heat transfer in heat exchangers. Then a runaway
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reaction might develop. High viscosity would imply a poor mixing or dispersion hazard.

Sulphur is a good example of the problems that can occur with viscosity. At 135 -140°C

the viscosity of sulphur is 8cp, but at only 170°C it increases to 4500cp.

Immiscible liquids, if not mixed adequately or if mixing is stopped, can form

layers. If mixing is then applied, an instantaneous reaction can occur which produces

more heat than is normally removed by a cooling circuit and this can lead to an

overpressure of the reactor.

It is not logical to score the viscosity of chemicals in a scoring table. It is

difficult to assess the inherent danger of one chemical being twice as viscous as another.

However, in the case of sulphur, if a chemical goes from a consistency of warm cooking

oil to that of thick treacle, problems can occur. It is better to penalise steps where

mixing problems, or chemicals with viscosity problems, occur. For example score 5 for

a chemical which gives mixing problems.

6.3.7.5 Waste and by-products

This parameter is included because more waste and by-products imply greater

inventory and complexity, although in other contexts environmental aspects are clearly

important. It is important to reduce the inventory and complexity of plants. If a process

is making waste material or by-products in equal or greater proportions to the required

product, this must be more inherently unsafe than a process which makes a small amount

of waste in proportion to required product, for the same product flowrate. The former

process will have larger reactors and larger separation steps. The ratio of the amount of

waste and by-products produced per tonne of product can indicate the efficiency of the

process. For example the higher the ratio, the higher the score.

The effects multiplier factor is defined as:

Sum of effects modifier scores for the step
EM = 1+

	

	 (6.53)
Maximum possible effects modifier score for step

The maximum score for the factor is 2. The score may be less than one,

indicating that certain parameters are beneficial to the inherent safety. The maximum

score is 55. For storage and separation steps, let FEM = 1

6.3.8 Parameter combination

In the first index, it was decided not to consider the combination of parameters,

as the structure was too simple. In developing the new index, there is some combination

of parameters. There is interaction between inventory (the first factor) and measures of
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flammability and explosiveness, and toxicity, for the second factor. These parameters

are combined to give a common measure of number of potential deaths for a hazard.

However, with the other parameters in the index, there is still the problem that

they are scored individually and then the scores are combined. However, unlike the

scoring of parameters for the trial index, the scores for parameters in the new index are

based on the order of importance from the expert ranking.

6.3.9 3 or 4 factor index?

For calculating the number of deaths from a toxic release, the index uses four

factors - Inventory, Hazard coefficient, Probability of release and Effects modifier. For

calculating the number of deaths from fire and explosion, it could be viewed as using

only three factors. The probability of release factor, effects modifier factor and inventory

factor are as described. However, the hazard coefficient factor includes the inventory in

calculating the mortality index. Therefore the first two factors, inventory and hazard

coefficient, could be combined into one factor. This would make the number of deaths

proportional to inventory213 instead of proportional to inventory . More accurately, the

result for a step is proportional to the (TNT equivalent, of the flash fraction, of the step

inventory)213 . The inventory is calculated in the first factor, but instead of being

multiplied by the second factor, is used in the second factor.

6.4 New index

The following is a stage by stage breakdown of how to calculate the new index

for a chemical route.

Stage 1 - breakdown of route into steps

Break down the route into reaction steps. This will be one for each potential

reactor, but if two or more reactions could occur in the same reactor by a change in the

reaction conditions, then treat them as separate reaction steps.

Stage 2 - flowrate calculation

Working backwards through the steps, from the last step, calculate the flowrates

of all chemicals present, including feed and product streams using the method described

in the section "Calculation of feed and product rates". Use equation 6.18 for flows

between steps and equation 6.19 for flows into reactors.

Stage 3 - which materials are stored?

For each reaction step, decide which raw materials are stored or piped in. If a

chemical is supplied from a purpose built plant, include the additional reaction steps in

the route. If the chemical is a by-product from a separate process, do not add extra steps.
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Stage 4 - storage inventory calculation

For each chemical which is stored, use the method described in the section

'Storage" to calculate the inventory of the storage vessel.

Stage 5 - number of possible deaths

For each stored chemical, calculate the Fire and Explosion deaths and Toxicity

deaths, using the methods detailed below in section 6.4.1 assuming loss of the total

inventory. Let these totals be NOD and NOD TOX respectively.

Stage 6 - reactor inventory calculation

For each reaction step, calculate the reactor inventory using the method described

in the section "Reactor sizing". Calculate the mass fraction of each reactant and product

in the reactor from the reaction yield.

Stage 7 - number of possible deaths

For each chemical, in each reaction step, calculate the Fire and Explosion deaths

and Toxicity deaths using the method described below in Section 6.4.1. Let the highest

totals from all the chemicals in a step be NOD and NOD 10 respectively for that step.

Stage 8 - probability of release calculation

For each reaction step, calculate the probability of release scores, and effects

modifiers scores using the method described below in sections 6.4.2 and 6.4.3.

Stage 9 - necessary separations

For each reaction step, decide what type of separations are necessary or are to be

sized.

Stage 10 - separation inventory calculation

For each separation step, calculate the inventory using the methods described in

the section 'Separation inventory estimation'. Calculate the mass fraction of each of the

chemicals in the stream which are to be separated using the reaction yield.

Stage 11 - number of deaths

For each chemical, in each separation step, calculate the Fire and Explosion

deaths and Toxicity deaths using the method described below in section 6.4.1. Sum the

Fire and Explosion deaths and Toxicity deaths for all the chemicals. Let these totals be

NOD and NODTOX respectively.
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Stage 12 - probability of release factor

For reaction steps let the Probability of Release factor for a reaction step,

be:

F	
-	 Sum of probability of release scores for the step 	

(6 54)POR - Maximum possible probability of release score for step

Maximum score 105

For storage steps, let FPOR = I

Stage 13 - effects multiplier factor

For reaction steps let the Effects Multiplier factor for a reaction step, FEM, be:

Sum of effects modifier scores for the step
FEM = 1 +

	

	 (6.55)
Maximum possible effects modifier score for step

Maximum score = 55

For storage and separation steps, let F EM = 1

Stage 14 - fire and explosion deaths for each step

Let the modified number of Fire and Explosion deaths for a step, MNOD, be:

MNOD = NOD * FPOR * FEM
	 (6.56)

Stage 15 - toxicity deaths for each step

Let the modifiecL number of Toxicity deaths for a step, MNOD TOX, be:

(6.57)MNODT0X =NOD *F *Plox	 POR 'EM

Stage 16 - route totals

Let the total potential number of Fire and Explosion deaths for the route be:

MNOD FE	(6.58)
ALL STEPS

Let the total potential number of Toxicity deaths for the route be:

MNODTOX	 (6.59)
ALL STEPS

These two values are the index values for the route.
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6.4.1 Method for calculating possible number of deaths for a route step
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6.4.1.1 Fire and Explosion - number of possible deaths

6.4.1.1.1 Step 1 - Inventory

Use the inventory calculated in stage 4 for a storage step, stage 6 for a reaction

step, and stage 10 for a separation step.

6.4.1.1.2 Step 2 - Degree of flash

Calculate how much of the chemical will flash off if a release occurs using:

where

Q = mass of flash vapour, kg

mass of chemical in reactor, storage or separation, kg

C= specific heat capacity, kJ/kg.°C

T 1 = liquid temperature, °C

T, = atmospheric boiling point, °C

= heat of vaporisation at T2, Id/kg

6.4.1.1.3 Step 3- Convert to TNT

For each chemical in the reactor, convert its flashing inventory to an equivalent

mass of TNT using:
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= Q • H •f

H FN I'

(6.61)

where

Qe = equivalent mass of TNT, kg

Q = mass of flashing vapour, kg

= heat of combustion of chemical, kilkg

f= explosive yield factor 0.05 (5%)

HTNT = heat of combustion of TNT, 4652 kJ/kg

6.4.1.1.4 Step 4 - Mortality index

Calculate the mortality index for the equivalent mass of explosive using:

M1 = 1D xQ°333

	

(6.62)

where

M 1 = mortality index, fatalities per tonne

= population density in thousands per sq. km

Qe = equivalent mass of explosive, tonnes

Take D = 0.85 (based on average population density around chemical plants)

(Marshall, 1987), or the actual value if known for the location.

6.4.1.1.5 Step 5 -Number of possible deaths

Calculate the number of possible deaths from the mortality index using

NOD	 Qe><Mi
	 (6.63)

where

NOD = number of deaths

M 1 = Mortality index, fatalities per tonne

Qe = equivalent mass of explosive, tonnes
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Q . c, .(T, —iT2)
Q=

H
(6.64)

6.4.1.2 Toxicity - number of possible deaths

6.4.1.2.1 Step 1 - Inventory

Use the inventory calculated in stage 4 for a storage step, stage 6 for a reaction

step, and stage 10 for a separation step.

6.4.1.2.2 Step 2 - Degree of flash

Calculate how much of the chemical will flash off if a release occurs using:

where

Q = mass of flash vapour, kg

Q = mass of chemical in reactor, kg

C= specific heat capacity, kJ/kg.°C

T 1 = liquid temperature, °C

T2 = atmospheric boiling point, °C

H = heat of vaporisation at T2, kJ/kg

6.4.1.2.3 Step 3 - Mortality index

Calculate the mortality index from the chemicals LD5O value using

LD50 *M [ = 16.5
	

(6.65)

where

LD50 = Lethal dose, mg/kg

M 1 = mortality index, fatalities per tonne

6.4.1.2.4 Step 4 - Number of possible deaths

Calculate the number of possible deaths from mortality index using

NOD TOX =	 x M1	 (6.66)

where

NOD = number of deaths
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6.4.2 Method for calculating probability of release score for a reaction step

PROBABILITY OF RELEASE

HIGH/LOW
TEMPERATURE

+
CORROSION

+
DEGREE OF

I_EXOTHERM
+

CHEMICAL
STABILITY

+
PROCESS TEMP.

> AUTO
IGNITION TEMP

+
PRESSURE

6.4.2.1 High/Low temperature

Use the table below to score the temperature.

	

Temperature range (°C)	 Score

	

__	 T<-25	 5

	

-25 ^T< 600	 0

	

600 ^ T < 700	 4

	

700 ^ T < 800	 8

	

800 ^ T < 900	 12

	900	 T < 1000	 16

1000 ^ T	 20

Table 6.5 - Temperature scoring table

6.4.2.2 Corrosion

Are any of the chemicals present corrosive?

Score 5 points for yes

Do any chemicals present become highly corrosive upon ingress of either air or

water?

Score 5 points for yes
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6.4.2.3 Degree of exotherm

For the reaction step assign a score based on the step heat of reaction.

Heat of reaction / Extent of exotherm 	 Score

<= -3000 kJ/kg - Extremely exothermic - dircct oxidation of 20
hydrocarbons, chlorination reactions, ethylene polymerisation ________

<= -1200 > -3000 kJ/kg - Strongly exothermic - nitration, 15
propylene, styrene, butadiene polymerisation	 ________
<= -600> -1200 kJ/kg - Moderately exothermic	 10

<= -200> -600 kJ/kg - Mildly exothermic - condensation and 5
polymerisation reaction of molecules 60-200 M.W. 	 ________
<= 200> -200 kJlkg - Thermally neutral - aqueous reactions 0
forming precipitates, esterification between organic acids and
alcohols
>200 kJlkg - Endothermic - cracking and dehydrogenation of 5
hydrocarbons, metal oxide reduction

Table 6.6 - degree of exotherm scoring tabk

6.4.2.4 Unstable chemicals or reaction

Are there any highly unstable chemicals present in the reaction or is the reaction

difficult to control?

Score 20 points for yes

6.4.2.5 Auto ignition

Js the process temperature above the Auto ignition temperature of any chemicals

in the step?

Score 20 points for yes

6.4.2.6 Pressure

Use the table below to score the pressure.
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Pressure PSI	 Score

0	 -75	 1

______	
100	 2

100	 - 150	 3

150	 -200	 4
200	 -300	 5
300	 -400	 6
400	 -600	 7
600	 -850	 8

850	 - 1500	 9

1500	 - 3000	 10

3000	 - 10000 15

10000 ± ______ 20

Table 6.7 - pressure scoring table

6.4.3 Method for calculating effects modifier score for a reaction step

EFFECTS MULTIPLIERS

I FLAMMABLE LIMITS I
+

I VAPOUR DENSITY I
+

I WASTE/BY PRODUCTS I
^

I ODOUR/COLOUR
+

I MIXING/VISCOSITY I

6.4.3.1 Flammable limits

Does the reaction occur within the flammable limits of any chemicals present?

Score 20 points for yes

6.4.3.2 Vapour density

Are there any gases or vapours whose density is greater than air?

Gas or vapour density <<density of air - score -10

Gas or vapour density density of air - score 5

Gas or vapour density > >density of air score 20

6.4.3.3 Waste and by-products

Is the mass of waste products 5 or more times greater than the mass of product?
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Score 10 points for yes

Is the mass of waste products between I and 5 times greater than the mass of

product?

Score 5 points for yes

6.4.3.4 Odour and colour

Are any highly toxic chemicals strongly odoured and/or coloured?

Score -10 points for yes

6.4.3.5 Mixing and viscosity

Are there any problems which can arise due to poor mixing of chemicals or the

viscosity of any chemicals?

Score 5 points for yes
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7. CHAPTER 7- RESULTS AND DISCUSSION

7.1 Introduction

In this chapter the methods and formulas developed in the previous chapter are

used on the data for the MMA routes. A sample calculation is shown for some steps in

the ACH route.

The results for all the steps have been calculated and are presented in tabulated

form later in the chapter along with comparisons of the results with that from the first

index and the expert ranking results.

7.2 Example index calculation for an MMA route

The following section presents some example calculations using the new index.

Appendix A gives the details of the routes and chemicals used in the examples. For

these examples, the proposed plant capacity is 50000 tonnes per annum.

The ACH route is used for the example calculations.

Example storage step calculation

Step 2 of the ACH route is used:

(cI-1 3 ) 7 co+I-IcN -4 (CH3),COHCN

Acetone + Hydrogen Cyanide - Acetone Cyanohydrin

Stored raw material = Acetone (HCN is not stored due to its very toxic nature)

Stage 2 calculations gives usage of acetone 3.63 t/hr

Stage 4 calculations give total inventory 3.63 * 24 * 14 = 1219.68 t

Stage 5:

For fire and explosions:

Acetone : II = 30810 kJfkg - this gives Q = 403.89 t, MI = 0.115 deathsft,

N.O.D = 46.4, round up to 47

For toxics

Acetone : LD 50 5800 mg/kg - this gives MI = 0.0028 deaths/t and N.O.D = 3.42
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0.012

0.01

Example reaction step calculation

Step 4 of the ACH route is used:

CH 2 = C(CH 1 )CONH 7 + CH 2 = C(CH 1 )CONH 2 HSO + 2C1-1 3 0H + H 2 SO 4 -

2CH 2 = C(CH 1 )COOCH 3 +2NH4HSO4

Methacrylamide + Methacrylamide Sulphate + Methanol + Sulphuric Acid -

Methyl Methacrylate + Ammonium Bisulphate

The calculations for stage 2 are the same as for the example in chapter 6. These

give:

Throughput of step = 13.44 t/hr

Reaction residence time = 2 hrs.

Reaction yield = 100%

Therefore stage 6 calculations give reactor inventory Q = 2 * 13.44 26.88 t

Reaction temperature T 1 = 130°C

Therefore out of the chemicals present, methanol (BP = 64.6°C) and MMA (BP =

100.1°C) would flash off if there was a loss of containment.

There is no data for methacrylamide or methacrylamide sulphate, ammonium

bisuiphate is a solid and will not flash off, and sulphuric acid will not flash off.

Methanol: C = 2.53 kJlkg.°C, H = 1129 kJlkg, T 2 = 64.6 °C - This gives Q =

7.88 t for fire and explosions, and 3.94 t for toxics.

MMA: C = 1.9 kJfkg.°C, H	 360 kJ/kg, T2 = 100.1 °C - This gives Q = 8.48

for fire and explosions, and 4.24 t for toxics.

Stage 7

For fire and explosions:

For Methanol : H	 22662 kJlkg - This gives Qe = 1.9 t, MI = 0.68 deaths/t and

NOD= 1.3

For MMA: H = 47721 kJ/kg - This gives Qe = 4.35 t, MI = 0.52 deaths/t and

NOD 2.27

MMA has highest NOD value for fire and explosions.

For toxics:

For Methanol: LD50 = 5628 mg/kg - This gives MI = 0.003 deaths/t and NOD =

For MMA : LD50 = 7872 mg/kg - This gives MI = 0.0021 deaths/t and NOD =
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Methanol has highest NOD value for toxics.

Stage 8

For Probability of release scores:

Temperature = 130°C - score 0

Corrosiveness - sulphuric acid present - score 5, no additional score for ingress of

air or water

Exotherm - esterification - score 0

Chemical stability - no highly unstable chemicals or reaction - score 0

Autoignition temp. - no chemicals above Auto ignition temp. - score 0

Pressure = 103 psi - score 2

Total score = 7

Stage 12

FPOR = 7/105 0.067

For effects modifier scores:

Flammable limits - no oxygen present - score 0

Vapour density - no heavy gas - score 0

Waste streams - mass ratio of ammonium bisuiphate to MMA = 1.15 - score S

Odour - no highly toxic chemicals - score 0

Mixing - no potential problems - score 0

Total score = 5

From stage 13, FEM = 1 + (5/55) = 1.09

From stage 14, MNOD	 2.27 * 0.21 * 1.09 = 0.52,

From stage 15, MNOD TOX = 0.0 12 * 0.21 * 1.09 = 0.0027,

Example separation step calculation, ACH step 1

2CH 4 +2NH 3 +30 2 —2HCN+6H2O

Methane + Ammonia + Oxygen - Hydrogen Cyanide + Water

Yield of step = 64%

From stage 10, flowrate of output stream:

HCN= 1.08 tlhr

1120 = 2.16 tlhr
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0.05

up.

02 = 1.08 t/hr

NH3 = 0.38 tlhr

CH4=0.36t/hr

Methane and oxygen are removed in a vapour/liquid separation - 5 minutes hold-

Inventory of separation:

HCN = 0.09 t

H2O=0.18t

O=0.09t

NH3 = 0.032 t

CH4 = 0.03 t

Oxygen and water present no fire or toxic hazard.

For fire and explosions:

HCN: H = 41034 kJ/kg - this gives Q = 0.04 t, MI = 0.227 deaths/t, NOD =

NH3 : H= -no data

CH4 : H = 55527 kJ/kg - this gives Q = 0.018 t, MI = 3.24 deaths/t, NOD =

0.058

For toxics

HCN : LD5 = 1.43 mg/kg - this gives MI = 11.5 deaths/t and NOD = 1.04

NH3 : LD5 = 350 mg/kg - this gives MI = 0.047 deaths/t and NOD = 0.00 15

CH4 : LD50 = Asphyxiant NOD not calculable

Composition of stream for next separation:

HCN= 1.08 t/hr

11,0 = 2.16 tlhr

NH3=0.38t/hr

Next separation - liquid/liquid extraction of ammonia - 15 minutes hold-up

Inventory of separation:

HCN=0.27t

H2O=0.54t

NH3=0095t

Water presents no fire or toxic hazard.
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For fire and explosions

HCN : Ml = 0.95 deaths/t - this gives NOD 0.62

NH3 : NOD not calculable

For toxics

HCN : LD 50 1.43 mg/kg - this gives MI = 11.5 deaths/t and NOD = 3.1

NH3 : LD50 = 350 mg/kg - this gives MI = 0.047 deaths/t and NOD = 0.0045

Composition of stream for next separation:

HCN=0.27t

H-,O = 0.54 t

Binary distillation:

Using method from chapter 6:

Column inventory = 522.3 kg of which 174 kg is HCN

For fire and explosions:

HCN : MI = 1.099 deaths/t - this gives NOD = 0.5

For toxics

HCN : LD50 = 1.43 mg/kg - this gives MI = 11.5 deaths/t and NOD = 2.0

7.3 Results from new index

The table below is a breakdown of the number of possible deaths from both fire

and explosions (F&E), and toxic releases (TOXIC), for all the steps in all the routes. It is

broken down further into reaction, separation and storage steps.
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TOTAL NUMBER OF POSSIBLE DEATHS (F&E) AND LETHAL DOSES (TOXIC)
REACTION	 SEPARATION	 STORAGE STEPS

_______ _______	 STEPS	 STEPS	 _______ ___________
ROUTE STEP F&E TOXIC F&E TOXIC F&E	 TOXIC

ACH	 1	 1	 1	 2	 7	 30	 17
_________	 2	 1	 3	 1	 3	 47	 4
________	 3	 1	 2	 N/S	 N/S	 -	 8
________	 4	 1	 1	 N/S	 N/S	 26	 2
________	 5	 1	 1	 -	 -	 19	 -
___	 6	 1	 -	 -	 -	 -	 -
TOTAL _______	 6	 8	 3	 10	 122	 31
C2/PA	 1	 1	 -	 1	 -	 40	 -

________	 2	 1	 1	 1	 1	 22	 13
____ 3	 1	 1	 1	 1	 -	 -
________	 4	 1	 1	 2	 1	 26	 3
TOTAL _______	 4	 3	 5	 3	 88	 16
C2IMP	 1	 1	 1	 3	 1	 65	 3

_________	 2	 1	 1	 1	 1	 53	 7

________	 3	 1	 1	 2	 1	 N/S	 N/S
TOTAL _______ 3	 3	 6	 3	 118	 10

C3	 1	 1	 -	 1	 -	 51	 -
________	 2	 1	 1	 1	 1	 N/S	 N/S
____ 3	 1	 1	 2	 1	 -	 -
________	 4	 1	 1	 2	 1	 26	 3
TOTAL _______	 4	 3	 6	 3	 77	 3

TB A	 1	 1	 1	 N/S	 N/S	 11	 11
____ 2	 1	 1	 1	 1	 -	 -
________	 3	 1	 1	 2	 1	 26	 3
TOTAL _______	 3	 3	 3	 2	 37	 14

i-C4	 1	 1	 1	 1	 1	 59	 -

___	 2	 1	 1	 1	 1	 -	 -
________	 3	 1	 1	 2	 1	 25	 3
TOTAL ___	 3	 3	 4	 3	 84	 3

Table 7.1 - Results from new index for MMA routes

In the above table, for reaction steps, a -' means that data was not available to

calculate the number of deaths. For storage steps, N/S means there was no raw material

storage for the step and a - means no data was available. For separation steps, N/S

means no separation was necessary and a means no data was available.
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______ _____ PROCESS	 _____ STORAGE	 _____ TOTAL
_____ F&E TOXIC TOTAL F&E TOXIC TOTAL F&E TOXIC TOTAL

ACH	 9	 18	 27	 122	 31	 153	 131	 49	 180

C2/PA	 9	 6	 15	 88	 16	 104	 97	 24	 121

C2/MP	 9	 6	 15	 118	 10	 128	 127	 16	 143

C3	 10	 6	 16	 77	 3	 80	 87	 9	 96
TBA	 6	 5	 11	 37	 14	 51	 43	 19	 62
i-C4	 7	 6	 13	 84	 3	 87	 91	 9	 100

Table 7.2 - Totals for each MMA route from the new index

The most obvious result from the table above is the large difference in scores

between storage steps, and the process steps, that is the reaction and separation steps.

This is to be expected. The storage steps have inventories of several hundreds or

thousands of tonnes of material compared with, at most, one or two tonnes for the

majority of the process steps. This large difference in the number of possible deaths

confirms an important point made in chapter 6. Most of the reactions and separations

involve high temperatures and pressures and large amounts of energy, either produced

from reactions or added to reactions and separations. This is more likely to lead to a

problem. However, the greatest damage, in terms of possible deaths, comes from the

storage of large amounts of hazardous material.

This result is very important. It reinforces KJetz's suggestion of minimising the

storage of chemicals on chemical plants

Most of the reaction step and separation step results have been rounded up to the

nearest death. However, this does not give an accurate picture of the results. Some of

the inventories of the reaction steps are only 10 or 20 kg. This gives the number of

deaths as less than 0.1.

Although some reactions only have inventories of the order of tens of kilograms,

the subsequent separation steps have inventories in the hundreds of kilograms. In

addition, for one reaction step there may be three or four separation steps, each having

several hundred kilograms of inventory. Therefore the reactor inventory may not be the

dominant inventory in a route step.

The rankings from the new index are presented in table 7.3:
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PROCESS STORAGE TOTAL TRIAL	 Qi	 Q2
INDEX RANKING RANKING

(overall	 (overall

_________________ _______________ _______________ ____________ ____________ criterion) 	 criterion)

SAFEST	 -TBA	 TBA	 TBA	 TBA	 TBA	 TBA

_________	 i-C4	 C3	 C3	 i-C4	 i-C4	 i-C4

_________ C2/MP	 i-C4	 i-C4	 C2/MP	 C2IMP	 C2IMP

_________ C2/PA	 C2/PA	 C2/PA	 C3	 C2/PA	 C2/PA
_________	 C3	 C2/MP	 C2/MP C2IPA	 ACH	 C3
UNSAFEST	 ACH	 ACH	 ACH	 ACH	 C3	 ACH

Table 7.3 - comparison of rankings from the new and trial indices, and expert
ranking questionnaires

The total ranking is the sum of the deaths for fire and explosions and toxics. The

column headed 'PROCESS' is the sum of the reaction and separation deaths for a step.

__________	 SPEARMAN COEFFICIENT r
NEW INDEX	 TRIAL	 Qi	 Q2

RANKING	 INDEX	 RANKING RANKING
RANKING	 (overall	 (overall

_________________ _________________ 	 criterion)	 criterion)

PROCESS	 0.943	 0.943	 1.00
STORAGE	 0.7 14	 0.37 1	 0.60

TOTAL	 0.714	 0.371	 0.60

Table 7.4 - Spearman coefficients for comparisons of the new index rankings with
the trial index and expert ranking questionnaires

When comparing the rankings of the new index with the trial index and the

rankings from the questionnaires, it is important to remember that both the trial index

and the experts only considered the information about the process areas of the routes.

There was no information about any storage given to the experts or scored in the trial

index. Therefore, the fact that the correlation between the ranking of the process scores

are better than for the storage and total scores is not very surprising.

The rankings and correlation coefficients for the storage scores and the total

scores are identical, this shows that the storage scores dominate the index.

The perfect correlation between the process scores for the new index and ranking

from questionnaire two highlights again the influence of the number of steps in a route.

Almost all the process steps score the same. Therefore the number of steps is the factor

which influences the rankings the most.
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A balance must be struck between the accuracy of the estimates and the

simplicity of the calculations. If a method for calculating inventory increases the

accuracy to three decimal places from one decimal place but takes three times as long, is

the extra effort justified? An example of this is comparing the methods for calculating

the reaction inventory with distillation column inventory. Reaction inventory comes

from one calculation, whereas to calculate the column inventory takes 12 steps of either

calculations or using graphs. However, in many steps where there is a reaction and

separation by distillation the column inventory is much more than the reaction inventory

and the difference in accuracy and simplicity can be justified.

The main point is to remember that the index is to be used as a guide to inherent

safety, and the results from it are not hard and fast recommendations.

8.1.3 Expert judgement

The expert judgement exercise was a success because although the experts had

not done anything like it before, the results showed that their thinking and rankings were

consistent. Their task may have been made easy for the MMA routes, as most of the

routes had particular unsafe features for example obviously hazardous chemicals. The

statistical analysis of the results showed good agreement between the rankings from the

questionnaires and the trial index, and between the experts. Their comments showed

that the work done on the trial index and the proposed development of the new index

was reasonable.

8.1.4 Cost versus inherent safety

A secondary aim of the research was to see if the inherent safety of plants was

related to their cost. In particular, were inherently safer plants cheaper to build and mn.

The regression analysis of the results from the trial index and the cost estimates showed

that the inherent safety of the routes using the trial index correlated well with the

estimated capital costs and costs of production. The capital costs correlate best with

process related scores and the non-capital costs and costs of production correlate best

with the chemical related scores.

However, it would be wrong to say that inherently safer plants are cheaper, only

based on the results from six different routes. More routes would have to be tested to

better verify the statement.

8.1.5 Index sophistication

The first index only gave a broad indication of which plant is potentially the

safest based on the reaction steps of the routes. The second index moved on to look at

Page 160



separation and storage steps in addition to the reaction steps. However the amount of

calculations increased to determine the new index scores.

If any further sophistication is required to the index, then more design work will

need to be done on each route to provide further data. Hence, a balance point must be

found between output of results from the index versus the amount of time spent on

calculating the results.

8.2 Recommendations for further work

8.2.1 Testing of more routes

In order to refine the index further, and to gain a greater understanding of the

interaction of the parameters involved, it is recommended that the index be tried on more

test data. This could be done in conjunction with more expert ranking. If several more

sets of test data were ranked by experts, then the index could be fine tuned.

8.2.2 Statistical analysis of incidents

A statistical analysis of a large number of incidents is needed to determine the

number of incidents which occurred in storage steps and the number which occurred in

reaction steps. From this a weighting could be devised for the probability of release

from storage versus process steps.

8.2.3 Expert judgement

One of the comments from the expert ranking was that the experts were not

practised at expert ranking. They were not sure what they should be looking for to

measure inherent safety, or what calculations to do to quantify it. As a separate line of

research, in addition to ranking more sets of routes, a defined and structured method for

expert ranking of routes could be developed.

The results from the expert ranking could be used as a starting point. Individual

interviews could be used to question the experts more rigorously. They should be asked

what information they require to assess inherent safety, what features they would look

for and what calculations they would use to analyse the information. The process would

be similar to the elicitation process used to obtain rules for an expert system.

8.2.4 Inventory estimation

The inventory estimation has concentrated on the reactions, storage and on

distillations. Firstly, reactor inventory estimation needs improvement. Secondly, other

methods could be developed to improve on the current estimating methods. In addition,

more plant items could be analysed to develop quick ways to estimate their inventory. A
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10. APPENDIX A - MMA ROUTE DETAILS

Acetone Cyanohydrin based route (ACH)

Step 1

2CH 4 +2NH 1 +302 -* 2HCN+6H20

Methane + Ammonia + Oxygen - Hydrogen Cyanide + Water

Gas Phase

Pressure: 3.4 Atm

Temperature: 12000 C

Yield: 64%

Step 2

(cH 3 ) 2 co+HcN - (CH3)7COHCN

Acetone + Hydrogen Cyanide - Acetone Cyanohydrin

Liquid Phase

Pressure : Atmospheric

Temperature : 29-38° C

Yield: 91%

Step 3

2(CH 3 ),COHCN + H,SO 4 + 2H,0 -
HEAT

(CH 3 ) 2 COHCONH 2 +(CH 3 ) 7 COHCONH 2 •H 7 SO4 -
CH 2 = C(CH 3 )CONH 2 ^CH 2 = C(CI-1 3 )CONH 2 H 2S0 +2H20

Acetone Cyanohydrin + Sulphuric Acid + Water -*

2-Hydroxyl-2-Methyl Propionamide + 2-Hydroxyh2-Methyl Propionamide Sulphate-

Methacrylamide + Methacrylamide Sulphate + Water

Liquid Phase

Pressure : 7 Atm	 -

Temperature:130-150 0 C
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Yield : 98%

Step 4

CH, = C(CH 1 )CONH 2 ^CH 2 = C(CH 3 )CONH, •H-,SO 4 +2CH 3 OH+H 2SO4 -
2CH 2 = C(CH 3 )COOCH 3 +2NH4HSO4

Methacrylamide + Methacrylamide Sulphate + Methanol + Sulphuric Acid -4

Methyl Methacrylate + Ammonium Bisuiphate

Liquid Phase

Pressure : 7 Atm

Temperature : 110-130 ° C

Yield: 100%

Step 5

H 2 SO4 +2NH 4 HSO4 +302 +CH 4 -* 3S0 2 +CO 2 +N 2 +8H20^02

Sulphuric acid + Ammonium bisuiphate + Oxygen + Methane -*

Sulphur dioxide + Carbon dioxide + Nitrogen + Water + Oxygen

Gas phase

Pressure : Atmospheric

Temperature: 980-1200 ° C

Yield: 100%

Step 6

2S02 °2 —*2SO3

Sulphur dioxide + Oxygen -4 Sulphur trioxide

Gas phase

Pressure: Atmospheric

Temperature : 405-440° C

Yield: 99.7%

Page 169



REACTION	 REACTION

GAS PHASE	 T.isooc	 HCNJUOUID PHASE	 T.29.38 C

P.S4ATM	 Y.A4%	 I P.1 ATI	 V.gI%

WATER	 AMMONIA CATALYST

SULPHURIC ACID

HYDROLYSIS

UOUD PHASE	 P.7 ATU

T.l3A-lC	 Y.1%

Acetone Cyanohydrin route (ACH)
AMMONIA	 METHANE	 OXYGEN	 ACETONE	 ACETONE	 IICN WATER

A A A

ACH

	

NEUTRALISATION	 PURIFICATION	

J
A

	SULPHURIC ACID	 AMMONIUM BISULPHATE

METHANOUWATER

ESTERIFICATION

UDPIIASE	 P.7 ATM
	 MMA

PURIF CATION
IIO-IC	 V.100%

OXYGEN

SPEP ACID
	 WATER

SU4URCACD	

1	 RECOVERY	

MONJUM BISULPHATE

FUEL GAS

AMMONILJM B SULPHATE
SULPHURIC ACID

METHANOL

Figure A.! - ACH route diagram
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Ethylene via Propionaldehyde based route (C2IPA)

Step 1

CH 2 =CH 2 +CO+H 2 —CH3CH2CHO

Ethylene + Carbon Monoxide + Hydrogen -4 Propionaldehyde

Gas Phase

Pressure: 15 Atm

Temperature: 30 ° C

Yield: 90.7%

Step 2

CH 3CH 2CHO+CH 2O - CH 2 = C(CH1)CHO+H20

Propinaldehyde + Formaldehyde -3 Methacrolein + Water

Liquid Phase

Pressure : 49 Atm

Temperature: 160-185 ° C

Yield : 98.2%

Step 3

2CH 2 =C(C11 3 )C11O+0 2 —2CH 2 =C(CH3)COOH

Methacrolein + Oxygen - Methacrylic Acid

Gas Phase

Pressure : 350 Atm

Temperature

Yield: 57.75%
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Step 4

CH 2 = C(CH 3 )COOH +CH 1 OH - CH 2 = C(CH 3 )COOCH 1 + H20

Methacrylic Acid + Methanol - Methyl Methacrylate + Water

Liquid Phase

Pressure : 6.8-7.5 Atm

Temperature 70-100 ° C

Yield : 75%

Ethylene via Propionaldehyde route (C2/PA)
CARBON MONOXIDE / HYDROGEN	 FORMALDEHYDE

	
OXYGEN

HYDE1O-
CONDENSATION
	 OXIDATION

ETHYLENE	 FORMYLATION

GAS PHASE	 1=30 C
	

LIQUID PHASE
	

GAS PHASE	 1=

P.15 ATM	 Y.®7%
	

1=160-185 C	 Y=98.2%
	

P350 ATM	 Y=57.75%

P=49 ATM

V
WATER

METHANOL

*

ESTERIFICATION

LIQUID PHASE

1=70-i® C	 Y=7s%

[e.7 S ATM

PURIFICAflON	 MMA

y

WATER

Figure A.2 - C2/PA route diagram
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Ethylene via Methyl Propionate based route (C2IMP)

Step 1

CH 2 =CH 2 + CO +CH 3OH— CH1CH2COOCH1

Ethylene + Carbon Monoxide + Methanol - Methyl Propionate

Liquid Phase

Pressure: 100 Atm

Temperature: 100 ° C

Yield: 89%

Step 2

6CH 1OH + 02 —2CH3OCH2OCH3+4H2O

Vapour Phase

Methanol + Oxygen -i Methylal + Water

Pressure:

Temperature

Yield:

Step 3

CH 1CH 2COOCH 1 ^CH 3OCH 2 OCH 3 - CH 2 = C(CH 3 )COOCH 3 +2CH1OH

Methyl Propionate + Methylal - Methyl Methacrylate + Methanol

Liquid Phase

Pressure:

Temperature : 350 ° C

Yield : 87.4%
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CONDENSATION

DEMETHO)(Y-

LAT ION

UOUDPHASE	 T3SOC
P.	 Va? 4%

METHYLAL

H

PURIF CATION

METHANOL

Ethylene via Methyl Propionate (C2/MP)

METHANOL	 CARBON MONOXIDE

ETHYLENE
METHYL

PROPIONATE

REACTION

I000PHASE	 T.IOOC

P.00 AIM	 Y.a9%

METHYL PROPIONATE

OXYGEN

MODIFIED
MANOL 

H 
FODEDE

GS PHASE	 1.

P.	 Y.

V
WATER

Figure A.3 — C2/MP route diagram
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Propylene based route (C3)

Step 1

CH 1 CHCH 2 ^CO+HF—* (CH3)2CHCOF

Propylene + Carbon Monoxide + Hydrogen Fluoride -4 Isobutyrl Fluoride

Liquid Phase

Pressure : 90-100 Atm

Temperature : 70 ° C

Yield: 94.5%

Step 2

(CH 3 ) 2 CHCOF+ H 20 -* (CH3 ) 2 CHCOOH+ HF

Isobutyrl Fluoride + Water - Isobutyric Acid + Hydrogen Fluoride

Liquid Phase

Pressure: 10 Atm

Temperature : 40-90 °C

Yield: 96.2%

Step 3

2(CH 3 ),CHCOOH+O, —2CH2 = C(CH)COOH^2H2O

Isobut3 nc Acid + Oxygen - Methacyfiic Acid + \Vatcr

Vapour Phase

Pressure : 2.5-3 Mm

Temperature : 320-354 C

Yield: 75%
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Tertiary Butyl Alcohol based Route (TBA)

Step 1

CH 3 ) 1 COH+02 -^ CH2CCH3CHO+2H20

ertiary Butyl Alcohol + Oxygen - Methacrolein + Water

Vapour phase

Pressure : 4.8 Atm

Temperature : 350 ° C

Yield: 83%

Step 2

2CH 2 CCH 3CHO+0 2 - 2CH2CCH3COOH

Methacrolein + Oxygen - Methacrylic Acid

Vapour Phase

Pressure : 3.7 Atm

Temperature : 350 ° C

Yield : 57.75%

Step 3

CH 2 = C(CHJ )COOH + CH 3OH - CH 2 = C(CH 3 )COOCH3 + H20

Methacrylic Acid + Methanol - Methyl Methacrylate + Water

Liquid Phase

Pressure: 6.8-7.5 Atm

Temperature : 70-100 °C

Yield: 75%
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OXYGENI
SECOND-STAGE

OXIDATION

fAPOIJR PHASE	 T3SO C
P.37 AIM	 Y.57.75%

OXYGEN METHANOL

ISA
FIRST-STAGE

OXIDATION

/APOLIFI PHASE	 1.350 C
P.4 8 ATM	 1-83%

ESTERIFICATION

LJOIJIO PHASE
7.6 8-75 ATM
1.70-100 C

Tertiary Butyl AohoI based (TBA)

1	
FICATIN	 MMA

'I

WATER

Figure A.5 - TBA route diagram
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Isobutylene based Route (i-C4)

Step 1

(CH 3 ) 2 CCH 2 + 02 -* CH2CCH3CHO+H20

Isobutylene + Oxygen -4 Methacrolein + Water

Vapour Phase

Pressure

Temperature : 395 ° C

Yield : 41.8%

Step 2

2CH 2 CCH 3 CHO+0 2 -* 2CH2CCH3COOH

Methacrolein + Oxygen -4 Methacrylic Acid

Vapour Phase

Pressure : 3.7 Atm

Temperature 350 ° C

Yield 57.75%

Step 3

CH 2 = C(CH.)COOH + CH 3OH - CH 2 C(CH 3 )COOCH 3 + H20

Methacrylic Acid + Methanol -* Methyl Methacrylate + Water

Liquid Phase

Pressure 6.8-7.5 Atm

temperature : 70-100 ° C

(ield : 75%
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Isobutylene based route (i-C4)

OXYGEN

FIRST•STAGE

ISOBUTYLENE	 OXIDATION

VAPOUR PHASE

1495 C

P.	 1.41.9%

OXYGEN

SECOND-STAGE

OXIDATION

VAPOUR PHASE	 T4SE C

P47 ATM	 1.57 75%

METHANOL

ESTERIFICATION

LJOU IT PHASE

1.70-ICE C

P.A.9-75ATM	 1.75%

FUR FICATK4

1'
WATE

Figure A.6 - i-C4 route diagram
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CHEMICAL	 M.W. BOILING FLASH L.E.L. U.E.L. T.L.V.
(g)	 POINT	 POINT (%)	 (%)	 (ppm)

_____________ ____ (°C)	 (°C) ____ ____ _____

Acetone	 58	 56.5	 -17.7	 2.6	 12.8	 750
Acetone Cyanohydrin 85	 82.0	 63 8	 2.2	 12	 10
Ammonia	 17	 330___________________	 15	 28	 25
Ammonium	 115
Bisuiphate__________________________________________________
Carbondioxide	 44	 __________ ________ _______ ______ 5000
Carbon Monoxide	 28	 -191.5	 -89.4	 12.5	 74.2	 50
Ethylene	 28	 -104.0	 -70.5	 2.7	 36.0	 asphyx
Formaldehyde	 30
HMPA	 103
HMPASE	 201
Hydrogen2	 __________ ________ _______ ______ ________
____________________ ______ __________ ________ _______ ______ asphyx
Hydrogen Cyanide	 27	 -3.5	 -17.7	 5.6	 40	 10
Hydrogen Fluoride	 20	 -7.0	 ______	 3
Isobutylene	 56	 -6.9	 -10.0	 1.8	 9.6	 asphyx

Isobutyrl Fluoride	 90	 / /

Isobutyric Acid	 88	 2.0	 9 2	 300

__________________	 210	 IMethacrolein	 70	 69.0

Methacrylic acid	 86	 162.6	 _______________________________
Methacrylamide	 85

Methane	 16	 -161.0	 -119.6	
'	 ______ _______

___________________ ______ __________ 
76.0 %f4

____________________ ______ __________ ________ ______ ______ asphyx
Methanol	 32	 64.6	 12.2	 6.0	 36.5	 200
Methyl Methacrylate	 100	 100.0	 10.0	 2.1	 12.5	 100
Methyl Propionate	 88	 79.0	 6.0	 2.5	 13	 ________
Methylal	 76	 41.0	 -17	 1.6	 17.6	 1000
Nitrogen28	 -195.8	 _______ ______ ______ asphyx
Oxygen32 	-183.0	 _______ ______ ______ _______
Propionaldehyde	 58	 46.0	 -26.0	 2.9	 17	 _______
Propylene	 42	 -47.7	 -107.8	 2.4	 10.1	 asphyx
Sulphur dioxide	 64	 -10.0	 I7/1 A%'	 2
Sulphur trioxide	 80	 44.7	 1j3	 .001
Sulphuric Acid	 98	 143.3	 ____	 Jj	 1mg/rn3
Tertiary Butyl Alcohol 74	 83.0	 10.0	 2.4	 8.0	 100
Water18	 100.0	 ________ _______ _______ ________

HMPA - 2-hydroxy-2-methyl propionamide
HMPASE - 2-hydroxy-2-methyl propionamide sulphate
M.W. - Molecular weight
L.E.L. - Lower Explosive Limit
U.E.L. - Upper Explosive Limit
T.L.V. - Threshold Limit Value
asphyx - asphyxiant

_____ Data not available
_____ Not applicable	 -

Table A.1 - MMA route chemical and physical properties
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CHEMICAL	 LD50	 Autoignition Heat of Heat of 	 Specific

	

(mg/kg)	 (°C)	 Vap.	 Comb.	 Heat
______________________ __________ _____________ (kjlkg)	 (kJ/kg)	 J/kg.°C)
Acetone	 5800	 538	 501.7	 30810	 2.6
Acetone Cyanohydrin	 17.8	 963	 514.9 ________ __________
Ammonia	 350	 511	 1370.0 _______	 2.2
Ammonium
Bisuiphate__________ _____________ _________ _________ ___________
Carbondioxide	_________	 609	 348 ________ _________
Carbon Monoxide	 _______	 925	 215.8	 10105	 1.04
Ethylene	 Asphyx	 490	 483.6	 50393	 2.4
Formaldehyde	 800	 430	 776.7	 18867	 1.18
HMPA______ ________ _____ ______ _______
HMPASE______ _________ ______ ______ _______
Hydrogen	 Asphyx	 385	 449	 141853	 9.85
Hydrogen Cyanide	 1.43	 538	 933.3	 41034	 2.63

HydrogenFluoride	 _________ _____________ 374.7 _________	 2.53
Isobutylene	 Asphyx	 465	 394.8	 44768	 2.33
Isobutyric Acid	 280	 503	 467.0 ________	 1.88

IsobutyrlFluoride	 _________ _____________ ________ _________ __________
Methacrolein	 116	 280	 414.3	 32843 __________
Methacrylamide459	 _____________ ________ _________ __________
Methacrylic acid	 2000	 400	 486.0	 48139	 2.2
Methane	 Asphyx	 811	 513.4	 55125	 2.34
Methanol	 5628	 470	 1129	 22662	 2.53
Methyl Methacrylate	 7872	 435	 360.0	 47721	 1.9
Methyl Propionate	 5000	 469	 366.5 ________	 1.92
Methylal5708 ____________ 376.5 ________ 	 2.18
NitrogenAsphyx ____________ ________ ________ __________
Oxygen_________ _____________ ________ _________ __________
Propionaldehyde	 1410	 207	 487.9 _______	 2.19
Propylene	 Asphyx	 860	 438.3	 48952 _________
Sulphurdioxide	 _________ ____________ 311.5 ________ 	 0 62
Sulphurtrioxide	 _________ _____________ 584.3 _________	 3.22
SulphuricAcid	 2140 ___________ _______ _______ ________
Tertiary Butyl Alcohol 	 2460 ____________ 535.4	 35581	 3.04
Water__________ _____________ _________ _________ __________

HMPA - 2-hydroxy-2-methyl propionamide
HMPASE - 2-hydroxy-2-methyl propionamide sulphate
Asphyx - asphyxiant

Table A.2 - MMA route chemical and physical properties
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11. APPENDIX B - SAMPLE QUESTIONNAIRES

These are samples of the questionnaires sent out to the experts for the expert

judgement exercise.
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INHERENT SAFETY ASSESSMENT OF ROUTES TO METHYL
METHACRYLATE

EXPERT RANKING QUESTIONNAIRE 1

In this first questionnaire, we would like you to spend no more than two hours. Try to do
the rankings using your 'gut feeling'.

Section I - Please rank the six methyl methacrylate (MMA) routes with respect to the
three stated criteria and also for overall inherent safety.

Section II - Please identify important features of the individual routes.

Section ifi - Please give reasons for your rankings with respect to the three criteria and
overall inherent safety.

Section IV - Please describe how you dealt with incomplete data about the routes.

SECTION I

Rank the six (MMA) in order of their inherent safeness, with respect to the following
criteria:

A - Major hazard
A large toxic or flammable release andlor explosion, affecting the surrounding area, with
loss of life.

B - Medium scale event
For example, a small explosion or implosion, leading to loss of production and bad
publicity. Any loss of life is due to 'bad luck'.

C - Unplanned event
This causes disruption to local population, for example these might be alarms and
evacuations, and the event makes the news. The event may not be dangerous but it leads
to loss of production and claims for compensation.

Please assign a score of 1 to the route you consider inherently safest through 6 for the
route you consider least inherently safe.

ROUTE j	 A	 B	 C	 OVERALL

ACH____________ ___________ ___________ ___________
C2/MP _____________ ____________ ____________ ____________
C2/PA ____________ ____________ ____________ ____________
C3____________ ____________ ____________ ____________
i-C4	 _____________ ____________ _____________ ____________
TBA___________ ________ ___________ ___________
Routes based on:
ACH - Acetone Cyanohydrin

	 C3 - Propylene
C2/MP - Ethylene via Methyl Propionate

	
i-C4 - Isobutylene

C2/PA - Ethylene via Propionaldehyde
	

TBA - Tertiary Butyl Alcohol
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SECTION II

What are the important features that influence the inherent safety of each route and how
important do you consider they are on a scale of 1 (high importance) to 5 (low
importance)? You may list any number of features.

ACH

C2/MP

C2/PA

C3

i-C4

TBA
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SECTION III

What are the main reasons for your rankings with respect to:

Criterion A:

Criterion B:

Criterion C:

Overall:
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SECTION IV

Was there any data that you needed but did not have?

What would you have done with this data if you had had it?

How did you deal with not having this data?

Do you have any general comments at this stage?

Please attach further sheets if you need more space.
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INHERENT SAFETY ASSESSMENT OF ROUTES TO METHYL
METHACRYLATE

EXPERT RANKING QUESTIONNAIRE 2

In this second questionnaire we would like you to look more closely at the individual
reaction steps.

Please rank the reaction steps with respect to the following criteria:

A - Major hazard
A large toxic or flammable release andlor explosion, affecting the surrounding area, with
loss of life.

B - Medium scale event
For example, a small explosion or implosion, leading to loss of production and bad
publicity. Any loss of life is due to 'bad luck'.

C - Unplanned event
This causes disruption to local population, for example these might be alarms and
evacuations, and the event makes the news. The event may not be dangerous but it leads
to loss of production and claims for compensation.

Please assign a score of 1 to the step you consider most inherently safe through to 5 for
the step you consider least inherently safe. More than one step may have the same score.

Please attach additional sheets if you wish to give reasons for your ranking or comments.

Key for Phase

L - Liquid phase
V - Vapour phase
G - Gas phase

Throughput is the total chemical feed to the step.
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INHERENT SAFETY ASSESSMENT OF ROUTES TO METHYL
METHACRYLATE

EXPERT RANKING QUESTIONNAIRE 3

Introduction

The purpose of this third questionnaire is to aid us in the development of a
new index. The questionnaire is divided into several sections:

Current index comments - we would like you to comment on and constructively
criticise our present index.

Ranking parameters - please complete the table to help us decide how important
various safety parameters are.

Separation steps - please complete the table in a similar manner to the previous table
to help us decide what are the important parameters in assessing separation stages.

Structure for new index - your comments and suggestions are requested for the
development of our new index.

Other questions - some questions for you to answer on general topics..

Current Index Comments

Currently our index is calculated by scoring parameters that describe each of
the reaction steps in the route and then summing these scores.

Method

The route is divided into reaction steps.

For each step a score is calculated for each chemical involved. This is the sum
of the scores for: inventory ( based on the hourly production rate for 8000 hours per
year, 100% conversion and a nominal holdup of 1 hour), flammability, explosiveness
and toxicity. The highest score over all the chemicals in the step becomes the
Chemical score. The chemical and physical parameter scores are found from the
tables, which are listed on pages 3 - 6.

The scores for pressure, temperature and yield are summed to give the Process
score for the step. The tables for these parameters are listed on pages 7 - 9.

The step score is the sum of the Chemical score and the Process score.

The final route score is the sum of all the scores for all the steps in the route.

Example
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The scoring for the first step of the ACH route is as follows:

Chemical score - the highest is for HCN:

Inventory (1) + Flammability (4) + Toxicity (4) + Explosiveness (4) = 13

Process score:

Temperature (10) + Pressure (1) Yield (2) = 13

Total step score = Chemical score + Process score = 13 + 13 =26

The same procedure yields the scores for steps 2 to 6, which are: 15, 13, 15,
20, 19.

The total score for the route, that is the index value is given by:

IndexforACHroute=26+ 15+13+15+20+19=108

We would like you to comment on and positively criticise the scoring tables
and the method used for calculating the current index. If you think a table of scores is
inappropriate or that the ranges in the tables are incorrect, please suggest alternatives.

Comments on method.

Page 192



Comments on range of parameter 	 Comments on scores for parameter

Inventory (Tonnes)	 Score
0.1	 -	 250	 1

251	 - 2500	 2
2501	 - 7000	 3
7001	 -	 16000	 4

16001	 - 26000	 5
26001	 - 38000	 6
38001 - 50000	 7
50001	 - 65000	 8
65001 - 80000	 9
80001	 -	 100000	 10

General comments on this parameter
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Comments on range of parameter	 Comments on scores for parameter

Flammability	 Score

Non-combustible	 0

FP>140°F	 1

100°F<FP<140°F	 2

FP<l00°F	 3

BP> 100°F	 ________

FP<100°F	 4

BP< 100°F	 _______

FP = Flash point
BP = Boiling point

General comments on this parameter
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Comments on range of parameter	 Comments on scores for parameter

Toxicity (ppm)	 ________ Score
______	 TLV < 0.001	 8

0.001 ^ TLV < 0.01	 7
0.01 ^ TLV < 0.1	 6
0.1 ^ TLV < 1.0	 5

1.0 ^ TLV < 10.0	 4

10.0 ^ TLV < 100.0	 3

100.0 ^ TLV < 1000.0	 2

1000.0 ^ TLV < 10000.0	 1
1.0% ^ TLV

General comments on this parameter
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Comments on range of parameter	 Comments on score', for parameter

Explosiveness ___________

S = (UEL - LEL)%	 - Score

	

0	 ^S<	 10	 1

	

10	 ^S<	 20	 2

	

20	 ^S<	 30	 3

	

30	 ^S<	 40	 4

	

40	 ^S<	 50	 5
	50	 ^S<	 60	 6

	

60	 ^S<	 70	 7

	

70	 ^S<	 80	 8

	

80	 ^S<	 90	 9

	

90	 ^S<	 100	 10

General comments on this parameter
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Comments on range of parameter	 Comments on scores for parameter

Temperature (°C) _____ Score

_____	 T < -25	 10

	

-25 ^ T < -10	 3

	

-10 ^ T < 10	 1

	

10 ^T<30	 0

	

30 ^ T < 100	 1

	

100 ^ T < 200	 2

	

200 ^ T < 300	 3

	

300 ^ T < 400	 4

	

400 ^ T < 500	 5

	

500 ^ T < 600	 6

	

600 ^ T < 700	 7

	

700 ^ T < 800	 8

	

800 ^ T < 900	 9
900 ^ T <	 10

General comments on this parameter
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Comments on range of parameter 	 Comments on scores for parameter

Pressure (psi)	 Score
o - 90	 1

	

91 - 140	 2

	

141 - 250	 3

	

251 - 420	 4

	

421 - 700	 5

	701 - 1400	 6

	

1401 - 3400	 7

	

3401 - 4800	 8

	

4801 - 6000	 9

	

6001 - 8000	 10
+1 point per 2500 psi

General comments on this parameter
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Comments on range of parameter 	 Comments on scores for parameter

Yield (%)	 Score
100	 0

	

90 - 99	 1

	

80 - 89	 2

	

70 - 79	 3

	

60 - 69	 4

	

50 - 59	 5

	40 - 49	 6

	

30 - 39	 7

	

20 - 29	 8

	

10 - 19	 9
0 - 9	 10

General comments on this parameter
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Ranking Parameters

In making an assessment of the inherent safety of a reaction step, how
important do you consider the following parameters.

In the left-hand column, record whether you consider that the parameter is
essential in making an assessment of inherent safety, that is would the assessment be
invalid without the piece of information.

In the right-hand columns, tick one box to indicate the importance of the
parameter in assessing inherent safety. Column 1 is very important, through to
column 5, unimportant.

Essential__________________ _________ Importance of Parameter
Yes or No	 Parameter	 1	 2	 3	 4	 5

____________ Inventory	 _________ _________ __________ _________ _________
_____________ Temperature	 _________ __________ __________ __________ __________
____________ Pressure	 _________ __________
____________ Yield	 _________ _________ _________ _________ _________
____________ Toxicity	 _________ _________ _________ _________ _________
____________ Flammability 	 _________ _________ __________ _________ _________

ReactionPhase	 _________ _________ __________
_____________ Waste streams	 _________ __________ __________ __________ __________
___________ Explosiveness	 ________ _________ _________ _________ _________
____________ Flash point 	 _________ _________ _________ _________ _________

Chemical
_____________ stability	 _________ __________ __________ __________ __________
______________ Recycles 	 __________ __________ ___________ __________ __________

Sidereactions	 _________ __________ 	 _________

Please add any further parameters in the space provided that you may consider, and
your rating of them.

Do you consider that there are any important interactions between these parameters
that make assessments of safety better or worse?
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Separation Steps

In the development of a new index, we are assessing not only reaction steps
but also separation steps. Using the table below, list the parameters that you consider
are needed to assess the inherent safety of a separation step, and indicate their
importance using the same scale as for the above table.

Essential	 _________ Importance of Parameter 	 _________

Yes or No	 Parameter	 1	 2	 3	 4	 5

_____________ Inventory	 _________ _________

_____________ Temperature	 _________ __________
Pressure_________ __________ __________ __________ _________

General comments.
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Structure of new index

In our new index, we are using a four factor approach to assess the steps:

Inventory * Hazard Assessment * Probability of release * Effects multiplier

The '*' means 'combined with in some way' as opposed to a multiplication.

Inventory is a more rigorous estimation of the contents of a reaction or separation
step.

Hazard assessment includes explosion, fire and toxic effects. It is a quantitative
assessment of how much damage could be caused for each of the three hazards per
unit inventory. It could be for example a T.N.T. equivalent or the Mortality index for
the hazard.

Probability of release is derived from parameters such as propensity for runaway,
corrosiveness, extremes of pressure or temperature, etc.

Effects multipliers quantifies how much the hazard could be amplified or attenuated
by process conditions or other circumstances, for example materials used under
conditions which could lead to flashing in the event of a leak, or toxic materials which
have are persistent, like dioxins.

Inventory and hazard assessment are likely to be combined to give a qualitative
assessment of the hazards for comparison between routes. Probability and effects
multipliers will give an additional measure to the index to indicate if a route is more
likely to have things go wrong with it.

Your comments and suggestions about this new approach would be much appreciated.
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Other questions

In what circumstances do you consider that intermediate storage is needed in a plant?

What do you consider is the most practicable measure of toxicity, that can be used to
assess the inherent safety of chemical routes?
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12. APPENDIX C - QUESTIONNAIRE 1 RESULTS
These are the answers copied as accurately as possible from the completed

questionnaire is.

INHERENT SAFETY ASSESSMENT OF ROUTES TO METHYL
METHACRYLATE

EXPERT RANKING QUESTIONNAIRE 1

In this first questionnaire, we would like you to spend no more than two hours. Try to
do the rankings using your 'gut feeling'.

Section I - Please rank the six methyl methacrylate (MMA) routes with respect to the
three stated criteria and also for overall inherent safety.

Section II - Please identify important features of the individual routes.

Section ifi - Please give reasons for your rankings with respect to the three criteria
and overall inherent safety.

Section IV - Please describe how you dealt with incomplete data about the routes.

12.1 Section I

Rank the six (MMA) in order of their inherent safeness, with respect to the following
criteria:

A - Major hazard
A large toxic or flammable release andlor explosion, affecting the surrounding area,
with loss of life.

B - Medium scale event
For example, a small explosion or implosion, leading to loss of production and bad
publicity. Any loss of life is due to 'bad luck'.

C - Unplanned event
This causes disruption to local population, for example these might be alarms and
evacuations, and the event makes the news. The event may not be dangerous but it
leads to loss of production and claims for compensation.

Please assign a score of 1 to the route you consider inherently safest through 6 for the
route you consider least inherently safe.

Page 204



12.1.1 Criterion A

_______ _____ _____	 EXPERT _____ _____ _____ _____

ROUTE	 1	 2	 3	 4	 5	 6	 7	 8
ACH	 5	 6	 5	 6	 3	 5	 4	 4

C2/MP	 3	 3	 4	 4	 5	 5	 1	 3
C2/PA	 4	 4	 6	 3	 4	 6	 3	 5

C3	 6	 5	 3	 5	 6	 6	 5	 6
i-C4	 2	 2	 2	 2	 2	 4	 6	 2
TBA	 1	 1	 1	 1	 1	 3	 1	 1

Table C.1 - Scores for criterion A

12.1.2 Criterion B

_______ _____ _____	 EXPERT _____ _____ _____ _____

ROUTE	 1	 2	 3	 4	 5	 6	 7	 8
ACH	 5	 6	 6	 6	 4	 4	 6	 4

C2/MP	 3	 3	 1	 3	 3	 4	 2	 3
C2/PA	 4	 4	 4	 4	 5	 3	 5	 5

C3	 6	 5	 5	 5	 6	 5	 1	 6
i-C4	 2	 2	 2	 2	 2	 4	 2	 2
TBA	 1	 1	 1	 1	 1	 4	 2	 1

Table C.2 - Scores for criterion B

12.1.3 Criterion C

_______ _____ _____	 EXPERT _____ _____ _____ _____

ROUTE	 1	 2	 3	 4	 5	 6	 7	 8
ACH	 5	 6	 4	 6	 4	 4	 6	 6

C2IMP	 3	 3	 3	 3	 3	 3	 1	 3
C2IPA	 4	 4	 5	 4	 5	 2	 4	 4

C3	 6	 5	 6	 5	 6	 5	 4	 5

i-C4	 2	 2	 1	 2	 2	 3	 1	 2
TBA	 1	 1	 2	 1	 1	 2	 1	 1

Table C.3 - Scores for criterion C

12.1.4 Criterion Overall

_______ _____ _____	 EXPERT _____ _____ _____ _____

ROUTE	 1	 2	 3	 4	 5	 6	 7	 8
ACH	 5	 6	 5=	 6	 3	 13	 6	 4=

C2/MP	 3	 3	 3	 3	 5	 12	 1	 3
C2/PA	 4	 4	 5=	 4	 4	 11	 5	 4=

C3	 6	 5	 4	 5	 6	 16	 4	 6
i-C4	 2	 2	 2	 2	 2	 11	 3	 2
TBA	 1	 1	 1	 1	 1	 9	 1	 1

Table C.4 - Scores for Overall criterion
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Routes based on:
ACH - Acetone Cyanohydrin

	 C3 - Propylene
C2/MP - Ethylene via Methyl Propionate

	 i-C4 - Isobutylene
C2/PA - Ethylene via Propionaldehyde

	 TBA - Tertiary Butyl Alcohol

12.2 Section II

What are the important features that influence the inherent safety of each route and
how important do you consider they are on a scale of 1 (high importance) to 5 (low
importance)? You may list any number of features.

Expert 1

ACH

1 No. of toxic and flammables involved and severity (NH 3 , HCN, CH4 etc)
2 Number of process stages and recycle complexity
4 Pressures involved 1 <P <7 (higher=worse)
5 Volume of waste streams esp. water

C2JMP

1 No. of toxics and flammables (CO. C2H4)
2 No. of process stages
4 Pressures 5(?) <P < 100
5 Waste streams

C2IPA

I No. of toxics and flammables (CO, H 7 , C2H2)
2 No. of process stages
3 Pressures 7 <P < 350
5 Waste H20

C3

1 No. toxics and flammables (HF, CO, Prop)
2 No. of stages
4 Pressures 2.5 <P < 100
5 Waste H20

i-C4

I No. toxics and flammables (Isobutylene, MMA)
2 No. of process stages
4 Pressure 3.7 <P < 8+?
5 Waste streams
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TBA

1 No. of toxics and flammables
2 Stages
4Pressure4.O<P<7.5

Expert 2

ACH

HCN1
Oxidation 3
High pressure oxygen 3
Med pressure CO 4
Many stages 4
Strong acid 5

C2/MP

Oxidation 3
High pressure oxygen 3
Med pressure CO 4

C2/PA

Oxidation 3
High pressure oxygen 3
High pressure CO 3
Flashing liquid (C2H4) 3

C3

Oxidation 3
High pressure oxygen 3
Med pressure CO 4
HF (high pressure) 1
Flashing liquid (C3H6) 3

i-C4

Oxidation 3
Med pressure oxygen 4
Flashing liquid (C4H8) 4

TBA

Oxidation 3
Med pressure oxygen 4
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Expert 3

ACH

Liquid phase high pressure 2
Low yield 2
Toxic gas release 1

C2/MP

Liquid phase high pressure
Low yield 2

C2/PA

Liquid phase high temp. 1

C3

HF toxicity I
High pressure 2
Low yield 1

i-C4

Liquid phase pressure 1
Unstable intermediates 2
Low yield 1
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TBA

Liquid phase pressure 2

Expert 4

ACH

Stored ammonia 2
methane 4
025
acetone 4
H2SO44

C2/MP

Stored ethylene 1
CO2
methanol 4

Step 1 (02/CH4 and HCN) 1
Step 2 (ACH)	 2
Step 3 (High P and ACH)	 1
Step 4 (Methanol)	 3

Step 5 (SO2 and 02/CH4)
Step 6 (SO2 and SO3) 3

Step 1 (High P and flammable) 2
Step 2 (Partial oxidation [P011) 2
Step 3 (Methanol)	 3

2

C2/PA

Stored ethylene 1	 Step 1 (High P flammable) 2
CO 2	 Step 2 (High P toxic and flammable) 1
H2 3	 Step 3 [P0] 2
formaldehyde 2 ? Step 4 (Methanol) 3
025
methanol 4

C3

Stored propylene 1 Step 1 (CO and HF + high pressure) 1
CO2	 Step 2(HF)2
°2	 Step 3 [P0] 2
methanol	 Step 4 (Methanol) 2

-C4

;tored isobutylene 1
oxygen 5
methanol 4

'BA

tored TBA 4
025
methanol 4

Step 1 [P0] 2
Step 2 [P01 2
Step 3 (Methanol) 3

Step 1 [P0] 2
Step 2 [P0] 2
Step 3 (Methanol) 3
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Expert 5

ACH

A3
Flashing inventory in stages 3,4 of flammables
B4

Reaction in stage 1, high temperatures, 2; HCN (Toxic); sulphuric acid
Large no. of stages
C4
Numerous liquid effluents; HCN; sulphuric acid

C2IMP

A5
Flashing inventory in stage 1 of methyl propionate (flammable)
B3

Reaction in stage 2, 02; ethylene (flammable); CO (toxic)
C3
Little effluent or toxics

C2IPA

A4
Flashing inventories in stages 2,4 of flammable
B5

Reaction in stage 3, 07 ; ethylene, hydrogen (flammable); CO (toxic)
C5
Little effluent or toxic

C3

A6
Flashing inventory in stage 1 of isobutyrl fluoride (assumed flammable) + HF (nasty
toxic)
B6

Reaction in stage 3, 0; propylene (flammable); HF, CO (toxic)
C6
HF

i-C4

A2
Flashing inventory in stage 3 of MM (flammable)
Storage of isobutylene (Flammable)(Bpt <atmospheric temp)
B2
Reaction in stages 1,2 02; isobutylene (flammable)
Cl
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Little effluent or toxics

TBA

Al
Flashing inventory in stage 3 of MM (flammable)
Bi
Reaction in stages 1, 2, 02
Cl
Little effluents or toxics

Expert 6

ACH

Toxicity	 1	 Flammability	 2
Pressure	 5	 Quantity	 ?
Temperature 1	 Chemical stability 	 5

C2/MP

Toxicity	 2	 Flammability	 1
Pressure	 2	 Quantity	 ?
Temperature 5	 Chemical stability 	 3

C2/PA

Toxicity	 2	 Flammability	 1
Pressure	 1	 Quantity	 ?
Temperature 2	 Chemical stability	 3

C3

Toxicity	 1	 Flammability	 1
Pressure	 1	 Quantity	 ?
Temperature 3	 Chemical stability	 1

i-C4

Toxicity	 4	 Flammability	 1
Pressure	 ?	 Quantity	 ?
Temperature 1	 Chemical stability	 2

TBA

Toxicity	 3	 Flammability	 3
Pressure	 4	 Quantity	 ?
Temperature 1	 Chemical stability	 2
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Expert 7

ACH

Step	 1 Explosion risk / Toxicity	 3 1
2 Fire hazard
3 Pressure (low risk)
4	 II

5 Explosion risk
6

C2/MP

Step 1 Explosion risk + possible large inventory 2 1
2 Explosion hazard
3 Fire risk

C2/PA

Step 1 Explosion risk: ACH step 1 	 2 2
2 Fire risk, High T, P
3 Gas explosion
4 Fire risk - not as high as step 2

C3

Step 1 No oxidant - fire risk	 1 2 LPG
2 Not serious. HF + 1-1 20 require exotic materials to contain
3 Explosion risk
4 No oxidant - fire risk

i-C4

Step 1 Explosion risk	 2 1 LPG
2
3 Fire risk

TBA

Step 1 Explosion risk
2
3 Fire risk

Expert 8

ACH

Good - low pressure (1) - especially for liquid
- gas phase step 1 (2)
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- not much above bpt in step 2 (1) - (little flashing)

Bad - highly toxic HCN, ACH (1)
- oxygen present (4)
- many present steps (2)

C2/MP

Bad	 - very high pressures (1)
- toxic CO (1)
- flammables (2)
- liquids will flash (1)
- explosion risk j the equipment (2) (step 2)

C2/PA

Bad - highly toxic HCHO (1)
- liquid in step 2 will flash (1)
- highish pressures (3)
- hydrogen present (2)
- flammables
- oxygen present (4)

C3

Bad	 -high pressures (1)
- will flash on release (1)
- flammables (3)
- very toxic HF (1)
- heavy gas (HF) (1)
- 02 in step 3 (4)

i-C4

Bad - flammables in process (2)
- poor yield (4)

Good - low pressure (1)

TBA

Bad - flammables (3)
- oxygen in process (4)

Good - low pressure (1)

12.3 Section III

What are the main reasons for your rankings with respect to:
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Expert 1

Criterion A:

Not ranked, as this will be more dependent on initiation event and e.g.
inventories, scope for loss of containment which relate as much to integrity of design,
Hazards studies etc.

Criterion B:

Use of factors in section 2
i.e. Number and nature of toxics and flammables
Number of stages (measure of complexity ?)
Pressures (Medium (3 -10) atm better than high (15+))
Effluents esp. waste water

Criterion C:

Most likely same criteria but reversed (7)

Overall:

Gut feel and above easily established
TBA + i-C4 'best'
C3 + ACH 'worst'
Hence C2JPA + C2/MP in middle with C2JPA slightly the worse because of

H2 and higher pressures.

Expert 2

Criterion A:

Same reasons for all criteria.

To get overall rankings I reversed the marks in section II
( 1—*5

2-4

3-43

4-2

5-41)

and then added them up.
Criterion B:

Criterion C:

Overall:
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Expert 3

Criterion A:

Liquid phase high pressure
Presumably high inventory

Criterion B:

Toxic release

Criterion C:

Toxic release
Hydrogen fluoride (on which I am not knowledgeable!)

Overall:

High inventories above flash point
Toxicity

Expert 4

Criterion A:

Storage of flammable which is gas at ambient conditions but not over buoyant.
Large inventory of volatile or gaseous toxic.
(Large inventory of condensed phase explosive - not used).
(Fire or explosion - airborne toxic combustion products or ultra-toxic

dispersion - not used)
Physical or chemical explosion - transport of toxic over long range.

Criterion B:

process conditions - chemical explosion
or - physical explosion
or - loss of containment flammable - short range.
or - loss of containment toxic - short range

e.g. not normally gaseous

Criterion C:

Toxics or toxic combustion products in fire conditions

Overall:

Due to relative case of control of off-site risks and their dependence on storage
choices, I went along with the category B ranking.
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Expert 5

Criterion A:

Main factor used is potential for a large vapour cloud from an inventory of
supersaturated liquid, particularly at high pressure.

Criterion B:

AsA
Pressure of flammables, toxics
Reactions involving oxygen
Large no. of stages

Criterion C:

As B but particular emphasis the dispersion of flammables, toxics across
factory fence.

Release of noxious liquid effluents
High profile in-works emergency

Overall:

Not clear what this really means - I have chosen to base thinking here on major
hazard criteria.

Expert 6

Criterion A:

The reasoning behind all of the criteria are similar and based on

Pressure
Toxicity
Quantities
Chemical and physical characteristics
Past experience of incidents

Criterion B:

Criterion C:

Overall:

Expert 7

Criterion A:
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Two of the processes appear to require the storage of LPG (Propylene based
route, Isobutylene based route). With these there could be a risk of fore in the plant.
Vapour phase reactions with explosion hazards can be handled with good control
systems and relief systems.

Criterion B:

All these processes have the possibility of explosions. These will happen, but
will be contained by the systems referred to in Criterion A above. In general the fewer
the steps the better.

Criterion C:

Again in general the fewer the steps the less overall pipework etc. Piping is a
prime contribution to this level of event.

Overall:

1 LPG's are bad news.
2 Explosion, fire can be handled.
3 Toxic risks are handled by good design and adequate training.

Expert 8

Criterion A:

Bad - high pressure, especially if linked with a liquid which will flash on
release, and even more so if it is toxic.

- the possibility of explosion within the plant equipment.
- gas toxicity, especially if it is a heavy gas.

Criterion B:

Same as for criterion 'A'

Criterion C:

Toxicity more important, otherwise as for 'A' and 'B'.

Overall:

As for criteria 'A' and 'B'

12.4 Section IV

Expert 1

Was there any data that you needed but did not have?

More detailed flowsheets showing especially
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recycles
service' materials and reagents
approximate sizes of main plant items
approximate sizes of storage inventories
Materials of construction and resistance to attack

What would you have done with this data if you had had it?

Use risk-size-pT (m3 .bar.k) as measure for flammables and toxics

How did you deal with not having this data?

Had to assume no extra hazards from other materials
Effect of plant size(s) same for all processes

Do you have any general comments at this stage?

Interested that intuitive answers not necessarily same as Gut feel and
parameter method

Expert 2

Was there any data that you needed but did not have?

1. Boiling point of mixtures
2. Does °2 mean air or pure oxygen?
3. Are reactions liable to runaway?
4. Inventories in process and storage

What would you have done with this data if you had had it?

1. Would tell me if leaks would flash.
2. Pure 0-, more hazardous - explosions in plo more likely
3. Obvious
4. Possibly the most important single factor.

How did you deal with not having this data?

1. Guessed
2. Assumed air is used.
3. Ignored.
4. Ignored

Do you have any general comments at this stage?

In view of uncertainties I doubt the value of this exercise.

Expert 3
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Was there any data that you needed but did not have?

Inventories of reactants and other obvious gaps.

What would you have done with this data if you had had it?

Used it for the ranking.

How did you deal with not having this data?

Guessed - reluctantly.
(In real life I would not guess!)

Do you have any general comments at this stage?

1. I don't like the idea of doing the ranking without data!
2. I don't have confidence in the judgement of people who don't know the

processes.

Expert 4

Was there any data that you needed but did not have?

1 (Relative flowrates)
2 Combustion energy
3 (Process temperature vs. flash point)
4 (Ambient temperature vs. flash point)
5 Ambient vapour buoyancy
6 Ambient vapour pressure vs. TLV
7 Chemicals ordered by boiling point (+ process step temperatures marked)
8 Side reactions (e.g. complete oxidations)
9 Distinction between stored and transient chemicals + scale of recycle
10 Fuel gas requirements
11 Some account of toxic effects (e.g. exposure time to realise certain death)
12 Difficulty of separation

What would you have done with this data if you had had it?

1 Scale of transient chemical risks
2 Scale of fire/explosion consequences
3 Scale of short range fire/explosion risk + internal explosion risk
4 Scale of long range fire/explosion risk + storage fire/explosion risk
5 Scale of range of fire/explosion/toxic risk
6 Scale of short range toxic/flammable risk
7 State of material on loss of containment
8 Scale of risk of unwanted by-products or exotherms
9 Scale of storage risks
10 'Hidden' flammable risk
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11 Scale of opportunity for self-rescue. Relative effects of acute vs. chronic
exposure.

12 Scale of loss of containment risks in separation processes and recycles

How did you deal with not having this data?

1 Ignored
2 Guessed (qualitatively)
3/4 Tried to bear in mind when relevant (given 2 hr time constraint)
5 Guessed (qualitatively)
6 Used general knowledge - very unsure of this
7 as 3/4
8 Assumed complete oxidation could occur. This was a serious shortcoming.
9 Assumed all possible recycles made and intermediate storage minimised

Assumed all incoming material stored.
10 Ignored
11 Used general knowledge (very dubious)
12 Ignored. Another serious shortcoming.

Do you have any general comments at this stage?

Expert 5

Was there any data that you needed but did not have?

Inventories of liquid phase processes. To some extent, I have inferred reactor
inventories from reaction yields (lower yield probably means higher inventory)

Toxicity of isobutyrl fluoride, methyl propionate (in general, there is need for
gas toxicity as well as TLV data)

What would you have done with this data if you had had it?

Self explanatory - see section II, III

How did you deal with not having this data?

Do you have any general comments at this stage?

Need for knowledge of relative risk of particular processes e.g oxidation,
carbonylation, hydrolysis

Expert 6

Was there any data that you needed but did not have?

Quantities of materials
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What would you have done with this data if you had had it?

Estimated potential scale of problem

How did you deal with not having this data?

Guessed that significant quantities would be processed

Do you have any general comments at this stage?

1. Section 1 should have followed section 2 - you use the outcome of section 2
to arrive at the answers to section 1

2. Changing the scale and meaning is confusing (1 - 6 vs. 1 - 5)

3. The boiling points for acetone and methanol are wrong.

Expert 7

Was there any data that you needed but did not have?

Inventories of raw materials
Layout
Distance to works boundary, general public

What would you have done with this data if you had had it?

Modified the answers given

How did you deal with not having this data?

Assumed inventories of LPGs in two cases

Do you have any general comments at this stage?

ICI have a good safety record in running the ACH route for 60 years (1 death).
Yet for various reasons this has come out as the least inherent safe route on my
ranking. The chances of killing the general public are minuscule

Expert 8

Was there any data that you needed but did not have?

Flammability data needed for all compounds

What would you have done with this data if you had had it?

In absence of data, I assumed flammability
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How did you deal with not having this data?

See previous paragraph

Do you have any general comments at this stage?

The combination of high pressure (likely to cause a leak) with liquid which
will flash on release (therefore causing large release + large vapour cloud) seems more
important than the factors of pressure and liquid alone; the combination should be
weighted.
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13. APPENDIX 0- QUESTIONNAIRE 2 RESULTS
These are the answers from the completed questionnaire 2s with the steps re-

arranged into the correct sequence in the six routes.

13.1 Criterion A

______ ____ ____ ____ EXPERT ____ ____ ____ ____
ROUTESTE	 1	 2	 3	 4	 5	 6	 7	 8
________ P _____ _____ _____ ______ _____ _____ _____ _____
ACH	 1	 4	 3	 4	 3	 2	 4	 2	 5
ACFI	 2	 4	 4	 4	 2	 2	 4	 2	 2
ACH	 3	 2	 4	 1	 2	 2	 1	 1	 2
ACH	 4	 3	 4	 5	 1	 2	 2	 1	 2
ACH	 5	 2	 3	 2	 1	 2	 2	 1	 2
ACH	 6	 2	 2	 1	 1	 2	 4	 2	 2
C2/MP	 1	 3	 5	 2	 2	 4	 5	 4	 4_
C2IMP	 2	 2	 2	 3	 2	 2	 4	 2	 1
C2/MP	 3	 2	 5	 4	 1	 2	 1	 1	 3
C2/PA	 1	 3	 2	 4	 2	 2	 5	 2	 2
C2/PA	 2	 3	 4	 3	 1	 2	 4	 2	 2
C2/PA	 3	 2	 3	 5	 2	 2	 2	 4	 1
C2IPA	 4	 2	 4	 3	 1	 2	 2	 1	 3
C3	 1	 5	 5	 3	 3	 4	 5	 5	 3
C3	 2	 4	 4	 2	 2	 3	 3	 3	 2
C3	 3	 2	 3	 2	 2	 2	 1	 2	 1
C3	 4	 2	 4	 3	 1	 2	 2	 1	 3
i-C4	 1	 3	 3	 2	 2	 2	 4	 5	 2
i-C4	 2	 2	 3	 4	 1	 2	 2	 4	 1
i-C4	 3	 2	 4	 3	 1	 2	 2	 1	 3
TBA	 1	 3	 3	 1	 3	 2	 1	 2	 1
TBA	 2	 2	 3	 4	 1	 2	 2	 4	 1
TBA	 3	 2	 4	 3	 1	 2	 2	 1	 3

Table D.1 - Scores for criterion A
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13.2 Criterion B

______ ____ ____ _____ EXPERT _____ ____ ____ ____
ROUTE STE	 1	 2	 3	 4	 5	 6	 7	 8
________ P ______ ______ ______ ______ ______ ______ ______ ______
ACH	 1	 4	 3	 6	 4	 3	 4	 2	 5
ACH	 2	 4	 4	 5	 3	 2	 4	 2	 2
ACH	 3	 2	 4	 4	 3	 3	 1	 2	 2
ACH	 4	 3	 4	 5	 4	 2	 2	 2	 2
ACH	 5	 2	 3	 4	 2	 3	 2	 2	 2
ACH	 6	 2	 2	 4	 2	 3	 3	 3	 2
C2/MP	 1	 3	 5	 2	 2	 4	 5	 2	 4
C2/MP	 2	 2	 2	 3	 3	 3	 4	 2	 1
C2IMP	 3	 2	 5	 3	 1	 2	 1	 2	 3
C2IPA	 1	 3	 2	 1	 3	 3	 5	 2	 2
C2/PA	 2	 3	 4	 3	 2	 2	 4	 2	 2
C2IPA	 3	 2	 3	 4	 3	 3	 2	 3	 1
C2JPA	 4	 2	 4	 4	 1	 2	 2	 2	 3
C3	 1	 5	 5	 5	 3	 4	 5	 2	 3
C3	 2	 4	 4	 4	 2	 4	 3	 4	 2
C3	 3	 2	 3	 4	 3	 3	 1	 3	 1
C3	 4	 2	 4	 4	 1	 2	 2	 2	 3
i-C4	 1	 3	 3	 2	 3	 2	 4	 3	 2
i-C4	 2	 2	 3	 1	 3	 3	 2	 3	 1
i-C4	 3	 2	 4	 4	 1	 2	 2	 2	 3
TBA	 1	 3	 3	 2	 4	 3	 1	 2	 1
TBA	 2	 2	 3	 1	 3	 3	 2	 3	 1
TBA	 3	 2	 4	 4	 1	 2	 2	 2	 3

Table D.2 - Scores for criterion B
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13.3 Criterion C

______ ____ ____ ____ EXPERT ____ ____ ____ ____
ROUTESTE	 1	 2	 3	 4	 5	 6	 7	 8

_______ P _____ _____ _____ _____ _____ _____ _____ _____
ACH	 1	 4	 3	 4	 3	 3	 4	 3	 5
ACH	 2	 4	 4	 4	 2	 2	 4	 3	 2
ACH	 3	 2	 4	 3	 2	 3	 1	 3	 4
ACH	 4	 3	 4	 4	 3	 2	 2	 3	 2
ACH	 5	 2	 3	 1	 1	 3	 2	 3	 2
ACH	 6	 2	 2	 4	 1	 3	 3	 4	 2
C2IMP	 1	 3	 5	 2	 1	 4	 5	 4	 4

C2/MP	 2	 2	 2	 3	 2	 3	 4	 4	 1
C2IMP	 3	 2	 5	 3	 2	 2	 1	 2	 3
C2IPA	 1	 3	 2	 3	 2	 3	 5	 3	 2
C2IPA	 2	 3	 4	 4	 3	 2	 4	 3	 5
C2IPA	 3	 2	 3	 5	 1	 3	 2	 4	 1
C2/PA	 4	 2	 4	 3	 1	 2	 2	 3	 3
C3	 1	 5	 5	 5	 3	 4	 5	 3	 5
C3	 2	 4	 4	 5	 3	 4	 3	 4	 4
C3	 3	 2	 3	 3	 2	 3	 1	 4	 1
C3	 4	 2	 4	 3	 1	 2	 2	 3	 3
i-C4	 1	 3	 3	 1	 1	 2	 4	 4	 2
i-C4	 2	 2	 3	 5	 1	 3	 2	 4	 1
i-C4	 3	 2	 4	 3	 1	 2	 2	 3	 3
TBA	 1	 3	 3	 2	 3	 3	 1	 4	 1
TBA	 2	 2	 3	 5	 1	 3	 2	 4	 1
TBA	 3	 2	 4	 3	 1	 2	 2	 3	 3

Table D.3 - Scores for criterion C
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14. APPENDIX E - QUESTIONNAIRE 3 RESULTS
These are the answers copied as accurately as possible from the completed

questionnaire 3s.

INHERENT SAFETY ASSESSMENT OF ROUTES TO METHYL
METHACRYLATE

EXPERT RANKING QUESTIONNAIRE 3

INTRODUCTION

The purpose of this third questionnaire is to aid us in the development of a
new index. The questionnaire is divided into several sections:

Current index comments - we would like you to comment on and constructively
criticise our present index.

Ranking parameters - please complete the table to help us decide how important
various safety parameters are.

Separation steps - please complete the table in a similar manner to the previous table
to help us decide what are the important parameters in assessing separation stages.

Structure for new index - your comments and suggestions are requested for the
development of our new index.

Other questions - some questions for you to answer on general topics.

14.1 Current Index Comments

Currently our index is calculated by scoring parameters that describe each of
the reaction steps in the route and then summing these scores.

Method

The route is divided into reaction steps.

For each step a score is calculated for each chemical involved. This is the sum
of the scores for: inventory (based on the hourly production rate for 8000 hours per
year, 100% conversion and a nominal holdup of 1 hour), flammability, explosiveness
and toxicity. The highest score over all the chemicals in the step becomes the
Chemical score.

The scores for pressure, temperature and yield are summed to give the Process
score for the step.

The step score is the sum of the Chemical score and the Process score.

The final route score is the sum of all the scores for all the steps in the route.
Example
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The scoring for the first step of the ACH route is as follows:

Chemical score - the highest is for HCN:

Inventory (1) + Flammability (4) + Toxicity (4) + Explosiveness (4) = 13

Process score:

Temperature (10) + Pressure (1) Yield (2) = 13

Total step score = Chemical score + Process score = 13 + 13 =26

The same procedure yields the scores for steps 2 to 6, which are: 15, 13, 15,
20, 19.

The total score for the route, that is the index value is given by:

IndexforACHroute=26+ 15+13+15+20+19=108

We would like you to comment on and positively criticise the scoring tables
and the method used for calculating the current index. If you think a table of scores is
inappropriate or that the ranges in the tables are incorrect, please suggest alternatives.

Comments on method.

Expert 1

Why only one (highest) chemical score, whereas P + T + V are summed?
Perhaps should add in P + '11'abs (or something?)

Expert 2
No comment

Expert 3
No comment

Expert 4
No reply

Expert 5

I will comment on the individual tables in the current index but I have grave
doubts about it. In particular, two

1 If you use an index of this type, why not the Dow index?

2 How do you decide if the relationship is additive or multiplicative? I have
had a student do an MSc in which he produced a more structured version of the Dow
index, i.e rather like a fault tree.

Expert 6
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In principle, I can see the value of a scoring system but I have difficulty in
rationalising a consistent scoring system. How much "inventory' is equal to what
flammability/toxicity/explosiveness and is it logical to add them together?

We should discuss the relative weighting of each parameter.

Expert 7
No comment

Expert 8
No comment
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Comments on range of parameter	 Comments on scores for parameter

Inventory (Tonnes)	 Score

	

0.1	 -	 250	 1

	

251	 - 2500	 2

	

2501	 - 7000	 3

	

7001	 -	 16000	 4

	

16001	 -	 26000	 5

	

26001	 - 38000	 6

	

38001	 - 50000	 7

	

50001	 - 65000	 8

	

65001	 - 80000	 9

	

80001	 -	 100000	 10

14.2 Inventory

General comments on this parameter

Expert 1

Strange intervals. HSE assume Risk 0< (Inventory) 2 . Is this basis?
e.g I = 26k score =5

= 4 * 26 k score = 10 i.e Risk oc jiventoy ?
For toxics anything > 2500 te alarming! (i.e. score 2?). Should penalise rate.

Expert 2

What is the logic underlying the sizes of the step?

According to page 1, last paragraph, inventory is based on hourly production
rate, assuming 100% conversion and 1 hour hold-up. It should be based on the actual
inventory. The production rate is irrelevant. The actual inventory depends on the
conversion per pass, the efficiency (i.e. are unwanted by-products formed?),
equipment design and buffer storage. The old and new methods for nitroglycerine
production had the same hourly production rate but the old method had 1000 times
more inventory.

Expert 3

For toxic substances the low range 0.1 - 250 is too low.

Expert 4

No reply
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Expert 5

Range 0.1 - 250 covers many cases of interest. Subdivide it. Inventories of 50
- 100000 te sound like oil storage rather than most other material.

For explosive and possibly flammable clouds, for a given effect

Distance Constant

Mass"3

So a 1/3 power may have a role to play.

Expert 6

What counts as inventory? Feedtanks, reactors, intermediate storage, final
storage?

Again, I have difficulty justifying the breakdown of quantities but at the
moment cannot suggest a more logical split.

Expert 7

Range should cover

0.1 - 1.0 Maybe score for 0.1 te should be 0.1
1.0- 10.0
10.0 - 50.0
50 - 500

e.g Propylene tanker disasters in Spain, 20 te = many deaths

Almost	 most important parameter.

What you don't have can't leak!

Expert 8

As I read your definition on page 1, 1000 te/yr gives an 'Inventory' of
1000/8000 te/hr * 1 hr = 0.125 te. So 100000 te inventory corresponds to 8 * 108
te/yr! Do you mean that?

I would expect that the risk is proportional to the number of streams in
parallel. hence for higher tonnages (say> l0000te/yr), score might be proportional to
tonnage. Furthermore I would think the parameter should then be a multiplier, not an
additive factor.
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Comments on range of parameter	 Comments on scores for parameter

Flammability	 Score
Non-combustible	 0
FP>140°F	 1

100°F<FP<140°F	 2

FP<100°F	 3

BP> 100°F	 _______

FP<100°F	 4
BP< 100°F	 _______
FP = Flash point
BP = Boiling point

14.3 Flammability

General comments on this parameter

Expert 1

Too sophisticated for me esp. °F rather than °C

Flash point not always the issue (can depend on dispersion characteristics and
flammable limits (LFL, UFL))

Expert 2

Why not use °C?

Expert 3

OK

Expert 4

No reply

Expert 5

For a flammable, what matters is how much participates. That in turn depends
on the phenomenon e.g flash fire (vapour cloud fire), vapour cloud explosion.

The important thing is how much flashes off. would concentrate on boiling
point. 100°F is rather high.

-40°C -10°C +10°C ?
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Expert 6

How were the temperatures chosen? Could we not align them with figures in
legislation e.g. 21°C (Petroleum act), 32°C (Highly flammable), 55°C (HSE Guidance
Booklets) for flashpoint? This would avoid yet more arbitrary divisions and
classifications.

Expert 7

Chemical plants usually store reactants at ambient T and react at elevated T.
Crucial question is

Is material above its flash point at room temperature?

If at flash point = LEL

°F now abandoned!

Expert 8

There is a recognised definition of 'highly flammable liquid' based on F.P. of
32°C (See e.g. F.P.Lees book, P506).

Should this be the lowest FP limit?

Also, should be in °C.
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Comments on range of parameter	 Comments on scores for parameter

Toxicity (ppm)	 ________ Score

	

TLV < ftOOl	 8
0.001 ^ TLV < 0.01	 7
0.01 ^ TLV < 0.1	 6
0.1 ^ TLV < 1.0	 5

	1.0 ^ TLV < 10.0	 4

	

10.0 ^ TLV < 100.0	 3

100.0 ^ TLV < 1000.0	 2

1000.0	 TLV < 10000.0	 1
1.0% ^ TLV

14.4 Toxicity

General comments on this parameter

Expert 1

Again TLV (based on health = long term)
Look at probits (constant) dosage-time?

Expert 2

In the UK TLVs have now been replaced by Maximum Exposure limits and
Occupational Exposure Standards (see COSHH Regulation)

TLV' (and their successors) do not always measure the risk to life. Some are
based on discomfort, for example, lachrymatory substances such as tear gases. LD50
would be a better measure of toxicity.

Expert 3

I'd prefer the range to be biased to the lower TLVs e.g

TLV <0.0001 8
<0.001 7
<0.01 6
<0.1	 5
<1	 4
<10 3
<100 2
<1000 1

Expert 4

No reply
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Expert 5

See comments on p13 on toxicity. TLV is a valid parameter for long-term
exposure. A TLV of 1 ppm is pretty strict. TLVs below that not likely to be quite
explosive to obtain.

Expert 6

EH4O from the HSE no longer use TLVs and use instead maximum exposure
limits (MELs) and occupational exposure standards (OESs). I think these should be
used in the UK. There should be a weighting depending upon whether there is an
MEL or not and perhaps taking account toxic dose levels.

Expert 7

I TLV now OEL

2 TLV poor index of hazard - replace with Short Term Toxic Limit.

e.g HCN 10 ppm is not very toxic but 300 ppm for 1 mm = death.

Expert 8

I suspect the scales for low TLV ts should be greater.
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Comments on range of parameter	 Comments on scores for parameter

	

Explosiveness	 __________

S = (UEL - LEL)%	 Score

	

0	 ^S<	 10	 1

	

10	 ^S<	 20	 2

	

20	 ^S<	 30	 3

	

30	 ^S<	 40	 4

	

40	 ^S<	 50	 5

	

50	 ^S<	 60	 6

	

60	 ^S<	 70	 7

	

70	 ^S<	 80	 8

	

80	 ^S<	 90	 9

	

90	 ^S<	 100	 10

14.5 Explosiveness

General comments on this parameter

Expert 1

Again not sure of physical basis. Something about energy?

Expert 2

The value of LEL is more important than the value of S as a low LEL is more
easily reached than a high one.

Ammonia has an LEL of 16% and is therefore much more difficult to ignite
than light hydrocarbons which have a much lower LEL but a lower value of S.

Ammonia: S = 27- 16 = 11
Ethane: S = 12.5 - 3 = 9.5
Pentane: S = 7.8 - 1.4 6.4

Expert 3

OK

Expert 4

No reply

Expert S
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Most flammability limits ranges are fairly similar, except hydrogen. I am
doubtful whether this is worth including.

Expert 6

Does this actually provide much variation for a lot of chemicals? Looking at
some of the figures 1 suspect not.

Why not use autoignition temperatures along the lines of area classification
guidance?

Expert 7

This might better be presented as YES/NO to question - Is material
flammable/explosive through range in which it is used?

Expert 8

None
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Comments on range of parameter	 Comments on scores for parameter

Temperature (°C) 	 Score
_____	 T < -25	 10

	

-25 ^ T < -10	 3

	

-10 ^ T < 10	 1

	

10^T< 30	 0

	

30 ^ T < 100	 1

	

100 ^ T < 200	 2

	

200 ^ T < 300	 3

	

300 ^ I < 400	 4

	

400 ^ T < 500	 5

	500 ^ T < 600	 6

	

600 ^ T < 700	 7

	

700 ^ T < 800	 8

	

800 ^ T < 900	 9
900 ^ T <	 10

14.6 Temperature

General comments on this parameter

Expert 1

Don't understand why low temperatures penalised (H2 0/NaC1 mixtures go to -
25!)

Should exponential ? R° ekT

Expert 2

Temperature is not dangerous in itself, only in relation to flash point and
boiling point, which you have already taken into account on page 4. Are you double-
counting?

Expert 3

OK

Expert 4

No reply

Expert 5

Yes, this recognises problems in both low and high temperature ranges.
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Low temperature have potential to cause low temperature brittle fractures i.e
probability of release.

Likewise high temperatures increase probability of release.

But consequences are very different. At high temperatures there will be a
massive flashoff. At low temperature relatively slow vaporisation.

But it will depend upon inventory.

Expert 6

What is the justification for the ranges and the scoring?

Expert 7

Two effects

1 Enhances risk in handling flammables
2 Strength of plant

Score doesn't really reflect 2 as superior materials can be selected to combat
high temperatures.

OK as a crude start.

Expert 8

Ranges 10 - 30 to 500 - 600 suggested as scoring 0
Ranges 600 - 700 to 900 + scored as 1 to 4

For high temperatures the relationship of temperature to the atmospheric bpts
seems more important by far absolute temp, since it determines how much liquid will
flash on release.
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Comments on range of parameter	 Comments on scores for parameter

Pressure (psi)	 Score
o - 90	 1

	

91 - 140	 2

	

141 - 250	 3

	

251 - 420	 4

	

421 - 700	 5

	701 - 1400	 6

	

1401 - 3400	 7

	

3401 - 4800	 8

	

4801 - 6000	 9

	

6001 - 8000	 10
+1 point per 2500 psi

14.7 Pressure

General comments on this parameter

Expert I

Looks okay

Could look at energy pV. (cfTrevors LP IP HP)

Expert 2

What is the logic underlying the sizes of the steps? They should be based on
the effect of pressure on leak rate. See, for example, Lees, Figure 15.2 on page 416.

Expert 3

Prefer it biased lower e.g.

0- 50 psi
	

2
51 - 100
	

3
101 - 150
	

4
151 -200
	

5
201 - 500
	

6
501 - 1000 7
1001 -4000 8
4001 -6000 9
6001 - 8000 10

Expert 4

No reply
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Expert 5

I can think to the propensity to flash off. What matters is whether fluid is a
saturated liquid under pressure. And pressure has to be considered in conjunction
with temperature.

Expert 6

Basis for figure?

Expert 7

About right.

Expert 8

Should be in bars?

This would give the high pressure polyethylene process (1500 bar) a score of
16 on pressure alone - seems high in light of experience? - especially if we are
considering safety to public as well as employees.
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Comments on range of parameter 	 Comments on scores for parameter

Yield (%)	 Score
100	 0

	

90 - 99	 1

	

80 - 89	 2

	

70 - 79	 3

	

60 - 69	 4

	

50 - 59	 5

	40 - 49	 6

	

30 - 39	 7

	

20 - 29	 8

	

10 - 19	 9
0 - 9	 10

14.8 Yield

General comments on this parameter

Expert 1

Not relevant - capture an inventories recycle rates. Again don't understand
basis. Most bioprocess have very low yields.

Expert 2

As stated above, yield is irrelevant; inventory is the property that matters. Of
course, yield effects inventory, but so do other things and we should measure the final
inventory.

Expert 3

OK

Expert 4

No reply

Expert 5

Presumably point about yield is that low yield can lead to large recycles, large
separation section. Is this not dealt with already by inventory parameter.

Expert 6

Does it necessarily follow that the bigger the yield the lower the score?

Expert 7
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Need to discuss this - not quite sure of relevance. Surely 	 would be better (
to look at chances of a runaway reaction)

Expert 8
OK

14.9 Ranking Parameters for reaction and separation steps

In making an assessment of the inherent safety of a reaction step, how
important do you consider the following parameters.

In the left-hand column, record whether you consider that the parameter is
essential in making an assessment of inherent safety, that is would the assessment be
invalid without the piece of information.

In the right-hand columns, tick one box to indicate the importance of the
parameter in assessing inherent safety. Column 1 is very important, through to
column 5, unimportant.

__________ ____ ____ ____ EXPERT ____ ____ ____ ____ _______
Parameter	 1	 2	 3	 4	 5	 6	 7	 8	 Total Essential
Inventory	 5	 5	 5 _____ 5	 5	 5	 5	 35	 7
Toxicity	 5	 5	 5 _____ 5	 5	 4	 5	 34	 7
Chem.	 5	 5	 2	 5	 5	 3	 530	 7
Stability______ ______ ______ ______ ______ ______ ______ ______ _______ ___________
Temperature	 3	 2	 5 _____ 5	 5	 3	 5	 28	 7
Pressure	 3	 3	 5 _____ 3	 5	 3	 3	 25	 7
Flammability	 4	 5	 5 _____ -	 5	 4	 2	 25	 7
Explosiveness	 5	 5	 5 _____ -	 -	 4	 3	 22	 7
Flash point	 3	 2	 1 _____ -	 5	 4	 2	 17	 4
Side Reactions	 2	 -	 -	 _____ 5	 5	 -	 5	 17	 3
Waste streams	 2	 3	 2 _____ 4	 4	 -	 -	 15	 3
Reaction	 2	 -	 -	 4	 4	 2	 -	 12	 3
phase_____ _____ _____ _____ _____ _____ _____ _____ ______ __________
Yield	 1	 1	 3	 _____ -	 -	 -	 5	 10	 3
Recycles	 3	 -	 -	 -	 3	 -	 -	 6	 0
Mitigation	 S	 -	 -	 -	 -	 -	 -	 5	 0
Temp. relative	 -	 -	 -	 -	 -	 -	 5	 5	 1
toatm. B.P	 ____ ____ ____ ____ ____ ____ ____ ____ _____ _______
Mat.	 4	 -	 -	 -	 -	 -	 -	 4	 0
Corrosion_____ _____ _____ _____ _____ _____ _____ _____ ______ _________
Complexity	 4	 -	 -	 -	 -	 -	 -	 4	 0
Human factors	 3	 -	 -	 -	 -	 -	 -	 3	 0

Table E.1 - scores for importance of parameters

Do you consider that there are any important interactions between these parameters
that make assessments of safety better or worse?
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Expert 1

Pressure temperature inventory - source term esp. for toxic release

Expert 2

Beware of double counting, e.g. temperature and flashpoint, explosiveness,
flammability and chemical stability.

Expert 3

Of course - too complex for simple answer.

Expert 4

No reply

Expert 5

Explosiveness, chemical stability are similar - no sorry I see by explosiveness
you mean flammable/explosive range.

Inventory/temperature/pressure interact.

Expert 6

No comment

Expert 7

No comment

Expert 8

Re: inventory - see previous comments - should be a multiplier.

A combination of temp >> bpt, and high flammability or toxicity is
particularly bad.

It is clearly possible to generate table, based on proportion flashing.

14.10 General comments

Expert 3

It may be possible to distinguish between reaction steps and separation steps -
however in my experience the same factors apply.

Where do dust explosions during drying and mechanical accidents e.g
centrifugation apply?	 -
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Expert 8

I do not see why separation steps are any different to reaction steps.

14.11 Structure of new index

In our new index, we are using a four factor approach to assess the steps:

Inventory * Hazard Assessment * Probability of release * Effects multiplier

The ' means 'combined with in some way' as opposed to a multiplication.

Inventory is a more rigorous estimation of the contents of a reaction or separation
step.

Hazard assessment includes explosion, fire and toxic effects. It is a quantitative
assessment of how much damage could be caused for each of the three hazards per
unit inventory. It could be for example a T.N.T. equivalent or the Mortality index for
the hazard.

Probability of release is derived from parameters such as propensity for runaway,
corrosiveness, extremes of pressure or temperature, etc.

Effects multipliers quantifies how much the hazard could be amplified or attenuated
by process conditions or other circumstances, for example materials used under
conditions which could lead to flashing in the event of a leak, or toxic materials which
have are persistent, like dioxins.

Inventory and hazard assessment are likely to be combined to give a qualitative
assessment of the hazards for comparison between routes. Probability and effects
multipliers will give an additional measure to the index to indicate if a route is more
likely to have things go wrong with it.

Your comments and suggestions about this new approach would be much appreciated.

Expert 1

I wish I'd read this first. Seems simpler yet more realish.

Could 4jI * HC * PR * EM * better than + as it creates rather than destroys
dimensionality.

Expert 2

The new approach seems to meet many of the comments I have made.

Expert 3
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Unless the mathematics of the asterix and formula can be very transparently
explained the method will not be credible.

The effects multiplier sounds too subjective. Rules for it will need to be
published

Expert 4

No reply

Expert 5

I am much happier with this, which I can relate to in logic tree/fault tree.

Expert 6

No comment

Expert 7

Dominant hazardous material, Material factor, Specific material hazards, Type
of process, process conditions, quantities, plant layout, toxicity.

Expert 8

Much, much, better approach, I think.

Inventory for larger tonnage
Probability of release

14.12 Other questions

In what circumstances do you consider that intermediate storage is needed in a plant?

Expert 1

Quality control
Operability/reliability upstreamldownstream
Comfort!
Economics (Seasonal variation in energy and raw mats. cost)

Expert 2

Intermediate storage is justified when intermediate is not hazardous and the
cost of storing is (fixed plus working capital) is justified by the saving in output.

Expert 3

Many
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e.g when lengthy testing is needed.
when multi product routes exist
etc.
etc.

Expert 4

No reply

Expert 5

Intermediate storage is used to allow plant to keep running in face of
unreliability of 1. upstream and br 2. downstream sections. The need for it depends
on how acceptable it is to have an interruption of the product flow.

Expert 6

Startup + upset

Expert 7

Only when the consequences of having it give rise to other hazards. e.g
difficult start up regions. Even then one should attack the difficult start up e.g with
computer based control.

Expert 8

Batch processes, particularly if blending required.

What do you consider is the most practicable measure of toxicity, that can be used to
assess the inherent safety of chemical routes?

Expert 1

Some derivation from probitldist. is f(ct) regrettably

Perhaps [Time] should be a parameter?

Expert 2

LD50 is probably the best available measure of toxicity. In theory LD 10 might
be better but data is rarely available.

Expert 3

Death hazard to off-site personnel

Death hazard to on-site personnel
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Expert 4

No reply

Expert 5

There are two distinct measures of toxicity

1. Occupational hygiene - long term exposure of workers - TLV

2. Lethal effects - Toxic load

Toxic load L = f(C,t)

where C concentration
t exposure time

It could be

L=Ct

But it is not necessarily so

It can be expressed as

LL50, LCt50 etc

Expert 6

LD50 for animal

Expert 7

Seep 6 STTL

Expert 8

No comment
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15. APPENDIX F - NOMOGRAPHS

Figure 15.1 - Nomograph 1
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Figure 15.2 - Nomograph 2
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