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Abstract. This paper discusses a systematic approach for selecting the minimum 
number of sensors for an Electromagnetic suspension system that satisfies both 
optimised deterministic and stochastic performance objectives. The performance is 
optimised by tuning the controller using evolutionary algorithms. Two controller 
strategies are discussed, an inner loop classical solution for illustrating the efficacy of 
the evolutionary algorithm and a Linear Quadratic Gaussian (LQG) structure 
particularly on sensor optimisation. 
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1. INTRODUCTION 

In recent years, MAGnetic LEVitation (MAGLEV) systems have been attractive to 
transport industry due to a number of advantages they offer over the conventional wheel-
on-rail systems [10]. In fact, MAGLEV trains have no mechanical contacts with the rail 
and therefore maintenance costs are reduced, although in general building MAGLEV rail 
infrastructure is more expensive than conventional rail infrastructure. Two most effective 
types of MAGLEV suspension exist. The first, which is considered in this paper, is the 
electromagnetic suspension (EMS) where the electromagnet is attracted to the rail and the 
second is the electrodynamic (EDS) where a repulsive force supports the vehicle over the 
track. In contrast with the wheel-on-rail system the MAGLEV suspension system is an 
unstable system with non-trivial performance requirements that have to be satisfied. As in 
every practical system, the EMS MAGLEV suspension has a number of outputs that can 
be used to implement control strategies. The diagram in Fig. 1 shows the general feedback 
control approach for a MAGLEV control system. The question in hand is deciding the 
number and nature of sensors required for the control system to achieve the required 
performance objectives under some constraints present in the MAGLEV system. This 
means that a number of objectives and constraints of the suspension have to be 
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simultaneously satisfied by varying the controller’s parameters for every feasible sensor 
set available. Clearly, this is not an easy task especially if the system has many outputs to 
select from. 

 

Fig. 1 Block diagram of typical MAGLEV suspension feedback control system 

The work presented in this paper discusses a systematic framework for sensor 
optimisation applied to a quarter-car magnetic suspension model, which aims to satisfy 
both disturbance rejection and robustness to parametric changes as well as the best ride 
quality with minimum possible effort using lowest possible number of sensors from the 
available sensor sets. In fact, the problem is posed in a multiobjective optimisation 
framework to optimise the controller’s parameters, via a heuristic algorithm [4], for each 
available sensor set. 

Evolutionary algorithms are widely used in control engineering and have proved to be 
very efficient for controller optimisation in a number of problems in control systems [5]. 
Numerous genetic algorithms have been developed [1], although for the purposes of this 
work a recently developed genetic algorithm named Non-dominated Sorting Genetic 
Algorithm (NSGA-II) [3] is selected. The NSGAII principle is based on non-dominated 
sorting of the individuals in the chromosome and it is merged into the systematic 
framework to optimise the performance of the MAGLEV for every possible sensor set. In 
particular, the efficacy of NSGAII tuning is illustrated on a classical structure with inner-
loop, while a Linear Quadratic Gaussian (LQG) structure is further utilised as the modern 
control approach for the systematic framework presented. 

The paper is organised as follows: The linear time invariant state space model of a 
quarter car is presented in section 2 along with all possible sensor combinations. Section 
3 presents the various inputs to the MAGLEV suspension, together with the objectives 
and numerous constraint limitations. Section 4 discusses the multiobjective constraint 
optimisation using evolutionary algorithms and section 5 the classical control 
optimisation. Section 6 presents the proposed systematic framework while conclusions are 
drawn in section 7. 

2. LINEARISED MAGLEV SUSPENSION MODEL 

The diagram of a one degree-of-freedom, `quarter-car' electromagnetic suspension 
system is shown in Fig. 2b. The suspension consists of an electromagnet with a 
ferromagnetic core and a coil of N  turns. The coil is separated into two sections that are 
connected such that a north and south poles are created and the flux is circulated through 
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the rail so that the electromagnet is attracted to the rail which is made from ferromagnetic 
material. The carriage mass is attached on the electromagnet, with tz  the rail position 

and z the electromagnet position. The air gap )( zzt −  is to be maintained close to the 
operating condition as required. Details are shown on the end view illustrated in Fig. 2a. 

 

 

Fig. 2 Diagram of an EMS 

The LTI state space model is derived by considering small variations around the 
operating point (nominal) values of the coil current Io, flux density Bo, attractive force Fo 
and air gap Go as follows 

oot

oo

IiIGzzG

BbBFfF

+=+−=

+=+=

)(
 (1) 

where ibf ,,  and )( zzt −  are small variations around the equilibrium point. The 

fundamental magnetic relationships are 2BF ∝  and GIB /∝ , thus, the linearised 
expressions for the magnet are derived from (initially) Goodall, 1985 [9] and more 
recently Goodall, 2008 [13]. 

)()( zzKiKb tzzi t
−−= − , bKf b=  (2) 

where ooi IBK /= , oozz GBK
t

/)( =− and oob BFK /2= . The voltage u is given by 

dt
db

NA
dt
di

LRiu ++=  (3) 

where N  is the number of coil turns, R  the coil resistance, A  the pole face area and L  
the coil inductance. Moreover, the force f depends on the mass M and the vertical 
acceleration z&& . 

zMf &&=  (4) 

Fig. 2b Fig. 2a 
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substituting flux and force equations in (2) into (4) the acceleration z&&  is given as 
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&&  (5) 

from the flux equation in (2) and (3) the current equation is 
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and from (5) and (6) a state vector with the corresponding states is selected 
as ])([ zzzix t −= & . 
The state space equation is expression is given by 

tzug zBuBxAx
t
&& &++= , xCy m=  (7) 

where the state matrix gA , the input matrix uB , the disturbance matrix 
tz

B &  and the output 

matrix mC  are given as follows: 
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Note that the output matrix mC  here gives the five possible measurements y = [current 

( i ), flux ( b ), air gap )( zz t − , vertical velocity ( z& ), vertical acceleration ( z&& )] T. The 
parameter values for a one ton suspension system are shown in Table 1. 

Table 1 MAGLEV suspension parameters 

Carriage Mass ( M ) 1000kg Nominal force ( oF ) 9810N 

Nominal air gap ( oG ) 0.015m Coil’s Resistance ( R ) 10Ω 

Nominal flux density ( oB ) 1T Coil’s Inductance ( L ) 0.1H 

Nominal current ( oI ) 10A Number of turns ( N ) 2000 

  Pole face area ( A ) 0.01m2 
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2.1. Sensor Combinations available 

The sensor combinations available depend on the output matrix mC  in (9). The total 

number of sensor combinations (or sensor sets) is easily calculated from 12 −= sn
sN  

where sN  is the total number of all feasible sensor sets and sn  the number of the total 
sensors that can be used. Table 2 shows the available sensor sets with 1,2,3,4 and 5 
sensors that results to a total of 31 sensor sets. Note that the sensor sets will be used for 
for the LQG control but not for the classical approaches. 

Table 2 Number of sensor sets available 

Number of 
measurements available 

Number of 
feasible sensor sets 

With 1 sensor 5 
With 2 sensors 10 
With 3 sensors 10 
With 4 sensors 5 
With 5 sensors 1 

3. INPUT DISTURBANCE AND PERFORMANCE REQUIREMENTS 

3.1 Input disturbances 

Two track input characteristics are considered, i.e. deterministic changes such as 
gradients or curves and stochastic (random) changes in the track position due to 
misalignments during installation. In particular, 

3.1.1 Random Inputs to the MAGLEV suspension 

Random behaviour of the rail position is caused as the vehicle moves along the track 
by track-laying inaccuracies and steel rail discrepancies. Considering the vertical 
direction, the velocity variations are quantified by a double-sided power spectrum density 
(PSD) which in the frequency domain is expressed by 

vrz VAS
t

π=&  (10) 

where vV  is the vehicle speed (in this work is taken as sm /15 ) and rA  represents the 

track roughness equal to 7101 −×  (typical value for high quality track). The corresponding 
(one-sided) autocorrelation function is given by  

)(2)( 2 τδπτ vrVAR =  (11) 

and a more detailed analysis on stochastic description of track irregularities is found in 
[12]. 
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3.1.2 Deterministic Inputs to the MAGLEV suspension  

The main deterministic inputs to a suspension for the vertical direction are the 
transitions onto gradients. In this work, the deterministic input components utilised are 
shown in Fig. 3 and represent a gradient of %5 at a vehicle speed of sm /15 , with a 
transition to give an acceleration of 2/5.0 sm  and a jerk of 3/1 sm . 

 

Fig. 3 Deterministic input to the suspension with a vehicle speed of sm /15  and %5  
gradient 

3.2 Design requirements 

Fundamentally there is a trade off between the deterministic and the stochastic 
response (ride quality) of the suspension. For slow speed vehicles, performance 
requirements are described in [6] and [7]. In particular, the practical objective is to 
minimise both the vertical acceleration (improve ride quality) and the attractive force 
applied from the electromagnets by minimizing the RMS current variations. These 
objectives, noted as 1φ  and 2φ , can be formally written as in (12) and the constraints are 
listed in Table 3. 

rmsi=1φ  and rmsz&&=2φ  (12) 

4. MULTIOBJECTIVE CONSTRAINT OPTIMISATION VIA GENETIC ALGORITHMS 

The problem is clearly posed into multiobjective constraint optimisation that can be 
solved with the Non-dominated Genetic Algorithm II (NSGAII). More details for this 
type of genetic algorithm are given in [3]. NSGAII is used in both classical and LQG 
controller structures for tuning, although with different constraints and parameters. The 
parameters used are shown in Table 4. 
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Table 3. MAGLEV suspension limitations 

Constraints Value 
RMS acceleration ( g%5≈ ), ( rmsz&& ) 25.0 −< ms  
RMS gap variation, ))(( rmst zz −  mm5<  

Air gap deviation (deterministic), ))(( pt zz −  mm5.7<  

Control effort (deterministic), )( pu  )3(300 ooRIV<  

Settling time )( st  s3<  
 
The crossover probability is generally selected to be large (90%) in order to have a 

good mixing of genetic material. The mutation probability is defined as un/1 , where un  is 
the number of variables. This is appropriate in order to give a mutation probability that 
mutates an average of one parameter from each individual. The number of variables is 
different for each optimisation problem as shown on Table 4 except from the simulated 
binary crossover parameter (SBX) and the mutations parameter it was decided to use the 
values of 20 and 20 in all cases since they provide good distribution of solutions for the 
algorithm operations. The population and generation sizes are set to 50 and 500 
respectively for the classical controller optimisation and LQR tuning. Note that the LQR 
design serves as the ideal control performance for assessing the LQG design for every 
feasible sensor set. 

Table 4 NSGAII parameters 

Parameter Classical LQR LQG 
Crossover probability 0.9 0.9 0.9 
Mutation probability )5(/1 =uu nn  )4(/1 =uu nn  )1(/1 =uu nn  
Population (Popnum) 50 50 25 
Generations (Gennum) 500 500 5 

 
LQG tuning is more straightforward, as there is only one variable (i.e, process noise 

matrix (W) is the variable discussed in section (6)) to tune ( 25=numPop , 5=numGen ). 
There is no systematic method to define those values as they depend on the nature of the 
problem. In fact, these values can be selected after a few trials or from experience. The 
more complicated the optimisation problem is, the higher the population number and the 
more generations are required. Moreover, the algorithm performance depends on the 
search space, i.e if it is too large the aforementioned generations and population may not 
be enough. In this work, the search space for both classical and LQG is decided after 
manually designing an initial controller. To achieve the limitations described in Table 3 
the penalty function approach [2] is used. The constraint violation for each constraint, 

ik defined in Table 3, is given as 

0)()(
0{)(

<
=ω

ii
ii

kgif

otherwise
kg

ij k  (13) 
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Each constraint is normalised as in (14) for values less than the predefined and in (17) 
for values greater than the predefined. 

01≥+−= i
des

i

j k
k

g  (14) 

01≥−= i
des

i

k
k

g j  (15) 

Where, i
desk  is the desired constraint value and ik  is the measured value. 

The overall constraint violation is taken as 

∑
=

ω=Ω
j

j

i
j

i kk
1

)()( )()(  (16) 

The overall constraint violation is then added to each of the objective functions value l 

)()()( )()()( i
m

i
m

i
m kRkk Ω+φ=Φ  (17) 

Where, mR  is the penalty parameter and )( )(i
m kφ  the objective function value. 

5. CLASSICAL CONTROLLER OPTIMISATION 

Inner loop control is advantageous in controlling a MAGLEV vehicle [8]. Two 
controller structures are introduced in this section. A classical solution comprising an air 
gap outer-loop with flux inner-loop is compared with an air gap outer-loop with current 
inner-loop. The scheme is depicted in Fig. 4 for the air gap-flux case. The diagram also 
applies for the air gap-current case by replacing flux with current measurement. 

The aims of the classical solution are 
1) to demonstrate the effectiveness of the selected genetic algorithm 
2) to compare the optimised performance for the two inner loop approaches 
3) and to serve as a baseline for further investigation of schemes with more 

sensor combinations. 
The tuning procedure is then extended in an LQG framework which is specifically 

connected to appropriate sensor selection. 
A fixed set of classical compensators is considered, namely a proportional plus 

integral for the inner loops and a phase advance for the outer loop. The controller 
parameters are tuned simultaneously via the evolutionary algorithm NSGA-II in an 
attempt to optimise the control system performance subject to all constraints being 
satisfied. The inner loop bandwidth must be within HzHz 10050 −  while the outer loop is 
chosen less than Hz10 . A phase advance (PA) (18), with k  the advance ratio and τ  the 
time constant, is used to provide adequate phase margin in the range oo 4035 − . 
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Fig. 4 Classical controller impementation with flux inner loop feedback 

Figure 5 depicts the Pareto-optimality between the ride quality z&& and the RMS coil 
current rmsi  for the two controller configurations, i.e. the air gap-flux )),(( bzzt −  and the 

air gap-current )),(( izzt −  case. It can be seen that a set of controllers can be chosen 

which satisfy all constraints for the )),(( bzzt −  case but not for the )),(( izzt − , (more 
complex controller are necessary in the latter). 

This can be seen in Table 5, where both case deterministic and stochastic responses 
are satisfied for all controllers for the )),(( bzz t −  case. Robustness to parameter 

variations is considered only for the )),(( bzz t −  configuration since the )),(( izzt −  
configuration already violates two of the predefined constraints. A set of optimal 
controllers for the extreme cases of 237.0 −= msz&&  and 0.45 2−ms  is selected, i.e. (19) is 
the first set of controllers (C1) and (20) is the second set (C2). The mass (M) is varied by 

%25±  from the nominal value of kgM 1000= , for the dynamical system. 

Table 5 Classical control – constraint values for each design 

 Constraint bzz t ),( −  izz t ),( −  
PM(degree) 35-45 35-40 6.5-7 

)(Hzf
outb  <10 3.2-3.8 ≈5.8 

)(Hzf
inb

 50-100 76-99 ≈100 

Air gap peak )(mm  <7.5 ≈5 ≈1 

RMS air gap )(mm  <5 ≈1.5 ≈1.5 

Control effort )( pu  <300 ≈10 ≈30 

RMS z&& )( 2−ms  <0.5 0.35-0.45 ≈0.98 
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Fig. 5 Pareto front of controllers for bzzt ),( −  (empty dots) and izzt ),( −  (dark dots) 
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The effect of the mass variations is reflected to the constraints where small variations 

from the nominal performance occur. Table 6 shows the resulting constraint values for a 
%25± mass variation. For the C1 controller it can be seen that the mass variations are 

accommodated and stability is maintained with small variation on the phase and the gain 
margins (similarly for the C2 case). In the case of C1 no constraint is violated for 25% 
mass variation but for the C2 controller set, being closer to the limits of the constraints, 
fails to satisfy the ride quality (vertical acceleration) requirement for the case where mass 
is 750kg. The deterministic disturbance (response to 5% track gradient) is successfully 
rejected in less than 3 s  and the steady state value of the air gap returns to the operating 
point (operating condition of mm15 ). Of course, one might use the nominal model 
referring to the worse case mass uncertainty at the expense of more conservative solutions 
for the lower uncertainty cases. 

6. SENSOR OPTIMISATION VIA LQG 

Linear Quadratic Gaussian control is well documented in the literature of control 
systems [11], and thus its theoretical details are omitted. 
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Table 6 Constraints values for PI1 and PA1 at ±25% mass variation 

 M=750kg M=1000kg M=1250kg 
 C1 C2 C1 C2 C1 C2 
PM(degree) 38.2 49.9 35 44.7 32 42.7 

)(Hzf
inb

 4 4.9 3.2 3.8 2.8 3.22 

)(Hzf
outb  95 84 95 84 95 84 

Air gap peak )(mm  3.6 3.4 4.9 4.6 6.3 5.9 
RMS air gap )(mm  1.3 1.18 1.71 1.27 1.87 1.34 
RMS z&& )( 2−ms  0.47 0.61 0.37 0.44 0.3 0.36 
Control effort ( pu ) 25.88 24 35 33 45 42 

Settling time )( st  2.27 2.11 2.51 2.32 2.63 2.37 
 

Consider the following state space expression utilised for designing the Liner 
Quadratic Gaussian controller (LQR and Kalman filter parts. 

dwBBuAxx ω++=& , nCxy ω+=  (21) 

where, the state matrix gAA = , the input matrix uBB = , the disturbance matrix 

tzw BB &= and the output matrix mCC = . All matrices are evaluated in equations (8), and 

(9). Note that dω  and nω  are the process and measurement noises respectively. These are 
uncorrelated zero-mean Gaussian stochastic processes with constant power spectral 
densities W and V respectively. In particular, the problem is to find ysKu lqg )(=  which 

minimises the performance index in (22) for every sensor set combination available (this 
particularly relates to the information provided to the Kalman filter). 

}][
1

lim{
0
∫
τ

∞→τ
+

τ
= dtRuuQxxEJ TT

LQG  (22) 

Here, Q  and R  are the state and control weighting functions respectively with 

0≥= TQQ  and 0≥= TRR  of the Linear Quadratic Regulator part of the LQG 
controller.  

For the LQR design we choose output regulation, i.e. regulate acceleration z&& , air gap 
)( zzt −  and the integral of air gap ∫ − )( zzt  (the last quantity specifically refers to the speed 

of response relating to achieving zero steady state error for the air gap). Thus, Q  is in 
fact given by 

zz
T
z CQCQ =  (23) 

where zC is the output matrix selecting the above regulated signals, i.e. 

T
tt zzzzz ])()([ ∫ −−&&  and zQ  is the corresponding weighting matrix. Both Q  and R  
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are tuned to recover the Pareto front of controllers that gives the optimum trade off 
between rmsi  and z&&  while satisfying the preset constraints. The Kalman filter is designed 

such that ]}ˆ[]ˆ{[ xxxxE T −−  is minimised via choosing W and V. Therefore, a desired 
response is selected from the LQR design which can be considered as the optimum 
performance, which is what the Kalman tuning aims to achieve via W and V tuning for 
every sensor set. 

The scheme is shown in Fig. 6 with all possible measurements included. For 
appropriate disturbance rejection, i.e. zero steady state error for the air gap signal, the 
LQR part is designed on an augmented system with the extra integral state of the air gap 
(however the Kalman filter is designed on the original state space matrices, but the 
integral state is later provided by an appropriately chosen selector matrix iC ). 

 

Fig. 6 Sensor optimisation via LQG 

The measurement noise weighting (V) is constant and given in (24) for all sensors (If 
available this can be found from sensor equipment data sheets, but here is derived from 
prior simulation of baseline controller designs): the noise covariance matrix is constructed 
by taking 1% of the peak from each measurement from the deterministic response of the 
suspension. In this design the process noise matrix 

tzw BB &=  and the process noise 

covariance refers to the track velocity input. The W weighting matrix is the variable to be 
tuned for the 31 sensor sets that are available as described in section 2. The objective 
functions to be minimised for the deterministic )( detΦ  and for the stochastic )( stochΦ  
responses are given in equation (25). 

),,,,( )( zzzzbi VVVVVdiagV
t &&&−=  (24) 

dtxx
t

ao∫ −=
0

detφ , )(stoch ao xxrms −=φ  (25) 
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where, ox  are the monitored states of interest of the closed loop with the LQR state 

feedback (e.g. ideal closed loop) and ax  the monitored states of interest of the closed 
loop with the overall LQG controller (e.g. actual closed loop prior to adding sensor 
noise). Note that the sensor information entering the Kalman filter is affected by sensor 
noise. This makes a total of 6 individual objective functions. The selection procedure of 
the Kalman estimator that satisfy the desired requirements is based on the overall penalty 
parameter (26), which is zero if all constraints are satisfied, and close to zero if the 
constraints are almost satisfied (see equation (16)). The next criterion is the sum of the 
objective functions given as 

∑
=

=
6

1
stochdet ),(

i

S φφ  (26) 

When the optimisation procedure is finished, for each sensor set, the final population 
is assessed and the individual(s) that result(s) to the smallest overall penalty parameter in 
equation (16) are selected, and among these the individual (Kalman estimator) that gives 
the smallest S in equation (26) is the preferred choice. 

The algorithm for the systematic framework developed is summarised as follows 
Step 1: Initialise algorithm by setting the NSGAII parameters and the 
performance requirements (i.e. objectives and constraints) of the suspension. 
Step 2: Tune the LQR controller and select the desired performance to be used as 
the ‘ideal’ performance for the Kalman estimator tuning. 
Step 3: Select a sensor set and check for observability/controllability via modal 
test. 
Step 4: Tune the Kalman estimator to achieve the ‘ideal’ LQR response for the 
current sensor set. 
Step 5: Select the best controller using equations using Ω  and S . 
Step 6: Repeat steps 3-5 until all sensor sets are covered and save results. 

The final choice for the minimum number of sensors can be followed in an appropriate 
manner. 

The state feedback tuning recovers a Pareto front that is depicted in Fig. 7. In these 
results a small relaxation to the deflection limit is considered (maximum air gap 
deflection allowed is 7.3mm) to accommodate the sensor noise effects in the next stage of 
the Kalman filter design. It can be easily seen that the ride quality is within limits and the 
current is around 1A. All controllers satisfy the preset constraints and therefore there are 
50 controllers to choose from. Figure 7 assists in choosing the LQR gain vector which has 
gains of AVK

uir
/596

,
= , 1/8375

,
−= msVK

uzr&
, mVK

uztz
r /520992

),(
−=

−
, 

mVK
uztz

r /80936
),(

−=
∫ −

. 

The subscript indicates the corresponding gain from the input voltage to the 
corresponding state. 

The proposed framework provides 775 )( snum NPop ×  controllers from which the best 
controllers are selected via equations (16) and (26). This gives one controller for each 
sensor set combination, with 24 out of 31 sensor sets found to meet all constraints. Eleven 
sensor sets are selected to compare the results that are listed in Table 7. The sensor sets 
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that satisfy all constraints are marked (√). The flux density (id:1) as well as vertical 
acceleration measurements (id:3) are good choices as they both satisfy the required 
constraints. Kalman estimator gains can be used as a criterion to select which sensor set to 
use. Particularly, with vertical acceleration measurement the Kalman gain vector 
is T

f z
K ]100263444[ −−=

&&
 and for the flux measurement the Kalman gain vector 

is T
fb

K ]2000401268899[ −−= . 

 

Fig. 7 LQR - Optimum Pareto front of controllers 

Therefore, the sensor set with the smallest possible Kalman gains can be used. It is 
also worth mentioning that adding more sensors increases the fault possibilities on the 
sensor elements, as well as incorporating more complexity in the system implementation. 
A first good option is the vertical acceleration, for which the state estimation from the 
Kalman filter quite satisfactory as can be seen from Fig. 8. Disturbance rejection is also 
acceptable in the deterministic case. The air gap settles to its operating condition (nominal 
value) within three seconds with small overshoot and undershoot within the predefined 
limits (note that the Kalman filter is primarily a stochastic estimator thus with smaller 
Kalman gains a small drift occurs; this can be solved by increasing the Kalman gains, but 
at the expense of larger sensor noise entering the system). 
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Table 7 Comparison table for 11 sensor sets 

id Sensor 
Set 

rmst zz )( −  
(mm) 

pt zz )( −  

(mm) 

pu  

(V) 
z&&  

(ms-2) 
st  

(s) 
 

1 b  1.4 5.3 94 0.35 2.25 √ 
2 )( zzt −  1.4 4.8 81 0.35 6.43 x 
3 z&&  1.4 5.3 92 0.34 2.12 √ 
4 zi &,  1.4 5.6 101 0.35 6.17 x 
5 zi &&,  1.4 5.3 72 0.34 2.25 √ 
6 )(,, zzbi t −  1.4 5.2 66 0.35 2.25 √ 

7 zbi &,,  1.4 5.7 70 0.35 2.3 √ 
8 zzzi t &),(, −  1.4 5.5 88 0.35 6.22 x 

9 zzzbi t &),(,, −  1.4 5.6 63 0.35 2.3 √ 

10 zzzbi t &&),(,, −  1.4 5.3 65 0.35 2.2 √ 

11 zzzzbi t &&&,),(,, −  1.4 5.5 63 0.35 2.2 √ 
 

 

Fig. 8 State estimation with vertical acceleration measurement 
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7. CONCLUSION 

The paper discussed a system study from a sensor optimisation point of view for a 
magnetic suspension system via a heuristic approach (NSGAII) on controller tuning. Two 
controller cases were presented: A classical one uses fixed sensor sets for illustrating the 
efficacy of the heuristic algorithm on controller tuning. The second case discussed an 
LQG controller design with the particular aim of sensor optimisation for the Kalman filter 
part. The study illustrated that most of sensors sets are able to provide satisfactory control 
of the magnetic suspension system. Note that the study identifies the minimum sensor sets 
required for appropriate performance, effectively reducing sensor fault scenarios. In 
particular, the presented framework aims to identify potential sensor sets that can be used 
as a basis for future investigation on system fault tolerance via possible controller 
structure reconfiguration. 

Acknowledgement: This work was supported in part under the EPSRC (UK) project Grant Ref. 
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