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Abstract: This paper discusses a systematic approach for selecting the minimum number of
sensors for an Electromagnetic levitation system that satisfies both deterministic and stochastic
performance objectives. The controller tuning is based upon the utilisation of a recently
developed genetic algorithm, namely NSGAII. Two controller structures are discussed, an inner
loop classical solution for illustrating the efficacy of the NSGAII tuning and a Linear quadratic
gaussian structure particularly on sensor optimization.

1. INTRODUCTION

In recent years, MAGnetic LEVitation (MAGLEV) sys-
tems have been attractive to transport industry due to
a number of advantages they offer over the conventional
wheel-on-rail systems. In particular, maglev trains have no
mechanical contacts with the rail and thus maintenance
costs are reduced, although in general building maglev
rail infrastructure is more expensive than conventional
rail infrastructure. An interesting survey can be found in
Lee (2006).The work presented in this paper is a system
study on sensor optimization for a quarter car magnetic
suspension model, which aims to satisfy both disturbance
rejection and robustness to parametric changes as well as
the best ride quality with the minimum possible effort
based on the minimum possible sensor set configuration.
In fact, the problem is posed in a multiobjective optimiza-
tion framework to optimize the controller parameters, via
a heuristic algorithm, for each sensor set. Evolutionary
algorithms are widely used in control engineering and have
proved to be very efficient for controller optimization in
a number of problems (see Fleming (2002)). Numerous
genetic algorithms have been developed (see Abdullah
(2006)), while for the purposes of this work a recently
developed genetic algorithm by Deb (2002) NSGA-II,
based on non-dominated sorting of population, is utilised
for tuning the parameters of all controllers presented. In
particular, the efficacy of NSGAII tuning is illustrated
on a classical structure with inner-loop, while a Linear
quadratic gaussian (LQG) structure is further utilized for
sensor selection.
The paper is organized as follows. The linear time invariant
model of a quarter car is presented in section 2 along
with description of the deterministic and stochastic inputs.
Section 3 presents both the classical control approach and
the LQG technique applied for each sensor set. Section
4 discusses the simulation results, while conclusions are
drawn in section 5.

2. MODEL DESCRIPTION

The diagram of a one degree-of-freedom, ‘quarter-car’ elec-
tromagnetic suspension system is shown in Fig.1. The sus-

pension consists of an electromagnet with a ferromagnetic
core and a coil of N turns which is attracted to the rail that
is made out of ferromagnetic material. The carriage mass
is attached on the electromagnet, with zt the rail position
and z the electromagnet position. The air gap (zt−z) is to
be maintained close to the operating condition required.
The LTI state space model is derived by considering the
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Fig. 1. Suspension system for MAGLEV

operating point (nominal) values of the coil current I0, flux
B0, force F0 and air gap G0. The following relationships
hold

F = f + F0, B = b + B0

G = (zt − z) + G0, I = i + I0

(1)

where, f, b, (zt− z) and i are small variations around their
nominal values. The fundamental magnetic relationships
are F ∝ B2 and B ∝ I/G, thus, the linearized expressions
for the magnet are (see Goodall (1985) for derivation)

b = Kii − K(zt−z)(zt − z) (2)

f = Kbb (3)

where Ki = B0/I0, K(zt−z) = B0/G0 and Kb = 2F0/B0.
The voltage v is given by:

v = Ri + L
di

dt
+ NA

db

dt
(4)

where N is the number of coil turns, R the coil resistance,
A the pole face area and L the coil inductance. Moreover,



the force f depends on the mass M and the vertical
acceleration z̈.

f = Mz̈ and f = Kbb (5)

therefore, from (5) and (2) the equation for z̈ is

z̈ =
KbKi

M
i − KbK(zt−z)

M
(zt − z) (6)

where (zt − z) is the air gap between the rail and the
electromagnet. Also, from (2) and (6) the current equation
is

di

dt
=

V

L + NAKi

+
NAK(zt−z)

L + NAKi

(żt − ż) − Ri

L + NAKi

(7)

and from (6) and (7) a state vector can be constructed as
follows

X = [ i ż (zt − z) ]
T

(8)

with the relevant state space expression given by

Ẋ = AgX + Bvv + Bz żt, y = CX (9)

where matrices

Ag =











− R

L + NAKi

−NAK(zt−z)

L + NAKi

0

KbKi

M
0 −KbK(zt−z)

M
0 −1 0











(10)

(Bv Bz) =







1

L + NAKi

NAK(zt−z)

L + NAKi
0 0
0 1






(11)

C =















1 0 0
Ki 0 −K(zt−z)

0 0 1
0 1 0

KbKi

M
0 −KbK(zt−z)

M















(12)

Note that the output matrix in (12) refers to all possible
measurements that can be considered (y = [i, b, (zt −
z), ż, z̈]T ). The parameter values for a one tone suspension
system are shown in Table 1. Note that the maglev system
is open-loop unstable.

M = 1000kg R = 10Ω
G0 = 0.015m L = 0.1H

B0 = 1T N = 2000
I0 = 10A A = 0.01m2

F0 = 10000N

Table 1. Parameters of magnetic suspension

2.1 Inputs

Two track input characteristics are considered, i.e. deter-
ministic changes such as gradients or curves and stochastic
(random) changes in the track position due to misalign-
ments. These are discussed in more details below.

Random input Random behaviour of the rail position
is caused as the vehicle moves along by track-laying
inaccuracies and steel rail discrepancies. Considering the
vertical direction, the velocity variations are quantified by
a double-sided power spectrum density (PSD) which in the
frequency domain is expressed by

Sżt
= πArV (13)

where, V is the vehicle speed (in this work is taken as
15m/s) and Ar represents the track roughness equal to
1 × 10−7m (for a typical high quality track). The corre-
sponding (one-sided) autocorrelation function is given by

R(τ) = 2π2ArV δ(τ) (14)

Deterministic input The main deterministic inputs to
a suspension for the vertical direction are the transitions
onto gradients. In this work, the deterministic input com-
ponents utilised are shown in Fig.2 and represent a gra-
dient of 5% at a vehicle speed of 15m/s and an allowed
acceleration of 0.5m/s2.
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Fig. 2. Deterministic input to the suspension with a vehicle
speed of 15ms−1 and 5% gradient.

2.2 Design requirements

Fundamentally there is a trade off between the determinis-
tic and the stochastic response (ride quality) of the suspen-
sion. For slow speed vehicles, performance requirements
are described in Goodall (2004) and Goodall (1994). In
particular, the practical objective is to minimize both the
vertical acceleration (improve ride quality) and the attrac-
tive force applied from the electromagnets by minimizing
the RMS current variations. These objectives can be can
be formally written

φ1 = irms, φ2 = z̈rms (15)

with the constraints given in Table 2.

Constrains Value

RMS acceleration(≃ 5%′g′),(z̈rms) < 0.5ms−2

RMS gap variation, ((zt − z)rms) < 5mm
Air gap deviation (deterministic),((zt − z)p) < 7.5mm

Control effort (deterministic),(Vp) < 300V (3I0R0)
Settling time, (ts) < 3s

Table 2. Constrains for the magnetic suspen-
sion performance.



3. CONTROLLER DESIGN

Two controller structures are introduced in this section.
A classical solution comprising an air gap outer-loop with
flux inner-loop is compared with an air gap outer-loop with
current inner-loop. A fixed set of classical compensators
is considered, namely a proportional plus integral for the
inner loops and a phase advance for the outer loop. The
aim of the classical solution is twofold first to illustrate the
effectiveness of using inner loops for robustness improve-
ment and the difference between the different inner loop
measurements; secondly to illustrate the effectiveness of
using a genetic algorithm to tune the controller parame-
ters. The tuning procedure is then extended in an LQG
framework which is specifically connected to appropriate
sensor selection.

3.1 Classical controller with inner loop design

Inner loop control is advantageous in controlling a MA-
GLEV vehicle Goodall (2000). We compare two ap-
proaches, a air gap-flux feedback (fig. 3) with the air gap-
current equivalent. The controller parameters are tuned
simultaneously via the evolutionary algorithm NSGAII in
an attempt to optimize the control system performance
subject to all constraints being satisfied. This design also
serves as a baseline for further investigation of schemes
with more sensor combinations. The inner loop bandwidth
must be within 50Hz − 100Hz while the outer loop is
chosen less than 10Hz. A phase advance (PA) (16), with
k the advance ratio and τ the time constant, is used to
provide adequate phase margin in the range 35o − 40o.

PI = Gi

tis + 1

tis
PA = Go

kτs + 1

τs + 1
(16)

The scheme is depicted in Fig.3 for the air gap-flux case.
The diagram also applies for the air gap-current case by
replacing flux with current measurement.

PI PA
-

+
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v b

Fig. 3. Classical controller implementation with flux inner
loop feedback

3.2 LQG with sensor optimization

Linear Quadratic Gaussian control is a well documented
in Skogestad (2005) and thus its theoretical details are
omitted. Consider the following state space expression

ẋ = Agx + Bu + Bwωd

y = Cx + ωn
(17)

where, ωd and ωn are the process and measurement noises
respectively. These are uncorrelated zero-mean Gaussian
stochastic processes with constant power spectral densities
W and V respectively. In particular, the problem is to find
u = Klqg(s)y which minimises the following performance

index for every sensor set combination available (this
particularly relates to the information provided to the
Kalman filter).

JLQG = E{ lim
τ→∞

1

τ

τ
∫

0

[xT Qx + uT Ru]dt} (18)

Here, Q and R are the state and control weighting func-
tions with Q = QT ≥ 0 and R = RT ≥ 0 of the linear
quadratic part of the LQG. Similarly, W and V are the
tuning parameters of the Kalman filter part (note that
the LQG controller can be designed via the separation
principle). The scheme is shown in Fig. 4 with all pos-
sible measurements included. For appropriate disturbance
rejection, i.e. zero steady state error for the air gap signal,
the LQR part is designed on an augmented system with
the extra integral state of the air gap (however the Kalman
filter is designed on the original state space matrices, but
the integral state is later provided by the selector matrix
Ci). Note that with five sensors the number of possible
combinations to the Kalman filter is 25 − 1 = 31. It is also
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Fig. 4. LQG diagram setup

worth noting that for the LQR design we choose output
regulation, i.e. acceleration (z̈), air gap (zt − z) and the
integral of air gap (

∫

(zt − z) (the last quantity specifically
refers to the speed of response). Thus, Q is in fact given
by

Q = CT
z QzCz (19)

where Cz is the output matrix selecting the above regu-
lated signals, i.e. [z̈ (zt − z)

∫

(zt − z)] and Qz is the
corresponding weight. The Kalman filter is designed such
that E{[x − x̂]T [x − x̂]} is minimized.

4. NSGAII IMPLEMENTATION

NSGAII is applied in both classical and LQG controller
structures, although with different constraints. The pa-
rameters used are shown on table 3. The state feedback
tuning requires four variables which are real values. The
crossover probability is generally selected to be large in
order to have a good mixing of genetic material. The muta-
tion probability is defined as 1/nv, where nv is the number
of variables. This is appropriate in order to give a mutation
probability that mutates an average of one parameter from
each individual. For the simulated binary crossover param-
eter (SBX) and the mutations parameter it was decided to
use the default value of 10 and 50 since they provide good
distribution of solutions for the algorithm operations. The
population size and generation size are set to 50 and 500



Parameter setting

Crossover propability 0.9
Mutation probability 1/nu

SBX parameter 10
Mutation parameter 50

Rigid bounds 1(yes)
Population 50
Generations 500

Table 3. NSGA-II Parameters used for the
evolution procedure.

respectively for the classical controller optimisation and
LQR tuning. For the LQG tuning much less is required, as
there is only one variable to tune (pop=25,Gen=5). There
is no systematic method to define those values as they
depend on the nature of the problem. In fact, these values
are selected after a few trials. Moreover, the algorithm
performance depends on the search space if it’s too large
the aforementioned generations and population may not
be enough. In this work, the search space for both classical
and LQG is decided after manually designing an equivalent
controller. The penalty function approach Deb (2001) is
used to achieve the constraint within limits. The constraint
violation for each constraint, ki, defined in table 2 is given
as in (20).

ωj(k
i) = {|gj(k

i)|, if gj(ki)<0
0 otherwise (20)

Each constraint is normalized as in (21) for values less
than the predefined and in (22) for values greater than
the predefined.

gj = − ki

ki
des

+ 1 ≥ 0 (21)

gj =
ki

ki
des

− 1 ≥ 0 (22)

Where, ki
des is the preset constraint value and ki is the

measured value. Equation (22) is not used for LQG design,
because all limitations are required to be less than the
defined ones. The overall constraint violation is given as
in (23).

Ω(k(i)) =

j
∑

j=1

ωj(k
(i)) (23)

This constraint violation is then added to each of the
objective functions values ( 24)

Φm(k(i)) = φm(k(i)) + RmΩ(k(i)) (24)

where Rm is the penalty parameter and Φm(k(i)) the ob-
jective function value. Remarks on the different controller
designs are presented below.

4.1 Classical controller

Fig. 5 depicts the pareto-optimality between the ride
quality (z̈) and the RMS coil current (irms) for the two
controller configurations, i.e the air gap-flux ((zt − z)− f)
and the air gap-current ((zz − z) − i) case. It can be seen
that a set of optimized controllers can be chosen which
satisfy all constraints for the (zt − z) − b case but not for
the (zt − z) − i (more complex controller are necessary in

the latter case). This can be seen in Table 4 where, both
deterministic and stochastic responses are satisfied for all
optimum controllers for the (zt−z)−b case. Robustness to
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Fig. 5. Optimised controllers for Air gap-flux and Air gap-
current sensor configurations.

Constrains (zt − z) − b (zt − z) − i

PM(degrees) 35-45 35-40 6.5-7

fbout
(Hz) < 10 3.2-3.8 ≈ 5.8

fbin
(Hz) 50-100 76-99 ≈ 100

Gap Peak(mm) < 7.5 ≈ 5 ≈ 1
RMS Air Gap(mm) < 5 ≈ 1.5 ≈ 1.5
Control Effort(Vp) < 300 ≈ 10 ≈ 30

RMS z̈(ms−2) < 0.5 0.35-0.45 ≈0.98

Table 4. Classical control - constraints values
for each design.

parameter variations is considered only for the (zt − z)− b
configuration since the (zt − z) − i configuration already
violates two of the constraints. A set of optimal controllers,
for the extreme cases of z̈ = 0.37m/s−2 and 0.45m/s−2 is
selected, i.e. (25) is the first set of controllers (C1) and
(26) is the second set (C2). The mass (M) is varying by
±25% from the nominal value of M = 1000kg.

C1{ PI1 = 11684
0.021s + 1

0.021s
, PA1 = 5.5

0.084s + 1

0.015s + 1
}(25)

C2{ PI2 = 10063
0.018s + 1

0.018s
, PA2 = 5.6

0.115s + 1

0.016s + 1
}(26)

The Nichols plot for the minimum, nominal and maximum
mass variation is shown in Fig.6 for the C1 controller set
and it can be seen that the controller can accommodate the
mass variations and maintain stability and performance
(similarly for the C2 case). From table 5, can be clearly
seen that sufficient robustness properties apply in the case
of C1. The C2 controller set, being closer to the limits of
the constraints, fails to satisfy the ride quality requirement
for the case where mass is 750kg. The disturbance rejection
to the mass variation for the first set of controllers is shown
in Fig. 7. The disturbance is successfully rejected in less
than 3s and the steady state value of the air gap returns
to the operating point (note that 0 in the figure refers to
the operating condition of 10mm).
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Fig. 6. Mass variation effect on the suspension system for
the C1 controller set.

M=750kg M=1000kg M=1250kg

C1 C2 C1 C2 C1 C2

PM (degrees) 38.2 49.9 35 44.7 32 42.7
fbout(Hz) 4 4.9 3.2 3.8 2.8 3.22
fbin (Hz) 95 84 95 84 95 84

Gap peak (mm) 3.6 3.4 4.9 4.6 6.3 5.9
RMS Gap (mm) 1.3 1.18 1.71 1.27 1.87 1.34
RMS z̈(ms−2) 0.47 0.61 0.37 0.44 0.3 0.36

control effort (V) 25.88 24 35 33 45 42

Table 5. Constraints values for PI1 and PA1
0.37m/s2.
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Fig. 7. System response to deterministic input for mass
variation of ±25%.

4.2 Sensor optimization with LQG controller

The system is both stabilisable and detectable, and this
can be easily found via a modal test. With regards to the
separation principle of the LQG design, first the Q and R
weights (LQR) are tuned to find the pareto optimality of
the objective functions (see fig. 8). Here a small relaxation
to the deflection limit is considered (max air gap deflection
allowed is 7.3mm) to accommodate the sensor noise effects
in the next stage of the Kalman filter design. The above
assists in choosing a set of LQR gains, i.e. which has gains
of Kri,V

= 596V/A, Krż,V
= 8375V/ms−1, Kr(zt−z),V

=

−520992V/m. and Kr∫
(zt−z),V

= −809364V/m] that sat-

isfy the design constraints (any can be chosen as far as
it is providing the required performance). The subscript
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Fig. 8. Pareto optimality with full state feedback

indicates the corresponding state. The next stage is the
design of the Kalman filter and the stage where the sensor
information becomes critical. In particular the measure-
ment noise weighting is constant and given in (27) for all
sensors (this can be found from sensor equipment data
sheets or prior simulation of baseline controller designs).
In this design the process noise matrix Bw = Bz and the
process noise covariance refers to the track velocity input
and is tuned for each sensor set. The objective functions to
be minimized are (28) for the deterministic response and
(29) for the stochastic response.

V = diag(Vi, Vb, V(zt−z), Vż , Vz̈) (27)

φdeterministic =

t
∫

0

|xo − xa|dt (28)

φstochastic = rms(xo − xa) (29)

where, xo are the monitored states of interest of the
closed loop with the LQR state feedback (e.g. ideal closed
loop) and xa the monitored states of interest of the
closed loop with the overall LQG controller (e.g. actual
closed loop (prior to adding sensor noise). Note that
the sensor information entering the Kalman filter are
affected by sensor noise. This makes a total of 6 individual
objective functions. Evolution is done in 5 generations with
a population of 25 individuals. After the simulations, there
are 775 optimum individuals from which to choose the
best. The selection procedure of the ’optimum Kalman’
estimator is based on the overall penalty parameter (23),
which is zero if all constraints are satisfied, and close to
zero if the constraints are almost satisfied (see 21). The
next criterion is the sum of the objective functions as
shown in (30).

S =

6
∑

i=1

(φdeterministic, φstochastic) (30)

Each final population is checked and the individual(s)
that give the smallest penalty parameter are selected and
among them, the individual that gives the smallest S is
selected as the ’optimum Kalman’ estimator. This pro-
cedure gives an optimum controller for each sensor set
combination, with 24 out of 31 sensor set combinations
found to meet all constraints. Table 6 illustrates the con-
straint values for each sensor set with the corresponding



optimized controller that is selected. The sensor combi-
nations that satisfy all constraints are marked (

√
). The

flux as well as vertical acceleration measurements are good
choices satisfying the required constraints. Kalman filter
gains with vertical acceleration measurement is Kfz̈

=
[−63444 2 − 100]T and for the flux measurement is
Kfb

= [−1268899 40 − 2000]T . In fact, this can be
another criterion for choosing the sensor set with the
smallest possible Kalman gains. It is also worth mentioning
that adding more sensors increases the fault possibilities
on the sensor elements, as well as incorporating more
complexity in system implementation A first good option

Sensor gairrms gairp Vp z̈rms ts
set mm mm V ms−2 s

b 1.4 5.3 94 0.35 2.25
√

gair 1.4 4.8 81 0.35 6.43 x
z̈ 1.4 5.3 92 0.34 2.12

√

i,ż 1.4 5.6 101 0.35 6.17 x
i,z̈ 1.4 5.3 72 0.34 2.25

√

i,b,gair 1.4 5.2 66 0.35 2.25
√

i,b,ż 1.4 5.7 70 0.35 2.3
√

i,gair,ż 1.4 5.5 88 0.35 6.22 x
i,b,gair,ż 1.4 5.6 63 0.35 2.3

√

i,b,gair,z̈ 1.4 5.3 65 0.35 2.2
√

i,b,gair,ż,z̈ 1.4 5.5 63 0.35 2.2
√

Table 6. Sensor combinations with constraints
(gair ≡ (zt − z)).

is the vertical acceleration, with the state estimation from
the Kalman filter quite satisfactory as it can be seen
from Fig.9. Disturbance rejection is also appropriate in
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Fig. 9. The state estimates with vertical acceleration
measurement.

the deterministic case. The air gap settles to its operating
condition (nominal value) within three seconds with small

overshoot and undershoot within the predefined limits
(note that the Kalman filter is primarily a stochastic
estimator thus with smaller Kalman gains a small drift
occurs; this can be solved by increasing the Kalman gains
however at the expense of larger sensor noise entering the
system).

5. CONCLUSION

The paper discussed a system study from a sensor opti-
mization point of view for a magnetic suspension system
via a heuristic approach (NSGAII) on controller tuning.
Two controller cases where presented, a classical case on
fixed sensor sets for illustrating the efficacy of the heuristic
algorithm on controller tuning. This was extended to an
LQG controller design with the particular aim of sensor
optimization for the Kalman filter part. The study illus-
trated that most of sensors sets are able to provide satisfac-
tory control of the magnetic suspension system. Note that
the study identifies the minimum sensor sets required for
appropriate performance, effectively reducing sensor fault
scenarios. In particular, the presented framework aims to
identify potential sensor sets that can be used as a basis for
future investigation on system fault tolerance via possible
controller structure re-scheduling.
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