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Abstract 
 
 This paper considers an extended form of the well-
known Kalman filter observer, to reconstruct dynamic 
states from a small sensor set, but also to rapidly adapt 
selected parameters in the nonlinear dynamic model 
which lies at the heart of the observer.  A generic 
procedure is described for constructing the extended 
Kalman filter in such a way that any combination of 
model parameters can be identified.   
 The study is carried out in simulation, using two 
different vehicle dynamic models, one to act as the test 
vehicle, the other forming the nucleus of the observer.  
The assumption is that while in-vehicle testing is most 
desirable for proving many controller algorithms, here we 
need ‘true’ reference state information, to examine 
Kalman filter accuracy.   
 A number of experiments are carried out to prove the 
system’s identification properties and also to compare its 
performance with a more conventional Kalman filter, 
based on a linear handling model.  The results 
demonstrate high levels of performance and significant 
robustness to design parameters such as parameter 
adaptation speed and anticipated sensor noise.  Most 
significantly, the observer also operates well and is 
capable of parameter adaptation when model and sensor 
covariance information is not available – usually a 
restricting factor in practical Kalman filter estimator 
design.  The only significant caveat is that we are 
‘buying’ excellent dynamic tracking from a small sensor 
set, at some computational expense.  
 

1.  Introduction 
 
 Recent research has given rise to a number of model-
based vehicle control strategies, which rely on suitable 
low order dynamic models and/or state observers.  
Methods exist for model identification (eg Best and 
Gordon, 1999) and also observer design, (eg Kiencke and 
Daiss, 1997) but research by the authors suggests that the 
most efficient route to optimal dynamic characterisation 
is by combining the two processes. 
 Real-time estimation prescribes a need for low order 
models, and Kalman filter methods are attractive in 

exploiting these.  However, the performance and 
optimality of the Kalman filter is fundamentally restricted 
by model accuracy. Thus the suggested solution for the 
vehicle handling system is that (a) as complete a model as 
possible should be incorporated in the filter, and (b) key 
model parameters should be identified as slow-varying 
states.   
 The first requirement leads to the use of a nonlinear 
model, and hence an extended Kalman filter (EKF).  This 
can be designed in the form : 

 ( ) (( η,xhsKη,xfx ˆˆˆ −+=& ))  (1) 

for states x, parameters η  and sensors s, and where f and 
h are general nonlinear models for the state derivatives 
and sensors respectively.  This structure lends itself to 
meet the second requirement (b) above, by extension of 
the state vector to include a subset of parameters .  
Although f is unknown for these parameter states, the 
expectation is that they will be driven by the second term 
in equation (1), to improve the innovation error (sensor 
error, 

aη

( )η,xhs ˆ− ), provided the optimal feedback matrix 
K is suitably formulated.  The paper thus prescribes a 
generic observer/identifier design process which 
accommodates any choice of .   aη
 In accordance with requirement (a) above, the model 
has three degrees of freedom and four independent 
combined-slip Pacejka tyre models; prior experience 
suggests that the model must include the combined 
effects of lateral and longitudinal to avoid steady-state 
parameter estimation errors (see Best and Gordon, 1998).  
However, these tyre models make the system too 
complex for real-time estimation, so the emphasis here is 
to explore the limit of accuracy and flexibility of the new 
algorithm, rather than provide an immediately realisable 
observer solution. 
 The classical Kalman filter combines sensor and 
model information, using both of these sources to 
construct a state vector.  In this revised structure, variable 
model parameters cause some shift away from the model 
as an independently reliable source, but provide a very 
flexible way of forming a combined observer/identifier 
whereby both states and parameters are varied to best 
explain the sensors. 

2. Modelling 
 



2.1  Source Model 
 The study is carried out using a reference source 
model to provide ‘true’ state trajectories and sensor 
measurements.  This model simulates full order motion of 
a rigid vehicle body, with independent suspension 
freedoms, though ‘wheel-hop’ modes are suppressed 
through the assumption of inertia-less wheels.  A Pacejka 
tyre model is implemented in both longitudinal and 
lateral axes, incorporating a friction limiting ellipse, and 
the tyre forces have nonlinear load and camber dependent 
friction.  Longitudinal dynamic modes include a simple 
engine torque model, and road load. 
 The precise equations for the source model are 
omitted here, for brevity, but also – as we will see in 
Section 4.2 – because the detail and even to some extent 
the accuracy of the source data is of secondary 
importance; the study should reveal similar results for 
any suitably formulated high order model, or indeed for 
an actual test vehicle. 
 
2.2  Observer Model 
 The observer model is formulated from the popular 
three degree of freedom yaw/sideslip/roll model, 
described using vehicle centred SAE axes with roll 
motion assumed to be constrained about an inclined roll 
axis (Figure 1).  A fourth, longitudinal freedom describes 
forward speed. The Newton and Euler equations of 
motion are therefore 
 
for sideslip, 
  (2) MurFpMhvM

i
yi −=+ ∑

= 4,1

&&

for forward speed, 

  (3) MhrpMrvFuM
i

xi ++= ∑
= 4,1

&

for yaw, 

  (4) ∑∑
==

−=−
4,32,1 i

yi
i

yixzzz FcFbpIrI &&

for roll, 

( )
( ) ( ) ( )

p

FhhFhhKKMgh

pBBMhurpIvMhrI

i
yir

i
yifrf

rfxxxz

=

−+−+−−

++−−=++−

∑∑
==

θ

φ

&

&&&

4,32,1

 (5) 

 Here the forces Fxi, Fyi acting on the body, are given 
from tyre forces : 
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and the tyre forces are derived using the Pacejka magic 
formula Ω (see for example Milliken and Milliken, 1995) 
: 
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Vertical load transfer due to roll is then included by 
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The observer model is therefore completely described in 
terms of five state variables, 23 constant parameters, and 
two inputs, summarised in Table 1. 
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Figure 1 : Kalman filter model axis system and roll axis 

geometry 
 
 The Kalman filter is required to estimate the five 
states, and adapt a number of the parameters to most 
accurately describe the variation of a set of sensors.  
These must therefore fully represent the vehicle 
dynamics, and although rate sensors are included for 
some experiments, the basic sensor set is made up of four 
accelerometers.  These are oriented in two pairs, one pair 
above the front axle at a height hfs=0.3m above the roll 
axis, the other above the rear axle at hrs=0.5m.  Within 
each pair, the first sensor is aligned longitudinally and the 
second laterally.  They are modelled as 
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Unmodelled measurement noise is simulated using an 
independent Gaussian white noise signal with equal 
magnitude on each sensor : 
 
 [ ]( )28,0 ρε Ni ∝  (11) 

where ρ = 0.2.  Thus the RMS noise can be interpreted as 
20% of a relatively high lateral acceleration of 8m/s2. 
 
 
States, x 
u forward velocity (m/s) 
v sideslip velocity (m/s) 
p roll angular velocity (rad/s) 
r yaw angular velocity (rad/s) 
θ roll angle (rad) 

parameters, η  (default values) 
Ixx roll moment of inertia (600 kgm2) 
Izz yaw moment of inertia (1300 kgm2) 
Ixz roll/yaw cross moment of inertia (80 kgm2) 
m mass (830 kg) 
b longitudinal Distance of C of G to front axle (1.1 m) 
c longitudinal Distance of C of G to rear axle (1.4 m) 
h C of G height above roll axis (0.347 m) 
h0 ground plane to roll axis distance below CofG (0.3 m) 
hf roll axis to x axis vert. distance at front axle (0.45 m) 
hr roll axis to x axis vert. distance at rear axle (0.25 m) 
tf front track  (1.5 m) 
tr rear track  (1.5 m) 
Kf front roll stiffness  (34 kNm/rad) 
Kr rear roll stiffness  (22.5 kNm/rad)  
BBf front roll damping  (1700 Nms/rad) 
BBr rear roll damping  (1700 Nms/rad) 
Sp Pacejka tyre model shape coefficients  (0.714, 1.4, 1.0, 

-0.2) 
Cα zero lateral slip cornering stiffness  (35 kN) 
Kx zero longitudinal tyre slip rate  (35 kN) 
μ tyre friction coefficient  (1.0) 
Inputs, u 
δ front wheel steer angle (rad) 
w front wheel speed referenced to forward speed (wheel 

angular velocity multiplied by rolling radius, m/s)  
 

Table 1 : Model nomenclature 
 
 
 

3.  Formulation of Kalman Filters 
 
3.1  Linear Kalman Filter 
As a basis for evaluating the extended Kalman filter we 
first derive the equivalent linear time-invariant form. The 
linear model is formed from equations (2),(4) and (5) for 
the reduced state vector , with u assumed 
constant and replacing the nonlinear tyre model with 

linear (cornering stiffness) multipliers of α from equation 
(8).  Exponential discretisation of these linear equations 
then gives a model A, B, C, D which can be related to the 
‘true’ source states z

[ Tz φr,v,p,= ]

s by 
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Here process and measurement errors are denoted  
and  respectively, and an optimal filter can easily be 
derived, provided the following expectations E( ) apply: 
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The simplest form of the Kalman filter also assumes 
( ) kE T

kk ∀=   ,0υω  but this can not be expected here; for 
accelerometers the sensor model C, D correlates with A, 
B, and this ensures that  and  share a common 
modelling error component.  The Kalman filter is thus 
specified in the more general form (eg from Gelb, 1974), 

kω kυ

 
 ( ) ( ) kkkk KyKDBzKCAz +−+−=+ δˆˆ 1  (13) 

with the (time-invariant) gain matrix K found through 
calculation of the anticipated state error covariance 
matrix P, which is the solution to the algebraic Riccati 
equation : 
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3.2  Extended Kalman Filter 
The extended filter employs the fully nonlinear model of 
equations (2) – (10), which can be written for continuous 
state propagation, and sampled sensor data in the general 
form, 
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Gelb (1974) propose estimation of x  by the use of a 
truncated Taylor series for  in the continuous 
model and state error covariance matrix estimate.  The 
observer is then derived in a continuous-discrete form, 
using continuous model propagation combined with 
sampled measurements which provide discrete state 

ˆ
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corrections.  The final form is then fully discretised to a 
practicable form. 
 Assuming time-invariant noise covariance matrices, 
and again incorporating the general form for correlated 
model and sensor errors, (which is expounded in Best et 
al, 2000) the resulting algorithm provides the following 
models for state and state error covariance matrix 
derivatives : 
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and the sensors provide filter and state corrections at each 
discrete time step, to improve the variable estimates from 
the (-) to (+) form : 
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 In the above, matrices F and H are Jacobians 
resulting from the Taylor series expansions, evaluated at 
the state estimates : 
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 These equations constitute the complete extended 
Kalman filter in a continuous form, with discrete sensor 
correction.  Provided a suitably low sampling interval T 
is chosen, the discrete state update can be approximated 
from equations (18) by Euler integration 
  (21) (t)T(t),T PPP        xxx k1kk1k

&& +=+= ++ ˆˆˆ

 It should be noted at this point that F(t) and H(t) 
would normally be described analytically, and indeed 
these derivatives can theoretically be derived for the 
model used here, but the tyre nonlinearities make the 
resultant formulae particularly complex.  In practice, 
equation (20) is evaluated numerically, within the state 
update loop, by re-evaluating f and h for small changes in 
each of the five states. 
 
3.3  Adapting Model Parameters 
Given the general form for , the model can readily 
be specified in terms of an extended state vector 
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include any number of the parameters : 
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If the original model is valid, all the parameters are time 
invariant, so ( ) 0,, =(t)(t)a uηxf  and the rate of change of 
these parameter states is given by (t).  The new model 
error covariance and model/sensor cross covariance 
matrices become 

aω
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4.  Simulation Experiments 
 
4.1  Design Process 
For all the simulation experiments, error covariance 
matrices Q, R and S are estimated from a single reference 
simulation, designed to excite the system at high 
amplitude, over a range of frequencies.  The throttle and 
steer inputs for the source model are illustrated for this 15 
second test in Figure 2, along with the wheel velocity 
output from the source model, which is used as an input 
to the estimator (w).  The test is designed to be 
achievable in a real vehicle, so the random steer and 
throttle sections are generated using white noise which is 
bandlimited within a physically realisable range, to 5Hz. 
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Figure 2 : Test inputs for noise matrix identification 
 
Equations (12) and (17) are applied to the simulation 
results to establish time histories for ω and υ, and Q, R 
and S are then formed separately for the linear and 
extended Kalman filters, in an obvious way, from 
equation (16).  The observers are tested on independent 
test inputs, with a sampling interval T = 0.02 secs. 
 
4.2  Non-adaptive Observers 
Performance is first examined with no parameter 
adaptation ( 0η =a ), for a δ = 4° step steer, with zero 
throttle input, at 18m/s (Figure 3).  The plots show source 



model time histories against results for both designs of 
Kalman filter and also traces from the Kalman filter 
model simulated without sensor feedback, for this five 
second test. 
 The linear Kalman filter estimates are poor for this 
fairly severe steer input.  The assumption that both speed  
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and cornering stiffness are constant, cause
which are particularly evident in plot (b) for sideslip, and 
in the tracking of lateral accelerations –  plot (f).   

s large errors 

 With the nonlinear model, the EKF is more accurate 
in s2, r and for much of the test, in v.  These results are 
good in spite of the very high, although realistic, noise 
levels which have been imposed on the sensors.  Also 
note the dotted line time histories, which show that large 
steady-state differences exist between the EKF and 

source models; all of the EKF results might be improved 
by suitable parameter identification in its model.   
 One immediate benefit of EKF over the linear filter 
is illustrated in plot (g); vertical load is an intermediate 
variable in the EKF model.  Although steady-state errors 
are again seen in this prediction, the ability of EKF to 
estimate values such as this leads to a more complete 
dynamic characterisation of the vehicle. 
 Conversely, the algorithm also presents a poor result 
in its reconstruction of roll rate – plot (c).  This problem, 
also seen in earlier studies (see Best et al, 2000) is caused 
by the structural difference between source and EKF roll 
models, causing large expected model errors for p in the 
Q matrix, and hence allowing greater transmission of 
sensor noise into the state estimate.   
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These errors can be reduced by increasing the EKF 
model order further, but significant improvement can also 
be achieved through the addition of a roll rate sensor, as 
we will see in Section 4.4. 

Figure 3 : Non-adaptive observer results

 
4.3  Introducing Parameter Adaptation 
A significant error from the EKF in Figure 3 is the 
overestimation of peak sideslip.  This is caused by errors 
in the slip to tyre force relationship, so could be 
improved by modifying the tyre model; an obvious 



candidate for adaptation is the base cornering stiffness on 
which the Pacejka model depends : Cα. 
 In extending the EKF to include parameter states 
however, we first need to provide an estimate for the 
additional error matrix components in equation (23).  
This is done by adding band-limited white noise to the 
parameters during the reference simulation described 
in Section 4.1, such that 
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An estimate for  can then be found by suitably 
accurate numerical differentiation, as 
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equation (22); this explains the need for some band-
limitation on , and for these experiments a limit of 
5Hz was used.  Matrices Q

aε

χ and Sχ are constructed again 
from equation (16), now using . [ ]kakkk ,, υωωe =
 Figure 4 shows the adapted cornering stiffness, along 
with the new EKF prediction for v when the step steer 
test is repeated.  The adaptation of Cα is caused by, 
and acts to reduce the near steady-state errors in s2 which 
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Figure 4 : EKF results for an observer with Cα estimation 

can be seen after the step between 0.5 and 2 seconds in 
Figure 3(f).  The result is a large improvement in 
estimation of v. 
 This is an excellent result, but the accuracy of v turns 
out to be sensitive to the choice of λ, which was set 
arbitrarily to 0.2 here.  Also, the adaptation is triggered 
here by an impulsive input which causes little dynamic 
excitation in the sensors that drive the adaptation process.  
The conclusion is that adaptation would be more robust 
under continuous dynamic excitation. 

 
4.4  Parameter Identification 
With a dynamic input, EKF is capable of simultaneously 
adapting multiple parameters.  Here we consider 
estimation of the x and z axis locations of the vehicle’s 
centre of gravity, so .  A 5Hz band-limited 
Gaussian signal is again used for the steer input – here 
with an RMS of 1.5° – and a constant 75Nm engine 
torque is applied. is then initialised to inappropriate 
values, [0.7, 0.2], and Figure 5 shows the adaptation for a 
range of choices of λ. 
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Figure 5 : EKF results for C of G identification 

 
The conclusion is that adaptation works very well, and 
rapidly under these conditions.  The process is also 
robust to variation of λ, with a positive correlation 
between speed of response and λ, and also between 
standard deviation of the adapted parameters, and λ.  
This might reasonably be expected, given the influence 
that λ has setting the relative balance between expected 
sensor and model ( 0f =a ) accuracy in the observer 
design process; higher λ promotes a greater magnitude of 
sensor feedback.   



 Figure 5(c) gives an example of how the tuned 
parameters also improve state prediction – showing the 
first and last two seconds of the estimation of p.  In this 
test we have included an additional roll sensor – although 
this was not necessary to achieve correct adaptation of h 
and b.  The additional sensor generally improves roll 
prediction compared with the Figure 3 result, and we also 
see roll accuracy improve with time, as h and b adapt. 
  
4.5  Noise Matrix Dependence 
As it has been described and used so far, the adaptive 
EKF could be applied to predict the response of a real 
vehicle (albeit not in real-time), except in that we have 
assumed detailed a priori knowledge of the error 
correlations in Q, R and S.  In practice these are very 
difficult to obtain, so EKF performance under nominal 
noise matrices is also of interest. 
 The centre of gravity experiment is therefore 
repeated, this time with Q and R determined as diagonal 
matrices simply proportional to expected state and sensor 
RMS amplitude on the noise identification test, and with 
S = 0. 
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Considering two alternatives for the new nominal error 
factor λmod, and again using λ = 0.2, the adaptation result 
is compared with the standard Q,R,S result in Figure 6.  
(For all three results we have reverted here to the 
standard four accelerometer sensor set.) 
 Remarkably, the nominal noise settings also induce 
good adaptation of centre of gravity, with no difference 
in the overall estimate for b, and only slight variation for 
h – also the success of adaptation itself is not sensitive to 
λmod.   
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Figure 6 : Comparing nominal with correlated noise matrices 

for an EKF with C of G identification 
 
 For this experiment, accuracy in prediction of the 
states and sensors is summarised in terms of RMS errors 
in Table 2.  Here we see that errors in estimating the 
sensors are reduced by increasing the adaptation rate.  
(Under this EKF design, it is the lower setting, λmod = 
0.05 which generates faster adaptation, because expected 
sensor modelling errors are lower.)  Critically, an 
improvement in state reconstruction is also seen as the 
sensor model improves.  Note that the best nominal test 
provides RMS errors which are even lower than for the 
standard Q,R and S.  This is a happy consequence of low 
noise expectation, and we are comparing filters with 
quite different assumptions, but the result is nevertheless 
encouraging. 
  

QRS  
state/sensor 

Nominal, 
λmod = 0.5 

Nominal, 
λmod = 0.05 

Identified 

u .1252 .1189 .1180 
v .0440 .0333 .0461 
p .0510 .0274 .0447 
r .0336 .0184 .0241 
q .0060 .0029 .0044 
s1 .2814 .0813 .0827 
s2 .8295 .7401 .7863 
s3 .2842 .0795 .0811 
s4 .8539 .4884 .7628 

 
Table 2 : Comparing state and sensor RMS errors during 
adaptation under nominal and standard noise matrices. 

 
 
4.6  Multi-parameter Optimisation 
As a final investigation of the potential of the new 
algorithm, we consider increasing the number of 
identified parameters.  This is only feasible if a larger 
number of sensors is also considered, as clearly there is 
scope for the algorithm to become poorly conditioned, 
and hence unstable, so here we have augmented the set of 
four accelerometers with roll and yaw rate sensors. 
 Figure 7 demonstrates simultaneous estimation of 
mass, roll inertia, yaw inertia and longitudinal mass 
centre position – certainly an ambitious venture, with all 



four parameters initialised to ridiculously low values, 
  [ 5.0 ,100 ,100 ,100)0( =aη ]
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Figure 7 : An example of multi-parameter identification using 

EKF 
 
 The results are impressive, and it is interesting to see 
that the parameters are adapting at different rates through 
the ten second test.  Izz and b also appear to temporarily 
settle at intermediate values – possibly local minima – up 
to about four seconds.   
 One disappointing footnote however, is that no 
suitable value for λmod could be found to make this 
adaptation work with nominal noise matrices – a point 
which does serve to emphasise the importance of error 
expectations in this multi-dimensional process. 
 
 
 
 
 

Concluding Remarks 
 
The new observer / identifier works well within the 
simulation environment considered here, and its 
robustness to design parameter variations makes success 
in real-vehicle applications likely.  Some good results 
with nominal noise matrices also improve the likelihood 
of practical viability, especially if these too are adapted – 
methods exist in Gelb (1974). 
 Long computer processing times make on-line 
application impossible given the model structure used 
here, but the system still has scope for immediate 

application in off-line state and parameter reconstruction 
– for example to assist vehicle design in the motorsport 
field.  The most likely future for on-line development is 
by selective model reduction – for example by 
consolidating the tyre force model to a simple generic 
nonlinear load-dependent function of a small number of 
parameters. 

 b   ×0.3 
 Ixx  ×10-3 

 Izz  ×10-3

 m  ×10-3  
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