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Abstract

Stability of model predictive control could be achieved by adding a terminal

weighting term in a performance index and the feasibility/stability region largely

depends on the choice of the terminal weighting term and associated terminal

control laws. For constrained linear systems, different from existing methods where

the stability region is estimated by its terminal region, a new method to estimate

feasibility/stability regions directly is proposed using a new representation of the

behaviour of MPC. A design procedure is then developed to determine the terminal

term such that the feasibbility/stability region of MPC algorithms is as large as

possible. Examples show that the stability region is greatly enlarged.
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1 Introduction

Stability of model predictive control (MPC) has been investigated by many authors

(see example, see recent review in [1]). To guarantee stability of MPC, the most

widely used method is to add a terminal weighting term in the performance index

and (or) impose constraints on terminal state. Recently these results are extended

from linear systems to the nonlinear case; for example, see [1], [2].

For the engineering application of MPC, a stability condition on its own is not

enough, and it’s desired that the stability regions of the proposed MPC schemes are

as large as possible. The choice of the terminal weighting term in the performance

index affects the size of the stability region of MPC which may vary from the

whole state space to nil. For an unconstrained linear system, it is shown that

when the terminal weighting term in the performance index satisfies the so-called

fake algebraic Riccati equation (FARE), MPC globally stabilises a linear system

[3]. For a stable linear system with a convex input constraint, Rawing and Muske

[4] points out that the closed-loop system is stable if the terminal weighting term

covers the performance cost of the free system (no control action imposed after the

terminal time). This control scheme is also equivalent to the case where an infinite

horizon performance (state) cost and a finite horizon control cost are employed.

The stability result for this kind of systems is easy to understand since the linear

system is stable under zero control input which satisfies the input constraint.

Recently, this kind of global stability result has been further extended to the

so-called asymptotically null-controllable with bounded inputs (ANCBI) system

which is stabilisable and has eigenvalues of modulus less than 1 or equal to one

(for discrete-time systems) in [5].

For general constrained linear systems, it is unlikely to achieve global stability.

A systematic method to determine the terminal weighting term to maximise the

stability region of MPC has been developed by [6] and [7]. The underlying idea
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is to optimise the terminal linear control and the terminal weighting matrix in

terms of the stability region. Most recently Lee and Kouvaritakis [8] proposes

a new approach to relax the stability region based on eigenvector decomposition

for a given linear stabilising gain. It is shown that it is possible to result in an

infinite stability region in certain directions. For constrained nonlinear systems,

optimisation based methods to determine the terminal weighting matrix have also

been proposed in [9, 10].

The motivation to achieve a large stability region for an MPC algorithm is

obvious since this implies that the MPC algorithm can work in a large range. Ho-

wever, although feasibility/stability regions are one of the main concerns of MPC,

in almost all existing works (for example, see [9, 8, 6, 7, 10]) the terminal wei-

ghing term and associated terminal law are designed in terms of terminal regions

rather than feasibility/stability regions themselves. The main difficulty in estima-

ting the stability/feasibility region directly lies in that the hehaviour of MPC is

very complicated since not only the constraints on input and state may be active

but also an on-line optimisation solver is involved in loop. A method to estimate

stability regions directly is presented in [11]. In the paper, different from conven-

tional MPC schemes where a quadratic performance index is on-line optimised, a

controller consisting of an LQ controller for unconstrained systems with infinite

horizon and a sequence of perturbations on the LQ controller is proposed, and the

on-linear optimiser tries to miminise the perturbations.

In view of the difficulty in direct estimation of stability regions for conventional

MPC schemes, stability regions are approximately estimated by their terminal re-

gions. It is relatively easy to estimate terminal regions since a terminal controller

is, in general, a conventional controller. Although terminal regions are contai-

ned in feasibility/stability regions and thus can be used as a measure to estimate

feasibility/stability regions, two factors affect the efficiency of the existing me-

thods. One is the gap between terminal regions and feasibility/stability regions
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which results conservativeness in the estimation of stability/feasibility regions. As

will be shown by the example in this paper, it could be very significant. The

other is that the maximisation of terminal regions does not necessarily imply that

feasibility/stability regions are maximised.

To avoid these problems, this paper reports a new approach to optimally choose

the terminal weighting term and associated terminal control laws in terms of

feasbility/stability regions of a MPC algorithm directly. This is achieved by using

a new representation of the behaviour of MPC. The control sequence within the

receding horizon yielded by an on-line optimisation solver on the basis of the state

measurement is represented by a linear control law with different gains at each

time instant in this paper. A new method to analyse the stability region of an

MPC algorithm for linear constrained systems directly is proposed.This enables

us to develop a procedure to determine the terminal weighting matrix to achieve

the maximum feasibility/stability region. It is shown that this problem is well

posed and can be formulated as a convex optimisation problem.

The remainder of this paper is organised as follows: Section 2 introduces the

MPC scheme for constrained linear systems. The main results are reported in

Section 3 where a method to estimate feasibility/stability regions directly and the

procedure for optimisation of the terminal term in terms of feasibility/stability

regions are developed. The proposed method is illustrated by a numerical example

and compared with other existing methods in Section 4. Finally this paper is ended

with conclusion in Section 5.

2 MPC for constrained linear systems

Consider a constrained discrete time system




x(k + 1) = Ax(k) + Bu(k)

x(0) = x0

(1)
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with control constraints

|ui| ≤ ūi, i = 1, . . . m (2)

where x ∈ Rn and u = [u1, · · · , um]T ∈ Rm are the state and control vectors

respectively. For the sake of simplicity, only input constraints are considered in

this paper but state constraints can be added using the techniques in [10] or [6].

MPC is, at state x(k) and time instant k, to find a control sequence u(k|k),. . .,

u(k +N −1|k) such that the quadratic performance index in moving horizon time

frame

J(k) = x(k + N |k)T Px(k + N |k) +

+
N−1∑

i=0

(x(k + i|k)T Qx(k + i|k) + u(k + i|k)T Ru(k + i|k)) (3)

is minimised and the control constraints (2) are satisfied where N is the predictive

length, x(k + i|k) denotes the prediction of the state at time instant k + i based

on the control u(k|k), . . . , u(k + i|k) and the state measurement x(k). Q > 0

(or Q ≥ 0 and [A, Q1/2] is detectable), R > 0 and P > 0 are the state, control

and terminal weighting matrices respectively. The above MPC problem can be

formulated as

min
u(k|k),...,u(k+N−1|k)

J(k) (4)

subject to (1) and (2). The problem (4) is solved on-line using an optimisa-

tion solver, for example, quadratic programming (QP), and a control sequence

u(k|k), . . . ,u(k + N − 1|k) is yielded. Then the MPC law is determined by

u(k) = u(k|k)). (5)

Before developing our main results, some definitions are necessary.

Definition 1: Terminal region V is defined as a region where once the terminal

state x(k + N |k) under the control u(k|k), . . . ,u(k + N − 1|k) yielded by minimi-

sation of the cost (3), arrives, there exists a control sequence u(k + N + i|k), i =

0, 1, . . . ,∞, satisfying the constraints (2), which steers the state to the origin.
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Definition 2: Feasibility region refers to a set of initial state points x0 from

which the optimal state trajectory x(i|0), i = 1, . . . , N under the optimal open-

loop control sequence u(i|0)), i = 0, 1, · · · , N − 1 satisfying the constraints (2)

yielded by solving the optimisation problem (4) arrives in the terminal region V
at time instant N .

Remark 1 : To ensure stability of the MPC, after the receding horizon, a ter-

minal control law is used to stabilise the plant within a terminal region. However,

this terminal control is never implemented and thus is a fictitious controller. It

is only used for determining the terminal weighting term off-line and for stability

analysis. In general, the feasibility region is larger than the terminal region.

There are two objectives in this paper: One objective is to estimate the sta-

bility/feasibility region of a MPC algorithm under a given performance index.

The other objective is to develop a systematic method to determine the terminal

weighting term in the performance index and provides guidance for MPC users to

choose the performance index in terms of stability requirement.

The following previous results will be used in our development.

Lemma 1 [1, 2]: Consider the MPC scheme described in Section 2 for the

constrained system (1) and (2) under the performance index (3). Suppose that

there exists u(k) satisfying (2) such that

x(k + 1)T Px(k + 1)− x(k)T Px(k) + x(k)T Qx(k) + u(k)T Ru(k) ≤ 0 (6)

holds for all x(k) ∈ V. Then the set V is a terminal region of the MPC algorithm.

Moreover, if the MPC scheme is feasible at time instant 0, it is feasible for all

k ≥ 0 and the closed-loop system under the MPC law stemming from (4) is

asymptotically stable about the origin.

Remark 2 : Lemma 1 indicates that every trajectory which starts from the

feasibility region arrives at the origin under the proposed MPC scheme. According

to the definition of the feasibility region and Lemma 1, the stability region under
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the MPC algorithm is equal to its feasibility region. Thus hereafter only stability

region is considered.

Lemma 2 [6]: Suppose that the terminal weighting matrix P = W−1 > 0

satisfies



−W WAT + W T
1 BT W T (Q1/2)T W T

1

AW + BW 1 −W 0 0

Q1/2W 0 −I 0

W 1 0 0 −R−1



≤ 0 (7)

and 
 Y W 1

W T
1 W


 ≥ 0 Yii ≤ ū2

i , i = 1, . . . , m (8)

Then the optimisation problem (4) is always feasible for all k ≥ 0 and for all initial

state x0 ∈ V, defined by

V = {x ∈ Rn : xT Px ≤ 1}. (9)

Moreover, the MPC stemming from this optimisation problem exponentially sta-

bilises the system for all initial state x0 ∈ V while satisfying constraints (2)

Remark 3: It can be shown that the stability region estimated in Lemma 2,

i.e., the set V, is actually the terminal region. This is because conditions (7) and

(8) imply that there exist a linear control law u(k) = Kx(k) = W 1W
−1x(k)

satisfying the constraints (2) for all x(k) ∈ V and a matrix P = W−1 such that

condition (6) is satisfied. It follows from Lemma 1 that the set V is a terminal set.

Hence the terminal region is used in Lemma 2 as an estimation of the stability

region. The similar method is also adopted in [9, 10]. As will be shown in the

example later, this estimation is very conservative.
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3 Stability regions of MPC

3.1 Estimation of stability regions

Let the control effort in each time instant be given by

u(k + i|k) = K(k + i)x(k) for i = 0, . . . , N − 1 (10)

where K(k+ i) is the control gain at time instant k+ i. Putting the control efforts

from i = 0 to N − 1 in a vector form yields

Ū(k) = K̄(k)x(k) (11)

where

Ū(k) =




u(k|k)
...

u(k + N − 1|k)


 , K̄(k) =




K(k)
...

K(k + N − 1)


 (12)

Thus the state at time instant k + N driven by the control sequence u(k|k), . . . ,

u(k + N − 1|k) from the state x(k) is predicted by

x(k + N |k) = ANx(k) + AN−1Bu(k|k) + . . . + ABu(k + N − 2|k) +

+Bu(k + N − 1|k)

= ANx(k) + ΓŪ(k)

= ANx(k) + ΓK̄(k)x(k)

= (AN + ΓK̄(k))x(k) (13)

where

Γ =
[

AN−1B · · · AB B
]

(14)

Theorem: Consider a discrete-time linear system (1) subject to the input

constraints (2). Suppose that there exist S > 0, S̄, W > 0 and W 1 such that
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 S (ANS + ΓS̄)T

ANS + ΓS̄ W


 ≥ 0, (15)


 Y Si

ST
i S


 ≥ 0, Yjj ≤ ū2

j , i = 0, 1, . . . , N − 1 (16)

and (7),(8) hold where

S̄ =




S0

...

SN−1


 (17)

Then when the terminal weighting matrix in the performance index (3) is deter-

mined by P = W−1, the MPC optimisation problem (4) subject to (1),(2) and

x(k + N |k) ∈ V is feasible for all k ≥ 0 and all initial state x0 within the set

M = {x ∈ Rn : xT Zx ≤ 1}, (18)

where Z = S−1 and the closed-loop system is asymptotically stable about the

origin with the stability region M.

Proof: The terminal state x(N |0) arrives in the set V in (9) if

x(N |0)T Px(N |0) ≤ 1. (19)

where P is the terminal weighting matrix. Substituting (13) into (19) obtains

xT
0 (AN + ΓK̄(0))T P (AN + ΓK̄(0))x0 ≤ 1 (20)

Condition (20) is satisfied for all x0 ∈ M in (18) if there exists a matrix Z such

that

(AN + ΓK̄(0))T P (AN + ΓK̄(0)) ≤ Z, (21)

which is equivalent to that

 Z (AN + ΓK̄(0))T

AN + ΓK̄(0) P−1


 ≥ 0. (22)
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Using the transform

W = P−1 > 0; (23)

S = Z−1 > 0; (24)

S̄ = K̄(0)S = K̄(0)Z−1, (25)

condition (22) becomes (15).

The control u(i|0), i = 0, . . . , N − 1 satisfies the input constraints (2) if

|Kj(i)x0| ≤ ūj , for j = 1, . . . , m, i = 0, 1, . . . , N − 1 (26)

hold where Kj(i) denotes the jth row of the control gain K at time instant i.

For all x0 ∈ M in (18), condition (26) is satisfied if the following matrix

inequalities hold

 Y K(i)

K(i) Z


 ≥ 0, Yjj = ū2

j , i = 0, 1, . . . , N − 1 (27)

Using the transform in (23), (27) is implied by (16). For a constrained linear

system (1), Lemma 2 and Remark 3 state that the set V is a terminal set if

conditions (7) and (8) are satisfied.

Therefore the conditions (15) and (16) guarantee that for every state trajectory

starts from an initial state x0 within the set M there exits a control sequence

render the state arrives in the terminal region V at time instant N . Conditions (7)

and (8) ensure that there exists a terminal control satisfying the control constraints

which can steer every state within the terminal set V to the origin. Hence the

result follows from Lemma 1 and 2. QED

Remark 5 : It should be noticed that the control sequence in MPC is yielded by

online solving a constrained optimisation problem. Certainly, MPC under input

constraints is highly nonlinear. However all the possible control sequences in MPC

can be represented by a linear controller with different gains at each time instant

10



as in (11). This is because for any sequence u(k|k)∗, . . . , u(k+N−1|k)∗ yielded by

the on-line optimisation solver, there exist a set of control gains K(k)∗, . . . ,K(k+

N − 1)∗, with the state measurement x(k), such that

K(k)∗x(k) = u(k|k)∗

...

K(k + N − 1)∗x(k) = u(k + N − 1|k)∗

Thus a tight estimation of the stability region for MPC should be given by the

method developed in this paper.

3.2 Choice of the terminal weighting

The problem for maximisation of the stability region in terms of the terminal

weighing term can be formulated as a convex optimisation problem

min
S,S̄,W ,W 1

log(det(S−1)) subject to (15), (16), (7), (8) S > 0,W > 0 (28)

Remark 4 : The technique developed in [10] can be used to further enlarge the

stability region. That is, by choosing the stability region as

M = {x ∈ Rn : xT Zx ≤ µ}, (29)

a new tuning knob µ is introduced. As shown in [10] the stability region may

be significantly enlarged. This tuning knob also can be chosen according to the

trade off between the achieved performance and the size of the stability region (see

[10] for detail). After the optimal terminal weighting matrix and the associated

terminal control law is found by solving the above optimisation problem, a more

accurate stability region estimation can be obtained by using eigenvalue techniques

developed in [8].
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4 An Illustrative Example

Consider a second order system




ẋ1 = 0.875x1 + 1.125x2 + u

ẋ2 = 0.375x1 + 1.625x2

(30)

with control constraint

|u| ≤ 1 (31)

This is an unstable plant with one pole outside the unit circle. The weighting

matrices in the performance index (3) are chosen as

Q =


 10 0

0 10


 ; R = 1 (32)

We now want to choose the terminal weighting matrix, P , in the performance

index (3) such that the stability region is as large as possible and also estimate

the final stability region of the resultant MPC.

When the predictive length is chosen as 3, ie., N=3, solving the optimisation

problem in (28) yields the feasibility/stability region

M = {x ∈ Rn : xT


 2.5703 8.0266

8.0266 25.1559


x ≤ 1}. (33)

which is shown by the solid ellipsoid in Figure 1.

The stability region of the MPC scheme increases when a longer predictive

length, N , is used. For example, if the predictive length is chosen as 4, the

stability region is shown by the dashed ellipsoid in Figure 1, which is larger than

that when N = 3.

For comparison, the method developed in [6] is also tried on this example.

Following the procedure, the maximum stability region yielded by this method is

given by

V = {x ∈ Rn : xT


 32.4635 91.9909

91.9909 392.8153


x ≤ 1}, (34)
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Figure 1: Stability regions and terminal region

which is shown by the dashed-dot ellipsoid in Figure 1. The stability region given

by this method is only a very small part of the stability region M yielded by our

method.

5 Conclusion

This paper presents a new method to estimate the feasibility/stability region which

gives much less conservative than current methods. Based on this, a new method

to determine the terminal weighting term in the performance index of MPC off-

line such that the stability/feasibility region is as large as possible is developed.

It overcomes deficiencies of currently existing methods where the terminal wei-

ghing term is chosen based on the terminal region rather than the stability region.

The illustrative example shows the efficiency of the proposed off-line design pro-
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cedure for MPC which provides guidance for engineers wishing to apply MPC for

constrained linear systems.
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