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Abstract  
Currently all elite high jumpers use the Fosbury Flop technique with a curved approach.  This 

suggests that the curved approach presents some clear advantage although there is no general 

agreement upon the mechanism or the mechanics.  This study aimed to determine the 

characteristics of the approach curve and to investigate how it contributes to the generation of 

somersault rotation.  A simple theoretical model was used to demonstrate that a tightening 

approach curve would change the inward lean towards the centre of the curve into outwards 

lean.   Three-dimensional video analysis was conducted on performances of two elite male 

high jumpers in competition.  It was found that in each case the radius of the approach curve 

and the inward lean angle both decreased towards the end of the approach (p < 0.01).  The 

amount of outward lean angular velocity generated was shown to be a major proportion of the 

required somersault angular velocity for a jump.  It was concluded that the main advantage of 

a curved approach was that it resulted in the generation of somersault velocity providing the 

curve tightened towards the end of the approach.   
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Introduction 

 In present-day high jumping the Fosbury Flop is the sole technique used by 

competitive high jumpers throughout the world.  The high jump comprises an approach 

phase, a takeoff phase and a flight phase.  The approach phase consists of a straight run-

up followed by a curved section during the last four to five steps prior to takeoff  (Figure 

1).  During this phase the approach speed of the jumper builds up to between 6 and 8 ms-1 

(Dapena, 1980a).  The takeoff phase comprises the last foot-ground contact during which 

the horizontal velocity decreases, the vertical velocity increases and somersault 

momentum is generated (Dapena, 1980a; Dapena, 1980b).  During the flight phase the 

jumper rotates as the mass centre rises in order to facilitate bar clearance.  However, many 

of the characteristics of the flight phase are determined by the takeoff phase and are 

dependent on the characteristics of the approach phase. 
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Figure 1.  The curved approach in high jumping.   

 

In the early days of the Fosbury Flop it was thought by some that the curved 

approach was nothing more than an idiosyncracy of Dick Fosbury (Fix, 1981).  When 

running a curved approach the body must lean into the curve to provide the necessary 

centripetal force and so the takeoff will start with the body leaning inwards.  Since the 

body will rotate towards the bar during the takeoff phase this initial orientation is 

advantageous since it permits the necessary rotation during takeoff without having 

excessive outwards lean (towards the bar) as the flight phase begins (Dapena, 1980b; 

Ecker, 1976).  Leaning inwards at the start of takeoff and outwards at the end of takeoff 

means that the body will be close to the vertical throughout so that the reaction force from 

the ground will be more effective in producing vertical velocity (Jacoby, 1987).  A curved 

approach has also been thought to be beneficial in lowering the mass centre prior to the 

takeoff phase (Heinz, 1974; Ae et al., 1986) as this allows the mass centre to move 

through an increased vertical distance during takeoff (Dapena, 1993; Jacoby, 1986) 

resulting in a greater time during which to develop a large vertical impulse (Dapena, 

1987; Wagner, 1985; Jacoby, 1986).   

In order to reach a horizontal orientation near the peak of the flight over the bar, 

the jumper needs to develop sufficient somersault angular momentum during takeoff 

(Dapena, 1995).  This angular momentum is typically about an axis parallel to the bar 

(Dapena, 1980b).  A number of coaches have suggested that the curved approach is useful 

in developing this somersaulting motion during the takeoff phase (Fix, 1981; Jacoby, 

1986; Paolillo, 1989) or during the penultimate contact phase as well (Heinz, 1974).  

Dapena (1980b) used three-dimensional cinematography to analyse the approach, takeoff 

and flight phases of six Flop jumpers and found that the majority of the somersault 

angular momentum was generated during the takeoff phase.  He thought that the data 

suggested that a curved approach might favour the production of somersault angular 

momentum during the takeoff phase but did not speculate on the mechanism.   
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A number of researchers and coaches have described the curved section of the 

high jump approach as a ‘circular arc’ or even as ‘a quarter of a circle’ (Chu and 

Humphrey, 1981; Martin, 1982).  Dapena et al. (1997) fitted an arc of a circle to four of 

the last five foot locations omitting the penultimate foot placement which typically lay 

outside this curve.  Kerssenbrook (1974) analysed Dick Fosbury’s approach and noted 

that the curvature increased as he approached the bar.   

While there is some agreement that a curved approach may aid the production of 

somersault rotation the mechanism whereby this is achieved and the characterisation of 

the approach curve are not well-established.   It is the aim of this study to determine the 

characteristics of the approach curve and investigate how it contributes to the generation 

of somersault rotation.   

 

Methods 

  Theoretical considerations of the mechanics of skating a curve or cornering on a 

bicycle suggest that a tightening curve will produce outwards lean rotation.  It was 

therefore hypothesised that high jumpers generate somersault rotation by tightening the 

foot placement curve.  To test this hypothesis a case study approach was used in which a 

number of performances by each of two elite jumpers were analysed.   

 

Theory 

 A simple mathematical point mass model can be used to demonstrate how the 

tightening the approach curve will produce straightening-up of the inwards lean.  The 

model comprises a point mass m at one end G of a massless rigid rod FG of length h, 

inclined at   to the vertical.  The foot F of the rod moves along a curve of variable radius 

R and the rod is free to rotate about F in a vertical plane perpendicular to the curve 

(Figure 2).  While this model more closely resembles a cyclist cornering or an ice skater 

gliding around a curve, since F remains in contact with the ground continuously, it is also 

an approximation to running a curve where the centripetal force is intermittent and the 

contact points are discrete.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  A point mass model of running a curve.  The foot F is constrained to follow a curved path while 

the mass centre G is free to rotate about F.  G has horizontal velocity vt and acceleration at due to the motion 

of F and velocity v = hθ


 and acceleration a due to the rotation about F.   
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Equation of motion 

The gravitational torque T about F is equal to the rate of change of angular 

momentum L. 

dtdL/T =  (1) 

 The gravitational torque T = mghsin  is in a direction tangential to the foot curve.  

The angular momentum L about F of a point mass may be calculated as the cross-product 

moment of momentum h x mv so that L has a component mvthcos directed along the 

horizontal inward radius, where vt is the horizontal velocity of the mass centre in the 

direction of the tangent to the foot curve, and a tangential component mvh parallel to vt 

where v is the velocity due to rotation about F.  The rate of change of these vector 

components gives rise to two components of the rate of change of angular momentum 

about F in the direction of a tangential axis through F: 

 dtd /L  = mah + mathcos        (2) 

where a = v  and ta = tv .  Equation (1) becomes: 

 mghsin = mah + mathcos         

Substituting  r = R - hsin , a = hand  at = vt
2/r and rearranging gives: 

 h= gsin  - (vt
2 cos ) / (R - h sin )      (3) 

 In equation (3), it can be noted that if the value of R decreases (as the curve 

tightens) then the term on the left side will become more negative.  If the foot contacts lie 

on an arc of a circle initially and the lean angle   is constant then reducing the radius R 

will decrease the inward lean and produce an outwards angular velocity as the rod 

straightens up.  In the case of intermittent contact with the ground, as in the case of 

running a curve, the same considerations will apply so that running a tightening curve will 

produce an outwards lean angular velocity that will manifest itself as somersault once the 

jumper becomes airborne.   

 

Data Collection 
 

 Two elite high jumpers (A and B) participated in this study.  A was 1.96 m tall 

with a mass of 79 kg and a personal best competition performance of 2.32m while B was 

1.86 m tall with a mass of 73 kg and a personal best competition performance of 2.37m.  

Informed consent was obtained from the participants in accordance with procedures 

approved by the Ethical Advisory Board of Loughborough University.   

A total of 17 jumps were video-recorded in two competitions: seven jumps from 

jumper A and ten from jumper B.  Prior to competition, anthropometric measurements 

were taken on the athletes in order to calculate segmental inertial parameters using the 

mathematical inertial model of Yeadon (1990).   

Two Panasonic MS2 sVHS video cameras were positioned beyond the perimeter 

of the track, approximately 45 metres from the centre of the bar and with optical axes of 

the cameras intersecting at approximately 45o as shown in Figure 3.  The recordings of the 

jumps were carried out at 50 fields per second with a shutter speed of 1/250 s.   

The athletes were consulted prior to competition so that the locations of their foot 

placements in their approach runs were obtained.  A volume measuring 12 m long x 3 m 

wide x 2.3 m high, which included the last five steps of the approach run, was spanned 

using markers on 10 vertical poles and the two high jump uprights.  The calibration 

markers were video-recorded to effect camera calibration using the Direct Linear 

Transformation (DLT) method of Karara (1980).  
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Figure 3.  Camera positions relative to approach run of jumper A.   

 

In the video recordings of the jumps 15 body landmarks (wrist, elbow, shoulder, 

hip, knee, ankle and toe on both sides of the body plus the centre of the head) were 

digitised manually for the last five steps of the approach and the flight over the bar.  

Interpolating quintic splines were fitted to the digitised coordinate data in order to obtain 

coordinate values at times between the fields (Wood and Jennings, 1979).  A DLT 

reconstruction (Karara, 1980) was then carried out to synchronise the digitised data 

(Yeadon and King, 1999) and obtain 3D coordinate time histories of each digitised body 

landmark.   

 The location of the whole body mass centre was calculated from the 3D 

coordinates of the body landmarks and the segmental masses and the relative mass centre 

locations.  The backward lean angle  was calculated as the angle between the vertical and 

the projection of the line joining the mid-foot F (the mid-point of the ankle and the toe) 

and the body mass centre G on the vertical plane through the horizontal approach velocity 

(Figure 4).   

 The inward lean angle  of the body was calculated as the angle between the 

vertical and the projection of FG on the vertical plane perpendicular to the horizontal 

approach velocity (Figure 4).  The inward lean angle was evaluated for each foot contact 

at the time for which the backward lean angle was zero (mid-stance) so that the mass 

centre was “alongside” the foot.   

 The mid-foot locations at these times were used to calculate the radii of circles 

through a given foot location and the previous two.  This gave radii for the last four foot 

contacts since there were video data for the last six foot contacts.  The changes in the 

inward lean angles and the radii of the curves were investigated using analysis of variance 

with repeated measures.  If the changes were significant, post hoc Tukey tests were used 

to analyse the differences.   
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Figure 4.  Backward lean angle  and inward lean angle  are the angles made with the vertical by 

projections of the foot – mass centre line FG on vertical planes parallel and perpendicular to the 

horizontal velocity v.     

 

Results 

 In Figure 5 the mean locations of the foot placement and mass centre when jumper 

A was in mid-stance are shown in a plan view of the curved approach.  From this view the 

curve described by the foot placements is seen to have ‘tightened’ to meet the mass centre 

curve at the end of the approach (C0).  Figures 6 and 7 show that the corresponding radius 

of the mean foot placement curve decreased from about 12 m to 7 m for each jumper.  

The changes in radius of the foot placement curves were found to be significant (p < 0.01) 

for both the jumpers.  For jumper A, the radius of the foot placement curve at C0 (last 

foot contact) was found to be smaller (p < 0.01) than the other radii at C1, C2 and C3.  

For jumper B, the radius at C2 of the foot placement curve was larger (p < 0.01) than the 

other radii at C3, C1 and C0.  The radii of the foot placement curves at the different foot 

contacts indicate that jumper A tightened the foot placement curve at C0 while jumper B 

tightened the curve at C1.  
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Figure 5.  Mean foot and mass centre paths for jumper A.   

 

 The inward lean angles at the last four foot contacts of the approach are presented 

in Figures 6 and 7.  For jumper A the inward lean angle at C0 (the last foot contact) was 

found to be smaller (p < 0.01) than the inward lean angles at C1, C2 and C3.  Thus the 

inward lean angle decreased at the final foot contact C0.  The mean inward lean at C1 was 

less than 1o greater than that at C2 and this difference was not significant (p > 0.1).   

For jumper B the inward lean angle at C0 was again smaller (p < 0.01) than the 

inward lean angles at C1, C2 and C3.  The mean inward lean increased by 2o from C3 to 

C2 (P < 0.05).  The mean inward lean at C1 was less than 1o smaller than that at C2 and 

this difference was not significant (p > 0.1).   
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Figure 6.  Radii of circles through the last four foot locations and inward lean angles for jumper A.  C0 is 

the final foot contact.   
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Figure 7.  Radii of circles through the last four foot locations and inward lean angles for jumper B.  C0 is the 

final foot contact.   

 

Discussion 

The results of the video analysis indicated that the foot curve tightened towards 

the end of the approach for each jumper.  For jumper A the curve tightened at the last foot 

contact while for jumper B the curve tightened over the last two foot contacts.  This is 

consistent with the analysis by Kerssenbrook (1974) of Dick Fosbury’s high jump 

approach.  Dapena (1997) fitted circles to four of the last five foot contacts (omitting the 

penultimate contact) for the approaches of 15 jumpers in the finals of the 1991 World 

Championships.  In 13 cases the penultimate foot contact lay outside the fitted circle and 

this is indicative of a tightening curve.  It would appear, therefore, that the approach of an 

elite high jumper is characterised by a foot contact curve that tightens towards the end of 

the approach.   

The theoretical analysis of running a curved approach indicated that tightening a 

curve of constant radius with a fixed lean angle leads to an outwards lean angular velocity 

and a decrease in the inward lean angle.  This may be understood by considering the 

example of a cyclist cornering.  Suppose that the cyclist has a constant speed, constant 

lean and constant radius while cornering.  For a given velocity and lean angle, equation 

(3) gives a value for the radius that maintains a steady state.  For a larger radius than this 

value the inward lean will accelerate and increase while for a smaller radius the inward 

lean will decrease.  Thus a tightening curve will inevitably lead to an increasing outward 

lean velocity.  So towards the end of the cornering the cyclist turns the handlebars more 

into the curve and the bicycle straightens up (Figure 8) so that as it reaches the vertical the 

handlebars are turned straight and the bicycle proceeds in a straight line.  In a running 

approach the contact with the ground is intermittent and the mass centre moves on a 

sequence of curves during foot contact interspersed with straight lines during flight when 

viewed from above (Dapena, 1980a).  Nevertheless the same mechanics apply giving the 

same steady state lean angle for given foot placement radius and mass centre velocity 

(equation (3)).  As a consequence the inward lean angle will decrease if the curve tightens 

towards the end of the approach.   
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Figure 8.  When the front wheel turns more into the curve, the cyclist will straighten-up.   

 

The video analysis confirmed that the inward lean angle decreased towards the end 

of the approach.  This occurred primarily during the final foot contact for both jumpers.  

The inward lean angle decreased from around 30o in the penultimate foot contact to 

around 0o in the final foot contact (Figures 6 and 7).  This change occurred over a time 

interval of close to 0.3 s and so the mean outward lean angular velocity was 

approximately 100os-1.  Even if the change started during the penultimate foot contact the 

angular velocity at takeoff would still have to be around twice the mean value, that is 

about 200os-1.  Since the high jumper rotates through approximately half a somersault 

during the flight phase, which lasts for about 0.8 s, the mean somersault velocity during 

flight will be around 220os-1.  These calculations indicate that the outwards angular 

velocity generated by tightening the curve accounts for a major part of the total somersault 

angular velocity.   

For jumper A the mean lean angle did not change significantly from C3 to C2 to 

C1 so that the lean angle was essentially constant (Figure 6) with close to zero angular 

velocity.  For the same three contacts there were no significant differences between the 

radii of the foot curves so that the radius was essentially constant (Figure 6).  At C0 the 

radius decreased (p < 0.01) and the lean angle also decreased (p < 0.01) as predicted by 

the theoretical model.   

For jumper B the radius at C2 of the foot placements was larger (p < 0.01) than the 

radii at C3, C1 and C0 so that the radius started to decrease at C1 (Figure 7).  This might 

be expected to lead to a decrease in the lean angle from C2 to C1.  The lean angle, 

however, increased by 2o (p < 0.05) from C3 to C2 (Figure 7) so that there would have 

been a lean angular velocity at C2 tending to increase the lean angle since the radius 

increased at C2.  As a consequence the outward acceleration induced by the reduction in 

radius from C2 to C1 reduced the the inward lean velocity but did not reduce the lean 

angle significantly (0.7o, p > 0.1).  The subsequent further decrease in the radius at C0 (p 

< 0.01) accentuated the large decrease in lean from C1 to C0.   

Thus the data obtained from the two jumpers, although showing individual 

characteristics, are consistent with the hypothesis that a tightening of the approach curve 

leads to an outwards lean rotational velocity.  In order to apply the theoretical model 

quantitatively to an analysis of running a curve, further development is needed in which 

the intermittent nature of ground contact is included.  Using such a simulation model it 
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should be possible to compare model output with actual performance and to assess more 

accurately how much of the somersault rotation can be accounted for by this mechanism.   

The tightening of the curve may also be expected to contribute to the development 

of vertical velocity since the lean is inwards at the start of the final foot contact and the 

mass centre will rise even though the knee is flexing (Dapena and Chung, 1988).  In 

addition starting the final foot contact with a lean away from the bar will also be 

beneficial to the jump but the main advantage of the curved approach is that it provides 

the somersault angular velocity.   
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