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ABSTRACT

In this paper we propose the use of variable length adaptive filtering

within the context of incremental learning for distributed networks.

Algorithms for such incremental learning strategies must have low

computational complexity and require minimal communication be-

tween nodes as compared to centralized networks. To match the dy-

namics of the data across the network we optimize the length of the

adaptive filters used within each node by exploiting the statistics of

the local signals to each node. In particular, we use a fractional tap-

length solution to determine the length of the adaptive filter within

each node, the coefficients of which are adapted with an incremental-

learning learning algorithm. Simulation studies are presented to con-

firm the convergence properties of the scheme and these are verified

by theoretical analysis of excess mean square error and mean square

deviation.

Index Terms— variable tap-length, distributed processing, adap-

tive filters, incremental algorithm

1. INTRODUCTION

Distributed solutions, only exploiting local data exchanges and com-

munications between immediate neighboring nodes, have been pro-

posed [1, 2, 3] as a consequence of their reduced processing and

communications requirements as compared to central solutions. The

applications of such distributed adaptive networks range from sensor

networks to environmental monitoring and factory instrumentation

[4, 5]. However, in many applications of such distributed solutions

the tap-length of the adaptive filters is assumed fixed, which is not

appropriate for certain situations where the optimal tap-length is un-

known or variable.

As a key parameter, tap-length plays an important role in the

design of adaptive filters. It is well known that the selection of tap-

length significantly influences the performance of adaptive filters:

deficient tap-length is likely to result in increase of the mean-square-

error (MSE); whereas the computational cost and the excess mean-

square-error (EMSE) may become too high if the tap-length is too

large. Since the concept of variable tap-length in adaptive filters was

initially proposed in [6], various related results [7, 8, 9, 10] have

been reported for the single adaptive filter case. As compared with

other methods, Gong and Cowan [10] introduce a low-complexity

and robust fractional tap-length (FT) algorithm based on instanta-

neous errors, which obtains improved convergence properties. The

steady-state performance analysis of the FT algorithm are provided

in [10, 11, 12], which also provide a guideline for parameter selec-

tion in the FT algorithm.

Motivated by both the ideas of distributed estimation and vari-

able tap-length, this paper proposes an adaptive learning algorithm

which solves the parameter estimation problem in a distributed net-

work where the tap-length of the optimal filter is not known. The

steady-state performance of the new algorithm for Gaussian data is

studied using weighted spatial-temporal energy conservation argu-

ments. In particular, we derive theoretical expressions for the mean-

square deviation (MSD), the EMSE and the MSE for each node

within the network. Simulation studies are presented to confirm the

convergence properties of the scheme and to verify the theoretical

results.

The remainder of this paper is organized as follows. The pro-

posed algorithm and its motivation are introduced in Section 2. The

analysis of the fractional tap-length function is described in Section

3. Simulation results that confirm the analysis of the presented algo-

rithm are given in section 4. Section 5 offers conclusions.

The following notations are used in this paper: boldface small

and capital letters are used for random complex vectors or scalars

and matrices; normal font is employed for deterministic quantities;

(·)T and (·)∗ denote transposition and complex-conjugate transposi-

tion respectively; |·|2 and ‖·‖2 denote the absolute squared operation

and squared Euclidean norm operation.

2. ESTIMATION PROBLEM AND FORMULATION

Consider an N-node network, where we collect data and seek an

unknown vector wo, whose tap weights and tap-length are desirable

to be estimated. We can decouple the adaptation rules for the tap

weights and tap-length, which means that the selection of one does

not depend on the other. Assuming the tap-length is L, which is

estimated by the tap-length search solution that will be discussed

later, each node k obtains the time observations {dk(i), uk,i} of

zero-mean complex spatial data {dk, uk} at time instant i. Each

dk is a scalar value and each uk is a 1 × L row regression vector.

In order to seek w, we formulated the linear minimum mean-square

estimation problem:

min
w

JL(w) and JL(w) = E‖d − Uw‖2
(1)
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where two global matrices of the desired response and regression

data are given by

d � col{d1, d2, . . . , dN}, (N × 1) (2)

U � col{u1, u2, . . . , uN}, (N × L). (3)

Let wi be an estimate for wo at time instant i and ψk(i) be a local

estimate for wo at node k at time instant i. We introduce the in-

cremental steepest-descent solution [2], which estimates the optimal

solution wo by iterating ψ0(i) through an incremental network in the

following manner:

ψk(i) = ψk−1(i)+μku∗
k,i(dk(i)−uk,iwi−1) k = 1, . . . N (4)

where we start from the initial condition ψ0(i) = wi−1 at node 1.

With the assumption of the tap-length L, we define the seg-

mented cost function as

JM (w) � E‖d − UMwM‖2
(5)

where 1 ≤ M ≤ L, wM and UM consist of the initial M elements

of w and the initial M column vectors of U, respectively, as

wM � col{w(1), . . . , w(M)}, (1 × M) (6)

UM � col{u1(1 : M), . . . , uN (1 : M)}, (N × M). (7)

We pose the minimum difference of mean-square errors estimation

problem to seek the optimal tap-length Lo

min
�

L
��JL−�(w) − JL(w) ≤ ε

�
(8)

where ε, predetermined by system requirements, is a small positive

value and � is an integer value to avoid the suboptimum tap-lengths.

The segmented mean-square estimation error and the mean-square

estimation error at time instant i are respectively given by,

JL(i)−�(wi−1) = e2
L(i)−�(wi−1) (9)

JL(i)(wi−1) = e2
L(i)(wi−1). (10)

We start from the standard pseudo fractional tap-length implement

as in [10]

Lf (i+1) = (Lf (i)−α)+β ·[e2
L(i)−�(wi−1)−e2

L(i)(wi−1)] (11)

where α and β are small positive values, α is the leakage factor used

to prevent Lf (i) from increasing to an undesirably large value and

β is the step-size for Lf (i) adaptation. Then the integer tap-length

L(i) is adjusted according to

L(i + 1) =

� �Lf (i)� if|L(i) − Lf (i + 1)| ≥ ν
L(i) otherwise

(12)

where �·� rounds the embraced value to the nearest integer and the

step-size parameter ν is a small integer.

Distributed networks motivate us to decompose the segment cost

function and cost function as

JL−�(w) =

N�
k=1

Jk,L−�(w) (13)

JL(w) =
N�

k=1

Jk,L(w) (14)

where

Jk,L−�(w) = E|dk − uk(1 : M)w(1 : M)|2, (15)

and

Jk,L(w) = E|dk − ukw|2. (16)

Such results allow us to rewrite (11) as

Lf (i + 1) = (Lf (i) − α) + β ·
N�

k=1

γk(wi−1) (17)

with γk(wi−1) = e2
k,L(i)−�(wi−1) − e2

k,L(i)(wi−1). With proper

choice of α and β, we will have L(i) → Lo as i → ∞ for any ini-

tial condition, where Lo is an optimal tap-length and always larger

than the true tap-length of wo. Let �k,f (i) denote the local estimate

of the fractional tap-length at node k at time i. α and β can be de-

composed to α =
�N

k=1 αk and β =
�N

k=1 βk respectively, where

αk indicates the local leakage factor and βk denotes the local step-

size for �k,f (i) adaptation at node k. In the defined cycle, node k
received the estimated fractional tap-length �k−1,f (i) from the node

k − 1. At each time instant i, we start with the initial condition

�0,f (i) = Lf (i) at node 1 (Lf (i) is the current global estimation

for Lo). At the end of the cycle, the local estimation �N,f (i) is em-

ployed as the global estimation Lf (i + 1) for the next time i + 1
and the integer tap-length L(i + 1) is also evaluated by (12). Such

implementation of a centralized solution for tap-length adaptation is

described as follows:

For each time instant i ≥ 0 repeat:

�0,f (i) = Lf (i)
For k=1, . . . N

�k,f (i) = �k−1,f (i) − αk + βk · γk(wi−1)
end

Lf (i + 1) = �N,f (i)

L(i + 1) =

� �Lf (i + 1)� if |L(i) − Lf (i + 1)| ≥ ν
L(i) otherwise

where γk(wi−1) = e2
k,L(i)−�(wi−1) − e2

k,L(i)(wi−1)

where we always hold �k,f (i) ≥ Lmin, which is the minimum tap-

length. This method also requires all nodes to access the global in-

formation wi−1 and only adapts the integer tap-length at the end of

a cycle. A fully distributed solution can be achieved by evaluating

the segmented mean-square error and mean-square error from its lo-

cal estimate ψ
(i)
k−1. This approach leads to distributed adaptation for

both tap weights and tap-length. For the estimation of tap weights, a

distributed version of algorithm of (4) is presented in [2] as

ψk(i) = ψk−1(i) + μku∗
k,i(dk(i) − uk,iψk−1(i)) k = 1, . . . N

(18)

Let Lk(i) denote the local estimate of Lo at node k at time i. A

distributed solution for tap-length adaptation is summarized below:

For each time instant i ≥ 0 repeat:

�0,f (i) = Lf (i)
For k=1, . . . N

�k,f (i) = �k−1,f (i) − αk + βk · γk(ψ
(i)
k−1)

Lk+1(i) =

� �lk(i)� if |Lk(i) − �k,f (i)| ≥ νk

Lk(i) otherwise
end

Lf (i + 1) = �N,f (i)

where γk(ψ
(i)
k−1) = e2

k,Lk(i)−�(ψ
(i)
k−1) − e2

k,Lk(i)(ψ
(i)
k−1)
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where

ek,M(i)(ψ
(i)
k−1) = dk(i) − uk,i(1 : M(i))ψ

(i)
k−1(1 : M(i)) (19)

ek,Lk(i)(ψ
(i)
k−1) = dk(i) − uk,iψ

(i)
k−1 (20)

with M(i) = Lk(i) −�. As discussed in [2], Fig. 1 illustrates that

in optimization theory the distributed solution can outperform the

centralized solution. The simulated curves are obtained by averaging

500 independent Monte Carlo runs with μk = 0.05. The network

utilized in the experiment has 12 nodes and seeks an unknown filter

with variable tap-length M = 10 for i ≥ 140 otherwise M = 19.

The input signal is Gaussian data with Ru,k = I and the background

noise is zero mean real white Gaussian with σ2
v,k = 0.001. For both

algorithms, we choose the parameters νk = ν = 1, αk = 0.03,

βk = 1, � = 4 and Lmin = Lf (0) = 6, where the selection of

parameters follows the rules in [10]-[12]. Note that, in theory, we do

not need to set the upper bound for the value of fractional tap-length.

However, since the length estimation uses instantaneous errors rather

than averaged errors, the fractional tap-length may be, at certain time

instants, at an undesired large value, which leads instantaneously to

high computational and memory cost. Therefore, in practice, the

upper bound is required to avoid such situation.
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Fig. 1. Evolution curves for the distributed solution and the

centralized solution at node 1: a) EMSE performance b) Frac-

tional tap-length performance.

3. PERFORMANCE ANALYSIS

In this section, we evaluate the steady-state performance of the dis-

tributed algorithm using weighted spatial-temporal energy conserva-

tion arguments [2]. Due to space constraints, only the main proce-

dures are given. The following assumptions are utilized

A1) In order to simplify the analysis, the estimated tap-length is

assumed to be fixed at the steady-state stage.

A2) The unknown system vector wo and {dk(i),uk,i} construct:

dk(i) = uk,iw
o + vk(i) (21)

where vk(i) is a temporally and spatially white noise se-

quence with variance σ2
v,k and independent of dl(j) for k 
= l

or i 
= j and ul,j for all l and j;

A3) uk,i is spatially and temporally independent, namely uk,i is

independent of ul,i and uk,j for k 
= l or i 
= j

The following local error signals defined as in [2] are introduced

to perform the evaluation:

ψ̃
(i)
k−1 � wo − ψ

(i)
k−1, ψ̃

(i)
k � wo − ψ

(i)
k (22)

ea,k(i) � uk,iψ̃
(i)
k−1, ep,k(i) � uk,iψ̃

(i)
k (23)

Introduce further the weighted error signals:

e
Σk,(i)
p,k � uk,iΣkψ̃

(i)
k , e

Σk,(i)
a,k � uk,iΣkψ̃

(i)
k−1

(24)

where Σk is a Hermitian positive-definite weighting matrix that we

are free to choose at each node k. Note that the output error ek(i) =
ea,k(i)+vk(i). As a result, the steady-state quantities for each node

are formed as

ηk � E‖ψ̃(∞)
k−1‖2 (MSD) (25)

ζk � E‖ψ̃(∞)
k−1‖2

Ru,k
(EMSE) (26)

ξk � ζk + σ2
v,k (MSE). (27)

where we use the weighted norm notation ‖x‖2
Σ = x∗Σx for a vec-

tor x and Hermitian positive-definite Σ > 0.

As presented in [2], the spatial-temporal energy conservation re-

lation between two successive nodes is given by

E‖ψ̃k‖2
Σk

= E‖ψ̃k−1‖2
Σ′

k
+ μ2

kσ2
v,kE‖uk‖2

Σk
(28)

where Σ′
k is given by

Σ′
k = Σk − μkE(u∗

kukΣk + Σku
∗
kuk) + μ2

kE(‖uk‖2
Σk

u∗
kuk) .

(29)

We assume the regressors are from a circular Gaussian distribution

and introduce the eigendecomposition Ru,k = QkΛkQ∗
k, where Qk

is unitary and Λk is a diagonal matrix with the eigenvalues of Ru,k.

The transformed quantities are defined as

ψ̄k � Q∗
kψ̃k, ψ̄k−1 � Q∗

kψ̃k−1, ūk � ukQk

Σ̄k � Q∗
kΣkQk, Σ̄′

k � Q∗
kΣ̄kQk

Since Qk is unitary, we can have E‖ψ̃k−1‖2
Σk

= E‖ψ̄k−1‖2
Σ̄k

and

E‖uk‖2
Σ = E‖ūk‖2

Σ̄. Let Tr{A} denote the trace of a matrix A.

Using the results for Gaussian data [13], we obtain the transformed

expressions from (28) and (29)

E‖ψ̄k‖2
Σ̄k

= E‖ψ̄k−1‖2
Σ̄′

k
+ μ2

kσ2
v,kTr(ΛkΣ̄k) (30)

where Σ̄′
k is given by

Σ̄′
k = Σ̄k − μkXk + μ2

kYk (31)
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where Xk = ΛkΣ̄k + Σ̄kΛk and Yk = ΛkTr(Σ̄kΛk) + τΛkΣ̄kΛk

with τ = 1 for complex data and τ = 2 for real data.

Therefore, we proceed as in [13, 14] by introducing the M2 × 1
vectors:

δk = vec{Σ̄k} , δ′k = vec{Σ̄′
k} and λk = vec{Λk} (32)

where we use the vec{·} notation in two ways: δ = vec{Σ} denotes

an M2 × 1 column vector whose entries are formed by stacking the

successive columns of an M × M matrix on top of each other, and

Σ = vec{δ} indicates a matrix whose entries are recovered from

δ. We exploit the following useful property for the vec{·} notation

when working with Kronecker products: for any matrices {P, Σ, Q}
of compatible dimensions, it holds that

vec{PΣQ} = (QT ⊗ P )vec{Σ}. (33)

The choice of Σk can make both Σ̄k and Σ̄′
k become diagonal in

(31). Applying the vec{·} operation to both sides of (31), a lin-

ear relation between the corresponding vectors {δ′k, δk} is obtained,

namely,

δ′k = Fkδk (34)

where Fk is an M2 × M2 matrix and given by

Fk = I − 2μk(I ⊗ Λk) + μ2
k(τ(Λk ⊗ Λk) + λkλT

k ). (35)

Therefore, expression (30) becomes

E‖ψ̄(i)
k ‖2

vec{δk} = E‖ψ̄(i)
k−1‖2

vec{Fkδk} + μ2
kσ2

v,k(λT
k δk) (36)

where we reuse the time index i for clarity. For simplicity of nota-

tion, we drop the vec{·} notation from the subscripts in (36):

E‖ψ̄(i)
k ‖2

δk
= E‖ψ̄(i)

k−1‖2
Fkδk

+ μ2
kσ2

v,k(λT
k δk) . (37)

Let ρk = ψ̄
(∞)
k , then

E‖ρk‖2
δk

= E‖ρk−1‖2
Fkδk

+ μ2
kσ2

v,k(λT δk). (38)

By iterating (38) over one cycle, N coupled equations are obtained:

E‖ρ1‖2
δ1 = E‖ρN‖2

F1δ1 + g1δ1

E‖ρ2‖2
δ2 = E‖ρ1‖2

F2δ2 + g2δ2

...

E‖ρk−1‖2
δk−1 = E‖ρk−2‖2

Fk−1δk−1 + gk−1δk−1 (39)

E‖ρk‖2
δk

= E‖ρk−1‖2
Fkδk

+ gkδk (40)

...

E‖ρN‖2
δN

= E‖ρN−1‖2
FN δN

+ gNδN

with gk = μ2
kσ2

v,kλT . Choose the free parameters δk and δk−1 such

that δk−1 = Fkδk and combine (39) and (40), then we iterate this

procedure across the cycle to obtain

E‖ρk−1‖2
δk−1 = E‖ρk−1‖2

Fk···FN F1···Fk−1δk−1

+gkFk+1 · · ·FNF1 · · ·Fk−1δk−1

+gk+1Fk+2 · · ·FNF1 · · ·Fk−1δk−1

· · · + gk−2Fk−1δk−1 + gk−1δk−1. (41)

Let

Πk−1,l=Fk+l−1 · · ·FNF1 · · ·Fk−1, l = 1, 2, . . . , N (42)

ak−1=gkΠk−1,2 + · · · + gk−2Πk−1,N + gk−1 (43)

then

E‖ρk−1‖2
(I−Πk−1,1)δk−1

= ak−1δk−1 . (44)

Since we are free to select the weight vector δk−1 in (44), choosing

δk−1 = (I − Πk−1,1)
−1q or δk−1 = (I − Πk−1,1)

−1λk results in

the expressions for the steady-state MSD, EMSE and MSE at node

k:

ηk = E‖ρk−1‖2
q = ak−1(I − Πk−1,1)

−1q (MSD) (45)

ζk = E‖ρk−1‖2
λk

= ak−1(I − Πk−1,1)
−1λk (EMSE) (46)

ξk = ζk + σ2
v,k (MSE) (47)

where q = vec{I} and λk = vec{Λk}.
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Fig. 2. Node profile: a) Input power b) Noise power c) Cor-

relation index d) SNR.

4. SIMULATIONS

In this section, we compare the theoretical performance with the

computer simulations in a system identification scenario. All simu-

lations results are averaged over 100 independent Monte Carlo runs.

The steady-state curves are obtained by averaging the last 2000 in-

stantaneous samples of 20, 000 iterations. We considered a network

with 20 nodes seeking an unknown filter with M = 10 taps. A cor-

related Gaussian signal is used to generate the inputs at each node k
which satisfies the recursion

uk(i) = akuk(i − 1) + bk · ck(i). (48)

Expression (48) produces a first-order autoregressive (AR) process

with a pole at ak; ck is a white, zero-mean, Gaussian random se-

quence with unity variance, ak ∈ (0, 1] and bk =
�

σ2
u,k · (1 − a2

k).
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In this way, the covariance matrix Ru,k of the regressor uk,i is a

10 × 10 Toeplitz matrix with entries rk(m) = σ2
u,ka

|m|
k , m =

0, . . . M − 1 with σ2
u,k ∈ [0, 1). The background noise has vari-

ance σ2
v,k ∈ [0, 0.1) across the network. The statistical profiles are

illustrated in Fig. 2. Fig. 3 and Fig. 4 show that the theoretical re-

sults for MSE match well with the simulated results, where νk = 1,

αk = 0.05, βk = 1, � = 3, and Lmin = Lf (0) = 4. Similar

results for EMSE and MSD have been obtained but are not included

due to space limitations.
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5. CONCLUSION

In this paper, a new algorithm has been proposed for structure adap-

tation of adaptive filters in an incremental distributed network. Un-

der the assumptions A1, A2 and A3, weighted spatial-temporal en-

ergy conservation argument are used to analyze steady-state mean

square performance in the Gaussian case. Numerical simulations

show that there is a good match between simulated results and the-

oretical results. Future work includes more sophisticated distributed

estimation in a cooperative fashion.
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