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Abstract: The paper presents a method for designing a non-linear (i.e. extended) Kalman
filter that is also parameter adaptive and hence capable of online identification of its model.
The filter model is deliberately simple in structure and low order, yet includes non-linear,
load-varying tyre force calculations to ensure accuracy over a range of test conditions. Shape
parameters within the (Pacejka) tyre model are adapted rapidly in real time, to maintain
excellent state reconstruction accuracy, and provide valuable real-time lateral and vertical tyre
force information. The filter is tested in both simulated and test vehicle environments and
provides good results. The paper also provides an illustration of the importance of good Kalman
filter design practice in terms of selection and tuning of the noise matrices, particularly in
terms of the influence of model/sensor error cross-correlations.
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1 INTRODUCTION to research on the robustness of these systems. Huh
et al. [8] present a method of maintaining well con-
ditioned matrices by scaling of the states and sensorsKalman filters in vehicle dynamics have become
within the Kalman filter, alongside a model errorpopular in two areas. Initially as state observers,
compensator technique.based around traditionally installed sensors, and more

Further potential for vehicle handling dynamicsrecently as a way of generating yaw information from
control through the use of Kalman filters is demon-the increasingly popular global positioning system
strated by Best et al. [9] who adapt tyre parameters(GPS) installations.
in a linear model. The concept of adaptation ofHigh-order models within Kalman filters allow for
parameters could be further expanded in future to fitestimation of a number of vehicle dynamic states
into an integrated vehicle dynamics control systemincluding wheel speeds and roll and yaw rates.
that controls not only the handling dynamics butRay [1, 2] examines the procedure of using a Kalman
also the vertical and driveline dynamics. With a com-filter with a large sensor set to estimate the road
bination of online adaptation and suitably matchedfriction, and also regresses a slip versus tyre force
control theory, key vehicle states and time-varyingcharacteristic. Zuurbier et al. [3] presents a similar
parameters could be controlled with a reduced, andconcept, using a different sensor set.
thus cheaper, sensor set.More recent work focuses on the use of Kalman

The aim of the present paper is to extend thefilters with GPS. There are two trends emerging:
earlier work of Best et al. [9] towards a practicallyusing Kalman filters to estimate the vehicle yaw angle
viable, simple, yet adaptive observer. The key com-(heading angle) along with the bias [4–6], and then
ponent is the choice of model within the filter; thisusing Kalman filters to estimate vehicle states [7].
should be low order to ensure practicality in theThe potential for Kalman filters to be used as
number of sensors required, and to allow stable, yetobservers for vehicle dynamics control has also led
rapid online parameter identification. However, it
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1064 G Hodgson and M C Best

approximately equal balance between its reliance on In the optimal case, v and u are time-uncorrelated
(white noise) processes with zero meanthe model and sensor information sources).

The paper starts by discussing the trade-off between
E(v
i
vT
j

)=0, E(v
k
)=0model and sensor information, and by illustrating

the importance of good design practice, in section 2. E(u
i
uT
j

)=0, E(u
k
)=0

The identifying Kalman filter design is then described
(3)in section 3, and this is demonstrated in simulation

in section 4, and on vehicle test data in section 5. where E() is the expectation operator, applied to the
errors at general i, j, k time samples. The design
matrices are the expected covariance of errors

2 CROSS-CORRELATION MATRIX
Q=E(v

k
vT
k

), R=E(u
k
uT
k

), S=E(v
k
uT
k

)

This section considers the importance of good design (4)
practice for Kalman filters, particularly those designed

Note, however, that in practice the error sequencesfor systems with sensor modelling errors. The design
are usually difficult to determine, and frequentlyof a linear time-invariant continuous Kalman filter
they are time correlated, so the components in Q andis adequate to illustrate the issues.
R are often set as approximates, or tuned to give bestConsider a state-space system with model and
results. Critically, the S matrix is also commonlysystem errors v and u respectively
assumed to be zero – in many papers it is assumed

ẋ:=Ax:+Bu+v
to be unimportant, and it is frequently not even
mentioned (e.g. references [3] and [6]).ys=Cx:+Du+u

It is tempting (and essentially valid) to think of the
(1) Q and R design matrices as a balance mechanism.

In the case of low model error and high sensor error,where x: represents the true state of the physical
the components in R should have high magnitude,system, v describes the error induced by describing
with Q components relatively low. The expectationthe state differential using the linear model A, B.
of high sensor errors results in low gains in L, and inand u describes the error between the sensor
the extreme the filter tends to replicate the model;measurement y

s
and the linear model C, D of that

this is clear from equation (2), and Fig. 1, and thesensor. The estimator is
result is a correct design for an observer expected to

x̂̇=Ax̂+Bu+L(ys−Cx̂−Du) (2)
operate under conditions of high sensor/low model
error.where the feedback matrix L is found from a well-

known solution of the Ricatti equation, and is A similarly intelligent filter design for low sensor
error/high model error combinations is not auto-dependent on design matrices Q, R, and S (see, for

example, reference [10]). Figure 1 shows the block matic, however; if the S=0 assumption is used and
the sensor set includes components with non-trivialdiagram of the estimator.

Fig. 1 Block diagram of the linear time-invariant Kalman filter
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1065A parameter for vehicle handling dynamics

sensor models (C), the resulting filter can be very This acceleration error appears as error processes
v(2) and u and also as E(v(2), u) in the (correct) cross-poor. This is well illustrated by the simple mechanical

system of Fig. 2. correlation matrix for design 1; e then represents
some additional (white) noise on the accelerometerConsider a Kalman filter designed for this system,

where the system matrices above are assumed to (e must be non-zero to avoid rank deficiency in the
Ricatti solution for design 1). Deliberately extremerepresent the true response. The observer is designed

assuming that the model parameters have been settings a=1 and e=10−8 are chosen to examine
maximum reliance on sensor accuracy.poorly estimated

With design 1 the resulting filter can be written by
reformulation of equation (2) asA=C 0 1

−90 −8D , C= [−90 −8] (5)

x̂̇=C−0.133 0.988

−0.009 −0.001D x̂+C−0.0015

0.9999 D ys (6)This is an interesting proposition for two reasons.
Not only does it induce high model error, it also

where the L matrix can be seen as the multiplier of y
s
.illustrates the practical issue of using Kalman filters

Note how the filter has achieved the desired sensoras observers for systems such as the vehicle; the
dependence here, with the velocity state estimatederror sequence will be time correlated, so condition
essentially from integration of the accelerometer, andE(v

i
vT

j
)=0 is not met and the resulting filter is

the deflection from further integration of velocity.strictly suboptimal. (The obvious subtext here is
This is not true for design 2, which yieldsthat, the more accurate the model and parameter

estimates, the closer is the approach to a white noise
model error process, and hence the closer is the x̂̇=C −2.92 0.741

−127.3 −11.3D x̂+C−0.0324

−0.4142D ys (7)
approach to an optimal filter – this provides further
motivation for the online parameter tuning facility Here, without the cross-correlation information this
of the filters designed later in this paper.) filter simply advocates an even balance between the

To illustrate alternative designs, Q and R, with two model and sensor information. It is also worth point-
possibilities for S, will be set as follows ing out that the most obvious (if naive) assumption

of high dynamic modelling error and low sensor error
through design 3

Q=C0 0

0 aD , R=a+e,

S=C0aD (design 1)

S=C00D (design 2)
Q=C0 0

0 aD , R=e, S=C00D
is even less effective, resulting in a very high gain

Here, the top left component of Q is zero, so zero
error is being assumed for v(1); the equation for ẋ(1)

L=C −0.1

−9999Dis known to be perfectly correct, as it comes from the
state definitions; a represents the (mean square)
magnitude of the acceleration error, which is caused Figure 3 illustrates these three filter designs by

showing their response to a unit deflection initialby the poor parameter estimates in both A and C.

Fig. 2 Example system to illustrate Kalman filter design influences
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Fig. 3 State estimation from various Kalman filter designs

condition. The model error and high gain cause a
huge magnification of the sensor noise within ŷ in
design 3, and consequently high transmission of
noise into x̂(2). The simplification of S results in a
compromised result for design 2, and only design 1
achieves accurate tracking through correct use of the
available sensor information.

These results are not intended to suggest that
integration alone represents a good estimator design;
clearly, any low-frequency sensor error would con-
tradict such a claim. The important issue is rather
that careful consideration should be given to proper
inclusion of the cross-correlation matrix within any
(inherently suboptimal) filter design of this type, in Fig. 4 Bicycle handling model
order to ensure that the best use is made of the
instrumentation available.

axle, F
yr

is the total lateral force at the rear axle, b
is the distance from the front axle to the centre
of gravity, and c is the distance from the centre of3 DESIGN OF AN IDENTIFYING KALMAN FILTER
gravity to the rear axle.

By inspection, the non-linear system model, f (x), isIn order to design an adequate dynamic state
observer, the Kalman filter model must be suitably
realistic (e.g. non-linear/high order), yet, to achieve
reliable online parameter identification and com- f (x)=C v̇ṙD=C W

i=1,4
F
yi

M−ur

(F
y1
+F
y2

)b−(F
y3
+F
y4

)c

I
zz

D (8)
putational efficiency, a low-order model is preferable.
The compromise here is to base the Kalman filter on
a bicycle model (Fig. 4), yet incorporate non-linear,

where, for each tyre, the lateral forces F
yi

are given byload-varying lateral tyre force characteristics.
Figure 4 depicts the bicycle handling model: u is

F
yi
=F
zi

DT sin(CT tan−1{BT [(1−ET)a+(ET /BT)the forward velocity, v is the lateral velocity, r is the
yaw velocity, F

yf
is the total lateral force at the front ×tan−1(BTa)]}) (9)
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Table 1 Vehicle parametersThis equation uses the simplest form of the Pacejka
magic tyre formula [11] multiplied by the vertical

Parameter Quantity
load on each tyre, F

zi
. Front/rear slip angles are given

M 1700 kgby
I

zz
1800 kg m2

b 1.1667 m
c 1.333 m

af=d−
v+br

u
, ar=−

v−cr

u
(10) t

f
1.4 m

t
r

1.5 m
h 0.25 m
m 0.9and vertical loads F

zi
are modelled as

B
T

9
C

T
0.927

D
T

1.06
E

T
0.5

F
z1
=

cMg

2(b+c)
+zf , F

z2
=

cMg

2(b+c)
−zf

F
z3
=

bMg

2(b+c)
+zr , F

z4
=

bMg

2(b+c)
−zr

(11)

The non-linear, or extended, Kalman filter (EKF)
from references [9] and [10] employs system and

where the load transfer is calculated at each iteration sensor Jacobians to determine, to a first approxi-
of the Kalman filter by using the lateral forces from mation, the migration sensitivity of the state vector
the previous time step [denoted by superscript (−)]

zf=
h(F(−)
y1
+F(−)
y2

)

tf
, zr=

h(F(−)
y3
+F(−)
y4

tr
(12)

F(x̂(t))=
q f (x(t))

qx(t) K
x(t)−x̂(t)

H(x̂(t))=
qh(x(t))

qx(t) K
x(t)=x̂(t)

(15)

Now, the state vector is to be augmented by system
parameters, h, that are suitable for identification.

and the filter design is fully determined by recursive
Avoiding those that are either well known, or that

calculation of the Ricatti matrix
have limited dynamic influence, the focus here will
be upon tyre parameters (two cases are considered, L

k
=P
k
HT(x̂

k
)[H(x̂

k
)P
k
HT(x̂

k
)+R]−1

h=D
T

and, later, h=[C
T

, D
T

]). As there is no model
P*
k
= [I−L

k
H(x̂
k
)]P
kfor the expected variation of these parameters, the

expanded state/parameter vector is modelled as
P
k+1
=P*
k
+P (F*(x̂

k
)P*
k
+P*
k

F*(x̂
k
)+Q*) dt

x̂
k+1
= x̂
k
+L
k
(y
k
−h(x̂

k
))

f (x)=C v̇ṙḣD=C W

i=1,4
F
yi

M−ur

(F
y1
+F
y2

)b−(F
y3
+F
y4

)c

I
zz
0 D (13) +P ( f (x̂

k
)+SR−1(y

k
−h(x̂

k
))) dt

(16)

where
The sensors are mass centre lateral acceleration and

F*(x̂
k
)=F(x̂

k
)−SR−1H(x̂

k
), Q*=Q−SR−1STyaw rate

A sampling interval of 200 Hz is used, and the integral
over each time step is conducted using the fourth-h(x)=C v̇+ur

r D (14)
order Runge–Kutta method; both of these pre-
cautions are taken to ensure stability under the rapid
parameter estimation that is desired.and the parameters, where not identified, are fixed

according to Table 1. In addition to the steer angle It is worth noting that the Jacobian equations (16)
are formulated analytically here, so that all state/input d, this model also treats the vehicle forward

speed u as an input. In the simulation exercise this state and state/parameter sensitivities are properly
modelled, although these are zero order heldis assumed to be known from the source model, and

on the test vehicle it is estimated by summation within each Runge–Kutta time step owing to their
dependence on the time-lagged lateral load transfer.of the two undriven (rear) wheel speed signals,

appropriately compensated through an estimate of Finally, the Q, R, and S noise balance matrices are
determined from a simulation exercise. As it wouldthe wheel rolling radius.
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be impossible to quantify these matrices precisely for 4 SIMULATION EXPERIMENT
a test vehicle, a sequence of v

k
and u

k
is established

by comparing the Kalman filter model derived above The proposed Kalman filter designs are tested with
with simulation output from a higher-order model, and without parameter identification. These will be
having in this case a combined slip tyre model, roll referred to as the (standard) extended Kalman filter
degree of freedom, and longitudinal weight transfer. (EKF) and (adaptive) identifying Kalman filter (IKF).
Noise estimates thus come from The higher-order model referred to in section 3 was

simulated over a 3° step steer event at t=5 s at an
initial vehicle speed u=20 m/s, with an additional

v
k
=C v̇:ṙ:ḣ: D− f (v, r, h), u

k
=C v̇:−ur:

r: D−h(v, r, h) step change applied to the wheel torque from 5 to
300 N m at t=18 s. Independent white noise sources
were added to the simulated sensors, with r.m.s. values

(17) of 2 m/s2 and 0.05 rad/s on the lateral acceleration
and yaw rate respectively; for consistency, thesewhere v̇: , r:, etc., are the higher-order simulation states
magnitudes are similar to those experienced withinand f and h are the Kalman filter designs outlined
the vehicle test experiment in section 5 and are inabove. The precise simulation input here is not
sympathy with the noise levels applied in the noisecritical, but some dynamic variation must also be
matrix design process.made in the parameters to be identified, to establish

The IKF was formulated to vary only the magnitudecorrelations between state and parameter errors due
of the tyre force, parameter D

T
, with its valueto their variation.

initialized slightly higher than default in order toMatrices Q, R, and S are constructed from
examine its adaptation to the steer input. The designcovariance matrices, with the parameter identification
parameter lwas set to 10−5, to ensure a suitably rapid,moderated using a sensitivity value l to regulate their
yet noise-free adaptation of the parameter; higherrate of adaptation
settings invoke a faster but more noisy estimation,
and extreme settings can cause instability.

Figure 5 shows the simulated sensors and their
Q=I

l
cov(v

k
)I
l

S=I
l

cov(u
k
, v
k
),

R=cov(u
k
)

I
l
=C1 0 0 0

0 1 0 0

0 0 l 0

0 0 0 lD (18) filtered estimates, along with the remaining state
estimate, lateral velocity, and the estimated D

T
para-

meter for the IKF. The initially high value of D
T

causes

Fig. 5 Filtered sensors, inputs, and adapted tyre parameters
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an overshoot in estimation of the yaw rate at 5 s, but two Pacejka shape parameters, C
T

and D
T

, are simul-
taneously adapted on the front axle. This will givethe adapted parameter then settles to a value close

to the default value (set in the EKF) before the torque more flexibility to the Kalman filter to alter the shape
of the tyre curve to suit changes in drive torque,at the wheels is changed. Up to this point, the EKF

and the IKF converge to produce similar results, as friction, and temperature that occur during the
course of each test. The noise matrices are the samewould be expected given the convergence of the

tyre parameter. Around 25 s the EKF becomes less as used on the simulation experiment, since the
sensor noise levels have been matched. Also the sameeffective at filtering the sensors, however, and develops

a steady state error. Meanwhile, the IKF maintains adaptation rate, l, is used now for both shaping
parameters.good noise-filtering capabilities, with the adapted

parameter allowing accurate low-frequency tracking. Figure 7 has the results from a step steer test con-
ducted at u=14.7 m/s, showing successful filteringFigure 6 shows the actual and estimated slip angles

and forces for the front and rear axles, with similar of sensors, and adaptation of the tyre curve map,
along with the estimated tyre force. The initial tyretrends in the results. The test is interesting in that

the Kalman filter model does not include any terms shaping parameters were deliberately set higher than
expected, and it can again be seen that the tyre curveto explain the loss of lateral force capability that

comes about owing to the increase in torque. The adapts quickly to the change in vehicle state. The tyre
curve estimation could provide useful informationIKF is able to compensate for the effective saturation

of the tyre that the torque step induces through the for a control system to calculate the best potential
course of action when approaching a limit handlingcombined slip tyre in the source model, by lowering

the D
T

parameter. This results in more accurate state situation.
Figure 8 shows the same variables, but under aestimations, but also consequently improves the

accuracy of intermediate variables within the Kalman different test condition; here a section of data is
taken from a test drive on a handling circuit, showingfilter model, such as the tyre forces.
a series of steering fluctuations. The same trends are
visible as in the graph above, with successful filtering
and accurate tracking of the sensor data allied to
rapid modulation of the tyre curve. Again, a low noise5 VEHICLE EXPERIMENT
estimation of the tyre forces is apparent.

Finally, Fig. 9 shows estimates of the slip anglesThe IKF is further examined on sensor readings
from a test vehicle (Ford Mondeo) performing a and corresponding tyre forces at the front and

rear. The vertical loads that the IKF generates asvariety of manoeuvres at a proving ground. Now

Fig. 6 Tyre slip angles and forces
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Fig. 7 Steering input, filtered sensor data, and adapted tyre curve for step steer

Fig. 8 Steering input, filtered sensor data, and adapted tyre curve for a section of test data
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Fig. 9 Slip angles and lateral force estimates

intermediate variables in the state estimation pro- 6 CONCLUDING REMARKS
cess is illustrated in Fig. 10.

The combination of a simple, yet non-linear model This paper has demonstrated the potential for
combined state and parameter estimation, with astructure within the observer, allied with tyre model

identification, provides great potential for future view to expanding real-time information about the
vehicle, particularly with respect to tyre forces. It alsodevelopment of Kalman filter based observers that

can provide the full variety of real-time vehicle illustrates the importance of good design practice for
all Kalman filters, in terms of the effect of the noiseinformation required in modern vehicle diagnostic

and control systems. cross-correlation matrix. The identifying Kalman filter

Fig. 10 Vertical loads from a section of test data
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has been shown to operate successfully in simulation APPENDIX
and on a test vehicle over a variety of tests.

There is every reason to suggest that filters of this Notation
type can be successfully implemented, in real time, Dynamic variables
on production vehicles. Also, there is scope for the

F
yf

front axle lateral force (N)integration of further (e.g. ride) modes, provided these
F

yr
rear axle lateral force (N)are sufficiently distinct in their dynamic influence.

r yaw rate (rad/s)For example, a mass-adaptive heave/pitch mode
u longitudinal velocity (m/s)could readily be added to the rigid body vehicle
v lateral velocity (m/s)model discussed here, providing suspension state
x state vectorinformation and also compensating for mass and
ẋ state derivative vectorconsequential yaw inertia variability in both ride and
x̂ estimate of state vectorhandling behaviour. There is, however, also the need
y sensor setto be cautious in the selection of parameters to be
ŷ estimate of sensor setidentified online, since underdetermination of the

dynamic states can result.
d front wheel steer angle (rad)
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