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Comparison of two model based residual generation schemes for the purpose of 

fault detection and isolation applied to a pneumatic actuation system 
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Abstract: This paper discusses research carried-out on the development and validation (on a real plant) 

of a parity-equation and Kalman filter based fault detection and isolation (FDI) system for a pneumatic 

actuator. The parity and Kalman filter equations are formulated and used to generate residuals that, in 

turn, are analysed to determine whether faults are present in the system.  Details of the design process are 

given and the experimental results are compared. The results demonstrate that both approaches can 

successfully detect and isolate faults associated with the sensors, actuators (servo-valves and piping) and 

the pneumatic cylinder itself.  The work is part of a BAE SYSTEMS sponsored project to demonstrate 

advanced control and diagnosis concepts on an industrial application.  
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                                1. INTRODUCTION 

Early detection of developing faults can allow maintenance 

work to take place before a system malfunctions, possibly 

causing damage, or complete shutdown of the system/plant. 

This increases system availability, and potentially reduces 

costs by eliminating costly repairs resulting from system 

failures. Designing schemes for the detection and diagnosis 

of faults is becoming increasingly important in engineering 

due to the complexity of modern industrial systems and 

growing demands for quality, cost efficiency, reliability, and 

more importantly the safety issue (Al-Najjar, 1996).  In 

safety/mission critical applications, fault detection can be 

combined with reconfiguration (after a fault) to achieve fault 

tolerant control allowing the system to complete its function 

in a way that is sub-optimal but does achieve the design 

objective.   

Model-based Fault Detection and Isolation (FDI) uses the 

principles of analytical redundancy to first detect deviations 

from normal behaviour in a system, and then to isolate the 

particular component that has a fault. Typically, model-based 

analytical estimates are compared with measured variables to 

generate residuals.  The residuals will be zero mean when the 

system is operating normally and will exceed a threshold 

when a fault arises.  There are a number of approaches to 

model-based residual generation. For example, observer-

based approaches including Kalman Filters (Frank, 1990), 

parity relations approaches (Gertler and Singer, 1990) and 

parameter estimation (Patton et al 2000), Isermann, (1997).  

Useful surveys of these and other useful FDI methods can be 

found in Patton (1997), Iserman (1984), Willsky (1976), and 

Venkatasubramaniam et al (2003). However, most of the 

fault tolerant literature available deals with systems in a 

purely theoretical way or uses simulations to demonstrate the 

methods. Although many of the concepts work well in theory 

it is clear that there have been limited real industrial 

applications particularly of the more advanced techniques. 

 

 

Fig. 1. Single pneumatic actuator test-rig 

The work described in this paper is part of an on going 

project which aims to demonstrate FDI as part of a fault 

tolerant control system on a Stewart-Gough platform 

comprising six pneumatic actuators.  The first phase of the 

work has focussed on modelling, control and FDI applied to a 

single actuator (see figure 1).   

This paper reports results obtained from the experiment on 

the rig so that a comparison can be made between the parity 

equation and Kalman filter approach to FDI.  The paper is 

organised as follows, in section 2 the experimental set-up is 

described; section 3 summarises the mathematical model of 

the pneumatic system, which is used as the foundation of the 

control and FDI design; section 4 describes the FDI approach 

and how the parity equations and Kalman filter schemes are 

applied to the pneumatic system; Section 5 presents and 

discusses the results and compares the two FDI schemes; and, 

finally, conclusions are drawn and future work is discussed in 

section 6.      

                           2. EXPERIMENTAL SET-UP 

The experimental set-up is illustrated in Figure 2. The 

diagram shows the xPC Target computer, linked by TCP/IP 

to a host computer. The host computer controls the 

experiments  and  allows  recording  of   the  data  for  offline  



 

 

     

 

 

Fig. 2. Schematic of experimental set-up 

analysis and plotting of results. Whereas the target provides 

the real-time control platform and includes Digital to 

Analogue and Analogue to Digital Converters (DAC/ADC). 

The control voltage to the valve is provided from the DAC 

and the ADC allows the sensor signals to be sampled and fed 

into the control and FDI algorithms. The position signal is 

measured via a Linear Resistive Transducer (LRT) mounted 

in the cylinder rear section. The pressure signal is acquired 

using pressure sensors located between the proportional valve 

and the cylinder chambers. 

   3.   MODELLING OF PNUEMATIC SYSTEM 

One of the main problems in pneumatic actuator position 

control is the highly non-linear behaviour of the system. This 

makes it difficult to apply linear controller synthesis 

methods. Moreover, due to the non-linearity, the parameters 

of these equations are usually very difficult to identify. 

However, using an approximation of the model, allows the 

application of linear controller synthesis methods. (Chillari et 

al, 2001). Early attempts to analyse pneumatic control 

systems was reported by Shearer (1956). This was further 

extended by Burrows (1969), and Scavarda et al (1987). The 

relationship between the air mass flow and the pressure 

changes in the chambers is obtained using energy 

conservation laws (first law of thermodynamics), and the 

force equilibrium is given by Newton’s second law. The 

pneumatic system can be modelled by the following 

equations, see for example Grewal et al (2008). 
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Where M is the piston mass, A is the bore area, Pp is the 

pressure in chamber p, Pn is the pressure in chamber n, Vp is 

the air volume in chamber p, Vn is the air volume in chamber 

in n, γ is the ratio of specific heat, R is the universal gas 

constant, Ts is the operating temperature, pm& is the mass flow 

rate into chamber p, and nm&  is the mass flow rate into 

chamber n. x is the position of the piston, Ff represents the 

viscous friction coefficient and coulomb friction force. K is 

the servo valve constant. 

 
Fig. 3. Conceptual structure of FDI scheme 

 

4. PNEUMATIC SYSTEM CONTROL 

 

This paper is not concerned with control of the actuator so 

full details are not given. However, the controller is based on 

the model described in section 3 using classical frequency 

domain design. 

The control objectives of the pneumatic system are: 

• Settling time is less then 0.4 sec. 

• Maximum 10% overshoot. 

• Maximum 3% steady state error. 

• Gain margin 6dB.  

• Phase margin 60 degrees 

All the requirements above are satisfied using the following 

PI controller 
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5. DESIGN OF THE FDI SCHEME 

 

5.1. FDI Approach 

 

Figure 3 shows the generic structure of the model-based fault 

detection scheme. The method consists of detecting faults on 

the process, which includes actuators, components and 

sensors, based on measuring the input signal U(t) and the 

output signal Y(t). The detection method uses models to 

generate residuals R(t). The residual evaluation examines the 

residuals for the likehood of faults and a decision rule is 

applied to determine if faults have occurred. Referring to the 

pneumatic system depicted in Figure 2 (and with reference to 

Figure 3) the proportional valve would be described as the 

actuator and the pneumatic cylinder would be described as 

the plant. The sensors are self-evident. In this paper the 

process model can be based on either parity equations or 

Kalman filters. Both are discussed below. 

 

5.2. The Parity Equation Method 

 

The parity equation method was first proposed by Chow and 

Willsky, (1984) using the redundancy relations of the 

dynamic system. The basic idea is to provide a proper check 

of the parity (consistency) of the measurements for the 

monitored system. Parity equations are rearranged and 

usually transformed variants of the input-output or space-

state models of the system (Venkatasubramaniam et al 2003). 

In effect this means making use of known mathematical 

models that describe the relationships between system 

variables.  In theory, under normal operating conditions, the  
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Fig. 4. Pneumatic closed loop scheme with intended faults 

 

residual or value of the parity equations is zero. However, in 

real situations, the residuals will be nonzero. This is due to 

measurement and process noise, model inaccuracies and 

faults in sensors, actuators and plant(s). The idea of the parity 

approach is to rearrange the model structure to achieve the 

best fault isolation (i.e. so that the effect of faults is far 

greater than that of the other uncertainties). The residual 

generator scheme used hereafter is based on a model-based 

methodology using the parity space approach. The desired 

properties for the residual signal are r(t) ≠ 0 if  f(t) ≠ 0.Where 

r is the residual and f is the fault. The residual is generated 

based on the information provided by the system input and 

output signals and the plant equation. Figure 4 shows the 

pneumatic control loop scheme, which contains the following 

elements: The controller C(s), the proportional valve GA(s), 

the pneumatic actuator GP(s), and the sensor GS(s). The 

proportional valve fault Fa(s) and the sensor fault  

FS(s) can have dynamics, which are modelled by the transfer 

functions Ha(s), and HS(s). In addition to the position 

(feedback) sensor, pressure sensors are included in the system 

to read pressure from each chamber of the actuator. These are 

not included in the closed loop system, and are shown as 

Pp(s) and Pn(s) respectively. With the pressure sensor faults, 

shown as FPp(s) and FPn(s), again having dynamics 

modelled by the transfer functions HPp(s) and HPn(s). Using 

the description of the system shown in Figure 4 the following 

relationships (equations) can be derived. 

 

XS(s)=[GS(s)+HS(s)FS(s)][GA(s)U(s) GP(s)+Ha(s)Fa(s)]         (5) 
 

Pnact=[U(s)GA(s)+Ha(s)Fa(s)][Pn(s)+HPn(s)FPn(s)]                 (6) 
               

Ppact=[U(s)GA(s)+Ha(s)Fa(s)][Pp(s)+HPp(s)FPp(s)]                 (7) 
 

                              U(s)=C(s)(V(s)-XS(s))                                   (8)     

With the current experimental set-up the pneumatic plant 

output can only be measured with the position sensor. 

Therefore the sensor and plant faults cannot be isolated.  

Residuals are formulated from equations (5) to (7) as follows, 

R1=XS(s)-GS(s)GP(s)GA(s)U(s)=HS(s)FS(s)+Ha(s)Fa(s)           (9)       
                                                                                            

R2= Pnact - U(s)GA(s)Pn(s)=Ha(s)Fa(s)+HPn(s)FPn(s)            (10)  

               

R3= Ppact -U(s)GA(s)Pp(s)=Ha(s)Fa(s)+HPp(s)FPp(s)            (11) 

 

To represent the pneumatic process shown in Figure 4, GA(s) 

is modelled by the equations (1), (2) and GP(s) by equation  

 
Figure 5: Schematic of the Kalman filter estimator 

 

(3). It is assumed that the fault and sensor transfer functions 

are all instantaneous i.e. Ha(s), HS(s), HPn(s), HPp(s), Pn(s), 

Pp(s) and GS(s) =1.  

 

5.3. Dedicated observer approach (Kalman filter) 

 

Many authors have approached the FDI problem by directly 

starting with a single or banks of observers see for example 

Frank and Ding (1997). The basic idea of the observer 

approach is to reconstruct the outputs of the system from the 

measurements or subsets of measurements with the aid of 

observers or Kalman filters using the estimation error or 

innovation (Frank, 1990). This estimation error or innovation  

is used as a residual for the detection and isolation of faults. 

Primarily, the Kalman filter is not used to obtain an estimate 

of the states but is implemented to generate residuals which 

are sensitive to faults. Kalman filters are used for the 

stochastic case, as noise has to be considered See e.g. 

Kalman, (1960) for more details. In general, A Kalman filter 

incorporates all information that can be provided to it. It 

processes all available measurements regardless of their 

precision, to estimate the current value of the variable of 

interest. Given a system: 
GwBuAxx ++=&

 

(State equations) (12) 

vHwDuCxy +++=
 

(Measurement equation) (13) 

where u is the input, w is the process noise, v is the 

measurement white noise with E (wwT)=Q, and E (vvT)=R. 

It is also assumed that the state and measurement noise is 

uncorrelated, that is, E (wvT)= 0.  

An optimal estimate of y′ , ŷ can be provided by the 

Kalman filter equations: 

              ( )DuxCyLBuxAx −−++= ))&)                         (14) 

and  

                                 DuxCy += ˆˆ                                  (15) 

 

Where in practice the weightings for process and 

measurement noise (Q and R respectively) are chosen 

heuristically using engineering judgement to provide a trade-

off between sensitivity to faults, and the likelihood of false 

alarms. The Kalman filter gain L is determined by solving an 

algebraic Riccati equation.. This estimator uses the known 

inputs u and the measurement y to generate the output and 

state estimates ŷ and x
)

. The Kalman estimator is depicted in 

Figure 5.Using Equations (1)-(3) the pneumatic system can 

be represented in state space form. The equations have been 

manipulated to ensure observability of all states. Equation 16 

shows the state space representation. 
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In designing the Kalman filter approach only the sensed 

outputs are considered. These are position and pressure 

difference outputs. Figure 6 illustrates the Kalman filter set 

up; where the residuals (R4 and R5) are given by the two 

separate Kalman filters. The residual equations are: 

 

                     

25

14

ˆ

ˆ

xCyR

xCyR

dd PP

pospos

−=

−=  

Where  
[ ] [ ]001,010 ==

dPpos CC  

 

5.4. Residual Evaluation and Thresholds 

 

The purpose of residual evaluation is to generate a fault 

decision by processing the residuals. A fault decision is the 

result of all the tasks fault detection, isolation, and 

identification (Kiencke and Nielsen, 2005). Residual 

evaluation is essentially to check if the residual is responding 

to a fault. The residual evaluation can in its simplest form be 

a thresholding of the residual, i.e. a fault is assumed present if 

| Ri(t) | > Ji(t) where J(t) is the threshold, or moving averages 

of the residuals. Another method may consist of statistical 

sequential probability ratio testing (Patton et al, 2000). In the 

present case the residuals are processed to acquire the root 

mean square (RMS) of the value over a moving window of N 

samples (Dixon, 2004) as shown: 
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Where Ri(k) is the value of the residual at the kth sample. 

Subsequently, the residual RMS value is compared with a 

predetermined fault detection threshold. Table 1 shows the 

fault signatures using the parity equations and Kalman filter 

approaches of the pneumatic system for various faults. These 

signatures arise from the formulation of parity equations and 

the structure of the observer scheme. Where the parity 

equations residuals (R1, R2 and R3),  are given in equations 

(9), (10) and (11).  The Kalman filter residuals (R4 and R5) 

are given by equations (16), (17) and (18).  

 

Table 1.  Fault signatures for the various faults 

 
Figure 6.  Overview of the Kalman filter scheme 

 

6. EXPERIMENTAL RESULTS 

 

In order to demonstrate and compare the FDI scheme using 

parity equations and Kalman filter approaches a number of 

experiments were carried out on the pneumatic system. The 

faults presented are actuator and position sensor faults. The 

demand input to the system is a square wave input with 

amplitude of 20mm at a frequency 0.2 Hertz. The starting 

point of the piston is at mid position (50mm). 

  

6.1. Actuator fault  

 

A fault Fa(s) (see Fig.4) is applied to the proportional valve. 

The fault injected is that the control signal has been 

disconnected. This is physically achieved by means of a 

switch. Figure 7 shows the time history of this experiment 

(actuator fault) for the parity equation scheme. Figure 8 

shows the time history of this experiment (actuator fault) for 

the Kalman filter scheme. 
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Fig. 7. Actuator fault Fa (s) parity equation results- actual 

plant output-position sensor (top), Pressure sensor Pn 

(middle), Pressure sensor Pp (lower).  

    (17) 

    (18) 

Faults  

Residuals 
Actuator Plant Position sensor Pressure sensor 

R1 1 1 1 0 

R2 1 1 0 1 

R3 1 1 0 1 

R4 1 1 1 0 

R5 1 1 0 1 

(16) 
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Fig. 8. Actuator fault, Kalman filter results- actual plant 

output-position sensor (top), pressure difference outputs 

(lower)   

6.1.1. Parity equations - Actuator fault 

From Figure 7, at approximately 17.5s the fault is applied. 

From residual R1 the fault is detected within 0.5ms and the 

fault flag is raised within 1ms and remains raised until the 

fault is removed from the system at 35s. At 21.5s the residual 

RMS falls below the threshold, this is due to the position 

output coinciding with the model output. This trend is 

apparent throughout the fault period. At 37.5s the fault flag 

returns to the false state when the RMS value falls below the 

threshold. Residual R2 exceeds its respective threshold at 25s. 

The fault flag is raised for approximately 1s then returns to a 

false state. This is due to the residual falling below the 

threshold. The fault flag returns to a false state within 1s 

when the fault is removed. Residual R3 exceeds its respective 

threshold at 20s. The fault flag is raised for approximately 1s 

then returns to a false state. This is due to the residual falling 

below the threshold. When the fault is removed the fault flag 

returns to a false state at 37s.  

6.1.2. Kalman filter - Actuator fault 

Applying the same fault scenario as above, Figure 8 

illustrates the outputs for the Kalman filter approach. From 

residual R4 the fault is detected within 0.5ms and the fault 

flag is raised within 1ms and remains raised until the fault is 

removed from the system and subsequently; at 35s the fault is 

removed. At 36s the fault flag returns to the false state when 

the RMS value falls below the threshold. The pressure 

difference residual (R5) exceeds its respective threshold at 

17.5s. Where the fault flag is raised within 0.5ms of the 

residual crossing its respective threshold, and remains raised 

until the fault is removed. When the fault is removed the fault 

returns to a false state within 0.5ms of the residual falling 

below its respective threshold. 

6.1.3. Discussion - Actuator fault 

Applying the disconnection fault to the control signal of the 

proportional valve has an affect on the actuator fault parity 

residual (R1), this raises the fault flag. The fault has an effect 

on the pressure sensor parity residuals (R2 and (R3). Both  
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Fig. 9. Position sensor faults, parity equation results- actual 

plant output-position sensor (top), Pressure sensor Pn 

(middle), Pressure sensor Pp (lower)  

position and pressure difference Kalman residuals (R4 and R5) 

are affected by the actuator fault and their fault flags are 

raised. From both methods the Kalman approach tracks the 

fault better with a faster fault detection response time. 

Overall, it is clear that the parity equations and the Kalman 

filter approach can detect an actuator fault. However, using 

both methods an actuator or plant fault cannot be isolated. 

This agrees with the fault signatures detailed in Table 1. It 

should be noted that the Kalman filter residuals are less 

intermittent during the fault periods (i.e. the fault flags are 

not resetting until the fault is passed). However, adaptive 

thresholds could overcome this for the parity approach. 

6.2. Position sensor faults 

Harsh working conditions along with the gradual build up of 

dirt on the sensor and faulty circuitry can cause the effect of 

position sensor drift. Figure 9 shows the time history for the 

parity equation scheme. Figure 10 shows the time history of 

these experiments for the Kalman filter scheme. 

6.2.1. Parity equations – Sensor drift fault 

From Figure 9 at 17s a drift bias is added to the position 

signal. Although sensor drift can be a slow process i.e. 

possibly over a period of hours, for this work adding a drift 

bias within a period of approximately 9s has accelerated the 

effect of sensor drift. This is so the fault can be detected and 

isolated without running the experiment for long periods. 

From the RMS residual R1 the drift fault is detected at 17.5s 

and the fault flag is raised within 0.6ms. The RMS residuals 

R2 and R3 do not activate/cross their respective thresholds. 
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Figure 10. Position sensor drift fault, Kalman filter results - 

actual position sensor (top), Pressure difference outputs 

(lower)   

6.2.2. Kalman filter - Sensor drift fault 

From Figure 10 the same drift fault has been applied. Using 

the Kalman filter scheme, the RMS residual R4 exceeds its 

threshold at 18.2s and the fault is raised within 0.5ms. The 

fault flag is raised for approximately 0.5s then returns to a 

false state. This is due to the residual R4 falling below the 

threshold. Residual R5 does not activate/cross its respective 

threshold and the fault flag remains false. 

6.2.3. Discussion - Sensor drift fault 

Applying the drift bias to the position sensor has an effect on 

the plant parity residual (R1), this raises the fault flag. The 

fault has no affect on the pressure sensor parity residuals (R2 

and (R3). The fault affects the position RMS residual R4 and 

there is no affect on the pressure difference RMS residual R5. 

Comparing RMS residuals R1 and R4 (position outputs) The 

Parity equation approach when compared with the Kalman 

filter scheme has a faster fault detection response time. Again 

indicating the faults can be isolated. These results concur 

with the fault signatures detailed in Table 1.  

7. CONCLUSIONS 

In this paper studies conducted for fault detection in a closed 

loop system for an industrial application have been described. 

Parity equations and the Kalman filter approach have been 

used to generate residuals for the purpose of fault detection. 

Disconnection and drift faults have been considered and 

applied to the pneumatic system. A comparison was made 

between the two methods. The output results show that using 

the described parity equation and Kalman filter methods; 

fault detection was possible from the available 

measurements. However, certain faults were only detected 

and not isolated when using the residual generator methods. 

From the experimental results it is shown that system level 

knowledge has been developed and used to check plant and 

sensors for problems, to detect and identify faults as they 

develop. An important reason for selecting the parity 

equation and Kalman filter residual generation methods was 

the relative simplicity of the layout and application of the 

model equations. Suggested future work will be focussed on 

applying other types of faults, which can include blocked 

pipes between proportional valve and pneumatic cylinder, 

and leaking pressure pipes. Beyond this the work will be 

extended for a full Stewart platform. 
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