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Abstract 

The effects of hydrogen addition on the ignition and combustion of a high-pressure 

methane jet in a quiescent charge of high-temperature, medium-pressure air were investigated 

numerically and experimentally. Subsequently, the results of these two fundamental studies were 

applied to the interpretation of combustion and emissions measurements from a pilot-ignited 

natural gas engine fuelled with similar fuels. Whereas, under quiescent conditions, the influence 

of hydrogen addition on the auto-ignition delay time of the gaseous jet was small, a markedly 

greater effect was observed in the more complex environment of the research engine. Similarly, 

in the two fundamental studies, the addition of hydrogen to the methane fuel resulted in a 

reduction of NOx emissions, whereas increased levels of NOx emissions were observed from the 

engine, highlighting the difference between the auto-ignition and pilot-ignition process. 
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1.  Introduction 

Natural gas (NG) has long been considered one of the most promising alternative fuels 

for transportation applications. NG is inherently clean burning (compared with conventional 

gasoline and diesel fuel), is widely available, and is relatively inexpensive. Moreover, as NG is 

predominantly methane (CH4), it has a low carbon/hydrogen ratio; emissions of CO2 are thus 

significantly less than traditional liquid hydrocarbon fuels. Hydrogen (H2) is also receiving 

considerable attention as a potential transportation fuel, using either IC engines or other energy 

conversion technologies. Combining NG and H2 as a fuel in a combustion system offers the 
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potential to achieve significant near-term reductions in transport-related local air pollutant and 

greenhouse gas (GHG) emissions without requiring widespread deployment of a dedicated H2 

infrastructure. This study aims to provide fundamental understanding of non-premixed blended 

NG/H2 combustion, and to apply this knowledge to understand the factors influencing the 

combustion process in a heavy-duty gaseous fuelled engine. 

Despite the benefits of gaseous fuelling of internal combustion engines, implementation 

remains problematic. Natural gas does not auto-ignite under the in-cylinder pressures and 

temperatures typically found in an internal combustion engine: accordingly, most current-

generation NG engines are spark-ignited. While this method reliably ignites the gaseous fuel, the 

resultant engines suffer from efficiency penalties similar to those of typical gasoline-fuelled 

engines, including the need for throttling at part-load and retarded timing to avoid knock at full 

load. Furthermore, the low volumetric energy density of gaseous fuels means that, if the fuel is 

introduced into the air stream in the intake system (as opposed to in the cylinder), the 

displacement of air by the gaseous fuel significantly reduces full load power.  

Pilot ignition provides an attractive alternative to spark ignition for gaseous fuels. 

Combined with direct (in-cylinder) injection of the fuel, pilot ignition offers the opportunity to 

operate gaseous fuelled engines more efficiently, with higher compression ratios and reduced 

pumping losses, while providing full load power similar to an equivalent liquid-fuelled engine.  

One such system, which has recently entered limited production, is manufactured by Vancouver-

based Westport Innovations Inc. This system employs a dual-fuel injector, which injects a small 

quantity of diesel fuel late in the engine's compression stroke. Natural gas is injected into the 

cylinder (through separate injector holes) a short time later. The diesel fuel auto-ignites, which 

creates the required in-cylinder conditions to ignite the natural gas. Following the premixed 

combustion of the small amount of NG which has mixed with air to be within flammable limits prior 

to ignition, the bulk of the injected gas is burned as a non-premixed jet. A more thorough 

description of the combustion system and its normal operation can be found elsewhere 

(McTaggart-Cowan, 2006). 
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2. Previous Studies of Hydrogen-Enriched Methane Combustion 

A significant amount of research has been conducted investigating premixed 

methane/hydrogen auto-ignition and combustion. Initial shock tube studies of high-temperature 

ignition used methane/hydrogen/oxygen mixtures diluted with 90 percent argon. Lifshitz et al. 

(1971) used these results to propose a thermal-based theory explaining why hydrogen reduced 

ignition delay. Subsequently Cheng and Oppenheim (1984), using experiments for temperatures 

from 800 to 2000 K and pressures from 1 to 3 atm, correlated ignition delay () with the formula: 




24

)1(
HCH


 ,                                                             (1) 

where  is the mole fraction of hydrogen in the fuel and CH4 and H2 and are the ignition delay 

times of pure methane and pure hydrogen under the same conditions. Huang et al. (2006) 

measured the ignition delay time of stoichiometric methane/hydrogen/air mixtures in a series of 

shock tube experiments at pressures from 16 to 40 atm and temperatures from 1000 to 1300 K. 

The addition of hydrogen was seen to promote ignition more significantly at higher temperatures 

and lower pressures. More recently, Petersen et al. (2007) used the reflected shock technique to 

measure ignition delay times from methane/hydrogen/air mixtures under lean burn ( = 0.5) 

combustion conditions over a range of pressures near 21 atm (18.2-25.1 atm) and temperatures 

ranging from 1141 K to 1553 K. In agreement with the earlier work of Cheng and Oppenheim, the 

effect of hydrogen addition on ignition delay was found to increase with increasing amounts of 

hydrogen in the blend—20% H2 addition decreased the ignition delay by a factor of 3 while the 

addition of 40% H2 resulted in a nearly 10 fold decrease in ignition delay compared to the base 

methane fuel. Similarly, Herzler and Naumann (2009) used a high-pressure shock tube to 

determine the ignition delay times of methane/ethane/hydrogen mixtures (with an oxidizer blend 

of O2 and Ar [21%/79%]) at nominal test pressures of 1, 4 and 16 bar and a temperature range of 

900-1800 K. Again, the ignition was observed to become faster with increasing hydrogen content. 

However, one notable feature of Herzler and Naumann’s work was the observation of a complex 

pressure dependency for the ignition delay of mixtures containing in excess of 40% hydrogen. 

Gersen et al. (2008) measured the ignition delay time of methane/hydrogen mixtures under 
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stoichiometric conditions at pressures between 15 and 70 bar, and temperatures between 950 

and 1060 K using a rapid compression machine. The results of Gersen et al. support the 

hypothesis that the ignition delay time can be related quantitatively to the hydrogen mole fraction 

in the fuel via equation (1) as suggested by Cheng and Oppenheim. Gersen and co-workers 

results also show strong agreement with the observations by Huang et al. (2006) that the effect of 

hydrogen in promoting ignition increases with temperature and decreases with pressure. Other 

fundamental premixed combustion studies have indicated that the preferential diffusion of 

hydrogen in a turbulent combustion event results in a higher flame propagation rate, even when 

the laminar flame speed is constant (Kido et al. 2002). The presence of hydrogen in the lean 

premixed flame also provides greater resistance to stretch, resulting in fewer extinction events, 

and increases the concentration of H, OH, and O radicals (Gauducheau et al. 1998). It has been 

suggested that the presence of more OH may contribute to the more rapid oxidation of the 

methane, and that using 20% hydrogen in methane can increase peak OH radical concentrations 

by as much as 20% (Larsen and Wallace, 1997; Schefer, 2003). 

 The non-premixed combustion of hydrogen/methane blends has not been studied as 

extensively. In a low-pressure, low-temperature co-flow burner experiment, Karbasi and Wierzba 

(1998) found that adding hydrogen to either the fuel or oxidizer increased flame speeds and 

enhanced mixing, improving non-premixed combustion stability. Differences in fuel-stream density 

with hydrogen addition were found to be secondary (Karbasi and Wierzba, 1998; Law and Kwon, 

2004). The higher diffusivity of the hydrogen increased flame thickness under partially-premixed 

conditions (Naha and Aggarwal, 2004). In industrial gas turbines and boilers, hydrogen addition 

was found to enhance prompt nitric oxide (NO) formation (due to high H and OH radical 

concentrations) while flame stability was improved (Rortveit et al. 2002). Fotache et al. (1997) 

studied the ignition promoting effects of hydrogen in a non-premixed counter-flow 

methane/hydrogen/air jet. These results suggested that for hydrogen concentrations below 30% 

by volume, the H radicals enhance methane ignition, while above 30% hydrogen ignition 

dominates and the delay is independent of the relative methane/hydrogen concentration.  
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 With regard to internal combustion engines, the literature indicates that adding hydrogen 

to natural gas in premixed charge spark-ignition engines has a number of positive effects, most 

notably; extension of the lean combustion limit (Sierens and Rosseel, 2000; Collier et al. 2005), 

enhancement of the combustion rate and a reduction in ignition delay (Swain et al. 1993; Karim et 

al. 1996). Flame stability in the presence of exhaust gas recirculation (EGR) is also improved at 

all air-fuel ratios (Allenby et al. 2001; Larsen and Wallace, 1997). With respect to emissions, 

hydrogen addition can result in reduced NOx emissions by allowing the engine to operate at 

leaner air-fuel ratios (Munshi et al. 2004); however, at a given air-fuel ratio NOx emissions are 

increased by hydrogen because of its higher flame temperature (Sierens and Rosseel, 2000; 

Collier et al. 2005). The amount of hydrogen in the fuel influences its impact on the combustion 

process in spark-ignited engines. Above 30% (by volume), the reduced charge energy density 

and higher potential for knock are substantial handicaps with little benefit in emissions or stability 

(Larsen and Wallace, 1997; Bauer and Forest, 2001).  

There is less information available in the literature regarding the effect of hydrogen 

addition on the performance and emissions of natural gas fuelled combustion engines that utilize 

a non-premixed combustion strategy. The limited data available does suggest that the addition of 

hydrogen to the gaseous fuel improves ignitability and improves combustion stability, leading to 

significant reductions in emissions of combustion by-products including CO, HC, and PM. 

However, NOx emissions are increased as a result of higher combustion temperatures 

(McTaggart-Cowan et al. 2009a). 

3. The Current Work 

In the current work, experimental results from two separate research facilities are 

combined with numerical simulations to investigate the effects of hydrogen addition on non-

premixed methane combustion at both the fundamental and the applied level. At the fundamental 

level, studies in a shock tube facility equipped with a gaseous fuel injection system provides 

improved understanding of hydrogen addition on non-premixed methane jet ignition and 

combustion. The results from the shock tube are compared to numerical simulations to provide a 

more comprehensive understanding of the effects of hydrogen addition on a non-premixed 
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combustion event. At an applications level, a single-cylinder research engine provides indications 

of the implications of these findings on pollutant formation and combustion in a heavy-duty 

engine.  

4.  Experimental Set-ups and Methods 

4.1 Shock Tube  

 The design and operation of the shock tube used in this work has been described 

previously (Huang et al. 2004, 2006; Sullivan et al. 2006; Wu et al. 2007). The stainless steel 

shock tube is 7.90 m long (3.11 m driver section and 4.79 m driven section) with an inside 

diameter of 5.9 cm. The facility employs a reflected shock wave technique (Gaydon and Hurle, 

1963) to preheat and compress a charge of Praxair medical grade air (the driven gas). Reflection 

of the shock wave from the test-section end wall generates a quiescent, high temperature region 

into which the gaseous fuel is injected. Four flush-mounted dynamic pressure transducers 

measure the incident shock velocity. Using this velocity, the test region temperature and pressure 

(after the passing of the reflected shock) are determined by solving the 1-D conservation 

equations for mass, momentum, and energy across the shock wave. Perfect gas behaviour is 

assumed and temperature-dependent fluid thermal properties are accounted for. The 

uncertainties in the calculated temperature and pressure are about 1-2% and 3-4%, respectively, 

as discussed elsewhere (Huang et al. 2004). Through careful tailoring, effective runtimes of 4-5 

ms are achieved with nearly constant post-reflected shock pressure and temperature conditions 

prior to the fuel injection. Fuel is injected along the shock tube axis into the heated and 

compressed air using a well-characterized single-hole, natural gas injector with 0.275 mm 

diameter orifice (Westport J43P2). 

The ignition of the fuel jet and the subsequent combustion event is monitored optically 

through quartz windows (2 cm x 20 cm) in the combustion zone, as well as with high-speed 

pressure transducers. A high frame rate CMOS-based digital camera (Vision Research Phantom 

v7.1 equipped with a 50mm F/1.2 Nikon lens) measures the natural flame luminosity as well as 

blackbody radiation from any particles in the shock tube. For this work, the camera was operated 

at a frame rate of approximately 31,000 frames/second with an effective integration time of 1 μs 
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per frame and a nominal imaging resolution of 0.2 mm x 0.2 mm per pixel. The pixel sensitivity is 

approximately flat for light wavelengths from 400 to 700 nm with relatively sharp roll-offs at 400 

and 800 nm. Light imaged in these experiments was depth of field integrated. A schematic of the 

shock tube setup is shown in Figure 1. 

The fuel injector, the data acquisition system, the intensified CCD camera, and the HS 

video camera were triggered simultaneously by the rising edge of the incident shock wave as it 

passed the piezoelectric pressure transducer closest to the shock tube endplate. This triggering 

arrangement ensures that the first introduction of fuel into the shock tube (Start of Fuelling, SOF) 

occurs shortly after constant pressure and temperature conditions have been established in the 

experimental section. Earlier injector characterization tests, detailed in Wu (2007), found the 

mean injection delay of the fuel injector to be 0.311 ms with a standard error of approximately 400 

μs at a pressure ratio of 4—the value used in the present study. Thus, the timing of the first 

appearance of fuel from the injector nozzle (SOF) is estimated as 0.311 ms ± 78 μs (95% 

confidence interval) after the start of injection (SOI) – where SOI in the refers to the commanded 

start of injection.  

4.2 Single Cylinder Research Engine (SCRE) 

The single cylinder research engine used in the present study and it’s associated test cell 

and instrumentation have been described in detail in previous works by McTaggart-Cowan et al. 

(2003), and McTaggart-Cowan (2006). The base engine is a Cummins ISX series heavy-duty 

model that has been modified for single cylinder operation and equipped with a prototype version 

of Westport Innovations’ HPDI™ direct-injection natural-gas combustion system. Table 1 details 

the engine configuration.  

Table 1: Engine and injector specifications 
 

Engine Cummins single cylinder 4-stroke, 4-valve 

Fuelling Direct injection; diesel pilot, gaseous main fuel 

Displacement (/cylinder) 2.5 L 

Compression Ratio 17:1 

Bore/Stroke/Connecting Rod Length 137/169/261 mm 

Injector Westport Innovations Inc. dual-fuel concentric needle  

 Injection control Separate diesel and natural gas solenoids 

 Injector holes 7 pilot, 9 gas 

 Injection angle 18
o
 below fire deck 
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The engine facility is fully instrumented, with measurements of air and fuel flow (both 

diesel pilot and gaseous main fuel) as well as exhaust gas composition (AVL CEB-NA emissions 

bench). The gaseous fuel flow measurement uses a coriolis-force mass flow sensor, and hence is 

insensitive to changes in gaseous fuel composition. The combustion process is monitored using a 

high-speed water-cooled in-cylinder pressure transducer (AVL QC33C) in conjunction with a ½
o
 

crank-angle encoder to identify the piston location. Figure 2 shows a schematic of the engine test 

facility. 

5. Experimental Test Conditions 

5.1 Shock Tube 

Two series of tests were conducted in the shock tube. The first series of tests examined 

the effect of hydrogen addition on run-to-run variability. 20 repeat experiments were performed at 

a pre-combustion temperature (To) of 1300 K and an injection pressure (Pi) of 120 bar for each of 

two fuel compositions—methane (99.97% purity) and a 80/20 methane/hydrogen blend (% by 

volume). The commanded injection duration was fixed at 1.0 ms for both series of tests. The 

second series of tests considers the effect of pre-combustion temperature on ignition and 

combustion of the two fuels in the range 1200-1400 K. At least 3 replications were carried out for 

each pre-combustion temperature condition for each fuel blend in this series. Table 2 details the 

operating conditions and sample size for shock tube experiments reported herein. 

 

Table 2: Operating conditions and sample size for shock tube experiments 
 

Fuel injector pressure, Pi, (bar) 120 

Fuel injection duration (ms) 1.0 

Pre-combustion pressure, P0, (bar) 30 

Fuel - %H2 by volume 0 20 

Fuel energy density (MJ/m
3
) 32.7 28.06 

Fuel Hydrogen : Carbon mole ratio 4.0 4.5 

Experimental series 1 2 1 2 

Pre-combustion temperature, T0, (K) 1300 1200-1400 1300 1200-1400 

Sample size 20 16 20 14 

 

5.2 Engine  
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The effects of using a hydrogen-blended fuel in the direct-injection engine were 

investigated at a fixed operating condition as indicated in Table 3. Note that this operating 

condition is generally representative of a steady-state cruising mode for a heavy-duty engine; the 

use of moderate levels of EGR maintains relatively low levels of NOx without degrading the 

combustion event.  

Table 3: Engine operating conditions and fuel composition 

 
Speed (RPM) 1200 

Indicated Power (kW) [% load] 35 [75%] 

Indicated Mean Effective Pressure (bar) 13.5 

Fuel-oxygen equivalence ratio 0.6 

Gaseous Fuel Pressure (MPa) 21 

EGR (mass %) 30 

Combustion Timings (50% IHR) 0, 5, 10, 15
o
CA

 
after top dead centre (TDC) 

Fuel - %H2 by volume 0 15 35 

Fuel energy density (MJ/m
3
) 32.7 29.2 24.6 

Fuel Hydrogen : Carbon mole ratio 4.0 4.35 5.08 

 
 

Testing was carried out using three fuel compositions over a range of combustion timings. 

Natural gas (>96% CH4) was used as the base fuel, and was blended with 15% and 35% (by 

volume) hydrogen. The diesel pilot contributed 5% of the total fuel energy for all test conditions. 

The compositions of the gaseous fuel blends were verified using gas chromatography. For each 

fuel blend, four combustion timings were tested, to provide comparison over a range of in-cylinder 

conditions while maintaining a constant fuel-oxygen equivalence ratio. The mid-point of the heat 

release rate (50%IHR) was used as the combustion timing control variable: the timing was 

controlled by adjusting the start-of-injection (SOI) of the pilot fuel. The gaseous (main fuel) 

injection started 1.0 ms after the diesel injection finished. Despite variations in ignition delay and 

combustion rate with hydrogen addition to the fuel, the commanded SOI differed by less than 

3
o
CA between methane and 35% H2 combustion for all the combustion timings investigated. 

5.3 Numerical Simulation  

 To elucidate the effect of hydrogen addition on the auto-ignition delay of methane fuel, a 

non-premixed counter-flow diffusion flame of methane blended with different amounts of 

hydrogen and air was simulated using the FlameMaster software package developed by Pitsch 

(n.d.). FlameMaster solves the flamelet equation, which is equivalent to the first-moment 
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Conditional Moment Closure (CMC) approach for a homogenous, isotropic flow. The kinetic 

mechanisms adopted for the simulation of methane and methane/hydrogen oxidization in this 

study were those originally proposed by Huang et al. (2004, 2006). The ignition delay was defined 

as the time from the start of the simulation (which may be thought of as analogous to the first 

introduction of fuel in the shock tube) until the first abrupt increase in the normalized temperature 

field: 

min

max min

Normal

TT
T

T T





                                                         (3) 

where Tmin and Tmax are, respectively, the minimum temperature and maximum temperatures at 

each mixture fraction. 

 

6. Results and Discussion  

6.1 Fundamental Combustion Study (Shock Tube and Modelling Results) 

6.1.1 Ignition Delay 

Table 4 shows the predicted effect of hydrogen addition on the ignition delay of methane 

in a non-premixed counter-flow diffusion flame where the oxidizer (air) temperature and ambient 

pressure are chosen to match the nominal pre-combustion temperature and pressure of the 

shock tube experiments (1300 K and 30 bar, respectively). The computations predict substantial 

decreases in ignition delay time with the addition of relatively modest quantities of hydrogen to 

the base methane fuel (a 13% and 32% reduction for the addition of, respectively, 10% and 20% 

by volume hydrogen).  

 

Table 4: Ignition delay of methane with hydrogen addition predicted by FlameMaster (fuel 
temperature 300 K, oxidizer temperature 1300 K, pressure 30 bar) 

 
 

Fuel - %H2 by volume Predicted Ignition Delay, td_ign, (ms) 

0 0.429 

10 0.375 

20 0.293 

 

 The results from the shock tube do not show as significant a reduction in auto-ignition 
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delay time with hydrogen addition as that predicted by the FlameMaster simulations. The mean 

ignition delay time in the shock tube, calculated from 20 repeat tests, was found to decrease by 

only 7% with the addition of 20% hydrogen as opposed to the 32% decrease seen in the 

FlameMaster simulations. A summary of the ignition delay data from the shock tube is shown in 

Table 5.    

 

Table 5: Summary of shock tube ignition delay data at pre-combustion temperature and pressure 

of 1300 K and 30 bar (20 repeat tests) 

 

Fuel - %H2 by volume Min (ms) Max (ms) Mean (ms) Std Dev (ms) COV 

0 0.465 0.901 0.736 0.113 15% 

20 0.471 0.887 0.687 0.110 16% 

 

There are several important points of note regarding the shock tube data, its 

interpretation, and the validity of comparison with the numerical results. Firstly, there is significant 

scatter in the data as evidenced by the high values of the coefficient of variation (COV) of the 

measured ignition delay for both fuels (COV=15% for methane, and COV=16% for 

methane/hydrogen blend). A large amount of scatter is also seen in the shock tube data for the 

variation of ignition delay with pre-combustion temperature in Figure 3 and, in fact, significant 

scatter is characteristic to all of the non-premixed combusting jet data obtained from the UBC 

shock tube. This topic therefore merits further discussion. 

There are potentially three significant contributors to the large variations in ignition delay 

seen in the shock tube work. Firstly, there is the experimental technique itself. It is well known that 

the repeatability of shock tube experiments is not ideal and that there will be minor variations in 

pressures and temperatures from shock experiment to shock experiment (Gauthier et al., 2004; 

Vasu et al., 2008); secondly, there is the stochastic nature of the chemical reaction and thirdly, 

there is the inherent randomness associated with turbulent mixing in the developing jet. 

With respect to the experimental technique, we have considered the likely magnitude of 

the variation in pre-combustion pressure and temperature and their expected influence on the 

ignition delay of a non-premixed jet in a previous work (Wu et al., 2010). The literature indicates 
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that the ignition delay of a turbulent jet injected into a quiescent charge decreases with increasing 

pre-combustion temperature at the rate of approximately 0.0045 ms/K  (Wu et al., 2010), while 

showing only weak dependency on pressure (Fraser et al., 1991). In our referenced work, a 

series of 140 shock tube experiments were performed at nominally identical conditions of pre-

combustion pressures and temperatures (respectively, 30 bar and 1300 K – identical conditions to 

those of the present study). The range of calculated pre-combustion temperatures in this 140 

sample data set was 35 K. Allowing the maximum uncertainty in the calculated temperature and 

assuming the aforementioned value for the temperature sensitivity would then lead to an 

expectation that the measured ignition delays should fall into a 0.2835 ms wide range band. The 

range of the ignition delay results shown in Table 5 substantially exceeds this value (0.436 ms for 

methane and 0.416 ms for the methane/hydrogen blend). Accordingly, we reject the hypothesis 

that the scatter in the data is merely an artifact caused by the experimental method. 

Accepting that there is a significant component of the observed variation in ignition delay 

that is a true reflection of the stochastic nature of the ignition process, the scatter in the ignition 

delay data from the shock tube experiments is simultaneously obstructive and educational. With 

respect to the analysis of the data shown in Table 5 (which considers the effects of hydrogen 

addition on ignition delay at a fixed pre-combustion pressure and temperature), the large run-to-

run variability in the data combined with the relatively small sample size (20 experiments) means 

that the statistical power of the experiments is insufficient to reliably draw conclusions from the 

observed differences in the mean ignition delay time. Analysis of variance (ANOVA) techniques 

indicate that the difference in the mean ignition delay times between the 0% and 20% hydrogen 

fuels is not statistically significant: the P-value (probability of the two results being sampled from 

the same data set) is 0.172. Note that for all the ANOVA analyses presented herein, the a-priori 

decision was made to accept a 5% probability of making a type-I statistical error (identifying a 

significant difference when one is not present); hence only P-values below 0.05 are considered to 

identify a statistically significant difference between the mean values.  

Returning now to Figure 3, which shows both the shock tube data (Figure 3a) and the 

FlameMaster predictions (Figure3b) for the variation of ignition delay with pre-combustion 
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temperature, it is interesting to note that the scatter in the measured ignition delay data shown in 

Figure 3a is reduced at higher temperatures. To understand the causes of the reduced scatter it is 

useful to conceptualize the total ignition delay time as being the sum of two nominally 

independent components as was first suggested by Bi and Agrawal (1998). The first component, 

which is equally applicable to premixed and non-premixed systems, is that due to the chemical 

reaction. The second component, which is specific to non-premixed systems, relates to the time 

necessary for the fuel and oxidant to mix and create a locally combustible mixture with a 

sufficiently favourable strain rate to facilitate auto-ignition. Bi and Agrawal (1998) referred to these 

two components as, respectively, the ―kinetic‖ and ―physical‖ components of the ignition delay. 

Note that in the present work both components are inherently stochastic processes. The 

stochastic nature of the chemical process is described by Frisque et al. (2006) in a study on 

premixed combustion as follows, ―Autoignition as a macroscopic phenomenon is a result of a 

sequence of many events—collisions and reactions—on the microscopic scale. Each individual 

autoignition process consists of its particular chain of events; it is not the repetition of only one 

possible sequence‖. With regard to the physical delay in the present application, each realization 

of the jet starting and penetration process yields different strain histories and mixture fraction 

histories, some of which provide more favourable conditions for kernel formation than do others. 

As the pre-combustion temperature is increased the relative contributions of these two 

components to the overall ignition delay will change. The effects of changing the oxidizer 

temperature between 1200 K and 1400 K on the turbulent mixing process are expected to be 

relatively small and therefore the physical delay and its associated variability should remain 

approximately constant. In contrast, it is well established that the kinetic delay is substantially 

decreased by increasing temperature in this range under diesel or gas-turbine engine conditions 

of pressure (Bowman, 1970; Bi and Agrawal,1998; Peterson et al., 2007; Huang et al., 2004, 

2006). As the kinetic delay decreases, so the magnitude of the variation in the kinetic delay will 

also decrease. Accordingly, the scatter in the experimental data should be expected to decrease 

at higher pre-combustion temperatures as the auto-ignition process becomes mainly ―mixing-

limited‖. 
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Although the results shown in Figure 3a are characterized by significant scatter, and 

therefore accepting that these experimental data should be used with considerable care, it is 

interesting to compare and contrast the trends shown in the figure with those found in literature 

data. Assuming the auto-ignition process to be similar to that of a premixed homogeneous system 

in which a single-step reaction occurs, the experimental data shown in Figure 3a were fitted to: 

_ expdign

o

E
t A

RT

 
  

 
,                                                       (5) 

where E is the global activation energy and R is the universal gas constant. The results of this fit, 

shown in Table 6, at first glance suggests that the global activation energy of methane, which for 

a given pressure is essentially a measurement of the temperature dependence of the ignition 

delay time (there is also a weaker concentration dependence), decreases with the addition of 

20% H2. However, the interpretation of this result is complicated by the previously discussed 

change in the limiting ignition mechanism (kinetic or physical) with temperature of the non-

premixed jet in the shock tube experiments, and, although Herzler and Naumann (2009) do report 

a reduction in global activation energy for a premixed methane/ethane/hydrogen blend containing 

40% by volume H2, further consideration of the literature data and comparison with the results of 

the FlameMaster simulation shown in Figure 3b suggest that observed result is dominated by 

other factors. 

 

Table 6: Least-squares fitting results for td_ign and To 

Fuel - %H2 by volume A (ms) E (kcal/mol) R
2 

0 0.0010 17.1 0.6924 

20 0.0124 10.4 0.4232 

 
 

In a shock tube study of ignition in premixed fuel/oxidizer systems, Petersen et al. (2007) 

reported that there were no significant differences between the global activation energies of 

methane and of a 80/20 (% by volume) blend of methane and hydrogen—although faster ignition 

was noted with the addition of hydrogen. Petersen and co-workers attributed the reduction in 

ignition delay to the addition of additional, favourable, radicals to the pre-ignition radical pool. 
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Thus, Peterson’s work is in strong agreement with the earlier work of Huang et al. (2006) who 

concluded that hydrogen addition does not change the main reaction path of the methane 

system—and therefore that the effect of hydrogen on methane ignition is primarily related to the 

generation and consumption of reactive radicals including CH3, H, OH, and HO2. The 

FlameMaster simulations shown in Figure 3b show that the ignition delay decreases with 

hydrogen addition over the temperature range studied (in agreement with the experimental data) 

but, in contrast to the shock tube results, do not suggest that the activation energy of the base 

methane fuel is notably reduced by the addition of 20% Hydrogen. Furthermore, as also seen by 

comparing the numerical and experimental results presented in Tables 4 and 5 respectively, the 

predicted ignition delay times are consistently and substantially shorter than those measured in 

the shock tube experiments. In many ways this is to be expected.  

The simulated combustion configuration, a non-premixed counterflow diffusion flame, is 

clearly a very different combustion configuration to that of the shock tube experiments, in which 

turbulent gaseous fuel is injected into heated and compressed air. Accordingly, we do not expect 

that the FlameMaster simulations will exactly match the shock tube data—either in magnitude or 

in exact behaviour. For example, whereas the ignition delay in the shock tube is composed of a 

chemical kinetic delay and a physical delay associated with turbulent mixing, the ignition delay in 

the simulations is composed of a chemical kinetic delay and a physical delay due to diffusion 

(where the chemical kinetic delay is expected to dominate). However, we do believe that 

comparison of the numerical and experimental results while giving due consideration to the 

differences between the two combustion configurations can provide valuable insight into the 

effects of hydrogen addition on the ignition and combustion of non-premixed turbulent natural gas 

(or methane) jets. 

  Reconsidering then the shock tube data (Figure 3a) in light of the knowledge gained from 

the FlameMaster simulation (Figure 3b) leads to the following interpretation of the experimental 

results. The potential of hydrogen to enhance ignition in high-pressure non-premixed natural gas 

combustion systems is highly dependent on the pre-combustion temperature. At the lower end of 

the temperature range examined in this work, the ignition delay is substantially reduced by the 
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addition of 20% hydrogen. The FlameMaster simulations shown in Figure 4 suggest, in 

agreement with the previous works of Huang et al. (2006) and Petersen et al. (2007), that under 

these conditions the addition of hydrogen enhances ignition through changes to the chemical 

kinetics. The figure shows the predicted mass fraction profiles of the CH3, H, OH, and HO2 

radicals at a stoichiometric mixture fraction (Zst) for different methane/hydrogen blends. The 

addition of hydrogen is predicted to cause the peaks of CH3, H, OH, and HO2 mass fraction to 

move earlier in time. Moreover, when the hydrogen concentration increases, a more rapid rise in 

mass fraction is observed. These effects all contribute to accelerated methane oxidation, which 

results in a shorter ignition delay. At the higher end of the temperature range however, the 

experimental results show no significant difference in ignition delay between the 0% and the  20% 

hydrogen fuels suggesting that ignition is mixing-limited under these conditions.  

 

6.1.2 Ignition Kernel Location 

In this study, an ignition kernel is defined as the emergence of a non-contiguous new 

flame region not generated by the propagation of an existing flame. The location of an ignition 

kernel relative to the injector tip was identified from the high-speed video images—where the 

distance from the injector tip to the nearest (closest downstream) ignition kernel is defined as Zk. 

Figure 5 shows a typical example image with Zk indicated. To account for the variation in fuel 

mass flux with injector orifice diameter (d) and fuel/oxidizer pressure ratio (Pi/Po), Zk is normalized 

such that 

     



Zk * Zk /d *                                                                       (2) 

where 
    



d *  d Pi / Po   as discussed by Hill and Ouellette (1999) and Rubas et al. (1998). Table 7 

summarizes the normalized ignition kernel location data at fixed pre-combustion temperature and 

pressure (respectively 1300 K and 30 bar). Uncertainty in Zk is estimated to be approximately 1 

mm (5 pixel widths) due to camera spatial and temporal resolution. After normalization, the 

uncertainty in Zk* is approximately 2%, mainly due to the uncertainty in the pre-combustion 

pressure. 
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Table 7: Summary of shock tube variability in Zk* data at pre-combustion temperature and 

pressure of 1300 K and 30 bar (20 repeat tests) 

Fuel - %H2 by volume Min (mm) Max (mm) Mean (mm) Std Dev COV 

0 18 54 32 8 26% 

20 16 53 31 11 35% 

 
 

The results shown in Table 7 demonstrate that addition of 20% hydrogen to the methane 

fuel has a negligible effect on Zk*; an ANOVA analysis confirming that any minor differences are 

not statistically significant at any meaningful level (P-value = 0.690). It is, however, interesting to 

note the COV of Zk* increases from 26% to 35% with the addition of hydrogen to the fuel, i.e. the 

spatial variability of the auto-ignition event in the shock tube increases with hydrogen addition.  

6.1.3  Pollutant Emissions (Shock Tube and Modelling Results) 

6.1.3.1 NOx Emissions 

To facilitate comparison between experiments with different fuel injection masses all of 

the NOx results presented in this work (shock tube and engine) are normalized by the total 

quantity of energy in the injected fuel mass. Table 8 summarizes the variability in normalized NOx 

data from the shock tube experiments at pre-combustion temperature and pressure of 1300 K 

and 30 bar. Error in the normalized NOx emissions is estimated at ~5%, mainly due to the 

uncertainty in the amount of fuel injected per shot. Under these conditions, the addition of 20% 

hydrogen to the methane base fuel is seen to cause a substantial decrease in NOx production. 

The results shown in Table 8 indicate that there is a 48% reduction in the mean NOx level due to 

the two fuels. An ANOVA analysis confirms this result as statistically significant with a P value of 

0.0. A substantial decrease (33%) in NOx emissions variability is also observed. 

 

Table 8: Summary of shock tube variability in normalized NOx data at pre-combustion 

temperature and pressure of 1300 K and 30 bar (20 repeat tests) 

 

Fuel - %H2 by volume Min 
(g/MJFUEL) 

Max 
(g/MJFUEL) 

Mean 
(g/MJFUEL) 

Std Dev 
(g/MJFUEL) 

COV 

0 0.47 1.18 0.91 0.19 21% 

20 0.35 0.61 0.47 0.07 14% 
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 Figure 6 shows the variation of the normalized NOx emissions with the shock tube pre-

combustion temperature for both the 0% and the 20% hydrogen fuels. As expected, NOx 

emissions increase with increasing pre-combustion temperature for both fuels. Interestingly, the 

data shows the addition of 20% hydrogen to lower the average normalized NOx emissions by 

similarly significant amounts (on a % basis) across the full pre-combustion temperature range 

examined in the shock tube study (1200-1400 K).  

 With respect to the mechanism by which the addition of 20% hydrogen brings about the 

observed reduction in shock tube NOx emissions compared to the base methane fuel, it is 

instructive to consider the adiabatic flame temperature data presented in Table 9. 

 
Table 9: Calculated adiabatic flame temperatures, Tad, for methane/hydrogen fuel blends at 

different volumetric air-fuel ratios  (Fuel temperature 300 K, oxidizer temperature 1300 K, 

pressure 30 bar) 

 Stoichiometric (Ф=1) Air/Fuel=10 (mol/mol) Air/Fuel=20 (mol/mol) 

Fuel - %H2 by 

volume 

Air/Fuel (mol/mol) Tad (K) Ф Tad (K) Ф Tad (K) 

0 9.5 2774 0.95 2752 0.48 2204 

20 8.1 2782 0.81 2647 0.41 2098 

 

The table shows the adiabatic flame temperatures for a stoichiometric reaction and for 

two different molar air-fuel ratios for the both fuels calculated using the chemical equilibrium 

package Gaseq (Morley, n.d.). A fuel temperature of 300 K and an oxidizer temperature of 1300 K 

were used in the calculation. The pressure was fixed at 30 bar to match the nominal value of the 

shock tube experiments. It can be seen that under stoichiometric conditions the adiabatic flame 

temperature of the methane/hydrogen blend is very slightly (8 K) higher than that for pure 

methane. However under lean conditions, the adiabatic flame temperature of the 20% hydrogen 

fuel is markedly lower (>100 K) than that of the pure methane. The results shown in Table 9 

therefore suggest that the reduction in NOx emissions that is observed in the shock tube studies 

with the addition of 20% hydrogen to the fuel may be due to a shift in the reaction zone fuel-

oxidizer stoichiometry (the addition of hydrogen promoting combustion at a leaner AFR). 
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6.2  Applied Combustion Study (Pilot-Ignited Direct-Injection Natural Gas IC Engine) 

The addition of hydrogen to the fuel has a significant influence on the combustion 

process and especially on the emissions of a pilot ignition, direct-injection of natural gas engine. 

These results have been published in more detail elsewhere (McTaggart-Cowan et al., 2009). The 

material presented here will focus on the ignition, early combustion stability, and NOx formation 

influences of fuel composition, allowing direct comparison with the shock tube and modeling work 

presented above. Experimental uncertainty in the engine work is presented as the 95% 

confidence intervals based on the repeatability of the results at equivalent operating conditions on 

fuel blends reported in previous work (McTaggart-Cowan et al. 2008). Before discussing these 

results however, it is useful to review the similarities and differences between the combustion 

systems of the pilot ignited direct-injection engine and the high-pressure shock tube.  

 Whereas the charge into which the fuel is injected in the shock tube is quiescent with 

constant temperature and pressure, the charge in the engine is highly turbulent with both small 

and large-scale turbulence present due to breakdown of the bulk motion induced by the induction 

process. Furthermore, in the engine, the temperature and pressure of the charge vary as the 

piston moves—although this effect is relatively small in the region of interest (the piston motion is 

only 4% of the total stroke length over the 20
o
CA before or after TDC). Perhaps most significantly, 

whereas the gaseous fuel in the shock tube auto-ignites in the high temperature oxidizer, a diesel 

pilot flame promotes ignition in the engine. The pilot flame is believed both to provide heat, which 

will enhance reaction rates, and also to generate a pool of radicals that may help advance the 

ignition process. However, which of these two effects is dominant in the engine is presently 

unclear.  

6.2.1  Ignition Delay (Gaseous Fuel) 

 Identifying the specific time for start-of-combustion (SOC) of the gaseous fuel is difficult in 

this pilot-ignited, direct injection of natural gas dual fuel engine, as the preceding pilot combustion 

gradually transitions into the gaseous fuel combustion process. In this study therefore, to provide 

a consistent method of identifying the effects of hydrogen addition on the gaseous ignition delay 

(GID) we assume that the gaseous fuel SOC occurs at the 10% Integrated Heat Release (IHR) 
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point, i.e. the point within the cycle (measured in degrees crank angle) at which 10% of the total 

fuel energy has been released. While this metric does not necessarily coincide with the gaseous 

fuel start-of-combustion, the trends with combustion timing and fuel composition should be 

consistent between start-of-combustion and the 10% IHR point. The GID is therefore defined as 

the time interval between the commanded start of injection of the gaseous fuel (GSOI) and the 

10% IHR point. 

Figure 7 shows that adding hydrogen to the fuel has a small but significant impact on the 

heat release rate. IHR data for all three fuels are shown at an intermediate combustion timing 

(50% IHR at 10
o
ATDC); note that similar results are observed at all other timings examined. In 

general, the IHR data demonstrate that the bulk of the combustion occurs at a similar rate for all 

three gaseous fuels. However, a more detailed analysis of the IHR data shows that the gaseous 

ignition delay is shorter with hydrogen in the fuel. Following ignition, the initial combustion rate of 

the hydrogen-blended fuels in the engine is slower than that with no hydrogen addition, as shown 

by the lower slope of the IHR profile for the early stages of the combustion event. This is an 

interesting result since the slower combustion rate occurs despite the predicted increase in the 

concentration of reactive radicals in the reaction zone that was suggested by the FlameMaster 

simulation. The slower initial combustion rate of the hydrogen containing fuels in the engine may 

be explained, in part, by the lower energy density of the hydrogen-blended fuels (see Table 3) —

meaning that there is inherently less chemical energy available at a combustible stoichiometry in 

the early stages of the combustion. This effect would be exacerbated by the shorter ignition delay 

time with the hydrogen-blended fuel, as a shorter ignition delay provides less time for the 

gaseous fuel to mix to a combustible stoichiometry before ignition. Accordingly, the experimental 

results suggest that the early-stage combustion processes in the engine are most sensitive to the 

rate at which fuel and oxidizer are mixing. 

The effect of hydrogen addition on the delay between commanded start-of-injection for 

the gaseous fuel (GSOI) and the 10% IHR is shown in Figure 8, along with the cycle-to-cycle 

variability in the 10% IHR timing. The ignition delay data is based on the average heat-release 

rate calculated from 50 consecutive engine cycles, while the cycle-to-cycle variability in the 
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combustion is determined by evaluating the individual heat-release rates for the same 50 cycles. 

The results are plotted against the temperature at the start of the pilot injection, calculated 

assuming a polytropic compression with an exponent of 1.36—a value determined from 

experimental pressure-volume data recorded during the engine’s compression stroke. In general, 

more advanced combustion phasing resulted in earlier injection and hence lower pre-combustion 

temperatures.  

 The left-hand graph in Figure 8 demonstrates that the ignition delay of the gaseous fuel in 

the engine is substantially reduced by the addition of hydrogen (decreases of approximately 10% 

with 15% H2 in the fuel and 20% with 35% H2 in the fuel are shown). Similar reductions are found 

for the full range of start of injection temperatures examined. It is interesting to contrast this 

behaviour with that previously observed in the shock tube. Analysis of the shock tube data, 

supported by the results of the FlameMaster simulations (§6.1.1), showed that the potential of 

hydrogen to enhance ignition in high-pressure non-premixed natural gas combustion systems is  

temperature dependent. At higher temperatures, the influence of the fuel composition on ignition 

delay was found to be negligible; this suggests that, under these high-temperature conditions, the 

ignition process appears to be mixing-limited. However, temperatures in the engine at the end of 

the compression stroke are relatively low, compared to the shock tube cases. The slow 

combustion of the pilot fuel, which amounted to less than 5% of the total fuel energy, will not 

increase the bulk in-cylinder temperature to the levels seen in the shock tube. As a result, the 

shock tube results that are most pertinent to the engine conditions are those for the lower pre-

ignition temperatures, where the chemical kinetics are relatively more important. In these 

situations, the shock tube work demonstrates (Figure 4) that the addition of hydrogen was found 

to decrease the ignition delay time. The Flamemaster simulations suggest that the addition of 

hydrogen to methane promotes ignition through changes to the pre-ignition radical pool. In this 

low-temperature - kinetically dominated - ignition regime, the modelling results (and literature data 

of premixed methane/hydrogen combustion) show an increasing reduction in ignition delay time 

with increasing hydrogen content.   

 In light of the above, the reduction in the gaseous ignition delay shown in Figure 8 seems 
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to suggest that ignition of the gaseous fuel jet in the engine occurs within a temperature range in 

which chemical kinetics play a significant role in determining the ignition delay, i.e. at lower 

temperatures than those that cause the ignition of the fuel jet to become mixing-limited. The 

relative importance of the chemical kinetic delay compared to the physical delay in the engine 

application is further emphasized by considering that the air-fuel mixing process in the engine is 

enhanced by the in-cylinder turbulence of the charge compared to the quiescent environment of 

the shock tube. Accordingly, the physical delay time, and its contribution to the overall ignition 

delay in the engine, is expected to be reduced.  

6.2.2  Cycle-to-Cycle Variability of the Ignition Delay 

The right-hand graph in Figure 8 indicates that cycle-to-cycle variability of the gaseous 

ignition delay in the pilot-ignited engine is significantly reduced by the addition of hydrogen to the 

fuel. Simultaneously, the ignition delay is reduced as discussed in §6.2.1. The improvement in 

ignition stability with hydrogen addition seen in the engine is not found in the shock tube 

experiments in which the temporal variability of ignition is almost unchanged by the addition of 

hydrogen.  

One possible explanation for the improved ignition stability in the engine is that hydrogen 

addition increases the number of ignitable regions in the transient gaseous jet due to the wider 

ignition and flammability limits of the hydrogen-blended fuels. This hypothesis is consistent with 

the observations of increased variability in the location of the ignition kernel with hydrogen 

addition in the shock tube studies (§6.1.2). A greater number of ignitable regions in the fuel jet 

would increase the probability of an ignitable region being exposed to the localized temperature 

and radical pool generated by the pilot flame. In turn, this would lead to the reduced ignition delay 

time and improved stability observed in the engine.  

6.2.3 Pollutant Emissions (Engine Results) 

The presence of hydrogen in the fuel has a substantial impact on pollutant formation in 

the engine. Direct influences on the pollutant-formation chemistry are confounded with the effects 

of hydrogen on the ignition and combustion event. Given the complexity of the combustion and 

pollutant formation processes, it is very difficult to identify causal relationships between the early 
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phases of the combustion event, the fuel blend, and measured engine out pollutant levels. The 

two emissions that are, in general, more sensitive to variations in the ignition process are NOx 

and hydrocarbons (primarily unburned methane). The engine-out emissions of these species, 

normalized by the total quantity of energy in the fuel, are shown in Figure 9.  

 

NOx Emissions 

The left-hand graph in Figure 9 shows that NOx emissions from the engine (normalized 

with respect to the energy content of the injected mass of fuel) are slightly increased with 

hydrogen addition, although the effect is only greater than the experimental uncertainty with 35% 

H2 in the fuel. Combustion timing, because of its influence on the reaction zone temperature, has 

a much more significant influence. Interestingly, the effect of H2 addition is greater at lower in-

cylinder temperatures; at the higher temperatures associated with later combustion timing, there 

is no apparent influence of hydrogen content on NOx emissions.  

As Table 9 demonstrated, the adiabatic flame temperature of the gaseous fuel is 

relatively insensitive to hydrogen content for a given stoichiometry. Since the engine-out NOx 

emissions are expected to be dominated by thermal production mechanisms, the fact that 

hydrogen addition results in higher engine-out NOx emissions suggests that the stoichiometry of 

the reaction zone in the engine is not changing substantially (or is even enriched slightly) with the 

addition of hydrogen to the fuel. Note that the authors recognize also that there are possible 

interactions between the hydrogen radicals and the NOx formation chemistry; however, these 

potential influences require further fundamental chemical investigations and are beyond the 

scope of the present study.  

It is insightful to consider the engine results presented above in comparison with the 

shock tube results described in §6.1.3.1, in which the addition of 20% hydrogen to the fuel 

caused a substantial (~50%) decrease in normalized NOx emissions. This was attributed to a shift 

in the reaction zone fuel-oxidizer stoichiometry (the addition of hydrogen promoting combustion at 

a leaner AFR in the shock tube). Conversely, in the engine, the increase in NOx emissions with 

35% H2 suggests that the mixture fraction in the reaction zones where NOx is being formed is, if 
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anything, richer than for the natural gas cases. This agrees with the earlier observation that the 

shorter ignition delay resulted in less gaseous fuel being burned in the initial reaction stages, 

potentially leaving a larger premixed reaction and hence, potentially, a richer reaction with a 

longer residence time before the local post-combustion gases are quenched, terminating the NO 

formation process. It is important to recall that the NO formation mechanisms are a function of 

both temperature and time; the more intense turbulence in the engine, and hence presumably 

shorter time before the burned gases are quenched, could lead to NO formation that is much 

farther from equilibrium than for the shock-tube case. Further research is needed to develop an 

improved understanding of the similarities, and differences, in NO formation for these two 

combustion systems. 

 HC Emissions 

The emissions of unburned hydrocarbons (shown in the right-hand graph of Figure 9) 

show a substantial reduction with hydrogen addition to the fuel. This may be a result of a number 

of factors, including the shorter ignition delay time and wider flammability range of hydrogen-

containing fuels leading to less fuel having mixed beyond the combustible limit prior to ignition. It 

is also likely that the hydrogen in the fuel is helping to resist local extinction due to turbulent 

shear, and may also be delaying bulk extinction of the late-combustion zone reactions. 

Unfortunately, the available information is insufficient to identify which of these effects may be 

dominant. 

7. Conclusions 

As the above sections demonstrate, there are substantial differences in the influences of 

gaseous fuel composition on the results from the two experimental non-premixed combustion 

systems. However, both the similarities and the differences provide valuable insight into the non-

premixed combustion of natural gas under conditions representative of those in an internal 

combustion engine. From the presented results we conclude that:  

 

 

1) Ignition in the pilot-ignited direct-injection natural gas engine is kinetically limited under the full 
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range of conditions examined. 

 

2) The limiting ignition mechanism in the shock tube experiments is temperature dependant; 

being mixing limited at high pre-combustion temperatures while being dominated by chemical 

kinetic effects at lower values of pre-combustion temperature.  

 

3) The effects of hydrogen addition on ignition delay vary according to the limiting ignition 

mechanism of the application. Where ignition is dominated by chemical kinetic concerns, such as 

in the engine or the shock tube at low pre-combustion temperatures, the addition of hydrogen to 

the fuel reduces the ignition delay time. The results of this study further suggest, in agreement 

with the literature, that the observed reduction in ignition delay is due to earlier formation of 

reactive radicals (such as H, OH, etc.) in the pre-ignition stage. Where ignition is mixing-limited, 

such as in the shock tube at higher pre-combustion temperatures, the effect of hydrogen addition 

on ignition is negligible. 

 

4) The stability of ignition delay in the engine is improved with hydrogen addition. Based upon the 

results of our shock tube studies, we hypothesise that this is caused by an increase in the 

number of ignitable regions in the transient gaseous jet due to the wider ignition and flammability 

limits of the hydrogen-blended fuels. The probability of an ignitable region of the jet being 

exposed to the localized temperature and radical pool generated by the diesel pilot flame in the 

engine, and therefore the probability of ignition, is increased accordingly.  

 

5) The effects of hydrogen addition on NOx emissions vary according to the application. Lower 

NOx emissions from the shock tube results suggest that hydrogen is significantly lowering the 

fuel/air ratio, resulting in a leaner mixture in the reaction zone; however, higher engine-out NOx 

emissions suggests that the reaction zone stoichiometry in the engine application is relatively 

unchanged.  
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Figure 1. Shock tube set-up 
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Figure 2. Schematic of engine test facility 
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(a) Shock tube results 
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Figure 3: Variation of ignition delay with pre-combustion temperature 
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Figure 4: CH3, H, OH, and HO2 mass fraction history at Zst for methane/hydrogen blends (fuel 
temperature 300 K, oxidizer temperature 1300 K, pressure 30 bar) 
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 decompressor
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Figure 5: Typical CMOS camera image of ignition kernel (Image thresholding has been used to 
highlight the kernel in this image). 
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Figure 6: Normalized NOx emissions variation with pre-combustion temperature 
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Figure 7: Effect of fuel composition on integrated heat release rate for the pilot-ignited engine. 
Plots are average of 50 cycles for each test point shown. Timing adjusted for 50% IHR at 10

o
CA. 
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Figure 8: Effect of fuel composition on ignition delay as a function of in-cylinder temperature at 
the start of diesel injection. Ignition delay defined based on integrated heat release, stability on 
the cycle-to-cycle variability in the heat release rate. 
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Figure 9: Effect of fuel composition on engine-out NOx and HC emissions as a function of in-
cylinder temperature at the start of diesel injection. Emissions normalized by fuel energy content. 
 
 
 
 
 
 

 


