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ABSTRACT 

The aim of this research was to understand and solve problems associated with the 

integration of a Machine Planner within a product model environment. This work 

was carried out in conjunction with other researchers, pursuing parallel integration 

issues related to pre-production proving and product data representation. 

Product data representations of component level planned, processes and feature 

level process data have been explored as sub-sets of -a product data model to aid 

integration. Geometric queries on a- cell decomposition solid, model. have been 

explored as a means of providing feature geometric interaction data, while the 

dimensional interactions between features have also been addressed. 

Product data representations have been modelled using a prototype software tool, 

providing an environment- for the exploration of the integration of a Machine 

Planner using a feature based design approach. Necessary Machine Planning func- 

tions have been implemented, using the ADA programming language, to explore 

the integrating capability of the product model environment, concentrating on the 

use of a prismatic benchmark component. Using the experimental implementation, 

setup and operation plans have been produced and machining part programs gen- 

erated from product model representations of variants on the benchmark com- 

, ponent. These have been successfully machined using a3 axis vertical machining 

centre. 

Such experiments, as well as others in conjunction with co-researchers, have shown 

that a product data model can provide a common base of data for the integration of 

a range of design and manufacturing activities. 
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CHAPTER 1 

INTRODUCTION 

In recent years the speed and quality of management and engineering decisions in 

manufacturing industry has been improved through the use of specific individual 

software programs. Each of these programs tend to be limited, however, to specific 

activities in their own data environment. As such there is potential for significant 

further improvement in industrial performance if the range of industrial activities 

could be integrated through a common data environment. This aim of Computer 

Integrated Manufacturing (CIM) has such potential benefits for industry that major 

worldwide research and industrial effort has been committed to its achievement. 

This has led to the need for new concepts in integrated systems architecture and in 

particular to information systems modelling to which this research has contributed. 

The integration of computer aided design (CAD) and computer aided manufactur- 

ing (CAM), provides an example of the same integration challenge, but on a more 

localised scale. Resolving this problem would provide industry with software tools 

to improve the consistency and quality of engineering decisions, as well as increas- 

ing a company's capability to respond rapidly to changing market requirements. 

However, the problems, even at this localised level, are complex. There is a need 

to understand the structure of data on which decisions are based and the relation- 

ships between the many functions to be performed before an integrated design and 

manufacture system can maximise its potential benefits to industry. 



chapter 1 -2- 

An integrated information system for design and manufacture would benefit indus- 

try by building stronger links between design and manufacture software Applica- 

tions than can be achieved through current CADCAM technology. Such an in- 

tegrated system offers this potential by providing a common product data source 

for all software Applications. This in turn offers the potential to enable interactions 

between a range of Applications which can enhance the overall quality of design 

and manufacture. 

The work of this thesis has addressed the problem of integrating Machine Planning 

within such an information system. The work has been performed as a part of the 

"Information Support Systems for Design and Manufacture" (ISS) research pro- 

gramme, which has explored the structure of product models which enable the in- 

tegration of a subset of manufacturing functions concerned with the pre-production 

proving of part programs for machining and inspection (Manufacturing Code Gen- 

eration). The programme has been pursued jointly at the Department of Manufac- 

turing Engineering, Loughborough University of Technology and at the Department 

of Mechanical Engineering, Leeds University. It has been funded by The Applica- 

tion of Computers in Manufacturing Engineering (ACME) Directorate of the Sci- 

ence and Engineering Research Council and by the Department of Trade and In- 

dustry, as well as being supported by a group of industrial companies. 

Within the context of the ISS programme the objectives of the author's work were: 

" To contribute to the exploration and definition of product model data structures 

which can provide the common base of data which is essential to the integration of 

Manufacturing Code Generation. 

" To explore and define product model data structures which can provide a com- 

mon base of data to aid the integration of a Machine Planning Application. 

" To explore the integration linkage from a Machine Planner to geometric and di- 

mensional data through a product model. 
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The central hypothesis of the thesis is that a Machine Planner can be integrated and 

interact with other Applications in a product model environment. This has been ex- 

plored by addressing prismatic components, described using pre-defined features, 

which can be machined from rectangular stock on a three axis vertical machining 

centre. The features considered were holes and box like shapes having a range of 

manufacturing methods. Machining has been considered which can be performed 

using parallel sided end mills, face mills and slot drills with inserted carbide 

cutters, as well as simple drilling operations using high speed twist drills. Standard 

fixture elements are considered in the form of a vice, bolts and rectangular clamps. 

A key part of the initial research was to specify a necessary and sufficient Machine 

Planner to act as a vehicle for the research. The Machine Planner implementation 

was required to demonstrate experimentally that a product model could provide a 

comprehensive source of geometric, dimensional and planning data appropriate for 

Machine Planning and that such a Planner could form an integral part of an experi- 

mental design to manufacture system. It was decided to implement functions for 

setup, operation and NC planning to provide a base for experimentation and to use 

pre-defined features as an appropriate method of capturing the important charac- 

teristics of machining features. 

The initial chapters of the thesis set the work into context for the reader. Chapter 2 

provides a survey of relevant literature, firstly in relation to the general problems of 

computer modelling in design and manufacture, and secondly addressing more 

specific aspects of Machine Planning related research. Chapter 3 provides a view of 

trends towards integration, the elements required in an integrated CADCAM sys- 

tem and the importance of Product Modelling providing a basis for integration. 



chapter 1-4- 

Chapter 4 describes the ISS programme, highlighting the areas of the author's 

research contribution while chapter 5 describes the research performed in conjunc- 

tion with co-researchers to integrate Manufacturing Code Generation in a product 

model environment. 

Chapter 6 describes the work performed by the author to define the nature of the 

lower levels of a Product Data Model (PDM) which can provide the basis for the 

integration of a Machine Planning Application and results in the derivation of 

feature and component level planning data sub-sets of the PDM. The linkage to 

geometric representations to extract feature positional and geometric interaction 

data are explained in chapter 7 while chapter 8 discusses a method of linking di- 

mension and tolerance and feature data into a Machine Planner. 

Chapter 9 explains and defines the Machine Planning functions, strategies and rules 

which have been implemented to explore integration within the product model en- 

vironment, while chapter 10 describes the work performed to realise such an in- 

tegrated system. The experimental tests performed in the course of the research are 

described and discussed in chapter 11, and finally research conclusions are drawn, 

and recommendations made for future work in chapter 12. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 INTRODUCTION. 

This chapter surveys literature of relevance to the integration of a Machine Planner 

in a Product Modelling Environment. 

Section 2.2 introduces the reader to current research into the use of computers in 

design and manufacturing. Research in the areas of process planning and product 

modelling are described as are the use of knowledge representations, geometric 

representations and features. The possibilities for concurrency in design is dis- 

cussed and the progress being made towards integration between design and 

manufacturing functions is described. 

Section 2.3 provides a description of detailed aspects of machine planning research 

of relevance to this thesis. These are highlighted in sections covering part program 

generation for machining, planning machining operations and setup planning. 
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2.2 COMPUTER MODELLING IN THE DESIGN TO MANUFACTURE PROCESS. 

2.2.1 Current Advances Towards Automated Process Planning. 

The automation of process planning has been recognised for some time as being a 

significant part in linking computer aided design and computer aided manufacturing 

systems. A general introduction to Process Planning and a comprehensive review 

of early computer based systems is'provided by Chang [27], where two principal 

types of process planning system are highlighted. These being variant and genera- 

tive systems, where. the variant approach is based on Group Technology principals 

while the generative approach attempts to capture process planning logic. 

Variant systems provide a retrieval capability for similar process plans which can 

be accessed through a classification code. Examples of this approach are described 

by Schaffer [128], and by Link [86]. There are many other examples of this ap- 

proach, with most current commercial systems being based on this principle. 

The variant approach is limited in its scope for automation, as it relies on the re- 

trieval and editing of similar plans. Research effort in recent years has therefore 

concentrated on aspects of generative process planning. 

Generative process planning is described by Wysk [153] as "a system that syn- 

thesises process information in order to create a process plan for a new component 

automatically". Current experimental systems in generative process planning do not 

meet this rigorous definition, but have some level of in-built decision making logic. 

Overviews of a wide range of experimental systems can be found in several pa- 

pers [27,153,146]. 
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Because of the scale of problems to be tackled in process planning, current 

research work tackles only aspects of the total problem which can lead to a lack of 

clarity in definition of terms. However global definitions of process planning are 

generally consistent. Chang [27], describes process planning as "that function 

within a manufacturing facility that establishes which machining processes and 

parameters are to be used (as well as those machines capable of performing these 

processes) to convert (machine) a piece part from its initial form to a final form 

pre-determined (usually by a design engineer) from an engineering drawing". His 

paper also provides a more concise definition as "the act of preparing detailed work 

instructions to produce a part". Wysk [152], provides the definition "The subsystem 

responsible for the conversion of design data to work instruction" while Weill 

[146], states that "process planning is exclusively concerned with the selection of 

suitable processes and tools to transform raw materials into a finished product ac- 

cording to the design drawing", and provides a definition as "the process of deter- 

mining the methods and sequence of machining a workpiece to produce a finished 

component to design specification". 

It is noteworthy that process planning is a wide problem area and research work, in 

general, tackles only aspects of the total problem. Current work being pursued in 

advancing computer based process planning is generally found to be tackling the 

areas of research identified by Wysk [1531 as: 

1. The identification and capture of Process Planning logic. 

2. The clear and precise definition of the part in computer compatible format. 

3. The unification of captured logic and part description into a manufacturing 

data base. 
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The need for links to geometry, features and other product data, such as material 

specification and dimensions and tolerances is given emphasis in a range of 

research papers. These papers are discussed in subsequent sections of this chapter, 

as is the need for an appropriate means to represent planning knowledge and pro- 

vide a means for integration of the various planning functions. 

Due to the scale of the process planning task, research workers have generally 

confined their work to a highly constrained domain within the overall'scope of pro- 

cess planning. Within the field of material removal processes, with which this 

thesis is concerned, research tasks are usually split to consider either rotational or 

prismatic parts. The problem domain is then usually further split to consider as- 

pects of the process planning task, such as process selection, Alder [2]; tool selec- 

tion, Giusti [53]; cutting data selection, Barkocy [8]; and machining sequences for 

holes, Matsushima [92] and Chang [26]. 

A recent, state of the art survey, by Alting [5] provides the view that although a 

great deal of research effort has been spent on automating process planning, the 

implementations still do not match industrial expectations. The achievement of in- 

dustrially appropriate solutions is aggravated by the highly constrained domains 

which have been pursued. The need for an integrated framework, to enable aspects 

of the total process planning problem to be brought together, is given emphasis by 

Ham [57]. His paper suggests that production planning, process planning and 

operation planning are each distinctive in their goals and scope; however they are 

highly interactive in practice and as such should be considered as integral com- 

ponents, rather than separate pieces, in a manufacturing planning system. To 

achieve the goal of integrated planning three interrelated aspects of the subject 

must be addressed co-operatively. These are firstly automating existing planning 

functions; secondly anticipating future planning challenges; and finally suggesting a 

more logical planning structure. 
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2.2.2 Knowledge Representation. 

As already discussed, the representation of process planning logic is fundamental to 

improving the levels of automation of the process planning task and is a major area 

of research in its own right. Research in the late 1970's and early 80's considered 

the use of Decision Tables and Decision Trees to represent process planning logic 

[4]. However, the complexity of the process planning domain led researchers to ex- 

plore the use of Artificial Intelligence (A. I. ), and, especially, Knowledge Based 

Systems (KBS) as a means to capturing process planning logic. Performing tasks 

which require specialist knowledge can only be performed successfully by ap- 

propriate experts. Hence software programs which perform these tasks have be- 

come known as Expert Systems. An important aspect of an Expert System is that 

its knowledge base should be separate, (and hence able to be updated and grow), 

from the program part, or inference engine, which acts on the knowledge. 

Representing the knowledge in an Expert System is critical to its success. A major 

aspect of process planning research, in recent years, has been to explore alternative 

methods of knowledge representation and evaluation. The following paragraphs 

describe the most common representation and search techniques being explored. 

Detailed explanations of the technology can be found from several references 

[48,122,581. 

The most widely used technique for knowledge representation in Expert Systems is 

the use of a set of Production Rules. A Production Rule takes the form of "if 

<condition(s)> then <action(s)>". Semantic Networks offer another representation 

which relates a collection of objects, called nodes, through links. Examples of com- 

mon links are "is-a" and "has-a". Representing complex knowledge can be aided by 

the use of Frames. These are used to describe a collection of attributes that a 

specific object would normally possess. Attributes can have default values or pro- 
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cedural associations which can be used to identify the attribute value to be used. 

An alternative means of representing knowledge through logic is the use of Predi- 

cate Calculus. The elementary unit in Predicate Calculus is an object and state- 

ments about objects are called predicates. These predicates can either be true or 

false; facts can then be asserted from a range of predicates. 

The ways in which a knowledge base can be searched introduce other variations in 

approach. The object of a search procedure is to discover a path through a problem 

space, from an initial state to a goal state. Forward reasoning systems proceed from 

a start state, while backward reasoning searches from the goal state. A range of 

search methods can be used, some which can be applied to problems which have 

compound goals. As this text is only intended to provide the briefest of introduc- 

tions, the reader is referred to publications [48,122,58] for a detailed description of 

the techniques. 

One of the first experimental systems to show real promise, with the use of KBS, 

was GARI [42]. The system makes use of an expert knowledge base for automat- 

ing the planning of the machining sequence of mechanical parts. The knowledge is 

represented as Production Rules with weighted assertions, to enable conflict resolu- 

tion, and experiments were carried out on a number of industrial mechanical parts 

of considerable complexity. The major limitations of the system were identified as 

the need to increase the number of rules in the system, and the use of a simple 

weighting of assertions to enable conflict resolution. 

Since GARI a large number of papers have been published in the field of KBS ap- 

plication to process planning, with EXCAP [41] being one of the first U. K. based 

systems reported, considering production rules and probability applied to rotational 

part planning. Other work ranges from Kumara [811, who presents a structured 

framework for building Expert Systems in the process planning area, to recent 
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work at Heriot-Watt University, with Willis [149], which has been researching an 

interactive process planning assistant, with an explain facility for two and a half di- 

mensional prismatic components. A large scale Alvey project, the Design to Pro- 

duct Demonstrator, has also considered knowledge representation issues in process 

planning, [60,61], using a truth maintainence system as a means to providing user 

support. 

Although research is continuing in the application of KBS to process planning, the 

problem of computerising decision making has not yet been solved. Beigel [9], in 

discussing the future role of Expert Systems in manufacturing, identifies that, 

although they still hold promise for the future, there are many problems to be tack- 

led, and current systems are narrow in scope. Furth [49], also believes that KBS 

holds promise for the future, but identifies major areas for research in process plan- 

ning as CADCAM interface, knowledge base build-up, and interfaces to production 

control systems. 

A specific Expert System for Operation Planning on machining centres, ESOP, 

[44], identifies that although a "stand-alone" Expert System provides some benefits 

there is a serious need for integration with design, and that a more comprehensive 

systems approach is necessary. 

Adiga [1] uses a review of current approaches and considers his own experiences 

in knowledge representation and feature recognition to identify the challenges for 

research, before practical implementations materialise. He concludes that research- 

ers must look beyond simplistic rule based systems. Issues which should be ad- 

dressed are those of knowledge acquisition, knowledge representation, geometric 

modelling and feature recognition, as well as considering a global view of plan- 

ning, control and integration, programming tools, learning and execution efficiency. 
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2.2.3 Geometry Representation. 

The advent of computers, plotters and appropriate graphical display devices led the 

way to a wave of computerisation of drafting in the 1970's. Although these sys- 

tems have been shown to be valuable industrial tools they are limited in their abili- 

ty to automate mathematically well defined tasks, Requicha [120]. The develop- 

ment of solid modelling systems overcame that problem, in principle, by providing 

an informationally complete representation of solids, such that well defined 

geometric properties can be calculated automatically, [120,121]. 

The main representation schemes used in current systems are boundary representa- 

tions (B-Reps) and Constructive Solid Geometry (CSG). B-Reps are represented as 

unions of faces, with each face represented in terms of its boundary of edges. CSG 

models are built by the union, intersection and difference of simple, or primitive, 

solids such as blocks, cylinders and spheres. A brief comparison of these represen- 

tations can be found in several references [120,121,55], and a more detailed 

description of solid modelling in other publications [90,102]. 

Cell decomposition is a further type of representation which can be used in con- 

junction with CSG or B-Rep models. In a Cell decomposition model a solid is 

represented as a union of quasi-disjoint cells, where each cell may have a distinc- 

tive shape, providing it is homeomorphic to a sphere [143]. Triangulations are the 

simplest form of cell decomposition. Spatial Enumeration is a cell decomposition 

based on box like shapes where the cells may be of uniform size or of varying 

size. A representation of this type has been used in the research presented in this 

thesis, called a Spatially Divided Solid Model, Oliver [105]. 
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Solid modelling has the potential to support the automation of many technical tasks 

in industry, from detailed strength analysis to planning of machining and assembly, 

Walker [144]. However, although solid modellers can provide geometric data in the 

automation of manufacturing tasks, other data must also be taken into account. This 

includes part material and tolerances imposed on dimensions Pratt [114]. Further 

there are technological considerations linked with shapes (features) which provide 

implications for manufacture. Understanding feature technology has become recog- 

nised, by Brimson [20], as a significant step in providing the link from model 

descriptions to planning applications. A wide range of research work has been per- 

formed in this area and is discussed in the following section. Solid modelling, 

although an important aspect in achieving automation of manufacturing tasks has 

been recognised as only a part of the representation of product data needed in 

design and manufacture. 

2.2.4 Features in Manufacturing Planning. 

Brimson [20] suggests feature technology as the link between CAD systems and 

manufacturing processes. Part features are described as "standard descriptions of a 

parts geometric characteristics, which should be independent of company or func- 

tion and readily transformed into manufacturing operations and sequences of 

manufacturing operations". In his paper the need to define the format and structure 

of data to be shared between geometric modelling and other components of a CAM 

system. He explains the development of feature technology as providing an inter- 

mediate level of detail between a Group Technology code and the full part 

geometry, which is more suited to the needs of manufacturing. As well as describ- 

ing features, the relationship of features to raw material must be defined, as must a 

hierarchy of features, to obtain relationships between them. 
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Feature related research falls into two principal catagories: feature recognition, 

which aims to assess a geometric model to identify features; and feature based 

design systems, where the user is constrained to build a model using pre-defined 

features. In addition to these two principal catagories, interactive feature definition 

have also been used in planning research, which allows a user to specify features 

on a model. 

XCUT, described by Hummel [64], is a planning system which will generate pro- 

cess plans for the production of machine piece-parts, given a feature-based part 

description. These features were initially identified interactively from a solid 

model interface, where solid modelling was identified to be useful in identifying 

wall thickness constraints, tool clearance problems and path planning. In a later pa- 

per, Hummel [65], features are described as objects in an object oriented program- 

ming language, where "message passing" is described as an important aspect of 

feature representation in providing flexibility of definition. This flexibility is em- 

phasised as it is thought "improbable that a universal set of feature definitions, 

which will satisfy the needs of all manufacturers, can ever be developed". 

Mantyla [89] proposes the use of pre-defined features by the designer, and 

discusses the problems of capturing manufacturing information without constraining 

the designer, suggesting product modelling as the route to achieve this. In his pa- 

per, a feature is defined as "a collection of geometric entities that has some 

significance as a whole". The work considers the representation of features as ob- 

jects and experiments with frames and production rules as the means of generating 

process planning information. The object-oriented approach is again found to be 

powerful and flexible, but the author identifies a need to capture technological in- 

formation in product models. 
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Mill [101], describes research which does not use CAD based features, but aims to 

produce a form feature description language and experiment with semantic net- 

works and production rules as a means to decision making in process planning. 

The topic of automatic recognition of features is a subject of significant research, 

where many researchers have made contributions. Work goes back to the mid 

1970's, with Grayer [54] describing an approach to building up laminae to be re- 

moved from a billet to achieve the component described. In the same period Woo 

[150] described an approach to identifying cavities on a model and matching these 

to appropriate machining shapes. Since then a large amount of research effort has 

been expended on the problem. Li [83] provides a review of a range of this work, 

highlighting the significance of this area of research to CADCAM integration, and 

the need for much more work. The following paragraphs describe some of the re- 

cent work in this field. 

Walker [144] describes a feature based methodology which recognises holes from a 

wireframe model and automatically generates a process plan. VanHouten [140] 

describe a feature based computer aided process planning system, PART, which au- 

tomatically recognises manufacturing features. This has been achieved by specify- 

ing patterns for features in a database and then analysing a boundary representation 

model to recognise these patterns, their hierarchy and the parameter values which 

relate to each. This provides the input to the process planning module of PART. 

Henderson [591 describes a system capable of recognising swept volume holes, 

slots and pockets, and identifies future work in the areas of recognising a more 

diverse range of features, and resolving conflicts between model definitions which 

provide ambiguous results. 
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Wang [145] describes an algorithmic approach to identifying machined surfaces of 

symmetric rotational parts. Choi [30,31] describes an algorithm for recognising 

machined surfaces from a 3D representation of a workpiece by mapping from "Ele- 

mentary Machined Surfaces" (such as holes, slots, and pockets) to simple process 

cycles for each. Problems with this approach arise when there are patterns which 

cannot be recognised as Elementary Machined Surfaces. Problems have also been 

identified with global constraints such as clamping requirements and interference 

between patterns. 

Jared [72] describes research being pursued to investigate a feature recognition sys- 

tem, based on feature grammars, and separate recognition code, where feature 

grammers consist of production rules operating on a face-edge-vertex graph of a 

boundary representation modeller. 

Joshi [73] discusses a project aiming to integrate design and process planning using 

A. I. techniques and discusses a CAD interface with respect to automated feature 

recognition. The CAD interface requirements are described as: 

1. To determine the raw material to be removed. 

2. To identify the machined faces of the part. 

3. To recognise features formed by the machined faces. 

4. To determine the tool approach directions for machining. 

5. To obtain precedence between features based on geometry. 

6. To decompose the raw material to be removed into smaller sub-volumes 

The feature recogniser uses a forward chaining scheme to reduce the computational 

effort involved, and features are described as relationships between concavity and 

convexity. Analysis of the resulting attribute adjacency graph leads to feature 

identification, currently of holes, slots, steps, blind slots, blind steps, and pockets. 
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The information, produced by the recogniser, is then used in the generation of pro- 

cess plans containing processes, process sequence and setup information. 

As can be seen, above, there are many approaches being taken to resolving the 

feature recognition problem. Even the most appropriate modelling system to use is 

in question, with Woodwark [ 151 ] favouring CSG modelling and Pratt [ 115] argu- 

ing in favour of Boundary Representation models. Although in Pratt's paper he ac- 

cepts that CSG modelling has some value in the design by features approach. 

Further Pratt identifies the need for further research in feature interaction, the 

representation of dimensions and tolerances, and automating manufacturing plan- 

ning linked to NC code generation. 

Chung [33], identifies feature interaction as an area requiring further research when 

taking a design by feature approach applied to the investment casting process. Kar- 

inthi [77] consider overlapping features and applies an "algebra of features" to a 

model which produces a range of alternative feature sets from a geometric descrip- 

tion. 

The product modelling tool described by Bloor [16] has a capability to pre-define 

features. This has been used in the Machine Planning research of the author, to ex- 

plore the representation of manufacturing data which should be associated with 

features to enable the integration of a Machine Planner. Feature interaction has 

also been considered in the work of this thesis, and from this, a paper has been 

published [156] which uses geometric queries on a cell decomposition model to 

identify feature interaction problems in fixturing. 
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2.2.5 Representing Product Data to Enable Planning. 

Researchers have, for some years now, recognised the benefits of three dimensional 

solid modelling in aiming to provide a complete geometric description of a com- 

ponent, Mullineux [102], especially as a base for providing information for other 

activities such as manufacturing planning. Solid models offer only the geometric 

part of the data required to describe a product, however, and do not include other 

data generally required by a planner, such as dimensions and tolerances, material 

specification and feature data. 

Recent research by Spur [133], and by Iwata [69], has identified the need to use an 

information system which can support the data processing of information required 

in CIM. Such an information system should allow models of products to be built 

which not only handle geometric data but can also handle wider ranging informa- 

tion concerning a product at each stage in its life, from design through planning to 

manufacture and beyond. 

Kimura [78], describes an early database system for handling Product Models, 

highlighting structure and information flow in mechanical design and manufacture. 

The process planning aspect of this product modelling database relies on a retrieval 

approach to aid the user. 

Lillehagen [85], describes a Product Model as "the entire body of information 

necessary to computerise the design and production of an object", and concludes 

that the currently available methodologies for product modelling have serious 

shortcomings. 
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Sata [1271 proposes an integrated approach to process planning with the product 

design process. His paper suggests a product model as a model to describe design 

objects and manufacturing environments; that product models are generated by the 

design process and used by the manufacturing preparation processes. This however 

does not allow for the enhancement of product model information by manufactur- 

ing preparation processes. The work he reports uses a solid modelling technique to 

represent product geometry and form features to realise machining operations. 

These are then manipulated by a "plan generator" based on sets of Production 

Rules. They conclude that form features are important properties of objects; Pro- 

duction Rules are limited in representing all the required planning methods; and 

there is a need for a hierarchy in process planning. 

The representation of dimensions and tolerances, as they relate to a product model, 

is also essential information to enable successful planning to be performed. Linking 

dimensions and tolerances to two dimensional representations is readily available in 

today's commercial CAD draughting packages. The problem of relating dimensions 

and tolerances to three dimensional models is more complex, however, and no 

commercial systems currently exist. A range of alternative approaches to linking 

dimensional data to solid models are being researched as described in the following 

paragraph. 

Imamura [67] illustrates, for simple two and a half dimensional components, how 

dimensions can linked to geometry, such that as dimensions change the geometry is 

updated accordingly. Ranyak [ 117] uses features and datum reference planes to di- 

mension and tolerance a boundary representation model, while Wickens [148] has 

experimented with a Relationship Graph related to the faces of a Constructive Solid 

Geometry model. Shah [129] describes a structure for integrating a tolerance 

modeller which can be combined with a geometric modeller and a feature modell- 

er, using evaluated boundary entities. Kimura [79] describes research using predi- 
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cate logic to represent dimensional constraints. He highlights the need to make 

user access and control of such a system more straight forward, as well as the need 

to provide a flexible geometric reasoning system, which can manipulate the dimen- 

sional constraints. 

Bloor [16] describes an experimental "Product Description System" to create pro- 

duct model data structures, handle data and allow access to application software 

and the user. The data structures under consideration include representations for 

geometry, features, material specification and dimensions and tolerances. The work 

presented in this thesis has contributed to this system by exploring product data 

structures which enable the integration of Machine Planning functions in a product 

modelling environment. 

Mantyla [91], in discussing directions for future research in product modelling, 

identifies one of the key problems as the requirement for a thorough understanding 

of design and manufacturing processes. Spur [135], extends the product modelling 

concept to include a resource model and a control model. He then considers model- 

ling the entire information within a manufacturing enterprise as a basis for CIM in- 

tegration. 

2.2.6 Concurrency in Design 

The concept of concurrency in design is to provide simultaneous input, from a 

range of disciplines, to resolve problems in product design. Simultaneous Engineer- 

ing is an alternative term sometimes used to describe the same concept. The object 

of such an approach is to develop better products by having various experts work- 

ing together on a problem, rather than the traditional sequential approach of pass- 

ing the problem from design engineers to planning engineers etc. Vasilash [142] 

offers a useful introduction to the concept, providing a comparison with traditional 
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methods. 

The ability to aid design teams to achieve concurrency, through the use of comput- 

er software, is beginning to be explored in the research community. Cutkosky [37] 

takes the approach that products should be designed in terms of manufacturing 

plans. He describes a system, FIRST-CUT, which is proposed to operate in 

different design modes. Each mode allows alternative experts to act on a process 

plan representation. Further, he argues [38] that a combination of features and a 

process representation is the correct foundation upon which to build a design tool. 

Alder [2] describes a similar designer aid for simultaneous engineering, called 

DAISE, which considers the application of knowledge bases to evaluate a design. 

These knowledge bases cover the domains of functional design, design for assem- 

bly, and design for injection moulding. Yoshimura [154] proposes an integrated 

design process providing simultaneous decisions for both product and process 

design. His paper considers a systematic design optimisation method applied to 

robot design. Nevins [104] states that successful manufacturing requires integra- 

tion of many previously compartmentalised activities, plus new knowledge and 

greater understanding of manufacturing processes, product design methods and 

manufacturing system design methods. 

Lu [87] describes the need to identify a clear model describing the decision making 

activities in simultaneous product and process design. Further he identifies the need 

for new computer based tools to support such cooperative decision making activi- 

ties. Spur [134] also identifies the need for new software structures to enable in- 

teraction between computer aided design, planning, production and quality control. 

His paper discusses the possibilities of merging design and manufacturing 

knowledge through the use of features, product models, and knowledge based ap- 

plication modules. 
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2.2.7 Integration. 

Achievement of concurrency in design requires that integration between the activi- 

ties involved, such as functional design, planning for manufacture, planning for as- 

sembly, etc, can be achieved. Although there is greater understanding of the prob- 

lems involved in the route to successful integration between a range of activities in 

CIM, the solutions have not yet been proven. The advances in product modelling 

and their links to manufacturing planning are, however, beginning to show the way 

forward. 

ESPRIT project 2165 entitled "The Integrated Modelling of Products and Processes 

using Advanced Computer Techniques" (IMPPACT) [68] is addressing the logical 

integration of CIM modules by considering a complex system as a formal model in 

terms of functions and information. It is exploring work in design and feature 

modelling, linked to process modelling and operation planning, concentrating on 

the design and manufacture of sheet metal parts and ships propellers. 

Tattersall [138] argues for a data oriented approach which involves the construction 

of a strategic data model showing key activities and data relationships. He argues 

that planning for integration requires the development of a data model and the 

identification of major data flows and application areas. Smith [132], in modelling 

CIM systems, highlights the need to understand the activities being performed and 

their interrelationships, as well as identifying the flows of information between 

them. He proposes that this understanding then provides the basis from which to 

create a data model. Further he identifies IDEFO as a valuable activity modelling 

tool which can aid the generation of this understanding. 
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IDEFO stands for ICAM Definition language, a representation technique based on a 

Structured Analysis Design Technique (SADT) [123,124]. The name follows from 

the US airforce ICAM programme, where the technique was used to consider an 

overall concept for CIM [105]. The technique has been used in industry to aid in 

the understanding of the relationships between different activities in a company's 

business [80]. Colquhoun [34] has explored the use of IDEFO to link design and 

manufacture in a CIM environment and identified that IDEFO is a powerful tool to 

aid the rationalisation of complex situations and that it provides a structured 

method of identifying the role and interfaces of computerised manufacturing activi- 

ties. The technique has also been recently used by Ferreira [47], on behalf of 

CAM-I, to explore a conceptual model for process planning. 

The importance of data modelling in integration is given further emphasis by the 

work of the ISO on standards for product data. Two organisations, the Standard 

for the Exchange of Product Model Data (STEP), and Product Data Exchange 

Standard (PDES), are now working jointly towards the aim of producing a standard 

for product data. Their work should result in a standard which can be used in the 

integration of software which uses product model data, such that data can be ex- 

changed between separate software packages by keeping in line with the standard. 

This supercedes work on Initial Graphics Exchange Standard (IGES) which was 

concerned with the exchange of geometric data only. Part of the PDES/STEP work 

[108], is concerned with an information model for form features. It is addressing 

the shape representation information rather than the non shape data which might be 

attached to the feature. Another aspect of the work is concerned with the represen- 

tation of process planning data within a product model [109]. 
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The ISS research programme , and the research reported in this thesis, contribute to 

integration research. This contribution takes the form of a greater understanding of 

product modelling as an enabling mechanism for the integration of Manufacturing 

Code Generation activities. 

2.3 MACHINE PLANNING RESEARCH. 

2.3.1 Part Program Generation for Machining. 

Numerical control (NC) part programming is concerned with producing instructions 

which can be interpreted by a machine controller to control the motion of a 

machine tool. A useful introduction to this, including its history and current capa- 

bility, is provided by Groover [55] and also by Rapello [ 118]. Following the intro- 

duction of NC machine tools, the first significant aid to part programmers was 

APT, an English like language used to describe the required tool motions. There 

are now a number of commercial variations on this such as Exapt, Compact 2 and 

GNC. 

Since the introduction of APT, the major step towards automation has been the use 

of interactive graphics providing an integration link between two dimensional 

Computer-Aided Design (CAD) and NC part programming. When a CAD descrip- 

tion of a part exists, interactive graphics can be used, by a part programmer, to 

identify the specific shapes or profiles in which he is interested. These can then be 

used to generate geometry statements in a part programming language. There are 

many such commercial systems available today, of which Applicon Bravo3 [6], 

Dogs NC [106] and Peps [22] are examples. Commercial NC code generation sys- 

tems are beginning to appear which are based on three dimensional solid geometry 
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representations. STRATA [137] is such a system and adds collision avoidance 

checks and a simple user interface to aid NC code generation. It also introduces the 

possibility of the use of feature description to improve levels of automation. 

The levels of automation in current commercial systems is low, with many deci- 

sions being required of the user. These include: the identification of the stock as it 

relates to the component to be machined; the setups required; the selection of 

cutters and their cutting parameters; and the order in which machining elements are 

to be performed in a setup. Considering the decisions to be made in part program 

generation it can be seen that there are a number of similarities with process plan- 

ning. Groover [55], identifies the difference as being that process planning is con- 

cerned with the preparation of a routing sheet, while part programming plans the 

process for the portions of a job to be done on an NC machine. A routing sheet 

lists the sequence of operations to be performed on the workpiece, listing the 

machines through which it must be routed. A part programmer should therefore be 

considered to be both involved with the generation of NC code, and also the pro- 

duction of machining instructions for a specific machine tool. 

The majority of current research which considers decision making in manufacturing 

planning concentrates on process planning, viewing part program generation as a 

subsidiary requirement. However, much of the research is simplified in scope to 

consider machine specific problems. This introduces greater similarity with part 

program generation than process planning, using the definition described in the last 

paragraph. 

Most recent research directly involved with NC code. generation has been con- 

cerned with the use of geometric model information, rather than the representation 

of technological information. Examples of this work are Sata [125] who makes use 

of a solid model to perform tool collision checking as well as generate a cutter 
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path, through the use of interactive graphics; Yeun [1571 describes an cell decom- 

position method which automatically generates a rough machining cutter path for a 

workpiece, using one cutter and from one cutting direction. Armstrong [7] also 

describes a method for automatically generating paths from solid model descrip- 

tions using only one cutter for roughing, but cutting directions are also sequenced 

on the basis of material removal capability from each direction. 

The automatic generation of NC part programs from a feature based component 

description is proposed by Magill [88]. This work aims to use a set of parametric 

procedures to select the optimum cutter, cutting speed and feed rate and generate 

tool paths for each feature. Most research related to planning logic has been cen- 

tred in process planning. However, Laing [84] describes work which uses an 

Artificial Intelligence (A. I. ) approach, considering the interaction of a number of 

machining contours. Priess [116] also considers A. I. techniques to generate part 

programs for discrete shapes on a component. 

Ssemakula [136] in addressing the problem of automatic generation of NC part 

programs, bypasses the planning problem, by assuming that this has already been 

achieved through a process planning system. They address the use of process plan 

data, in conjunction with a part programming system, to automatically generate part 

programs. A similar approach is also reported by Genord [51]. 

2.3.2 Planning Machining Operations. 

Operation planning has a narrower focus than process planning, being concerned 

with planning the work to be done on a component at a particular workstation, as 

opposed to planning the part as a whole which may require routing through a 

number of machines [55]. In some work an operation is considered to be the 

machining to be done on a particular machine; in others an operation is considered 
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to be a piece of machining to be done by one cutter. In this research the definition 

has been used that an operation is a discrete piece of machining which is to be per- 

formed by one cutter. Operation planning is then concerned with how the opera- 

tions to be performed on a machine should be planned. 

Carlier [24] describes a system, MOPS, which has had a significant formative 

effect on the research reported here. The paper describes an early system relating 

to operation planning on machining centres, which considers the break down of the 

machining into operations, the selection of tools and cutting conditions, and the in- 

teractions between tool selection and operation sequence. More recently Detol- 

lenaere [44], from the same laboratory, reported on a follow up system, ESOP, 

which considers the application of Expert Systems technology to operations plan- 

ning. Their conclusions highlight the need for geometric information during plan- 

ning. 

The need for geometric information has been considered by Joshi [73], who 

describes a system which uses "feature precedence" information when deciding on 

how to produce particular setups. Also Willis [149] describes research aimed at in- 

tegrating geometric information into an Expert System approach to planning, using 

machining strategies and setup strategies. The reported in that paper concentrates 

on pocketing, or slot drilling of components and addresses geometric tolerances on 

machining, identifying feature interactions as a key problem area. The Quick Tur- 

naround Cell (QTC) work of Purdue University [28], which has some similarity 

with the ISS project, considers many aspects of planning and NC code generation. 

These include the use of vice fixtures and the automatic generation of NC code. In 

the QTC work the generation of cutter path information is seen as a subsequent 

task to planning, rather than an integral part of the planning problem. 
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Considerable research has been performed in the area of cutter selection and cut- 

ting data determination. The paper of most significance to the author's research, re- 

lating to tool selection, is the work by Carlier [24], which describes a methodology 

which has been adopted by the author. This is to find a set of alternative tools 

which may be used for a machining operation and then to select the actual tool to 

be used at the stage of sequencing the operations. This allows the effect of neigh- 

bouring operations to be included in the tool selection decision. A further paper by 

Melkote [95] describes the effect of tip geometry on selecting tools for facing and 

end milling. He illustrates how a range of suitable tools can be narrowed down by 

considering such constraints. Chen [30] also considers process constraints on cut- 

ting conditions to identify minimum costs, which are then used as a basis for tool 

selection. 

Selecting cutting data can be achieved through the use of look up tables or through 

the use of equations relating to the required life of the tool. Metcut's machinability 

data handbook [99] provides an example of the look up approach, with [98] illus- 

trating a computer based version of the same approach. The use of extended ver- 

sions of F. W. Taylor's tool life equation has also received considerable attention. 

PERA have expended considerable effort in this area, describing their Macbank 

machinability data approach in several reports [100,102,111,112]. 

Tool life equations can be used to provide flexibility in the data values generated. 

This is illustrated in the work of Hinduja [62] who identifies cutting data for turn- 

ing operations based on different tool life criteria. These criteria being maximum 

removal rate or minimum cost production. A theoretical relationship between 

feedrate and surface finish, described by Boothroyd [19], can also be used to pro- 

vide a link from surface requirements to machinability data. 
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A summary of industrial requirements for machinability data by Kahles [74] 

highlights a wide range of views of machinability data requirements for advanced 

machining systems. He reports that the need for reliable data on tool life, chip con- 

trol, dimensional accuracy, surface finish and surface integrity is generally accept- 

ed. However the problem of achieving consistently good results from data has pro- 

duced a high level of interest in the use of sensor monitoring of machining condi- 

tions. The research in this thesis uses current technology in calculating cutting con- 

ditions, through a combination of Metcut's look up tables and PERA's Macbank 

data. 

2.3.3 Setup Planning. 

Identifying setup information is an area of work which has received little detailed 

research. Many researchers, in considering planning problems, have constrained 

themselves to single setup problems or have used the spindle axis direction, relat- 

ing to features on the component, as the basis for grouping machining into setups. 

This ignores the problem of fixturing, the effects of alternative spindle axes direc- 

tions and tool accessibility problems. 

Chan [25], describes a machining process language representing process plans as 

sequences of setups and machining operations. Setups can be manually described in 

the language as the positioning and clamping of the workpiece, which is then fol- 

lowed by machining. The need for fixturing in setup determination is described and 

the automated identification of setups and setup sequences is described as a major 

research problem, in relating features and operations to produce machining plans. 



chapter 2 . 30- 

Armstrong [7] in considering NC code generation from solid modelling, selects set- 

ups by considering the material removal capability form each orthogonal approach 

direction to the workpiece. The maximum material removal direction is taken as 

the first setup direction, and so on down the list until all material has been re- 

moved. This gives no consideration to fixturing and constrains all rough machining 

in a setup to be machined by a single cutter. 

Roy [125] in describing an expert system approach to planning machining sequenc- 

ing, describes fixturing in terms of resting and clamping points. A knowledge base 

identifies the required resting, and clamping points and an appropriate fixture is 

selected, after operations have been grouped to maximise the number done in a sin- 

gle setup. This work establishes a framework for an expert system but does not 

look at detailed interactions between fixtures, operations and cutters. 

Chou [32] describes the problem of computerised fixture design as dealing with the 

arrangement of locators and clamps on the surface of the workpiece. He divides 

this problem into fixture planning, fixture configuration and fixture construction. 

The task of fixture planning is to determine the number of setups, and their se- 

quence, and the machining to be done in each setup. He does not, however, address 

this problem but concentrates on the functional configuration problem. This is to 

configure a set of location and clamping positions on workpiece surfaces such that 

the workpiece is totally constrained during machining. Menassa [97] also explores 

a method for selecting and positioning locating points in fixturing design, using the 

3-2-1 locating principle. 

Iwata [70] describes the representation of knowledge to identify machining refer- 

ence surfaces, i. e. the surfaces of the workpiece which must be fixed to the 

machine table, concentrating on the use of semantic networks, frames and produc- 

tion rules. This work does not consider the interaction of fixtures with machining 
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operations or cutters, but relies on the rough profile of the part as a means to pro- 

viding information for decision making. 

Darvishi [40] describes an exploratory approach to the design of fixtures using an 

expert system. This work concentrates on a representation of the facilities required, 

such as component, machine tool, fixtures and surfaces. 

Halvei [56] discusses the influence of tolerances on fixturing, with particular em- 

phasis on the need to re-tolerance dimensions, in some cases, once a fixture datum 

has been identified. He also describes an algorithm to describe the required dimen- 

sions of fixtures to resist cutting forces. 

Cutkosky [39], identifies the need for automatic fixture planning in concurrent pro- 

duct and process design. He explores an object oriented system which reasons 

about friction, to check whether parts will slip and to help to specify the clamping 

forces required. 

Hinduja [63] describes a system called SETUP, which automatically determines 

work holding parameters for turned components. These parameters are the holding 

method, the number of setups required and the clamping positions to be used. He 

uses an analysis of the components technological requirements, against the clamp- 

ing methods available, to generate a solution. 

Boerma [17,18] describes a methodology (FIXES) for the automatic selection of 

setups and the design of fixtures, based on spindle axis orientation of features and 

the analysis of their tolerance relationships. Features for positioning, clamping and 

supporting the workpiece are found, although consideration is not given to fixture 

interaction with machining operations or cutter accessability. 
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Kanumury [76] describes process planning research, which includes fixture plan- 

ning, within the Quick Turnaround Cell research at Purdue University [28]. He 

describes the functions of fixture planning as: 

- The selection of appropriate fixture elements. 

- the maintainence of these in a database to handle relevant queries. 

- to understand the part globally to choose an appropriate fixture scheme. 

- analyse geometry to determine the location and orientation of fixtures. 

- determine interferences with features in a setup. 

- map from the part coordinate to the machine coordinates. 

- conduct a force analysis on the basis of selected tools. 

- evaluate the resulting fixturing scheme. 

His work concentrates on the use of a vice fixturing scheme, highlighting the need 

to reassess fixturing after cutters have been identified. 
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CHAPTER 3 

INTEGRATED DESIGN AND MANUFACTURE SYSTEMS. 

3.1 INTRODUCTION 

Following the critique of research presented in chapter 2, this chapter provides a 

view of current issues in the move towards integrating design and manufacture 

functions. This sets the context for the research of the ISS programme in general, 

and this research in particular. 

3.2 TRENDS TOWARDS INTEGRATION. 

In recent years the design task has seen a number of software tools produced to aid 

designers. These Computer Aided Design (CAD) packages range from relatively 

simple 2D drafting aids, through systems with parametric capabilities, to 3D 

modellers providing powerful visualisation capabilities. In the same way, manufac- 

turing has seen a range of Computer Aided Manufacture (CAM) software tools em- 

erge. These include process planning systems, providing a plan retrieval capability, 

and NC part programming systems to aid programmers in tape preparation. There 

are also a number of software tools to aid production planning and shop floor pro- 

duction activities. 
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Awareness that many manufacturing functions use engineering drawing information 

as a major input has led to attempts to bring CAD and CAM software together, in 

such a way that the CAM software can use data generated through the use of CAD 

packages. Current commercial software packages, which provide aids to design 

and manufacture, commonly attack specific problem areas in linking software pack- 

ages by the provision of an interface. Although there are interfaces between some 

packages, such as 3D geometry to 2D drafting and 2D drafting to NC graphics, 

these can be considered as specifically tailored interfaces. This is the case with 

most software links in manufacturing, leading to "Islands of automation" becoming 

a commonly used phrase. Attempts to improve the generality of interfacing to 

CAD packages have been advanced to some extent, with Initial Graphics Exchange 

System (IGES) attempting to provide a graphics standard, and more recently 

PDES/STEP [108] attempting to take this forward, to include standards for the 

description of engineering drawing information as well as shape. 

Attempts at providing information from CAD packages to process planning 

software have been tried with very limited success. The scale of the problem being 

much greater than simply interfacing. Current CADCAM systems rely extensively 

on the user, with limited information coming from the computing system. This is 

necessary for two principal reasons: the user's decision making capability is not 

readily stored in software form, and the information on which the user bases his 

decisions is wide ranging and needs to interact with the decision making process. 

Hence there has been a move from individual software packages in the 1970's, to 

interfacing systems in the 1980's, to the current aim of integrated systems in the 

1990's. A view of these trends, as described by DePennington [46], is illustrated 

in figure 3.1. A major part of achieving the aim of integration is to establish a 

common base of product data from which to provide integrated links to design and 

manufacturing functions. 
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3.3 THE ELEMENTS OF INTEGRATED CADCAM SYSTEMS 

There are many elements to be explored in achieving successfully integrated CAD- 

CAM systems. Two of the key elements are the representation of data on which to 

base decisions, and the exploration of software functional modules, which can act 

on this data, to provide useful information for design and manufacturing engineers. 

Figure 3.2 provides a useful illustration of this, highlighting the key functional 

modules as modellers, simulators and analysis functions. It illustrates the complexi- 

ty of data requirements, catagorising them into databases for part and manufactur- 

ing data, knowledge bases, product models and manufacturing process models. In 

the context of this diagram the ISS research programme, in general, and this 

research in particular, has addressed issues in product modelling, while exploring 

particular analysis functions, to demonstrate the success of the data representations 

identified. 

The need for fundamental research in integration is given particular emphasis by 

Ham and Lu. In their keynote paper [57], drawing contributions from a range of 

experts in the field, they identify the need for, and challenges of, an integrated 

planning approach to manufacturing problems, highlighting this as an important fu- 

ture direction of planning research. They identify that several problems must be 

solved before systems are really integrated, suggesting four basic software prob- 

lems which indicate the need for a common factory database as: 

(i) The combinatorial problem (The number of interfaces explodes with the increas- 

ing number of systems). 

(ii) The problem of redundancy and inconsistency (multiple storage of data; 

different update states). 

(iii) The problem of closed software packages (no access to data structures; algo- 

rithms are not available). 
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(iv) The model problem (different models in different software systems). 

By considering a CADCAM sub-system they identify that the problems of integra- 

tion can only be solved by accurate planning of model structures. If the structures 

of system overlapping models are congruent it is not necessary to store them in a 

different computer system. This leads to the need for a common product model for 

the whole company. Therefore they state "The complete modelling of a product, in- 

cluding all necessary information for manufacture, is a basic requirement for the 

integration of CAD and CAPP". 

3.4 PRODUCT MODELLING AS AN AID TO INTEGRATION 

In the course of its life a product is conceived, designed, manufactured, maintained, 

updated and eventually becomes obsolete. Throughout this product life cycle, data 

concerning . the product is both generated and used as the product evolves. 

Specification data is used by designers who generate design data. In turn the design 

data is used to initiate the planning of product manufacture, which generates furth- 

er product data such as process plans and production schedules. This in turn is 

needed for manufacture which results in further information being generated. Simi- 

larly, maintainence schedules for products can be produced and used, with data 

"from the field" being generated. Data produced at any stage may influence previ- 

ously generated product data, as well as being used for downstream activities. 

The above description of aspects of design and manufacture and their relation to 

product data, supports the concept of a central product data representation which 

can provide support for any decision making which relates to a product. This cen- 

tral representation of product data is a Product Model. The importance of product 

data is that it provides the basis on which decisions can be made, at any stage in a 
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product's life cycle. 

As described in the literature survey in chapter 2, a number of researchers have 

highlighted the importance of representing product data, and an International Stan- 

dards Organisation committee in the form of PDES/STEP is addressing the prob- 

lem of providing a standard for product data representation. The representation of 

product data to provide a basis for integration is a key issue in the ISS programme, 

and in this research. The results of the work have contributed to the PDES/STEP 

discussions. 

We assume, here, that Product Model representations will be stored in an appropri- 

ate database, such that it can be accessed or updated either by a user or by Appli- 

cation software. This implies that three major elements are required in a product 

modelling system as illustrated in figure 3.3 and listed below: 

(i) an ability to represent and edit information structures in order to build and po- 

pulate Product Models. 

(ii) an ability to readily interface to Applications software, such that information 

can be easily passed to and from an Application. 

(iii) an ability to aid a user to visualise and access the product information avail- 

able. 

A prototype software tool, the Structure Editor (SE) [16], provides these capabili- 

ties and has been used in the research reported in this thesis, as well as throughout 

the ISS programme. This has provided the basis to build data representations, and a 

basis from which to explore the interactions between design and manufacturing Ap- 

plications which can be achieved through an integrating environment. 
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CHAPTER 4 

THE ISS PROGRAMME - 

AN EXPLORATION OF INTEGRATION AND AUTOMATION. 

4.1 INTRODUCTION. 

The previous chapter described the elements involved in integration in design and 

manufacture and the role of product modelling in achieving that aim. This chapter 

follows on by describing the nature and scope of the ISS research programme, 

highlighting the areas of the author's research contribution. 

4.2 THE NATURE OF THE ISS PROGRAMME 

The ISS research programme followed from earlier collaboration between Leeds 

and Loughborough Universities which had started to explore the use of solid model 

data to aid the automation of manufacturing functions. The earlier work quickly 

identified the need to explore the relationships between a wide range of product re- 

lated data, in addition to geometry, such as dimensions and tolerances, material 

specification, manufacturing planning data and feature data. The identification of 

this requirement, in the earlier programme, resulted in a prototype software tool, 

called the Structure Editor(SE) [16]. 
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The SE provides an ability to build and edit data structures. These structures can 

be created from a basic set of building blocks, of which the principal types are 

called Collections, Selections, Lists and Atoms. A Collection is a group of one or 

more unlike things. A Selection is a choice from different things. A List is 

comprised of zero, one or many like things and an Atom is an integer or real 

number, or a name, a comment or a nil-atom. These terms represent typical 

software language constructs such as records, enumeration types, linked lists, in- 

tegers, real numbers and strings as described in the ADA language reference manu- 

al [66]. These SE facilities, and the other software utilities, available to the 

research from the ISS project are described in appendix 1. 

Data structures have been built, using the SE, to represent the structure of product 

models which have then been populated to represent specific products. The struc- 

ture of a product model has been termed a Product Data Model, while a Product 

Model is the model of actual data which has been captured in the Product Data 

Model. These terms, and a framework for product modelling have been determined 

by members of the ISS research team. A discussion on Product Data Models is 

provided by Shaw [1301. The terminology defined in the ISS project has been used, 

where appropriate, throughout this thesis. 

The product modelling environment is illustrated in figure 4.1. This shows how 

Product Data Models take the central role of providing data to Applications 

software. It also shows how integration issues can be related to "Closely Coupled", 

or "Loosely Coupled" Applications. Closely Coupled Applications are Applications 

which are generated with prior knowledge of the representation of product data, 

while Loosely Coupled Applications are typically third party software items which 

have no prior knowledge of the product model structure but which, none the less, 

need to be integrated. Although the ISS programme did research the integration of 

Loosely Coupled Applications, the research contribution of the author was wholly 
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concerned with Closely Coupled Applications, as a means to establishing data 

representations for integration. 

The ISS programme has been confined to a narrow "slice" of product data, address- 

ing product models for prismatic components, including geometry representations, 

dimensions and tolerance representations, feature description and the relationship of 

process planning data to a product model. These aspects of data representation are 

illustrated in figure 4.2 which also shows four Closely Coupled Applications. The 

first three are Machine Planning (MP), Inspection Planning (IP), and Manufacturing 

Data Analysis (MDA), which form the Manufacturing Code Generation Applica- 

tions pursued in the ISS programme. The fourth Application is the Spatially Divid- 

ed Solid Modeller (SDSM), a cell decomposition model used in the research. Its in- 

clusion as an Application highlights that even geometric models become support 

tools for product modelling, rather than a central source of data themselves. 
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In its exploration of fast prototyping, the ISS programme aimed to establish a Pro- 

duct Data Model to enable the integration of the MCG Applications. Access to pro- 

duct data leads to the ability to introduce levels of automation into Applications, 

where adequate data for decision making is available. The use of a product model- 

ling environment also means that the system user can access all product data con- 

tained in the model. This enables the user to make changes where Application gen- 

erated data is inadequate. 

4.3 AN EXPLORATION INTO THE INTEGRATION AND AUTOMATION OF IN. 

TERACTING ACTIVITIES. 

4.3.1 Manufacturing Code Generation. 

The narrow slice concept of the ISS programme emphasised the requirement for 

systems integration. This pursuit of integration was based on the use of the product 

model concept to provide the integrating framework for computer aided design and 
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manufacture. The manufacturing functions in the programme being termed 

Manufacturing Code Generation (MCG). Figure 4.3 illustrates these MCG activi- 

ties and their general links to Product Modelling and to manufacturing to achieve 

plans for machining and inspection and proven part programs. The following sec- 

tions provide a brief description of each of Machine Planning, Inspection Planning 

and Manufacturing Data Analysis, highlighting the role of the author's research. 

4.3.2 Manufacturing Data Analysis 

The Manufacturing Data Analysis work was concerned with the data and methods 

requirements for the analysis of machined and inspected components and the feed- 

back of error correction data. This was the responsibility of L. Lee and is reported 

in [82]. 

This work considered workpiece measurement analysis, fault analysis and manufac- 

turing process analysis to provide data correction as illustrated in figure 4.4(c). The 

significant aspects of product data required for this work are highlighted as the di- 

mensions and tolerances of the designed component, measurements of the actual 

component and manufacturing information. 
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4.3.3 Inspection Planning 

The Planning for Inspection work was concerned with the data and methods re- 

quired to plan the use of a coordinate measuring machine. This was the responsi- 

bility of M. J. Corrigall and is reported in [35]. 

The work considered inspection machine planning, inspection code generation and 

inspection machine control, to provide inspection plans and measurements which 

could be used in MDA. This is illustrated in figure 4.4(b). The significant data re- 

quired for this work was identified as the dimensions and tolerances and the 

geometry of the designed component. 

4.3.4 Machine Planning 

The research group took a view on Machine Planning which influenced the boun- 

daries of the author's work. The broader issues of process planning and the use of 

artificial intelligence techniques were being pursued in the parallel, Alvey DtoP, 

programme. These issues were, therefore, not addressed by the author. Work within 

the ISS programme on the analysis of complex geometry to identify machining tra- 

jectories was the responsibility of P. Bell [12]. Bell explored computationally 

effective algorithms to achieve the automatic generation of NC code for the general 

case of machining three dimensional forms; this concentrated on rough machining 

with particular reference to the exploitation of the ISS geometric tools. 

The capture of product data, which enables a range of Applications to interact, 

opens up future possibilities in the production of more effective software tools to 

aid design and manufacture. It is proposed that the Product Data Model provides 

the key to enabling this interaction. The author took responsibility for the research 
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into a Closely Coupled Machine Planner, exploring not only the data which would 

enable Machine Planning to be performed, but also contributing to a PDM which 

would allow interactions between the range of Applications being addressed in the 

ISS programme. 

The data requirements for a Machine Planner, as illustrated in figure 4.4(a), were 

identified as the stock geometry and dimensional data, the designed component 

geometry, features, and dimensional data as well as manufacturing information. 

The functions within MP which were addressed by the author, as a means to ex- 

ploring integration, were setup planning, operation sequencing and NC code gen- 

eration, to produce machining information directly related to a component. The ex- 

ploration of the planning data to be associated with features and components to en- 

able the Close Coupling of a Machine Planner formed a key part of the research, 

along with the exploration of links to geometric, dimensional, and the other MCG 

Applications, through the PDM. 

Ham [57] identifies that production, process and operation planning are highly in- 

terrelated in practice, even though each has its own distinctive goal and scope. 

These three should therefore be considered as integral components rather than 

separate pieces of a complete manufacturing planning system. and should not be 

studied in isolation. How then can an individual researcher, or even a group of 

researchers, make a valuable contribution to an area of research which must draw 

on such a wide range of manufacturing and research understanding? It is the view 

of the author that it is important that each piece of research undertaken must be 

performed within the context of a defined set of relationships between manufactur- 

ing activities. Hence it is important to be able to model manufacturing activities 

and their relationships in a formal manner. 
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To provide clear interaction links between the planning activities used in the 

research exploration of integration, the IDEFO activity modelling technique [123] 

has been used. This provided the ISS project members with a formal method of ex- 

ploring the relationships between the design and manufacturing activities being ad- 

dressed, and their context in the broader scope of producing a product. Hence it 

provided the starting point in the exploration of the interactions which the PDM 

would have to be able to support, if integration were to be achieved. 

The recently started ESPRIT IMPACT programme [68], addressing the integration 

of design, operation planning and NC code generation, is also taking the view that 

information modelling is the key to the integration and automation of design and 

manufacture processes. This work is also exploring the use of IDEFO for activity 

modelling and is exploring the use of EXPRESS for data modelling. 

Although product data is a key input to planning decision making and to integra- 

tion, a further important input is the capability of the machines which are under 

consideration. The differences in capability can range from slight, e. g. when com- 

paring three and four. axis machining centres, to large, e. g. when comparing three 

axis machining centres, to coordinate measuring machines. Even though the descrip- 

tion differences may be slight, the effects of these differences on planning deci- 

sions may be significant. As such, the view taken by the author is that a Machine 

Planner should exist, for each machine type, to plan machine level decisions. In 

this way, it is suggested, a range of Machine Planners could be used by a process 

planner to simulate alternative machining possibilities. The initial part of the 

author's research, addressing a structure for Machine Planning, has been published 

in the International Journal of Production Research [14]. 
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4.3.5 Product Data Flows in Manufacturing Code Generation. 

The parallel pursuit of the three Manufacturing Code Generation functions in the 

ISS programme allowed the research team to explore three different viewpoints on 

data requirements. This enabled the data requirements for the integration of all 

three Applications to be explored in addition to the integration issues within each 

sub-topic. The author made a significant contribution to the exploration of the in- 

teraction of these manufacturing functions, to ensure that an understanding of the 

common data requirements, and the reasons for differences in data requirements, 

was achieved. 

Figure 4.5 provides an illustration of the MCG Applications and the flows of pro- 

duct data which are required to enable the generation of machining code, inspec- 

tion code and recommended changes. This highlights the use of a common source 

of product data for each of MP, IP and MDA. The product data aspects of the 

figure will be discussed in the next chapter. By choosing to concentrate on integra- 

tion as the main theme, the research was able to explore the relationships between 

geometry, dimensions and tolerances, features, planning data and measurements of 

components, to generate manufacturing code in a truly integrated design and 

manufacturing environment. 

The key aspects of product data of relevance to the author's work are described in 

the following section, while the author's contribution to the provision of a 

representation of data to enable integrated MCG is described in the following 

chapter. 
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4.4 PRODUCT DATA TO ENABLE MANUFACTURING CODE GENERATION. 

4.4.1 Workpiece Geometry and Feature Data. 

It is well recognised, as described in the literature survey, that it is important to 

have an unambiguous representation of geometry when addressing links from 

geometry to planning Applications. Such a representation can be provided by a 

solid model. The representation of geometry is not an issue in this research, but 

rather the problem of integrating the required geometric data into a Machine 

Planner. This has involved the identification of the geometric data, needed in plan- 

ning, and the exploration of the required links to the ISS geometric tools, to pro- 

vide the necessary data. 

The primary geometric data representation mechanism in the PDM was a Construc- 

tive Solid Geometry (CSG) Modeller, based on half space definitions. This 

representation allowed geometric models of features and components to be build in 

the Product Model environment. A separate geometric Application was available to 

extract the geometric model data and construct a CSG tree. In addition to the CSG 

representation a second geometric Application was available which could build an 

SDSM representation from a CSG tree. The combination of these two geometric 

representations proved particularly valuable in exploring feature interaction data, as 

described in chapter 7. A description of the SDSM is provided in appendix 1. 

A feature can be considered to be a piece of geometry which has some significance 

for manufacture. The understanding and use of features is an area 'of research 

which has received considerable attention from the research community, as 

described in the literature survey. One of the problems with features is that the 
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significance of a shape is dependent on the particular manufacturing viewpoint be- 

ing taken. For example, design features are likely to be different from assembly 

features, which, in turn, are likely to be different from machining features. By ex- 

ploring Machine Planning, Inspection Planning and Manufacturing Data Analysis, 

the ISS programme has explored three views of the manufacturing significance of 

features to identify how these should be captured in a product model representa- 

tion. The author's research has established a data representation to be associated 

with features for machining while contributing to comparative explorations of 

features for Inspection Planning and Manufacturing Data Analysis. 

In general, research into features is split into two approaches. The first is to design 

a solid in terms of features, termed "design by features". The second is the 

redefinition of a solid in terms of features, termed "feature recognition". The first 

of these methods restricts the designer to the use of pre-defined features, which can 

limit the complexity of design which can be represented. The second method 

avoids this restriction by attempting to find features on an already designed com- 

ponent description. 

Feature recognition is a complex problem which is only now beginning to progress 

beyond the recognition of the simplest geometric shapes. Recently the PART sys- 

tem of feature recognition [140] has shown that combinations of simple shapes, as 

compound features, can be recognized. However interactions between features is 

still a problem. Willis [1491 states that features in isolation are insufficient for the 

synthesis of a machining plan for the whole component, identifying the need to 

consider the machining of thin floors, machining through thin floors and machining 

thin walls. Kanumury [76] also identifies the need to consider interactions between 

fixtures and machining features. 
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Set in the context of the ISS programme, the author's work has considered machin- 

ing, fixture and datum features. The research related to machining features, was 

restricted to the exploration of a structured representation of feature process data 

and its association with geometry, as a required input to a Closely Coupled 

Machine Planner. In addition, data on feature interactions, as required by a 

Machine Planner, have been explored, by linking, through the PDM, to the SDSM. 

This has enabled the author to demonstrate how feature process data and feature in- 

teractions can be captured to aid the integration of a Machine Planner in a Product 

Model Environment. 

4.4.2 Associating Dimensions and Tolerances with Solid Geometry. 

Dimensions and tolerances are an essential part of engineering design data. Ap- 

propriate representations, linked to solid models, have not been available, and ma- 

jor research effort is still ongoing. An international workshop sponsored by the Na- 

tional Science Foundation [139] states that a comprehensive theoretical basis for 

developing computer representations of toleranced parts and assemblies does not 

exist and, therefore, major research is required to establish sound mathematical 

foundations on which to build computer representations. 

Researching dimensional links to Product Models, in the ISS project, has been the 

responsibility of L. P. Wickens, whose work has resulted in a Relationship Graph, 

reported in Wickens [148]. His work provides a means of linking dimensions and 

tolerances to the relationships between the faces of. a solid model. Corrigall [35] 

has shown how the relationship graph, in conjunction with geometry, can be used 

in inspection planning, while Lee [82] has shown, within a limited scope, how the 

relationship graph can be used in Manufacturing Data Analysis. The lack of availa- 

bility of a linked description of geometry and dimensional data, at the time when 

the author's work was being performed, has hampered progress in producing in- 
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tegrated links to the Machine Planner. There is still a need to provide a combined 

link from the Relationship Graph to feature data, as opposed to a general geometric 

description. The work of the author shows how the Relationship Graph, in con- 

junction with geometry and feature data, could be used to provide both feature 

specific dimensional data and feature interaction data for Machine Planning. This 

is described in chapter 8. 

4.4.3 Manufacturing Planning Data. 

The data requirements for planning are often considered to be purely geometry, 

material, dimensions and tolerances, with the features of significance on the com- 

ponent being the final link. For example the PART system takes this view [1401. 

The author has taken the view that there is a need for an intermediate planning 

data structure to be associated with a component model. This then provides a basis 

for the capture of planning data and a means by which planning Applications can 

interact. 

The author's research, within the ISS programme, has contributed to a novel con- 

cept showing how MCG can be integrated through a Product Data Model, produc- 

ing some radically new results which demonstrate how the interaction of Applica- 

tions can be achieved. This makes it possible to anticipate a structure through 

which product data can flow between Applications, hence effecting a comprehen- 

sive bridge between design and manufacture i. e. a truly integrated CADCAM sys- 

tem. 
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CHAPTER 5 

INTEGRATING MANUFACTURING CODE GENERATION 

IN A PRODUCT MODEL ENVIRONMENT. 

5.1 INTRODUCTION. 

This chapter describes the research performed, in conjunction with co-researchers, 

to identify the data requirements of Machine Planning, Inspection Planning and 

Manufacturing Data Analysis. In particular, the work performed to identify the data 

requirements which are common between these three functions are described. 

The importance of capturing activity interactions is discussed and the method used 

to model these is described. The way in which common workpieces have been 

used to aid the definition of data requirements is described, as is the Product Data 

Model which resulted from the combined research. 

5.2 CAPTURING THE INTERACTION BETWEEN ACTIVITIES 

5.2.1 The Importance of Understanding Activity Interactions. 

To achieve an environment which will enable integration, Product Data Models 

must be accurately planned, such that the resulting data representation provides for 

the storage of all necessary information for manufacture. This is a requirement for 

successful integration, as identified by Ham [571. The planning of these data struc- 
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tures is dependent on the understanding of the data requirements and data flows 

between the manufacturing functions, which are to use the data structure. Hence 

an accurately planned Product Data Model depends on a clear and common under- 

standing of the functions which are to be integrated through its use. 

5.2.2 Problems in Defining Interactions. 

To identify a clearly defined representation of the data flows between manufactur- 

ing activities is not straight forward. There are many functions to be performed in 

design and manufacture and their relationships are complex. Again, Ham and Lu 

have identified the need for a logical approach to the identification of a planning 

structure, if integration and automation are to be achieved in future computer aided 

process planning systems. Also Smith [132] describes the need, in computer in- 

tegrated software development, to firstly identify the essential tasks, or activities, 

and their interrelationships and, secondly, to create the data models which contain 

the basic data to provide support for the tasks. 

The relationships between manufacturing activities are not well understood and, as 

data is not always available on which to base decisions, assumptions are often 

made by design and planning engineers which, when incorrectly made, can have 

expensive consequences [142]. This has led to a drive towards achieving simultane- 

ous engineering, where all data and knowledge related to a problem are brought to- 

gether concurrently to achieve a solution. Design and planning engineers, working 

together, help to overcome some of the problems of making incorrect assumptions, 

by bringing together the necessary knowledge to tackle a problem. Hence 

knowledge of how activities are performed, as well as data, provides an input to 

the performance of a manufacturing activity. However, there is still a need to use a 

structured approach to design and manufacture, such that the data required at each 

stage in the process can be made available. 
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To achieve such an understanding of the interrelationships between design and 

manufacturing functions requires some formal basis for discussion. Such a basis 

can lead to the evolution of a greater understanding of the ways in which design 

and manufacturing functions can be represented by software Applications. This, in 

turn, provides a basis on which Product Data Models can be defined. 

5.2.3 Capturing the Interactions Involved in Producing a Product. 

Following from the above requirement to achieve an understanding of the interrela- 

tionships between design and manufacturing functions, the research group pursued 

the use of the IDEFO modelling methodology. This had the aim of setting the work 

of ISS, and this research in particular, into a broader manufacturing context, as 

well as providing an activity model on which to start the exploration of Product 

Data Models. The resulting IDEFO model of Produce a Product is provided in ap- 

pendix 2. 

The generation of the IDEFO model took many iterations and involved frequent 

discussions between the research group members and industrial collaborators before 

a generally agreed model could be achieved. It is interesting to note that a change 

in the viewpoint, or emphasis, by a reader can lead to a significantly different 

model being generated. For example, there is a strong argument, in simultaneous 

engineering, to include planning for manufacture as part of the design activity, 

which would not necessarily be the case in other circumstances. It is the author's 

view that it is unlikely that a generic model will ever be produced as many 

different viewpoints will always exist. However, this does not negate the value of 

the model as it provides a strong basis from which to gain an understanding of ac- 

tivity interactions, and even to gain some insight into the different viewpoints 

which exist. This understanding enables areas of interaction to be defined in greater 

detail and with greater clarity. 
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It is also interesting to note that two other IDEFO models produced since the ISS 

model, and completely independently, one for CAM-I by Ferriera [47] and one by 

Colquhoun [34], do show similarities with our model. The CAM-I model concen- 

trates on automated process planning and identifies part understanding, process 

selection and ordering, machine tool selection, setup planning, operation planning, 

and evaluation and documentation as the key tasks of interest to them. The Col- 

quhoun model is also a model of process planning, but it recognises that process 

planning is an integral part of planning for manufacture in the wider environment 

of producing new products. Their breakdown of process planning concentrates on a 

Variant approach, identifying similar components in order to produce plans for new 

components. It is the author's view that the differences in the models are princi- 

pally due to the differences in viewpoint taken. These differences suggest that fu- 

ture work aimed at providing generic solutions for computer integrated manufactur- 

ing must address the effect of viewpoint in their research. 

The ISS model concentrated on showing the MCG activity interrelationships in the 

context of producing a product and the three key elements of the total model are il- 

lustrated in figure 5.1. Planning for Manufacture is a key activity in the model 

with figure 5.1 (a) showing the breakdown of the Manufacture activity. This break- 

down illustrates how inputs from Plan Production and Execute Production Plan 

impinge on Plan for Manufacture Decisions. 
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The Plan for Manufacture activity encompasses typical process planning tasks, part 

programming and pre-production proving functions. Machine Planning falls within 

the Plan for Manufacture activity as shown in figure 5.1 (b). The Machine Plan- 

ning activity takes data, concerning the workpiece to be machined, as input from 

the Plan Processes activity, and it is controlled by the type of machine being con- 

sidered, and knowledge of how the machine is used. Machine Planning then out- 

puts machine plans which can be used for process planning and part programs 

which can be sent for proving. The Machine Planning activity, as illustrated in 

figure 5.1 (b), can in principle encompass any machine type. In the ISS project, 

two machine types were considered, a3 axis vertical machining centre and a coor- 

dinate measuring machine. The former has continued to be termed Machine Plan- 

ning while the latter, to avoid confusion, has been termed Inspection Planning. 

The Pre-production Proving activity ensures that only proven part programs are 

used when executing a production run. The Manufacturing Data Analysis research 

of ISS forms a part of this activity. Components produced from the original 

machining instructions and part programs are checked and recommendations made 

as to how errors found can be corrected. The cycle is repeated until satisfactory 

components are produced and the part programs are proven. 

The activity models produced, provided general data flow requirements which aid- 

ed the identification of the general structure for the relevant product data. The data 

definition at this level, however, is still very weak, and open to alternative interpre- 

tations. Significantly more detail was therefore required to fully define the data re- 

quirements. This further requirement was pursued in two ways: firstly by perform- 

ing more detailed activity modelling on each of Machine Planning, Inspection Plan- 

ning and Manufacturing Data Analysis; secondly by focusing on particular work- 

piece examples, to identify more directly, their specific data requirements. 
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5.3 IDENTIFYING THE PRODUCT DATA REQUIREMENTS FOR MCG 

5.3.1 Maintaining a Focus on Integration Through the Use of a Common 

Workpiece. 

As explained earlier, a central aim of the ISS research was to establish product 

data structures to enable integration of MCG Applications, with the author working 

on the Machine Planning aspect of this. IDEFO modelling provides some 

clarification of data flows, but does not provide a well defined data definition. The 

challenge of identifying a central product data model introduced many interacting 

issues which were not easy to solve. Those of relevance to the author's work were: 

" What inputs are needed for, and outputs generated by, Machine Planning, Inspec- 

tion Planning and Manufacturing Data Analysis, and how do they relate? 

" What is the manufacturing significance of features for Machine Planning, Inspec- 

tion Planning and Manufacturing Data Analysis? What differences in significance 

exist and why? 

" How can dimension and tolerance data be related to geometry and used by MCG 

Applications? 

" How can feature interaction data be found? 

" What relationship should there be between feature pre-definition and feature 

recognition? 

" What data representation should be used such that setup, operation and NC plan- 

ning can be integrated in a Product Model environment? 
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To bring some understanding to these problem areas, and to maintain a common 

level of understanding amongst the research team members, the research group 

chose to focus on a common workpiece. This was initially a very simple work- 

piece, into which increasing levels of complexity were introduced as the level of 

understanding of the underlying data requirements evolved. Initially Pockets, Slots, 

Channels, Holes, Faces and Bosses were considered. Then combinations of these 

shapes within a setup were considered. Finally combinations of these shapes in 

multi-setup components were considered. The detailed exploration of MP integra- 

tion, described in the following chapters, has led to the belief, that future integrated 

systems, offer the potential to exploit greater levels of interaction between Applica- 

tion software, thereby enabling more comprehensive software aids for design and 

manufacture to be produced. 

5.3.2 A Summary of Data Requirements for MCG. 

The data requirements for each of MP, IP and MDA are illustrated in figure 4.5. 

This figure highlights that the only common data requirements between all three 

activities are the dimensions and tolerances, represented in the Relationship Graph, 

of the designed component. The planning activities both require the geometry of 

the designed component while MP also requires the stock geometry, dimensions 

and tolerances. 

The use of features in each of the Applications of MP, IP and MDA have been in- 

vestigated in the ISS project, by the researchers involved in each area i. e. M. Corri- 

gall, L. Lee and the author. From this it has been found that features are very much 

Application related. Features for Machine Planning and for Manufacturing Data 

Analysis are similar, while features for Inspection Planning bear no particular rela- 

tionship to the other two. 
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Machining features in Machine Planning, and Manufacturing Data Analysis 

features, are both concerned with geometric surfaces, which are grouped to relate 

to machining methods. As both Applications are interested in machining methods, 

the shapes of interest to both are therefore the same. However MP requires data 

which can result in the identification of machining methods, while MDA requires 

data which will result in the identification of the probable causes of errors. The 

significant data related to shape is therefore different for the two Applications. 

In contrast to MP and MDA, Inspection Planning is concerned with surface pairs, 

rather than groups of surfaces, and the significant data for IP are simply the dimen- 

sions and tolerances relating the surfaces. There is no need, therefore, to associate 

additional feature data with a product definition in the case of Inspection Planning. 

Some product data inputs to Applications are the data outputs of others. MDA re- 

quires measurements which are produced by IP and also requires machining and in- 

spection plans produced by MP and IP. In addition to product data, all three Ap- 

plications have a requirement for manufacturing information which is specific to 

their own task: IP requires data on inspection probes; MP requires data on the 

machine tool, the cutters, the fixtures and machining rules; MDA requires data on 

faults and their causes. 

Once data requirements for Applications had been identified, a further problem was 

to decide what data should be stored in the Product Model and what should be 

generated by Applications and discarded after use. At first sight it might seem sen- 

sible to store all product related data. However, this approach would lead to mas- 

sive data storage problems as more and more data accumulated. The view was 

taken in the ISS research that data which could be readily, and consistently, gen- 

erated should not be stored in the Product Model but generated as required; while 

data which may be manipulated and refined by a number of Applications must be 
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identifiable via the Product Model. An example of the former instance is seen in 

the use of the SDSM cell decomposition Application. This generates a large 

amount of data but, as it can be readily and consistently generated from existing 

product data, there is no need to store its resulting data within the Product Model. 

An example of the latter case is planning data. This data is required by, and could 

be modified by, a number of Applications. Hence a data structure should be used to 

enable its modification. This is different from the approach taken in the PART 

system [140], where the Product Model consists only of the initial design data. 

The next stage of the research group's exploration of integration was to construct a 

data model within which the required product data could be represented. The next 

section describes the structure of the Product Data Model, constructed in the 

research programme, and provides a general background of the structure, 

highlighting, in particular, the data representations resulting from the author's 

research. These data representations are discussed in greater detail in the following 

chapter. 

5.4 THE ISS PRODUCT DATA MODEL. 

5.4.1 The Framework for a Product Data Model 

Figure 5.2 illustrates the framework of the Product Data Model, within which the 

particular data representation issues addressed by the author were conducted. This 

framework introduces an initial level of structure into a Product Data Model, iden- 

tifying key aspects of product data having greater or lesser significance to an Ap- 

plication, dependent upon the particular area of interest being addressed. A discus- 

sion of the framework, and the use of the repeating patterns described below, in 

product modelling, is given by McKay [94]. The framework has four levels of 
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depth; highlighting product, assembly, component and feature entities. Within each 

level there is a repeating pattern of data representation, to describe the different 

types of data which are associated with entities. These are specification, definition 

and actuals where: 

" Specification: describes the requirements which the actual entity must meet. 

9 Definitions: describe the ways in which the specification may be met. This will 

include designs and process plans for product entities. 

" Actuals: describe data about actual entities which are produced e. g. measure- 

ments of inspected entities can be read from here and used in manufacturing data 

analysis. 

Within the framework, attributes of entities were identified in the ISS project, 

which would provide the key elements of data of significance to MCG. These at- 

tributes can be described as follows: 

" The entity description which will depend on the entity, for example a component 

entity would be described here in terms of its geometry, features and material 

while a feature entity is described in terms of its geometry. Geometry in the ISS 

has been based on a constructive solid geometry (CSG) model which is itself based 

on the use of half space primitives. The definition of planning data to be associated 

with component and feature entities is discussed in chapter 6, while a method for 

the derivation of feature position and geometric interaction data from a component 

entity for Machine Planning is argued in chapter 7. 
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" The dimensions and tolerances which provide data in relationship to the 

geometry. This information is provided in the ISS programme by the Relationship 

Graph which is a syntax for dimensions and tolerances describing relationships 

between "dimension nodes". These dimension nodes can be linked to geometric 

faces, where dimensions are related to faces. Other dimension nodes, such as centre 

lines, can also be related back to geometric faces. Tolerances can also be linked to 

parametrised feature definitions. Links from dimensional representations to a 

Machine Planner are discussed in chapter 8. 

" The method of manufacture which provides the planning data for the entity. The 

representation of data under this heading forms a key part of the author's research 

exploration. The data representation has been explored for feature entities as pro- 

cess data and component entities as planned processes. These aspects of a Product 

Data Model are introduced in subsequent sections of this chapter, with a detailed 

description of them being provided in chapter 6. 

" The feedback data which provides the basis on which errors in manufacturing are 

analysed for error correction. This is represented in the ISS programme by a deci- 

sion network which was defined and used in the Manufacturing Data Analysis 

work. 

Other elements could readily be added to this set as additional, dissimilar, data re- 

quirements are identified for other Applications. With the above understanding of 

data requirements a component level data model was constructed, as illustrated in 

figure 5.3. This formed the basis for the integration of Machine Planning, Inspec- 

tion Planning and Manufacturing Data Analysis, as illustrated in figure 4.5. The 

Machine Planning contribution to product data representation concentrated princi- 

pally on the process data to be associated with features and the planned processes 
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associated with components, as highlighted in figure 5.3. 
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Choices in activity relationships are also important, with ISO STEP [109] identify- 

ing an activity structure as shown in figure 5.4. Their work identifies a planning ac- 

tivity as being either a basic activity or a set of basic activities. This structure has 

been used to allow for choices within the research. Activity sets can be a choice 

from: an enumerative set, which is a set containing a specific number of activities; 

a sequential set, which is an ordered set of activities; a concurrent set, which is a 

set of activities which can be performed at the same time as each other; an unor- 

dered set, which is a set with no order imposed upon it; a conditional enumerative 

set, which is a set where the number of activities depend upon some condition; a 

conditional repetetive sequential set, which is a sequential set which is repeated 

dependent upon some condition. The author's work has concentrated principally on 
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the use of sequential sets. 

5.4.2 Process Data Associated with Features. 

As described earlier, the significance of a feature can vary in its meaning for 

different Applications, as is the case with MP and MDA. Hence the feature data 

structure has been formulated such that a number of aspects of significant data can 

be associated with it. The structure defined in the ISS research has geometry, a re- 

lationship graph, process data and a decision network associated with it as is illus- 

trated in figure 5.3. The process data is a key aspect of data for Machine Planning. 

The definition of the process data structure is explained in chapter 6. 

5.4.3 Planned Processes Data Associated with Components. 

The author's assessment of setup, operation and NC planning data requirements, 

using the project workpiece and pre-defined feature data, in conjunction with dis- 

cussion with P. Bell and A. McKay on data requirements for automatic NC code 

generation, resulted in a manufacturing planning data structure. This planned 

processes structure provided the basis for the integration of setup, operation and 

NC planning, as well as a basis for interaction between pre-defined and recognised 

features. The author's contribution to the definition of this structure is described in 

chapter 6. The work of Bell, McKay and the author, on the definition of this struc- 

ture, has been presented to the STEP committee [95]. 
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5.5 THE USE OF THE PRODUCT DATA MODEL TO LAY THE FOUNDATION FOR 

INTEGRATION. 

With the previously described Product Data Model, integration between the 

Manufacturing Code Generation Applications can then be achieved by (i) using 

definition data in the form of geometry, features, dimensions and tolerances and 

material to produce definition data in the form of machining plans in the planned 

processes structure; (ii) using definition data in the form of geometry and dimen- 

sions and tolerances to produce actuals data in the form of measurements of the in- 

spected component. (iii) using definition data in the form of dimensions and toler- 

ances, features, material and planned processes as well as actuals data in the form 

of measurements to analyse the component and feed back any errors. This is illus- 

trated in figure 4.5. 

The capability of the Product Data Model, described in the previous section, to 

provide an integrating mechanism for Manufacturing Code Generation was ex- 

plored by representing a particular component in the framework and using this to 

provide data to the MCG activities. This experiment is described in chapter 11.4. 

The result of the above research was to show that Manufacturing Code Generation 

Applications can be integrated through the use of a common base of product data, 

and that the ISS Product Data Model provides an appropriate structure for this 

data. Hence future design and manufacture systems can be anticipated which draw 

on the benefits which can be achieved by enabling the interaction of Applications 

through an integrated system. The detailed aspects of the integration research par- 

ticular to Machine Planning, and contributing to the overall achievement of integra- 

tion, are described in the following chapters. 



chapter 6 -73- 

CHAPTER 6 

MACHINE PLANNING -A CLOSELY COUPLED APPLICATION. 

6.1 INTRODUCTION. 

This chapter describes the research performed by the author to define the nature of 

the lower levels of a Product Data Model which can provide the basis for the in- 

tegration of Machine Planing activities. Product data constraints on the planning of 

the machining of discrete features and interacting features have been considered. 

A structure for Machine Planning activities and their interrelationships is also dis- 

cussed. This has resulted in the derivation of the feature level process data sub-set 

of the Product Data Model and the component level planned processes sub-set of 

the Product Data Model, described in chapter 5, as well as a view of how these can 

be used in the integration of Machine Planning. 

The Product Data Model sub-sets argued in this chapter have evolved over a period 

of time, during which earlier versions of a PDM were constructed and tested, as 

described in chapter 10.6. For clarity, only the final PDM, which encapsulates the 

requirements identified from the initial explorations, is defined here. The scope of 

the experimental Machine Planner, used to explore the PDM's ability to provide an 

integration capability, is explained in chapter 9, while the way in which the sub- 

sets of the Product Data Model have been used in the realisation of an experimen- 

tal Closely Coupled Machine Planner is described in chapter 10. 
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6.2 THE ROLE OF FEATURE DATA IN A MACHINE PLANNING APPLICATION. 

This section describes the general view taken of features in this research, and how 

they influence the Close Coupling of a Machine Planner. It has been understood 

for some years now [20] that features play a key role in providing integration links 

between design and manufacture, with much research effort being channelled to- 

wards methods for the recognition of features from geometric descriptions, as 

described in the literature survey. The STEP organisation have addressed a struc- 

ture for features [108] as part of their work to provide a data integration standard. 

Their work has also concentrated on the need to provide a geometric understanding 

of features. The emphasis of the author's work has been on process data structures 

related to features and components, exploring a view of feature based machining 

from which to derive the lower levels of a Product Data model which can, in turn, 

provide a basis for Machine Planning integration. 

The main function of a Machine Planner is to plan the way in which cutters should 

be used to machine a workpiece. Fixturing and datuming the workpiece are neces- 

sary functions required to meet the main aim. To machine, fixture and datum a 

workpiece requires an understanding of the significance of geometric shapes for 

these three purposes. Therefore three types of feature have been considered impor- 

tant in this work; machining, fixture and datum features. Examples of these are il- 

lustrated in figure 6.1 which uses the Bolster Plate benchmark workpiece. This 

workpiece provided a focus for the work of the members of the ISS project as ex- 

plained in chapter 5 and versions of this, using varying levels of complexity, are 

used throughout this thesis. 
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6.2.1 Datum and Fixture Features. 

Datum features provide regions of the component from which the position of the 

component on the machine table can be defined. Three datum feature types have 

been identified. These are holes, corners, and bosses as illustrated in figure 6.1. 

Each of these provides a set of related faces, whose position with respect to the x, 

y and z axes can be found which in turn identifies the workpiece position with 

respect to the machine table. Datums can be located on the workpiece, or on a 

fixture. In this work they have been included in the definition of fixturing strategies 

as described in chapter 9.2.3. How datum positions on machined or un-machined 

surfaces have been accommodated is described in chapter 7.3.1. 

Fixture features provide regions of a workpiece which can be used for fixturing. 

Three types of fixture feature have been distinguished as being required for work- 

holding and are defined as follows: Firstly, Clamp features are to be used to clamp 

the workpiece. Secondly, Primary Location features provide the main location sur- 

face of the workpiece against the fixture, a surface opposite to the clamping direc- 

tion. Lastly, Secondary Location features provide further location to ensure the 

workpiece is held rigidly in position. The illustration of a rectangular block in a 

vice in figure 6.2 provides an example of such clamping and location features. 

In each case above, the geometry required to fulfil fixturing requirements are either 

faces against which clamps can be used, or holes, through which bolts can be used. 

Through holes and the external faces of a workpiece are obvious candidates for 

fixturing and their use has been investigated in this work. These feature types can 

be identified readily from feature names, as explained in chapter 9.3.1, and used in 

the identification of appropriate fixture features, as explained in chapter 9.3.2. The 

identification of the suitability of other faces on a workpiece for fixturing could be 
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explored through the analysis of the component geometry. However, this would in- 

volve a level of complexity of feature recognition which would distract from the 

main emphasis of this research and hence no other fixture feature has been includ- 

ed in the investigation. 

6.2.2 Machining Features 

Research into the identification of machining features on a workpiece has generally 

concentrated on the identification of geometry which can be related to specific 

machining methods. For example, Choi [30], described commonly defined machin- 

ing feature geometries as holes, pocket, slot, step, 2D-contour, plane, and sculp- 

tured surface. His work then explored methods of recognising such geometric 

shapes, as has most subsequent research on machining features. Different 

classifications of feature have also been used to clarify the geometric significance 

of features. Typically features are classified into depressions and protrusions [24], 

or depressions (negative), surfaces, and protrusions (positive) [52]. An example 

feature from each catagory from the latter classification is illustrated in figure 6.3. 

As can be seen from the figure, the importance of each feature type is the material 

which needs to be removed to produce the feature, and not the feature itself. 
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The importance of machining features in this research is to capture the structure of 

process data, related to the material to be removed from the feature, rather than to 

explore methods of feature recognition. The structure of process data gives a 

feature meaning, such that a Closely Coupled Machine Planner can extract, and 

use, the data from a Product Model. 

In section 6.4 a structure for a feature level process data sub-set of a PDM is ar- 

gued, which has been used in the realisation of the Closely Coupled Machine Plan- 

ning Application, as described in chapter 10, and used in the experimental work 

discussed in chapter 11. 

6.2.3 Feature Interactions. 

Feature interactions are important to the author's research where they influence the 

product data employed in a Closely Coupled Machine Planner. The interactions 

between features can be thought of as providing geometric or tolerance constraints 

on the planning methods which can be employed in producing a workpiece. These 

are discussed in the following paragraphs. The results of interactions between 

features are not directly related to the structure of specific features themselves, but 

relate to the planning methods to be used in machining the component as a whole. 

As such, the component level planned processes is needed to capture the progres- 

sive data generated through setup, operation and NC planning. 

The interaction of machining features within a setup can introduce three possible 

geometric constraints which may influence machining. These are feature pre- 

cedence, thin walls and feature overlaps which are illustrated in examples shown in 

figure 6.4(a). Feature precedence occurs when a feature sits on top of another 

feature and therefore must be machined first. An example of this, in figure 6.4(a), 

is the "pocket 1" which lies over "pocket 2". Feature precedence was used by 
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Joshi [73], as a means of sequencing the machining of features. Although this must 

influence an operation sequence, other technological factors must also be con- 

sidered as described in section 6.3.2 of this chapter. Within the ISS program, 

feature precedence routines were pursued by Bell [12], who explored a Region 

Graph to define the relationships between features in a setup. 

Thin walls between features occur when machining features are applied close to 

each other, such that the wall between them is likely to be distorted by normal 

machining forces. The need to identify such feature interactions was identified by 

Willis [149]. How thin walls between features can be identified, by linking to the 

SDSM, is described in chapter 7.4.4. 

Feature overlaps can lead to the initial processing method of each feature becoming 

void. For example, if two pockets are merged together it would be appropriate to 

reassess their machining as a single pocket. This however, introduces a need to 

explore feature recognition to identify how such updates can be made. The struc- 

ture of data associated with the feature will not be changed by this, although the 

data content will be different. Therefore the problem of overlapping features which 

negate the defined processing method has not been pursued in this research. Other 

feature interactions have been addressed. 
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The geometric interaction of machining features across multiple setups introduces 

two further interactions to be considered: the stock relative to the component and 

the prospect of partial machining of a feature in one setup. Figure 6.4(b) illustrates 

these. The stock relative to the component must be defined such that the surfaces 

of the workpiece will clean up to achieve the component dimensions. This posi- 

tioning will be influenced by the parameters to be associated with Face features on 

the component. How this requirement has been accommodated in the software im- 

plementation is described in chapter 10.4.3 and 10.4.4. Face features are also likely 

to be partially machined in some setups as illustrated in figure 6.4(b). This results 

in the need for geometric updates as described in chapter 7.3.4. 

In summary the geometric constraints introduced by interacting machining features 

do not change the feature process data structure but they introduce the need for 

geometric analysis techniques to identify interaction problems. The use of the 

SDSM to provide a basis for such analysis is described in chapter 7.4. 

Machining features may also interact with fixtures and with datums as illustrated in 

figure 6.5. The former interaction problem has been identified by Kanumury [76]. 

When fixtures are positioned on a workpiece it is necessary to check that the 

fixture will not overlap any machining features which are to be produced in the set- 

up. How the SDSM has been used to provide queries to check such problems is ar- 

gued in chapter 7.4, while the resulting software implementation is described in 

chapter 9. 

The effect of machining features on datum positions is to move the datum position 

relative to the component, dependent on whether the machining feature has been 

produced before or after the datum has been set. How datum positions relative to 

the component have been checked is described in chapter 7.3.1 



chapter 6 -84- 

Features also interact through tolerance constraints. Dimensional and geometric 

tolerances, and surface texture, influence the manufacturing methods which can be 

used on components. The tolerances which can be achieved when machining will 

be dependent on the repeatability of the position of the machine tool spindle, the 

accuracy of the measurement of the cutter, the accuracy of the machining per- 

formed, and the accuracy of location of the workpiece with respect to the machine 

tool spindle from setup to setup. 

Dimension and tolerance constraints on components can be represented in different 

ways. Two options are illustrated in figure 6.6, where it is assumed that all dimen- 

sions will carry some tolerance value. The first uses feature and component based 

dimensions. These can readily be represented in a feature based component model. 

However, as can be seen from figure 6.6(a), there is still a need for inter-feature di- 

mensions to be represented, both for dimensional and geometric tolerances. 

Inter-feature dimensions, by their nature cannot be stored within the feature data 

sub-set of the Product Data Model. However dimension and tolerance relationships 

between geometric faces can be associated with a component as a Relationship 

Graph [148]. How this representation of component dimensional relationships could 

be analysed, in conjunction with an understanding of machining features, to derive 

inter-feature tolerance data is discussed in chapter 8. The re-evaluation of a dimen- 

sion and tolerance scheme to generate alternative schemes such as shown in figure 

6.6(b) is also discussed. 
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6.2.4 A Comparison of Machining Feature Recognition and Pre-definition. 

To explore the representation of a process data structure related to features, the au- 

thor has had to select a means by which this exploration could take place. This 

could either be through the use of pre-defined features or through feature recogni- 

tion. This section compares these two approaches and explains the author's choice 

of using the pre-defined feature route, while exploring a data structure which can 

offer the prospect of integrating the benefits of both approaches. 

The concept of feature pre-definition is that known features should be defined as 

parametric descriptions, stored in a feature library, and then used in the process of 

component description. The advantage of this approach is that prior knowledge of 

manufacturing methods can be stored with features and extracted from the com- 

ponent definition as required. No extensive analysis of the component description is 

required to identify the data. Designers can also be encouraged to design using 

known features to achieve a level of standardisation in approach. 

A disadvantage of this approach is that designs are effectively restricted to the use 

of pre-defined features which may overconstrain the designer. Only simple shapes, 

which are used regularly, are worth storing in a library as complex shapes become 

difficult to define parametrically. Since features are defined as individual entities, 

only data relating directly to them can be stored. Data relating to interaction 

effects with other features must be found by some other means. 

Although these restrictions on the value of the pre-defined features approach are 

recognised, the overriding value to the author's research is that pre-defined features 

provided a medium through which the data structures identified in this research 

could be investigated. They also allowed feature interaction problems to be 
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analysed assuming the process data associated with each feature was not invalidat- 

ed by that interaction. Hence, they provide an appropriate medium for the explora- 

tion of a Closely Coupled Machine Planner. 

The concept of feature recognition is that a component description can be analysed 

to identify the features from which it is composed. This approach starts by analysis 

of an existing component description. As such no feature based restrictions are 

placed on how the component description is generated. Therefore this approach has 

the advantage of flexibility in component definition. Further flexibility can be 

achieved in the feature analysis as it can, in principle, be conducted from which 

ever viewpoint is appropriate. For example, alternative analyses could be conduct- 

ed to identify machining, fixturing, datum or assembly features. 

Feature recognition is not an easy task however. A great deal of research effort has 

been spent on assessing how recognition can be achieved and this work is still 

ongoing. The PART system [140] of feature recognition is perhaps one of the most 

advanced, providing a basis for analysis which can cope with feature interactions. 

Feature recognition, although offering greater flexibility in principal, than feature 

pre-definition, has not been considered essential to the main thrust of the author's 

research. Links to the geometric analysis based work of P. Bell [12] has however, 

been considered. 

The author's work in conjunction with Bell addressed how Bell's geometric anaysis 

approach could be integrated with the pre-defined feature approach used by the au- 

thor. Activities MP11 and MP13 of the Machine Planning IDEFO model in appen- 

dix 3 were produced to reflect how these two approaches could be linked. As a 

result of this work, the planned processes sub-set of the PDM, described in section 

6.5, has been defined to include structures which can form the basis for an ap- 

proach combining the benefits of both feature recognition and pre-definition. 
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6.3 MACHINE PLANNING ACTIVITIES AND THEIR INTERACTIONS. 

Ham [57] identifies the need to have a clear understanding of the tasks involved in 

process planning and their relationships if progress is to made in integrating and 

automating process planning functions. The need to employ modelling techniques 

to explore the definition of these relationships is being recognised in the interna- 

tional research community. The ESPRIT IMMPACT programme [68] is pursuing 

information modelling as the key to integration and automation of design and 

manufacture processes. CAM-I have been using IDEFO as a route to defining pro- 

cess planning interactions as described in chapter 5.2.3. Chapter 5.2 describes the 

ISS project's use of IDEFO to represent the activity relationships between the 

members of the project and breaks these down as far as Machine Planning. 

Chan [25], in exploring a machining process language to aid process planning, also 

took the view that the structure of planning tasks is important. He introduced a 

view of the relationships between process, setup and operation planning which pro- 

poses setup planning as a main task in process planning, with operation planning 

being a down stream task. This is not the view taken by the author as setup plan- 

ning is dependent on cutter accessability and the identification of appropriate 

cutters is seen by the author as an operation planning problem. The author's view 

is that setup and operation planning are interlinked; that operation planning and NC 

code generation should be interlinked and that these three planning tasks are related 

to Machine Planning which then can feed back to process planning as required. 

The following sub-sections address planning for the machining of discrete opera- 

tions, then features in a setup and then features across a number of setups. This 

progressive assessment of planning more complex machining situations resulted in 

the Machine Planning activity model described in appendix 3. This in turn has pro- 
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vided the scope for the Machine Planner implementation described in chapter 9, 

which has enabled the research exploration to be performed. 

6.3.1 Planning the Machining of Discrete Operations. 

An operation is defined here to be a volume which is to be machined by one 

cutter. When machining an operation decisions have to be made as to which cutter 

to use, with which cutting parameters and with which tool path. Selecting cutting 

parameters and tooling paths can be considered as part of NC planning, while 

selecting which tool to use forms a part of operation planning. Normally NC plan- 

ning would be considered to to be a subsequent activity to operation planning. 

However, selecting the most appropriate tool to machine an operation is partly 

dependent on the machining time, which in operation planning is usually estimated. 

Integrating NC planning with operation planning therefore provides the advantage 

that path times can be accurately simulated, resulting in more accurate planning. 

Path times for a single operation can be considered as the sum of the time taken 

for the cutter to reach the start point for cutting plus the time from the start point 

for cutting to the end of machining the operation. The time taken to reach the start 

of the operation depends on whether the tool being considered is in the machine 

tool spindle or in the machine tool magazine. The time taken from the start to the 

end of machining the operation will depend on the cutting parameters used and the 

tool path used. Hence data on the machine tool and cutting tools available is re- 

quired in addition to product related data when planning the machining of discrete 

shapes. The influence of tool paths and cutting data selection on tool selection has 

recently been recognised by CAM-I, who are now proposing to explore this area of 

work through their links with TNO/CRIF [113]. 
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A wide range of cutting tools are available for use on machining centres such as 

drills, reamers, boring bars, face mills, end mills, slot drills, disc cutters for slotting 

and side milling, ball nose cutters, as well as non standard tooling prepared for par- 

ticular machining requirements. Tool selection for hole machining [92,26] has been 

comprehensively researched, while tool selection for more general milling has re- 

ceived less attention. Melkote [96], has considered the selection of milling cutters 

to identify which tool in a catalogue is best for a specific operation. Face mills and 

end mills were considered in his paper and assessed against tooling characteristics 

such as rake angle, lead angle and diameter. In his work the user provides the input 

of the type of machining being performed and he identifies a requirement for pro- 

cess descriptions of operations to be provided from the component geometry. 

It has been recognised [24] that specific tools should not be chosen for an opera- 

tion without regard to the other operations to be performed during the machining 

sequence. These other operations can influence the appropriate selection of cutters 

by reducing tool change time and as well as the number of cutters required in the 

machine's carousel. Therefore the approach taken in this research has been to 

identify possible tools which can be used in machining specific operations through 

a tool selection procedure. Thereafter the chosen tool to be used can be identified 

during operation sequencing which must be performed when machining a set of 

operations in a setup. The software functions implemented to identify cutting tools 

and calculate processing data are described in chapter 9.3.3, and have been used in 

the experimental exploration of operation data structures, as described in chapter 

11. 
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6.3.2 Planning the Machining of Interacting Features within a Setup 

As described in the previous section, the activities involved in the machining of 

discrete shapes are tool selection, cutting parameter selection and NC code genera- 

tion. These activities also apply to interacting features within a setup. The 

difference here is that there is a choice in the order in which operations can be per- 

formed. The problem is therefore to decide on the sequence of operations, and the 

specific tools to be used for each, starting from a point where an unsequenced set 

of operations have been identified, each with a set of possible tools, cutting param- 

eters and path time data. Producing a sequence involves exploring the technologi- 

cal and geometric constraints which apply to the operation set, ensuring that these 

are met while attempting to minimise the time taken to machine the setup. 

Constraints which can apply to the sequence are: 

- geometric precedence, 

- tolerances constraints, restricting operations to the use of a common cutter, 

- technological constraints, such as machine roughing operations before finishing 

operations 

The application of such constraints to a set of operations will produce a sequence 

of sub-sets of operations. These then can be assessed against the possible operation 

and tool combinations to minimise the time taken to machine the setup. The 

software implementation of an operation sequencing procedure is explained in 

chapter 9.4, and its use, to aid the integration exploration, is described in chapter 

11. 
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6.3.3 Planning the Machining of Interacting Features across Multiple Setups 

When multiple setup interactions are considered, the way in which setups are 

planned must be addressed. Setup planning is concerned with determining the set- 

ups in which operations should be machined, identifying the work-holding methods 

and datums which should be used, and the sequence in which setups should be 

machined. The aim in setup planning is to minimise the cost of machining, whilst 

still achieving the required specification of the workpiece. This is usually achieved 

by minimising the number of setups required. 

To gain some insight into the constraints which apply to setup planning, and how 

these influence the Close Coupling of a Machine Planner, discussions were held 

with industrial part programmers from Lucas and British Aerospace, as well as 

technicians within the Department of Manufacturing Engineering at Loughborough 

University of Technology. Following from these a number of factors which 

influence decisions on setup planning can be described as follows: 

- the number of components in a batch, and whether different components should 

be produced at the same time. 

- the type of stock e. g. cast, forged or solid, 

- the type of machine being used, 

- the available fixtures, 

- suitable features of the workpiece for fixturing, 

- the interaction of fixturing with machining, 

- problems affecting dimensional accuracy, 
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More than one component may be fixtured to the machine table in any one setup. 

In this case it will be necessary to consider the different component setups and 

amalgamate them into machine table setups. As the ISS project was constrained to 

the problem of addressing integration for single components this problem was not 

addressed further, other than to register it as an area of work which will need to be 

addressed in the future. 

The type of stock being used will influence how the workpiece can be held and, 

hence, the way in which setups can be achieved. This relates directly back to the 

need to identify fixture features which can be used for fixturing the workpiece as 

described in section 6.2.1. 

The type of machine to be used also influences setup planning. Consider, for exam- 

ple, horizontal versus vertical machining centres. The orientation of the spindle axis 

to the machine table is different for both of these, which influences how the work- 

piece can be fixed to the table when a particular group of operations is to be 

machined. The addition of a fourth axis on a machine introduces the ability to ro- 

tate the workpiece with respect to the machine table, therefore enabling operations 

with different directions of access to be included in a single setup. Hence different 

machine tools offer the ability to use different fixturing strategies. 

The selection of setups and design of fixtures, based on an analysis of the tolerance 

relations between features has been researched by Boerma and Kals [17,18]. They 

provide perhaps the most comprehensive research to date on tolerance relationships 

and there effect on setup planning, but do not address the problem of geometric in- 

teractions between fixtures and the workpiece as described in section 6.2.3 or the 

possibility of assessing different fixturing strategies. 
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Figure 6.7(a) illustrates one of the accuracy problems explored by Boerma [17]. 

With this, he explains, that in the first setup hole A is realised at position Z(A), 

Y(A) of the machine tool coordinate system. In the second setup hole A is reposi- 

tioned with an error 'd' in the Y direction, so hole A is at position Z(A), Y(A) + d. 

Therefore hole B, which should be machined at X(B), Y(B) is actually machined at 

X(B), Y(B) + d. It then depends on the value of 'd' whether the position of hole 

B will meet the requirements of the relation between A and B. This particular 

problem can be overcome by using a datum on the component and a touch trigger 

probe to reference the datum point. However, this may not always be possible and 

the orientation of the component with respect to the machine table may still intro- 

duce alignment errors. Dimensional relationships are therefore an important con- 

sideration in setup planning. 

The shape of the workpiece is significant in providing a stable platform to fixture 

to the machine table, ensuring minimal misalignment of the workpiece as illustrat- 

ed in figure 6.7(b). The accuracy of alignment will effect the geometric tolerances, 

as well as the dimensional tolerances, which can be achieved. For example, square- 

ness could be a problem in figure 6.7 (b). 

Technological constraints also apply, for example, the amount of material to be re- 

moved from a workpiece can influence the manufacturing method. Large material 

volumes can result in distortion of the component. It is therefore important to re- 

move such material early in a setup sequence so that effects of distortion can be 

minimised. Such constraints on the methods to be used must be captured. 



chapter 6 

First Setup 

-95- 

Y(A) --- -e _ 

Y(B) 

ZXZ X 

Y(8)+d 

(a) Errors in Feature Position [ref. 17] 

First Setup 

'T 

a 
r'O Second Setup 

.: 1-----"--... 

(b) Errors in Alignment 

Accuracy Problems in Setups 

Second Setup 

Figure 6.7 



chapter 6- 96 - 

The ways in which fixtures can be used to hold workpieces leads to the idea of 

representing alternative methods as fixturing strategies. The Quick Turnaround 

Cell work [76] explored the use of a vice as a particular method of fixturing while 

Willis [149], in considering different setup strategies, identified the need to consid- 

er the global geometry of the component and geometric constraints on the machin- 

ing of the part. 

In order to explore the links between product data and setup planning the author 

has chosen to consider three fixturing strategies based on the use of a vice, the use 

of bolts and the use of clamps. These strategies have been used to represent alter- 

native ways in which a machine, in combination with fixtures, can be used to hold 

a workpiece for machining. The author's work uses these strategies in the Machine 

Planning implementation, to demonstrate how product data, in conjunction with 

links to an SDSM Application, can provide necessary input to a Closely Coupled 

Machine Planner. A method of capturing geometric interactions in Fixturing Stra- 

tegy selection is argued in chapter 7.4, while the experimental implementation used 

to describe and select fixturing strategies is described in chapter 9. It will been 

shown, through the experimental work described in chapter 11.3.4, that the ap- 

proach taken provides a successful method of linking feature interaction checks 

into fixture strategy selection. 

The use of a particular fixturing strategy has implications for the datum points to 

be used in each setup. Hence it seems appropriate to capture datums within the 

fixturing strategy. The way in which this has been achieved is explained in chapter 

9.2.3 and 9.3.2.4. Selecting a datum has implications for the dimensional accuracy 

which can be achieved in the production of the component. The tolerance relation- 

ships on the designed component and the tolerance relationships which will result 

from the use of a particular strategy must be considered before a strategy can be 

confirmed as appropriate. How this could be accommodated in a Product Modelling 
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environment is discussed in chapter 8. 

Once a fixturing strategy has been identified, and hence a setup sequence, each set- 

up must then be checked to ensure that all operations can be machined. It is possi- 

ble that the fixture may cause cutter accessability problems and if this is the case 

then changes in the machining plan must be made. The selection of possible tools 

as discussed in section 6.3.1 must therefore be performed during setup planning. 

The structure and relationships between Machine Planning activities has been ex- 

plored using the IDEFO modelling technique. The resulting model is provided in 

appendix 3, and has been used as a basis for the software implementation described 

in chapter 9. The following sections argue structures for the lower levels of a Pro- 

duct Data Model, which have been used in the integration of Machine Planning, 

while chapters 9 and 10 describe the way in which an experimental Closely Cou- 

pled Machine Planner has been realised. These provide an insight into how future 

CADCAM systems can be radically improved by the use of such an integrated ap- 

proach. 

6.4 PROCESS DATA RELATED TO DISCRETE MACHINING FEATURES. 

The data associated with a machining feature provides constraints on how the 

feature should be produced. This data can be divided into general process data 

about the feature and the operation data which constrains how cutters can be used 

in the feature's production. Features are generally. machined in more than one 

operation, Therefore a sequence of operations are related to a feature's process data 

as an Operation Activity of the sequential set type described in chapter 5.4.1. The 

feature level process data sub-set of the Product Data Model is illustrated in figure 

6.8, while its composition is explained in the following sections. 
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6.4.1 General Process data. 

The general process data to be associated with a machining feature, apart from the 

Operation Activity, has been identified as comprising the spindle axis directions, 

the fixturing faces, the region volume and the bounding box. This is the data which 

is generally applicable to the feature and not specifically related to any one opera- 

tion. The identification of this data has followed from an assessment of the data re- 

quirements of Machine Planning and the results of experiments using the evolving 

Product Data Model as described in chapter 11. 

The spindle axis directions identify the orientations from which it is possible to 

machine a feature with respect to the machine spindle axis. This can be represent- 

ed as a simple list of directions, with one element for each possible direction. A 

machining feature contains, within it, faces which could be suitable for use in 

fixturing. These can also be referenced as a list of directions, and are stored as a 

list of directions, normal to appropriate faces, in the fixturing faces field. 

The region volume field provides a value for the volume of the feature. This, 

when summed with other region volumes of features to be machined in a setup, 

provides a value for the volume to be removed in a setup. The bounding box of a 

feature provides data on the extremities of the feature's faces. 

These elements of the process data structure provide the necessary data inputs, 

from a machining feature, required as an initial basis for setup planning. The use of 

this data structure, plus the Operation Activity structure described below, to build 

features which have been used in the experimental work of the thesis, is described 

in chapter 10.4. 
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6.4.2 The Derivation of Operation Data. 

This section describes the view taken by the author of constraints on discrete shape 

machining which resulted in the operation data sub-set of the Product Data Model. 

This sub-set can be considered as being composed of three levels of refinement of 

data: the general geometric and dimensional data; the assessed geometric and di- 

mensional data, identifying constraints on the operation's production method; and 

finally the tools which can be used to produce the operation. The following para- 

graphs briefly describe these three levels of refinement while the following sub- 

sections concentrate particularly on the author's contribution to the representation 

of the middle level of data which encompasses operation definition, constraints and 

geometric data. 

The first level of data describes the geometric and dimensional data related to the 

operation. These are represented as primary regions, secondary regions and rela- 

tionship graph. The primary regions represent the geometry which must be re- 

moved to machine the operation. The secondary regions represent the geometry, if 

any, which may also be machined as a consequence of machining the operation. 

This terminology has been coined by Bell [12]. The Relationship Graph of Wick- 

ens [148] represents dimensional relationships. This level of data provides the base 

level of information about an operation. 

The second level of data describes the constraints on an operation's production 

method. This provides the significance for manufacture of the operation. This level 

of data has been divided into operation definition data, tooling constraints, which 

introduce restrictions on tool usage, and geometric data, which is refined from the 

first level of data to provide the significant geometric parameters for the operation's 

production. 
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The third level provides data on the possible tools which could be used to machine 

the operation and the tool selected for use. This data includes the cutting parame- 

ters to be used with each tool. This third level of data is generated by a Machine 

Planner by analysing the data at the second level. The implementation of functions 

to perform this level of planning are described in chapter 9.3.3.1 and 9.4. 

6.4.3 Operation Definition Data from Machine and Cutter Combinations 

This research proposed that the accessability of the shape geometry should define 

the operation type, which through the use of technological rules can then provide a 

basis for cutter type selection. Consider figure 6.9(a). Here, five types of operation 

are defined; Facing, End Milling, Across Slotting, Down Slotting and Drilling. 

These follow from the accessability of the geometry to be machined, as can be 

seen from the figure. Facing operation geometry can be accessed from any direc- 

tion perpendicular to the spindle axis. End Milling operations can be accessed from 

two directions perpendicular to the spindle axis, and also have no constraint on the 

cutter diameter. An Across Slotting operation can be accessed from at least. one 

direction perpendicular to the spindle axis and also constrains the cutter such that 

the full width of the tool must be used when machining. Down Slotting operations 

are accessed in the same direction as the spindle axis, but have the potential to be 

machined perpendicular to the spindle axis thereafter. Drilling operations can be 

machined only in same direction as the spindle axis. 

When geometry, such as a pocket illustrated in figure 6.9(b), is considered, no one 

of the above operations describes the type of operation required. The machining of 

a pocket requires the combination of Down Slotting, Across Slotting and End Mil- 

ling. The Composite operation type has been introduced to allow for this sort of 

occurrence. The Composite operation type consists of a list of the operation types 

required to machine the geometry in question. 
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When rough machining a component the general aim is to remove the required ma- 

terial from the workpiece as quickly and effectively as the tooling capability will 

allow. However, when finish machining a surface it is normal to limit the cut being 

taken to minimise the cut load effect to ensure that the surface is produced within 

the required tolerances. This difference in requirement between operations can be 

identified by defining a cut type to flag the relevant information. Hence cut types 

for roughing and finishing are required. Cut type is also influenced by the geometry 

to be machined. Figure 6.10 illustrates the finishing operation terminology used by 

addressing a shoulder, which can be finished in three different ways, dependent on 

the required tolerances; either by finishing just the face, finishing just the side or 
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finishing both the face and the side. Hence these three alternatives are included in 

the cut type options. 
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The final field which identifies the definition of an operation is the type of tool 

path which is to be used in its machining. A reference to the type of tool path to 

be used provides the basis to call the required tool path generation algorithms to 

generate actual tool paths. Two routes can be used to identify this information: al- 

gorithms to automatically generate cutter paths from the operation geometry [11]; 

and parametrically defined tool path plans which can be associated with specific 

operation shapes to generate the path [34]. Part of the work of this thesis has been 

width 

ýý w1uui 
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linked to both approaches, although the major implementation of experimental 

software has been pursued following the tool path plan route, as sets of appropriate 

tool paths plans were configured to suit the Machine Planning requirements by M. J. 

Corrigall [34]. ' 

6.4.4 Constraints on Operations. 

Constraints on the machining of discrete shapes can come from the shape itself and 

also from technological rules on the appropriate use of tooling. The following para- 

graphs describe the various constraints represented in the operation data sub-set of 

the PDM. Figure 6.11 shows an example operation which illustrates the con- 

straints. 

When machining an operation the cutter must access the shape from some direc- 

tion. The possible directions which can be used are termed the tool approach direc- 

tions. For example the operation in Figure 6.11 has two tool approach directions 

perpendicular to the spindle axis while a blind hole has one tool approach direction 

parallel with the spindle axis. 

Dimensional tolerances influence the cutting parameters to be used in machining an 

operation. Those tolerances which may be significant to the operation's production 

can be stored as a list of tolerance values in the dimensional tolerance constraint 

field. Tolerance values are defined as a combination of a nominal value and a toler- 

ance. These tolerance values can then be assessed when calculating cutting param- 

eters to ensure the operation is produced within specification. Storing tolerance 

values in this way means that they can be generated, either from feature parame- 

ters, or from a Relationship Graph evaluation. 
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The surface roughness is another tolerance which influences the calculation of cut- 

ting parameters. Again the appropriate values can be stored as a constraint on the 

operation and used in procedures to calculate machining conditions. 

Dependent on the shape being machining there may be no parameters, one, or 

many parameters, which constrain the diameter of the tools which can be used. 

Any parameter which may provide a constraint can be stored in the diameter con- 

straint list and assessed by software procedures to determine the critical value. 

Similarly parameters which constrain the tool corner radius or the tool length can 

be stored in the appropriate constraint field. 
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6.4.5 Geometric Parameters influencing Operation Machining. 

When planning the machining of operations the calculation of cutting parameters 

and, in the approach taken, the generation of tool paths can be achieved by refer- 

ence to the key geometric parameters of the shape. These key parameters can be 

stored in the geometric data section of the operation data sub-set. This avoids the 

need for unnecessary analysis of the operation geometry. The parameters stored 

with the operation data sub-set are as illustrated in figure 6.8 and are the operation 

length, width, depth, side width, side depth, and corner radius. These can all be 

evaluated directly from feature parameters. 

6.4.6 Cutting Tool Data Related to Machine Operations. 

The data defined in the earlier sections provides the basis on which cutters have 

been chosen to machine an operation, as argued in chapter 6.3.1, using the imple- 

mented Machine Planner function described in chapter 9.3.3.1. Hence for any indi- 

vidual operation a list of possible tools can be chosen. A set of operations can be 

sequenced and a specific tool can be chosen to machine the operation, as argued in 

chapter 6.3.2 and implemented in chapter 9.4. The data structure for cutting tools 

provide the ability to capture these data interactions. 

The feature level process data sub-set of the PDM will be shown, in the experi- 

ments described in chapter 11, to be a necessary source of data for the experimen- 

tal Closely Coupled Machine Planner. This, in combination with the component 

level Planned Processes described in the following section, and the means to iden- 

tify inter-feature data, as discussed in chapters 7 and 8, provide key product data 

sub-sets, necessary for a Closely Coupled Machine Planner. 
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6.5 PROCESS DATA RELATED TO COMPONENTS. 

The planning of a component's manufacturing method involves a range of activi- 

ties. Following the general integration argument proposed in chapter 5, which ad- 

vocates the use of a product data model as an integration mechanism, there is a 

need for a sub-set of the Product Data Model to represent the relevant data struc- 

tures to be used, to store data related to process planning functions. This sub-set of 

the Product Data Model has been represented by the component level Planned 

Processes, as illustrated in figure 5.3 and expanded in figures 6.12 (a) and (b). This 

data sub-set has been divided into four main levels to reflect the four main decision 

levels related to planning the manufacture of a component. These being the pro- 

cess, machine, setup and operation levels illustrated in figure 6.12. The data struc- 

ture at each level is discussed in the following sections, highlighting their relation- 

ships to the integration of the various planning aspects of this research. 

6.5.1 Planned Processes - Process Level Data. 

The consideration of alternative processes has not formed a part of this research. 

However, in defining an appropriate data structure it is important to acknowledge 

that the production of a component can take it through a number of processes. 

hence the process level data has been included in the model. It is assumed that for 

any process there will be a start and an end condition for the workpiece. This is 

reflected in the pre-processed and post-processed workpiece fields provided in the 

structure. A relationship graph field [1481 has been included at this, and every, 

level of the structure, to reflect the dimensions and tolerances which are applicable 

at that level. The process type field provides the key to the machine type being 

considered. In this case material removal and inspection processes are included to 

reflect the emphasis of the ISS project. A field for other processes is included to 

highlight that other processes should be included and explored. 
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6.5.2 Planned Processes - Machine Level Data. 

The pre-machined and post-machined workpiece fields provide for the geometry of 

the workpiece, as it comes to the machine tool , and as it leaves the machine tool. 

As this research is constrained to addressing components to be machined on a sin- 

gle machine, the pre-processed and pre-machined workpiece are the same and 

represent the stock to be machined. Similarly the post-processed and post-machined 

workpiece are the same and represent the component to be produced. The relation- 

ship graph, as before, represents the dimensions and tolerances of the workpiece. 

Planning decisions on the product are dependent on the machine and the tooling 

being considered. Therefore a link to the machine specification, cutting tools and 

fixture elements which are used in Machine Planning are included at this level. The 

machine setup data provides the data on the regions to be machined on the com- 

ponent, as region graphs, and a setup activity. The former provides data for each 

spindle axis direction of the transform of the setup required to align it with the 

spindle axis, and the list of machining features which can be produced from that 

particular spindle axis direction. Additional inputs to the this aspect of the structure 

were made by P. Bell [12]. The setup activity stores data describing the setups to 

be used in producing the component. 
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The machine level data in the planned processes provides the basis for the link 

between pre-defined features and recognised features as illustrated in figure 6.13. 

The figure draws on the data structures provided in figures 5.3 and 6.12(a) while 

the bold lines indicate the flow of data from a Product Model to an Application 

and the flow of data from an Application to a Product Model. 

Feature recognition would take as input the pre-machined and post-machined work- 

piece and the relationship graph to generate the data relationships for each spindle 

axis orientation resulting in the machining features list. Alternatively, where pre- 

defined features have been used, the machining features can be extracted directly 

from the component description and put in to the machining features list for each 

appropriate spindle orientation. In the case of combined pre-defined and recognised 

features, the pre-defined features can be put in to the appropriate list and the 

remaining geometry must be analysed. The Machine Planner Sequence Setups ac- 

tivity can then draw on the machine level data as shown in figure 6.13 to generate 

the necessary setup data in the setup activity data structure. This view of the data 

structure, as an integration mechanism for feature pre-definition and feature recog- 

nition has been developed in conjunction with P. Bell [951. The exploration of the 

activity interactions to suit this integration concept are shown in the IDEFO model 

of Machine Planning in appendix 3. 

6.5.3 Planned Processes - Setup and Operation Level Data. 

The setup and operation level data is illustrated in figure 6.12(b). The pre-setup 

and post-setup workpiece fields are provided to store the geometry of the work- 

piece as it comes to a setup and as it leaves the setup. These fields are particularly 

useful to the geometric analysis approach to cutter path generation of P. Bell [12], 

and provide the starting data for his work on the breakdown of the geometry into 
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operation data. 

The integrating capability of the structure, for Machine Planning functions, is illus- 

trated in figure 6.14. The Sequence Setups function takes data from the machine 

data level and provides data into the setup activity. The structure of setup data 

provides the fields to store the transform of the setup to align it with the spindle 

axis, the machining features to be produced in the setup, and the fixture data re- 

quired for the setup. The fixture data contains the fixture elements to be used in the 

setup, the fixture features required to fixture the workpiece, and the fixture datum 

to be used. The Evaluate Features function can then evaluate the machining 

features to be produced in the setup. If these have been pre-defined, the operation 

Activity Data will already be available from each feature. If feature recognition is 

employed then operation data will need to be found. The operation data is the 

same structure as derived in the feature level structure. 

The component level planned processes sub-set of the PDM provides another key 

link in the integration of manufacturing Applications, both in the ISS programme 

and as a source for future exploration of more comprehensive integrated design and 

manufacture systems. How the component level planned processes sub-set of the 

PDM has been linked to the experimental Machine Planning Application, is ex- 

plained in chapter 10.5, while the description of its use in integration experiments 

is provided in chapter 11.4. 
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CHAPTER 7 

THE INTERACTION OF GEOMETRIC AND MACHINE PLANNING 

APPLICATIONS IN A PRODUCT MODEL ENVIRONMENT 

7.1 INTRODUCTION 

This chapter investigates the benefits which the Product Model environment can 

offer to the interactions between geometry and Machine Planning Applications, and 

describes the methods used to derive, through a PDM, feature positional and 

geometric interaction data. Links have been achieved to generate this data using 

the experimental Machine Planner described in chapter 9, and the success of the 

approach taken is explored in the experiments discussed in chapter 11. Elements of 

the experimental software are described in appendix 5. 

Chapter 6 has established the Product Data requirements for Machine Planning and 

identified the need for feature position and geometric data. The methods described 

in this chapter assume that a component model will be populated, as described in 

chapter 10, to provide a Product Model with which a Closely Coupled Machine 

Planner can interact. 
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7.2 GEOMETRIC AND MACHINE PLANNER INTERACTIONS 

A Machine Planner, whether stand alone or integrated, requires geometric data to 

function effectively, as discussed in chapter 6.2. The Close Coupling of a Machine 

Planner opens up the possibility of linking to the geometric Applications available 

in the Product Model environment, as illustrated in figure 7.1. This figure shows 

that a solid representation of a component, and its related stock, can be built using 

features from a feature library. The solid representation produced, based on CSG, 

provides a geometric input to a Machine Planner of the component and the stock. 

A second geometric Application, the SDSM, has been used to evaluate the solid 

representation of the component, to generate a cell decomposition model. This ad- 

ditional geometric representation provides the basis for the author's exploration of 

feature interactions, described in section 7.4. 

In addition to using geometric data, planning functions should be able to interact 

with geometric Applications to update and change the geometric description con- 

tained in a Product Model, enabling other Applications to then interact with the 

newly generated product data. An example of a Machine Planner influencing the 

geometry in a Product Model can be seen by considering the setup data sub-set of 

the PDM, as illustrated in figure 6.12(b) In this figure a pre-setup and post-setup 

workpiece is represented, describing the geometry before, and after, the setup. 

This data should be generated by a setup planning function in a Machine Planner. 

The resulting geometric description could then be used in the analysis of setup 

specific data, by Applications such as that of P. Bell [12]. 
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Links to two geometric representations, through the PDM, have been implemented 

by the author. These links enable the generation of feature position and feature in- 

teraction data, required by the Machine Planner. The detailed aspects of a method 

to identify the relative feature positions needed in Machine Planning, and a method 

to identify feature interaction data, are described in the following sections. The im- 

plementation of the experimental Machine Planner which used these methods is 

described in chapter 9, while the experiments performed, demonstrating the success 

of the approach taken, are described in chapter 11. 

7.3 THE METHODS USED TO IDENTIFY FEATURE POSITIONAL DATA 

The methods argued in this section illustrate how feature positional data can readily 

be derived, when working in a Product Model environment. How product data can 

be manipulated to provide appropriate inputs, for setup planning and NC code gen- 

eration, is described. This emphasises the value of the PDM in providing a ready 

source of data which can be used, and manipulated, by a Closely Coupled Machine 

Planner. 

7.3.1 Feature Positions on a Component. 

The relative position of a feature on a component needs to be measured with 

respect to the component, rather than from some global coordinate system, if its 

position on the component is to have some meaning for planning. This require- 

ment has been identified by Kanumury [76]. Part programs for machining rely on 

knowledge of the positions of machining operations relative to a fixture datum and 

hence this data must be extracted from the PDM. The component coordinate sys- 

tem-has been taken to be the centre of the component block to which features are. 
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added. This means that feature positions, relative to the general geometry of the 

component, can be found. 

The reference position of a feature definition is at (0,0,0) in the global coordinate 

system as shown in figure 7.2(a). Likewise the centre of a block is defined at 

(0,0,0). Hence the position of a feature on a component can be found readily from 

the transformations of the component block and the feature, when they are used in 

a component definition. This can be captured simply, as shown below, and has 

been shown to be successfully applied in the experiments described in chapter 11, 

using the Machine Planner implementation described in chapter 9.3.1 

feature position with respect to component = 
feature global position - component global position 

The relative position of a feature within a setup is different from that relative to the 

component, and is dependent on the setup direction. As can be seen in figure 

7.2(b), the position of the hole in case (a) is (x, y, z). When the component is rotat- 

ed about the x axis to consider a setup in the +z direction, as shown in case (b), 

the hole position with respect to this setup is (x, -y, z). Hence, for each setup the po- 

sitions of features has been reassessed, with reference to the setup coordinate axes. 

The setup coordinate axes are assumed to be the same position as the component 

coordinate axes, but with the axes adjusted, such that the setup z axis is opposed to 

the spindle axis direction. This will be shown, in the experimental work, described 

in chapter 11.3.3, to be a successful approach. 

Datum features have been discussed in chapter 6.2.1 and can be represented within 

fixturing strategies, as will be explained in chapter 9.2.3. In order to generate part 

programs, there is a need to identify datum positions with respect to the machine 

table, and also to identify machining feature positions with respect to a datum. 
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The fixture datum coordinates of an external corner can be found from the intersec- 

tion of three faces. The coordinate value for each axis, relative to the machine table 

can be found by using a touch trigger probe and probing a face lying in the plane 

of the other axes. There are eight types of external corner, as shown in figure 

7.3(a); four on the top surface and four on the bottom, The direction in which to 

probe follows from the corner type. In the case of corners on the top surface, the 

position on the surface to probe has been identified as a point relative to the datum 

coordinates. This has been taken as being 10mm onto the face to be probed, as il- 

lustrated in figure 7.3(a). However, when the bottom surface is used, an appropriate 

external datum surface, relating to the fixture, must be used. The probing position 

of this surface must be requested from the user, as such data is not captured in the 

product representation. The above approach has been implemented as a part of the 

Extract Machine Control Code function described in chapter 9.5, and has been 

used successfully in producing components on the Wadkin V4-6 machining centre, 

as described in chapter 11.3.3. 

Machining feature positions with respect to a fixture datum have been found from 

the relation of the feature position in the setup to the datum position in the setup 

as: 

feature position with respect to datum = 
feature position in setup - datum position in setup 

The features used for fixture datums, in the software implementation, are holes and 

faces. When holes are used as datums they must already have been machined. 

However, when faces are used they may, or may not, have been machined. Hence, 

the coordinates of the fixture datum, relative to the setup coordinates, are depen- 

dent on whether the faces used in datum setting have been machined. 
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The dependency can be seen from the illustration in figure 7.3(b) which shows two 

different relative positions, in the z direction, for the same datum corner. The same 

dependency also applies in the x and y directions. This difference in position can 

be accommodated in the software by checking whether the face features around the 

corner will have been machined before datum setting. For example, considering 

the case in figure 7.3(b), with a negative z probing direction then the z coordinate 

of the datum can be found using the conditional statement below: 

if reg. machined (a machined feature) 

then 
datum_coords(z) setup_coords(z) + (part. geom. depth. num_value / 2.0); 

else 
datum_coords(z) setup_coords(z) + (part. geom. depth. num_value / 2.0) 

+ reg. geom. depth. num_value; 
end if, 

Software routines, which manipulate the relative position of features, to . satisfy set- 

up planning and NC. code generation requirements have been included in the 

Machine Planning implementation, described in chapter 9, while experiments which 

have resulted in successfully machined components are reported in chapter 11. 

7.3.2 Feature Orientations on a Component. 

The setups in which features can be machined relate to their spindle axis direc- 

tions, as identified by Joshi [73]. As with feature coordinates above, which are ini- 

tially defined at the (0,0,0) point with respect to the global coordinate system, the 

spindle axes directions and fixture face normal directions, are also defined, initially, 

relative to the global coordinate system. When features are subsequently applied to 

a component definition they are likely to be rotated, such that these directions will 

be changed. Figure 7.2(c) shows a hole which has been applied to a component, 

such that its spindle axes lie in the plus and minus y directions. Hence the orienta- 
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tion of features on the component must be identified. 

As in the case of feature position, the orientation of features has been tracked, by 

tracking the transformations applied to the features when they are applied to the 

component. This has been implemented as a part of the Identify Component Setups 

activity, described in chapter 9.3. 

When features are grouped by spindle axis direction, duplicate features have been 

produced for each additional direction defined. A simple illustration of this is pro- 

vided in figure 7.4 (a). The duplicate feature is defined with respect to a different 

setup from the initial feature. The reference axes for the duplicate feature have 

therefore been changed to suit the alternative setup direction, as illustrated in figure 

7.4(b). This method is implemented in the setup sequence activity described in 

chapter 9.3.2. 

A feature's spindle axis direction defines the orientation, with respect to the 

machine tool spindle, from which the feature can be accessed. The Face feature is 

a special case of this and has been defined as having one spindle axis direction, op- 

posite to the direction of the face normal. This has been done to ensure that the 

feature is machined using Facing operations, although the feature can, in fact, be 

accessed from all directions perpendicular to the face. In the use of the fixturing 

strategies, which will be described in chapter 9.2.3, there is a need to make use of 

these alternative directions of access to machine some Face features using End Mil- 

ling operations. Use has been made of the alternative directions by re-orienting the 

spindle axis direction of the feature to align it with the setup direction being used, 

and converting the operation data to represent End Milling operations. The above 

requirement has been captured in the selection of fixturing strategies described in 

chapter 9.3.2.4 
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The above methods of manipulation of features, to identify specific orientation 

data, have been implemented in the experimental Machine Planner defined in 

chapter 9 and have proven to be successful, as described in chapter 11, in generat- 

ing plans and part programs which reflect the original component description, 

represented in the PDM. 

7.3.3 The Relative Position of Setups. 

In defining a setup sequence, from a fixturing strategy, as will be described in 

chapter 9.2.3, there is a need to have some positional awareness of the setups on 

the component, relative to each other. The approach taken in this research has 

been to describe the relationship between the six sides of the rectangular workpiece 

as top, bottom, left side, right side, back and front, as illustrated in figure 7.5(a). 

This figure also illustrates that setup axes have been altered to relate to the direc- 

tion of approach to the setup. This data has been used, successfully, in the experi- 

mental Machine Planner, when identifying the preliminary setups to be used with a 

fixturing strategy 

7.3.4 Updating Setup Geometry. 

Once a setup sequence has been identified, the pre and post machined geometry for 

each setup could be found by starting from the stock geometry and subtracting the 

feature geometries to be machined in each setup. This is a requirement which has 

not been implemented in the experimental software, but it is seen as being of little 

significance to the overall thrust of the research. 
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Changes to the process data related to machining features, which come about 

through features overlapping across setups, will affect the resultant part programs 

which are produced. This type of overlap occurs with Face features, as discussed 

in chapter 6.2. Figure 7.5(b) illustrates a block which is to be machined on all 

faces. Until it is decided which one is to be machined first, each face must be con- 

sidered to cover the complete extent of the stock. Once a sequence is chosen the 

areas of overlap should be addressed and the geometric data relating to the remain- 

ing machining updated. Hence, if the top face is machined, then the dimension zl 

should be changed to dimension z2. This can be achieved by representing the 

bounds of each face region in relation to its reference position. These bounds can 

be updated once the setup sequence is known. The need to update setup geometry 

was not identified until the author's research was well advanced. The data structure 

in the PDM, which can store the necessary data has been included in the feature 

process data sub-set of the PDM, described in chapter 6, but has not been proven 

through links to the experimental software. 

The feature manipulation described up to this stage in the chapter has been 

achieved by linking to the CSG model of the Product and using the translation data 

associated with the features on the component. The following section argues how 

links to a second geometric description, the SDSM, allows feature interaction data 

to be identified. 
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7.4 THE METHOD USED TO IDENTIFY FEATURE INTERACTION DATA 

This section investigates how links made, through the PDM to the Spatially Divid- 

ed Solid Model (SDSM), can be used to generate necessary information on feature 

interactions, which are needed by a Machine Planning Application. The implement- 

ed links, included in the experimental Machine Planner are reported in chapter 

9.3.2.4. These have been used, as described in chapter 11.3.4, to demonstrate that 

the integration of geometric Applications through the PDM has provided a basis for 

the identification of feature interaction data. 

7.4.1 Geometric Queries on a Cell Decomposition Model. 

The need to identify feature interaction data has been identified by Willis [149] and 

by Kanumury [76]. The author has explored geometric queries on the SDSM as a 

means of checking the geometry surrounding a feature. A cell's position, or ad- 

dress, in the SDSM can be found in relation to a position in the CSG model using 

queries provided with the SDSM. Each specific cell in the SDSM can provide 

data, which identifies whether the cell is empty, full or partial, as well as identify- 

ing the cell position in the representation as described in appendix 1. When a cell 

is partial, i. e. contains a face or faces, a pointer to the list of faces is provided from 

the cell. From this basic data specific queries can be built to provide answers to 

specific geometric questions such as: 

Is the surface around this hole clear? 

Is the surface under this clamp clear? 

Is there a thin wall problem around this feature? 
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The following sections describe the methods explored to answer the above queries, 

while the experiments described in chapter 11.3.4 demonstrate that the interactions 

between a Machine Planner and geometric Applications enable such questions to 

be answered. 

One problem with the use of cell decomposition models is that they can use a large 

amount of computer memory and analysis of such a representation can take 

significant amounts of time. During testing it was found that to create a cell 

decomposition model with a level six decomposition, i. e. a breakdown which sub- 

divides the cells six times, would take a few minutes. A level seven decomposition 

would take around 10-15 minutes with a subsequent increase in the time for 

queries to be performed. Higher decomposition levels would have resulted in 

unacceptably high processing times on the computer equipment used, although ad- 

vances in the processing capability of computers suggest that this will not be a 

serious limitation for future integrated systems. 

Cell size is the limiting factor as far as the queries here are concerned. The cells 

had to be small enough to give a reasonably accurate answer, but as large as possi- 

ble to minimise processing time. A cell size of two millimeters was chosen for the 

fixture related queries, as this was felt to be accurate enough for the type of queries 

being used. This resulted in decomposition levels of six for the Glacier test piece 

experiment described in chapter 11.4 and level seven for the bolster plate experi- 

ments described in chapter 11.3.4. Given the cell size, the level of decomposition 

was dependent on the size of component. This cell size would not be adequate for 

thin wall queries, unless all walls could be guaranteed to be a minimum thickness 

of three millimetres. This is due to the accuracy of the checks, as described in 

chapter 7.4.5. 
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7.4.2 Checking the Surface Around a Hole. 

To ensure that a hole is suitable for use in clamping requires that the cells around 

the hole surface are checked, to ensure that they contain only the face against 

which the bolt will clamp. The illustration in figure 7.6(a) shows the distance to 

check as the overlap of the clamp on the face. In this research the distance to 

check has been taken to be half the hole diameter as this represents the size of a 

bolt head. 

Before the surface can be checked the hole edge must be found. This has been 

found by using the feature reference position, with respect to the global coordinate 

system, as a start point. This position has then been used to identify the cell in 

which the start point is contained using the ADA function: 

function get_region_cell_address 

part : in part_params. part_data; 
----------------------- 

reg : in region_params. region_ptr) 
return sdsm_cells. cell_address; 

This function takes as input the cell decomposition representation, or SDSM object, 

for the part and the reference position of the region in question. It returns the cell 

address for the cell which contains the region reference position, i. e. the start 

point. The cell at this address will generally be empty, in the case of a hole, or 

will be partial if the cell contains the edge of the hole. 
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The edge of the hole has to be found next. This has been achieved by stepping 

from the start point, through adjacent cells, to the first partial cell. This contains 

the hole edge. The function used to achieve this is: 

function next valid cell 
- 

(rep 
------------- 

in sdsm_maintenance . sdsm 
in_cell : in sdsm_cells. cell_address; 
axis in axes. three_axes. three_axis; 
pos in Boolean) return 
sdsm_cel ls. cell_address ; 

This function takes as input the SDSM object in question, rep, and the cell address 

from which to start, in-cell. In addition the direction in which to check the cells 

needs to be specified. This is provided by the axis and pos values, where axis can 

be x, y, or z with the direction being positive when pos is true and negative when 

pos is false. The first partial cell in the direction specified is returned. 

Once this first partial cell has been found the surface to checked has been reached 

and the function which is to carry out the check on the surface can be called. The 

function used to check the surface is: 

function clear dist 

(rep : in sdsm_maintenance . sdsm 
in_cell : in sdsm_cells. cell_address; 
disc in gmp. real; 
axis : in axes. three_axes. three_axis; 
pos : in boolean) 
return boolean ; 
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This function takes as input the SDSM object, rep, and the cell containing the hole 

edge, in_cell. The distance to be checked is needed, dist, as is the direction in 

which to check, axis and pos. Each adjacent cell is then checked to identify if any 

face, other than the clamp face, is contained in the cell. If there is another face this 

is taken to be a problem and the function returns a false value. If the "distance to 

be checked" is covered successfully then a true value is returned. 

The above functions have then been used to check around a feature using the func- 

tion clear around_region: 

function clear-around-region 

------------------- 
(rep : in sdsm_maintenance . sdsm 
mid_cell : in sdsm_cells. cell_address; 
requ_dist : in gmp. real; 
spindle_axis in axes. three_axes. three_axis) 
return boolean ; 

This function takes as input the SDSM object, rep, and the start point in the hole, 

mid_cell. Also input are the distance to check, requ_dist, and the relevant spindle 

axis for the setup. The function then uses the next_valid_cell and the clear_dist 

functions, described above, in each of the orthogonal directions perpendicular to 

the spindle axis direction. If the clear dist function returns true in each of the 

directions checked then the function returns true, otherwise it returns false and the 

hole is not passed as clear. 

The clear-around-region function is the main function which confirms whether, or 

not, a hole is suitable for clamping, in terms of interactions with other features. 

The experiments performed using this function to explore fixturing strategy selec- 

tion are described in chapter 11.3.4, and show that the method employed is ap- 

propriate for capturing feature interactions of this nature. A partial listing of the 

ADA code for the clear_around_region function is provided in appendix 5.4 



chapter 7- 135- 

7.4.3 Checking the Surface Under a Clamp. 

To ensure that a surface is suitable for use in clamping, requires that the cells on 

the surface, under the clamp position, are checked, to ensure they contain only the 

face against which the clamp will rest. The illustration in figure 7.6(b) shows the 

clamp width as the distance to check. 

Before the surface can be checked a point on the surface must be identified, to pro- 

vide a basis for starting the check. This has, initially, been assumed to be five mil- 

limetres in from the component edge. However, if the cell at this point is unsuit- 

able then the start point must be moved. This has been been achieved by using the 

function below which checks the start point. If it is found to be unsuitable then it 

moves along the edge of the component until a suitable start point is found. 

function check_start_pt clamps 
--------------------- 

(rep sdsm_maintenance . sdsm 
in_cell : sdsm_cells. cell_address; 
axis axes. three_axes. three_axis; 
pos : boolean) 
return sdsm_cells. cell_address ; 

The check_start-pt_clamps function takes as input the SDSM object, rep, and the 

cell containing the proposed start point, in_cell. The direction in which to check for 

and alternative start point, axis and pos is also input. The cell address for the start 

point is returned by the function. Once this has been found the face under the 

clamp can be checked using the procedure: 
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procedure dist_to_face 

(rep in sdsm_maintenance . sdsm ; 
in-cell in sdsm-cells. cell-address; 
axis : in axes. three_axes. three_axis; 
pos : in boolean; 
dist_to_check : in gmp. real; 
dist_ok : out boolean; 
dist : out gmp. real; 
out-cell : out sdsm_cells. cell_address) ; 

This function takes as input the SDSM object, rep, and the cell containing the start 

point for the check, in_cell. The distance to be checked is needed, dist_to_check, as 

is the direction in which to check, axis and pos. 

The procedure then steps across the face, checking each face list in each partial 

cell using the face_normal_in_view dirn function shown below. Assuming the sur- 

face is clear, over the distance required, the dist_ok returns a true value. If this is 

not the case then the distance where the problem occurred, dirt, and the problem 

cell, out cell, are identified. 

function face_normal_in_view_dim 

(faces in face_lists. list; 
axis : in axes. three_axes. three_axis) 
return boolean; 

face_normal_in_view_dirn checks each face found in the cell. The faces to be 

checked are input as is the view direction, i. e. the axis in which the check is taking 

place. If a non-planar face is found then it is assumed that an alternative feature 

has been found and a problem with clamping is assumed. If a planar face is found 

it may belong to the surface being checked, or the side face of the component, or 

be a problem face as illustrated in figure 7.7. Hence the normal to each planar 

face is checked. If it lies in the same direction as the check which is being made it 

is assumed to imply a problem for clamping. When a problem for clamping is 
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found then the function returns a true value. 

The functions argued here have been encorporated in the Machine Planner imple- 

mentation described in chapter 9.3.2.4, and used in the experimental exploration of 

the Closely Coupled Machine Planner, as will be described in chapter 11.3.4. In 

this way, the successful use of the SDSM representation to provide feature interac- 

tion queries will be demonstrated. The achievement of this major requirement for a 

Machine Planning Application demonstrates one of the values of using an integrat- 

ed environment to link appropriate Application packages together. 

7.4.4 Checking for Thin Walls. 

The combination of the next-valid-cell function and the dist to, face procedure can 
be used to provide the basis for a procedure to check for thin wall sections around 

a feature using a procedure: 
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procedure check-thin-walls 

(rep : in sdsm_maintenance . sdsm 
mid_cell in sdsm cells. cell address; 
requ_dist in gmp. real; 
axis in axes. three_axes. three_axis; 
pos : in boolean; 
thin-wall out boolean; 
thickness : out gmp. real; 
prob_cell out sdsm_cells. cell_address); 

Initially the edge of the feature being checked can be found using the 

next valid cell function. Then the required distance to be checked can be input to 

the dist_to_face procedure which will either identify that there is no thin wall, or 

provide the wall thickness and the cell at which the problem occurs. This pro- 

cedure provides a start point in checking for thin walls but only provides a narrow 

view through one set of cells. The procedure could be readily extended in future 

work to provide greater coverage of the volume surrounding a feature. To ensure 

sufficient accuracy in this procedure, a smaller cell size than that used in fixturing 

interaction checks would be advisable, as described in the next section. The 

check-thin-walls procedure has not been implemented in the experimental 

software. 

7.4.5 Accuracy of Checks. 

The accuracy of the feature interaction checks, using the SDSM, is dependent on 

the cell size used and the surface coverage of the algorithm. 

The actual distance checked in the queries will generally be greater than the nomi- 

nal distance to check, with a maximum error of plus one cell width. In the case of 

a 2mm cell size the distance is measured from the cell centre at the hole edge, in 2 

millimetre increments until the distance to check has been exceeded. Hence the 

variation from the nominal distance can be zero to a maximum of 2 millimetres as 
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point. This has been assumed to be adequate in the case of the fixture based 

queries which have been implemented, but a significantly smaller cell size would 

be needed to check thin wall problems. A cell size of 0.5mm would still check a 

surface 0.5mm beyond the specified distance to check. 

The software implementation of the geometric queries has used the orthogonal 

axes, perpendicular to the spindle axis direction, as the directions in which to per- 

form geometric queries. The use of this approach has illustrated the ability to link 

to the SDSM representation to check feature geometric interactions, although more 

complex algorithms could provide more comprehensive queries. The importance of 

the use of geometric queries, to the author's research, is that the implemented 
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Closely Coupled Machine Planner, described in chapter 9 and 10, and demonstrated 

in experiments described in chapter 11, show that queries on an SDSM can provide 

a solution to problems of feature geometric interactions. It also shows that the in- 

tegration of geometric Applications through the Product Model environment can be 

achieved, which provides the potential for more powerful links between Applica- 

tions in the future. 

Another important aspect of feature interaction is that of dimensional interactions, 

as discussed in chapter 6.2.3. The problem of linking dimensional data through a 

Product Data Model, to a Closely Coupled Machine Planner is discussed in the fol- 

lowing chapter. 
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CHAPTER 8 

THE DIMENSIONAL FACTOR IN A 

CLOSELY COUPLED MACHINE PLANNER 

8.1 INTRODUCTION. 

This chapter discusses the challenge and opportunities which can be offered by 

linking dimensional data to a Closely Coupled Machine Planner. The dimensional 

representations available in the PDM, i. e. parameter values and the Relationship 

Graph, are described. The method by which dimensional data has been linked to 

the Machine Planner is explained, which is then used in the realisation of the ex- 

perimental Machine Planning Application described in chapter 10. 

The limitations of the available methods to provide an appropriate source of dimen- 

sional data for Machine Planning is discussed and an argument for methods re- 

quired in the future is made. A method of linking the Relationship Graph to 

features is argued, to provide a source of inter-feature dimensional data for 

Machine Planning. This provides an initial source of dimensional data for planning, 

while links to tolerance analysis Applications, made possible by the integrated en- 

vironment, is further argued, as a future requirement to confirm the suitability of 

generated plans. 
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8.2 DIMENSIONAL AND MACHINE PLANNER INTERACTIONS 

A stand alone Machine Planner requires dimensional data to function effectively. 

Dimensional relationships within features influence the cutter which should be used 

and the processing parameters which should be used in a part program. Dimension- 

al relationships between features can influence the need to machine two operations 

with a common tool, a problem identified by Carlier [24] and inter-feature dimen- 

sional relationships can also influence the need to machine two operations in the 

same setup, as investigated by Boerma [17]. 

An integrated Machine Planner opens up the possibility of linking to tolerance 

analysis Applications, providing different views of the dimensional representation 

of the component. A designed component will have a dimensional representation 

which reflects the functional requirements of the component. However, as has al- 

ready been argued in chapter 6.2.3, a Machine Planner requires dimensional rela- 

tionships which reflect the machining features on the component and their interrela- 

tionships. This is a different view fron the functional design view. Furthermore, 

once setup and operation plans have been generated, a further dimensional 

representation is generated, which is based around the fixture datums in each setup. 

Hence there is a need in future systems to capture and assess these different views 

of the same component. This aspect of interaction can be accommodated by links 

between a Machine Planner and tolerance analysis packages, as argued in section 

8.4.2. 

Capturing dimensional relationships in a PDM also opens up the ability to share 

such data across a range of Manufacturing Applications, ensuring current versions 

of data are always used. An example of linking dimensional data in this way can 

be found in the MCG Applications of the ISS project, illustrated in figure 4.5. This 

shows how the data from the Relationship Graph is required by all three Applica- 
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tions and can be accessed from the central Product Data Model. Section 8.3.2 

describes the problem with linking a Machine Planner directly to the Relationship 

Graph, while section 8.4.1 argues a method by which Relationship Graph and 

feature data can be brought together to identify inter-feature dimensional data. 

8.3 DIMENSIONAL REPRESENTATIONS IN THE PRODUCT DATA MODEL. 

This section describes the dimensional representations available in the PDM and 

their limitations for use in Machine Planning. 

8.3.1 Parameter Values. 

Parameters in the Structure Editor can be used to define tolerance values of the 

form: 

tolerance value = nominal value +/- tolerance 

These have been used in the definition of pre-defined machining features as 

described in chapter 10.4.1 and have been used to represent key component dimen- 

sions as described in chapter 10.4.3. This has proved to be an inadequate means of 

representation, however, as parameter values cannot be used to represent inter- 

feature dimensions. There is no apparent representation of data, inter-linking 

features, to which parameters can be applied. Parameters have been linked to the 

geometric description of the component which in turn have been linked to the Re- 

lationship Graph(RG) method of representing dimensions and tolerances, described 

in the next section. This provides a aid to the identification of inter-feature toler- 

ances as argued in section 8.4.1 
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Parameters, related to features, have also been used to define the surface roughness 

requirement for a feature, as described in chapter 10.4.1. However, this type of 

parameter is not linked to geometry and therefore cannot, in turn, be linked into 

the RG. 

8.3.2 The Relationship Graph 

The Relationship Graph (RG) method of representing dimensions and tolerances, 

and linking them to a geometric description has been researched by Wickens 

throughout the ISS programme and a full description of the technique is provided 

in [148]. This has provided a mechanism for the representation of dimensional and 

geometric tolerances and surface texture. 

The Relationship Graph describes sets of Dimension Entities (DE) and the Con- 

straints which apply to them. A Dimension Entity is a group of geometric ele- 

ments, commonly a face or a centre line. A Constraint represents dimensional data 

covering dimensional tolerances, geometric tolerances or surface texture. In his 

work, Wickens has shown how the RG can be used to represent dimensional data 

and how this can be linked to geometric descriptions. Relationships are defined for 

each of the x, y and z directions relating to a component model. The RG starts from 

a coordinate relationship which consists of a mutually perpendicular set of Dimen- 

sion Entities. This defines the x, y and z legs of the RG. Figure 8.1 provides a2 Di- 

mensional representation of a Relationship Graph where fl -> flO represents the 

DE nodes and a -> f represents the constraints between them. 

There is no association from the RG to the feature representation in the PDM. The 

RG provides only a link to geometry through the DE nodes. In addition, although 

the RG provides dimensional relationships in the x, y, and z directions there is no 

direct association from this to the direction of approach which could be used to ac- 
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cess a particular dimensioned face. For example, consider the dimension 'd' in 

figure 8.1. Traversing the RG provides no information to tell whether the associat- 

ed DE's, f6 and f7, are on the top or the underside of the component. The next 

section argues a method which can be used to identify inter-feature tolerances, as- 

suming the dimensional relationships represented in the RG provide a view of di- 

mensions which reflects a feature based tolerance scheme. 

8.4 INTER-FEATURE CONS'T'RAINT IDEN'T'IFICATION. 

8.4.1 A Method of Linking the Relationship Graph to Features. 

Although the Relationship Graph has been linked to geometry, there is no associa- 

tion from the RG to the feature representation and, therefore, there is no direct 

method by which a dimension can be identified as being an inter-feature constraint 

5, f8 
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or being contained within a feature. Although geometry would appear to be a com- 

mon link between features and the RG, this does not provide a straight forward 

link, as dimensional constraints are linked to Dimensioned Entities, which may be 

centre lines, or groups of faces, which do not link back readily to the feature 

description in the ISS. 

Geometric tolerances and surface texture will need to be linked to features, or 

between features, through an analysis of the geometry. There are, however, two 

common links between the RG and feature descriptions which enable inter-feature 

dimensional constraints to be identified. These are parameter values and the Struc- 

ture Editor "node instance". When generating a Relationship Graph all parameters 

which have been used in the component definition are evaluated and tolerance 

values included in the RG. Hence parameters used in feature definitions will be 

carried through to the RG. 

All nodes in the PDM are built using the SE which provides that each node is of a 

type called a "node instance" which can then have, below it, data relating to what- 

ever data structure was defined in the PDM. This "node instance" provides pointers 

into the PDM which allows software routines to access the particular part of the 

data structure for which the "node instance" is known. Where data is common, but 

appears in more than one part of the PDM, then it is represented only once, and 

software links are provided to the areas in the PDM where the data is to be found. 

It is therefore possible, where two parts of the data structure share the same data, 

to identify this by comparing node instances as these will also be shared. 

Figure 8.2 provides an illustration of the component level RG and the feature level 

RG, highlighting common node instances. Each feature's RG can be traversed and 

the node instance for each of the feature related dimensional constraints identified. 

With this information the component level RG can then be traversed and the node 
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instance of each component related dimensional constraint compared against the 

node instances related to features. If a match is found then the component con- 

straint is also a feature based constraint. If no match is found then it is an inter- 

feature constraint The next DE in the list will identify the feature to which it is 

linked. Each of the x, y and z DE's can be checked in this way to provide a com- 

plete representation of feature and inter-feature tolerances. 

In addition to identifying inter-feature constraints this procedure can also be used 

to identify the related direction of approach of the constraint, which is not held 

with the RG, as mentioned at the end of the previous section. The feature spindle 

axis directions can be used to identify the views from which dimensions are visi- 

ble. 
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The nature of the ISS programme has been such that the work of researchers has 

been progressing in parallel. Because of this, the Relationship Graph, linked to the 

PDM, has only recently been available. Attempts, to date, to link this into the 

Machine Planner have raised Relationship Graph software bugs, which have not, as 

yet, been resolved. 

8.4.2 Tolerance Analysis Requirements in Setup Planning 

The dimensional relationships on a chmponent description, as it comes from a 

designer, reflect the functional requirements of the design, and may not take 

manufacturing methods into consideration in any detailed way. However, a 

Machine Planner needs a representation in terms of feature and inter-feature rela- 

tionships. There is a need, therefore, for some analysis of the tolerance relation- 

ships to take place, in order to generate a feature based relationship, as illustrated 

in figure 8.3. 

Feature and inter-feature constraints can be used in making planning decisions. 

Research, such as that of Boerma [171 assessing inter-feature constraints, could be 

applied to eliminate fixture strategies which are unable to meet the tolerance re- 

quirements. For example the necessary grouping of side faces into a single setup 

to achieve squareness constraints could eliminate the use of the Side Clamping 

Strategy. 

Having generated setup and operation plans, new sets of dimensional relationships 

will exist, which relate to the manufacturing of the component. Each setup will 

have a datum. Each operation in a setup will be related to that datum and will have 

a tolerance associated to it which reflects the accuracy which can be achieved in 

manufacture. Similarly tolerances can be related between features in different set- 
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ups. An example of datum related tolerancing compared to feature based toleranc- 

ing is illustrated in figure 6.6. 

Once a datum based tolerance schema has been generated, there is then a need for 

a tolerance analysis comparison of the the datum toleranced model against the 

design based model, to ensure that the functional tolerances can be achieved with 

the manufacturing method selected. This requirement is also illustrated in figure 

8.3. 
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The value of working within an integrated environment, is that tolerance analysis 

Applications could be added into the system, providing a basis for a more 

comprehensive design and manufacture Applications. This is an area of major im- 

portance for future integrated systems which should be further investigated. 
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CHAPTER 9 

THE EXPERIMENTAL MACHINE PLANNING APPLICATION 

9.1 INTRODUCTION. 

This chapter explains and defines the Machine Planning functions, strategies and 

rules which have been implemented in order to explore the central hypothesis of 

the thesis, that a Machine Planner can function effectively as a Closely Coupled 

Application in a Product Modelling Environment. This work links directly on to 

chapter 10, which explains how the Product Data Model has been populated, and 

linked to the Application. Thereafter the success of the approach taken is demon- 

strated through the experiments reported in chapter 11. 

The Machine Planning implementation has provided a sufficient basis for the ex- 

ploration of Machine Planning as a highly automated subset of an integrated design 

and manufacture system. The implementation is derived from activities MP1, MP3 

and MP4 of the Machine Planning IDEFO model documented in appendix 3. Ele- 

ments of the ADA code used in the implementation, are reproduced in appendix 5 

and a guide to the use of the software is provided in appendix 6. 
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9.2 THE SCOPE OF THE MACHINE PLANNER IMPLEMENTATION 

9.2.1 Planning Functions to Explore the Product Model Environment 

Setup, operation and NC planning functions have been implemented, such that an 

experimental exploration of the Product Model environment, explained in chapter 

4, could take place. The implementation has been aimed at the following: 

1. To demonstrate that the proposed Product Data Model specification, which cap- 

ture component and feature level data as argued in chapters 5 and 6, provides a 

comprehensive source of geometric, dimensional and planning data which is ap- 

propriate for the Machine Planning Application. 

2. To show that the Integration of the Machine Planning Application can be 

achieved. 

3. To demonstrate the viability of the integration of the Manufacturing Code Gen- 

eration Applications of Machine Planning, Inspection Planning and Manufactur- 

ing Data Analysis through the Product Model environment. 

4. To explore the links to the Geometric Representations described in chapter 4.4.1 

and the Relationship Graph [148], through the Product Model environment, 

which can enhance the capability of a Closely Coupled Machine Planning Ap- 

plication. 

9.2.2 The Implemented Planning Functions 

The overall aim of a Machine Planner is to plan how a component, or components, 

should be machined on a particular machine type and to generate appropriate 

machining plans and part programs. There are a number of views as to how plan- 

ning functions should interact. Chan [25] proposes that setup planning should be- 
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come a subset of process planning, with operation planning becoming a down- 

stream activity. CAM-I [47] have produced an IDEFO model of process planning, 

with setup and operation planning as key activities, while recognising the need for 

the exploration of integration between operation and NC planning [113]. The view 

taken in the author's research of how MP functions should interact is provided in 

the IDEFO model of Machine Planning in appendix 3. This has been produced fol- 

lowing consideration of the Data requirements and outputs of the various functions, 

including the interactions between setup, operation and NC planning and between 

pre-defined and recognised features. 

The implemented planning functions consist of the activities, using IDEFO termi- 

nology, of Identify Component Setups, Sequence Operations and Generate Machine 

Controller Code. These are activities MP1, MP3 and MP4 of the Machine Plan- 

ning IDEFO model and are illustrated in figure 9.1(a). The break down of Identify 

Component Setups, Sequence Operations and Generate Machine Controller Code 

into sub-activities, and their software implementation, is explained in the following 

sections. Activity MP2, Identify Machine Batch Setups, is concerned with multiple 

component setups, and was not pursued as the author's work was constrained to 

consider only single components. 

The sections explaining the software implementation follows the "top down" ap- 

proach used in IDEFO modelling. The actual implementation of the software, how- 

ever, has followed a "bottom up" approach. This has enabled the lowest levels of 

the PDM, the Operation Data sub-set, to be explored experimentally as describe in 

chapter 11, before extending the exploration to higher levels of feature data, and 

then to component data and feature interactions. 
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9.2.3 Fixturing Strategies and Machining Rules. 

Fixturing strategies define ways in which different work-holding devices, on a par- 

ticular machine tool type, can be used to fixture a component. There has been lit- 

tle exploration in the research community into the representation of such strategies 

in computerised setup planning. Willis [149], in considering different setup stra- 

tegies, identified the need to consider the global geometry of the component and 

geometric constraints on the machining of the part, while Kanumury [76] used a 

strategy for the use of a vice when exploring fixture planning. 

The important point coming from their work, as far as the author's research is con- 

cerned, is that component geometry can provide constraints on the identification of 

an appropriate strategy. As such there was a need to represent alternative ways in 

which components could be fixtured on the machine table, to explore how com- 

ponent data from the Product Model could be used to influence strategy selection. 

To provide a basis for this exploration, three simple fixturing strategies were imple- 

mented. These were Side Clamping, Through Clamping and Down Clamping as il- 

lustrated in figure 9.2. These, respectively, provided a mechanism whereby a setup 

sequence can be generated on the basis of the use of a vice, bolts or, clamps. They 

also provide a means of capturing appropriate datum points for each of the stra- 

tegies, as illustrated in the figure. The use geometric queries in strategy selection 

has been argued in chapter 7.4. These, too, are encorporated within the relevant 

fixturing strategy. An example of the software code, representing the Through 

Clamping Strategy, is provided in appendix 5; This appendix also provides a listing 

of the "clear around feature" query, defined in chapter 7.4.2. 
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The fixturing strategies represented in the research have provided a basis from 

which it has been shown that feature interactions, influencing fixture strategy selec- 

tion, can be identified. This has been achieved, based on the geometric queries 

described in chapter 7.4 and the experimental work described in chapter 11.3.4. 

Further work, addressing more complex strategies, will be required in future 

research. A paper, describing the research on fixturing strategies and geometric 

queries in setup planning, has been published in the International Journal of Pro- 

duction Research [156]. 

Machining rules provide control over the performance of machining activities. This 

is an area of research where the use of knowledge representation techniques are be- 

ing explored extensively as described in the literature survey. Machining rules, in 

the author's research, provide a simple basis for control over the functions of the 

exploratory planner, such that the Close Coupling of Machine Planning functions to 

the PDM could be investigated. Knowledge representation has not been pursued as 

an issue. The ADA programming language has been an appropriate tool to 

represent simple control rules, and rules for setup planning, operation sequencing, 

tool selection and cutting parameter determination have been implemented using 

ADA function calls which are listed in appendix 5.9, and used as described in the 

following sections. 
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I 

9.3 THE FUNCTIONS TO IDENTIFY COMPONENT SETUPS 

The Identify Component Setups activity analyses a workpiece, to decide on the se- 

quence of setups and the operations which should be used in the manufacture of a 

component. This is a key problem in Machine Planning, with many aspects to be 

considered as discussed in chapter 6.3.3. The approach taken here follows the 

method argued at the end of chapter 6.3.3. 

Identify Component Setups comprises four activities, MP11, MP12, MP13 and 

MP14, in the IDEFO model of Machine Planning. These are illustrated in figure 

9.1(b). The implementation of MP 11, MP 12, and MP 13, Identify features, Sequence 

Setups and Evaluate Features, and their sub-activities, are detailed below. MP14, 

Finalise Setup Sequence, is included in the model to represent the reassessment of 

a setup sequence, should the initial planning route prove unsuccessful. This was not 

implemented in the experimental software as it was not essential to the exploration 

of the Closely Coupled Application. 

9.3.1 Identify Features 

Identify Features, activity MP 11, provides a breakdown of the workpiece into 

features. This requirement in planning has led to wide ranging research into feature 

recognition, as described in the literature survey. Choi [30,31], has achieved the 

recognition of elementary shapes such as slots and pockets, while hierarchies of 

patterns have been recognised with the PART system [140], which makes some 

progress towards the recognition of interacting features. The end point of this ac- 

tivity is to provide the feature process data which is needed in planning. The 

author's research has explored the representation of such data in a PDM, through 



chapter 9- 159 - 

the use of pre-defined features, as argued in chapter 6.2.4 The software implemen- 

tation of the Identify Features activity has extracted feature data from a Product 

Model containing a component description built using pre-defined, parametric 

features, as described in chapter 10.4.4. The relationship of the implemented ap- 

proach to feature recognition is proposed in the Machine Planning IDEFO model in 

appendix 2. 

In the experimental implementation, the machining feature process data, as defined 

in chapter 6.4, is extracted directly from the component definition in the Product 

Model. This has been done using the menu options explained in chapter 10.5.2, 

while a full description of the use of the software can be found in appendix 6. The 

feature process data, and the geometric transformations which have been applied to 

each feature, are extracted. The transforms are applied to the feature process data 

to identify the position of each feature with respect to the global coordinate system; 

and the orientation of the spindle axis directions, fixture face normal directions, and 

tool approach directions. The author's implementation has used the orthogonal 

axes directions of +x, -x, +y, -y, +z, -z as a sufficient basis for the experimentation, 

to demonstrate links from feature position and orientation data in the PDM to the 

Machine Planner. This meets the requirements of feature orientation, established in 

chapter 7.3.2, and provides a basis for the identification of feature positional data 

relationships, as argued in chapter 7.3.1. 

The stock and component geometry data, captured in the component level planned 

process data structure defined in chapter 6.5, have also been extracted from the 

Product Model, as part of the Identify Features activity. This is needed when iden- 

tifying relative feature positions, as discussed in chapter 7.3. Material specification 

data has also been extracted to be used in the calculation of processing data, 

described in section 9.3.3.2. These data elements have also been extracted through 

the implementation option '5' described in chapter 10.5.2, while the details of the 
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software link to the PDM are listed in appendix 5.1. The Product Data Model has 

been constructed to take full advantage of the use of parameter values, therefore 

limiting the need for geometric analysis where possible. The length, width and 

depth of the component have been extracted from the general parameter values and 

the stock overall dimensions have been found in the same way. It is recognised 

that more complex geometries would require greater levels of geometric analysis. 

In addition to machining feature data, a Machine Planner requires data on fixturing 

features, as discussed in chapter 6.2. In the software implementation, possible 

fixture features have been restricted to be either through holes and Face features. 

These have been identified from the names of features contained in the Product 

Model component description, explained in chapter 10.4.4. Hence it has been a re- 

quirement that features which can be used for fixturing, must contain either 

"through hole", or "face" in their name. This has overcome the need to explore 

fixture feature recognition, which would have detracted from the main aim of the 

research. In the software implementation, the machining feature names are checked 

at the start of option 7, described chapter 10.5.2 and catagorised as "through hole", 

"blind hole" "face" or "other" features. These are then used in fixture strategy 

selection described in section 9.3.2.4. 

The identification of the position of features, with respect to the component coordi- 

nate axes, a requirement established in chapter 7.3.1, is also included in the experi- 

mental implementation. The volume of material to be removed from the workpiece 

is also calculated, a requirement described in chapter 6.3.3 and used in fixture stra- 

tegy selection described in section 9.3.2.4. These software procedures are also 

called from option 7, described chapter 10.5.2, while the software link to the PDM 

which calls the implemented software is listed in appendix 5.1. 
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9.3.2 Sequence Setups 

Sequence Setups, activity MP12, takes the workpiece description, including its 

breakdown into machining features, and decides on an appropriate sequence of set- 

ups and the features on the workpiece which should be used for fixture and datum 

setting. The author has chosen to implement a group of procedures which assess a 

component description against a number of fixturing strategies to produce a setup 

sequence. 

Worldwide research into the automation of the Sequence Setups activity is still at 

an early stage. Armstrong [7] used material removal capability as a basis for 

sequencing, while Joshi [73] showed that spindle axis directions could be used for 

grouping. Darvishi [40], Iwata [69], and Roy [125] have explored knowledge 

representation issues, while Willis [149] and Kanumury [76] discuss the use of 

fixture strategies. Halvei [56] and Boerma [17] consider tolerance analysis of the 

component to decide on a sequence of setups. 

In the author's work it was important to explore the PDM, as a source of product 

data which is appropriate to a Machine Planning Application. The Sequence Setups 

implementation provided the means to explore the use of the feature level process 

data, as defined in chapter 6.4; the use of the component level planned processed 

data, from the definition in chapter 6.5; and the use of feature positional and in- 

teraction data, using the methods chosen in chapter 7.3 and 7.4. 

Five sub-activities, Group Features by Spindle Axis Direction, Identify Geometric 

Relationships, Apply Setup Rules, Select Fixturing Strategy and Update Setup Data, 

meet the necessary and sufficient scope of the Sequence Setups implementation, 

and are described below. These sub-activities form activities MP121 -> MP125 in 

the IDEFO model and are illustrated in figure 9.1(c). Appendix 5.2 provides a list- 
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ing of the ADA code used in the "comp_setups_sequ_method "procedure, within 

which the functions to perform the Sequence Setups activity are contained. 

9.3.2.1 Group Features by Spindle Axis Direction 

This implementation uses the Spindle Axis Directions of each feature to associate 

features with setups. Cases where a feature has multiple spindle axis directions 

have been catered for by creating duplicate features, one to represent each possible 

spindle axis direction, a requirement identified in chapter 7.3.2. When a duplicate 

feature is created, new reference axes for the feature have been defined as part of 

the implemented procedure. The procedure used in the implementation is contained 

in the ADA code listed in appendix 5.2. 

9.3.2.2 Identify Geometric Relationships 

It was initially assumed that the Identify Geometric Relationships would form the 

basic activity in which all the geometric relationships required in setup planning 

would be identified. However, geometric relationships, between features, are rela- 

tive to some point in a coordinate system. They cannot, therefore, all be assessed at 

one stage in the overall planning procedure, unless each reference point and coordi- 

nate system is known. For example, the relative position of features to a datum 

cannot be identified, until the datum position is known relative to the setup axes. 

Therefore the implementation of this relationship cannot take place until after the 

fixturing strategy to be used is known. 

The implementation of Identify Geometric Relationships identifies the position of 

features in a setup, relative to the setup coordinate axes, a requirement discussed in 

chapter 7.3.1. The remaining geometric relationships, discussed in chapter 7, are 

implemented within subsequent functions and are introduced progressively through 



chapter 9- 163 - 

this chapter. Geometric relationship checks are contained in the ADA code listings 

in appendix 5.2,5.3 and 5.4. 

9.3.2.3 Apply Setup Rules 

The Apply Setup Rules activity calls, and uses, the setup rules listed in appendix 

5.9. These provide the technological constraint for fixture strategy selection. The 

application of the rules result in the principal setup, or the key setup to be fixtured, 

which is then passed to the Select Fixturing Strategy activity. 

In the software implementation, this activity is represented by a number of func- 

tions and procedures, as can be seen in appendix 5.2. The rules called are limited 

to a necessary minimum, but provide a basis from which each setup can be 

checked to identify the principal setup. The procedures implemented assess the set- 

ups and reorder then, bringing the principal setup to the head of the list. This is 

firstly done by counting the number of features in each setup. The setup with the 

highest number is brought to the head of the list. Then the volume to be removed 

in each setup is calculated. If any setup has a high volume to be removed, based 

on a setup rule, then it is brought to the head of the list. The third check counts the 

number of features in each setup with tight tolerances, again based on a setup rule. 

The setup with the highest number is brought to the head of the list. 

Having performed the actions described above, the setup at the head of the setup 

list becomes the principal setup. At this stage, each feature in each setup, is 

checked to identify its general suitability for fixturing. This has been done by 

firstly catagorising features, dependent on their relative position in the setup, as be- 

ing "central", "mid, " or "outer". A central feature's position is at x=0, y=0 relative 

to the setup coordinate axes. An outer feature has been defined as being in the 

outer third of the setup surface. With this information, and the feature types al- 
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ready identified as described earlier, the setup rules which apply to fixturing are 

called. Face features are flagged as suitable for Primary Location; Face features 

and through holes are flagged as suitable for clamping; through and blind holes 

with a diameter greater than 6 mm, and catagorised as "outer", are flagged as suit- 

able for Secondary Location as are Face features. 

The final action performed before fixture strategy Selection was then to identify the 

positions of each setup relative to the principal setup, as described in chapter 7.3.3. 

The ability to identify an appropriate principal setup was limited by the lack of 

inter-feature dimensional data in the implementation, and the need for a close 

analysis of the rules which influence setup planning. Irrespective of these limita- 

tions, the implementation has provided a basis for the selection of a fixturing stra- 

tegy, which has enabled the Close Coupling of a Machine Planner to be investigat- 

ed. 

9.3.2.4 Select Fixturing Strategy 

The Select Fixturing Strategy implementation has been used to explore the use of 

geometric queries, as discussed in chapter 7.4, to identify feature interaction data, 

and to explore the PDM as a mechanism for the provision of product data for plan- 

ning, as discussed in chapters 5 and 6. The implementation is listed as part of the 

ADA code in appendix 5.2. 

In the software implementation, Side Clamping is selected if light machining, only, 

is required. If this is not the case, then Through Clamping is tried. Its suitability is 

dictated, at this stage, by the availability of through holes, which have passed the 

setup rules. If Through Clamping is also found to be unsuitable, then Down 

Clamping is tried. Software representations of each of these three strategies, 
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described in section 9.2.3, have been implemented. 

A listing of the ADA code used in the definition of the Through Clamping Strategy 

is provided in appendix 5. This shows that the principal setup is firstly checked for 

suitable holes, using the results of the Apply Setup Rules activity described in sec- 

tion 9.3.2.3. Each hole found is then checked using geometric queries as argued in 

chapter 7.4.2, to ensure that fixtures will not overlap any features to be machined. 

The next stage of the Through Clamping Strategy implementation is then depen- 

dent on the number of suitable holes which have been found. A minimum of three 

holes are required in the implementation, two for clamping and one as a datum. 

Assuming this stage is passed successfully, then preliminary setups, datum and 

fixture features are found as part of the strategy, as described in section 9.2.3; 

feature positions are reset relative to the fixture datum, as described in chapter 

7.3.1; and the side Face features are converted to profiles to suit the fixturing stra- 

tegy, as discussed in chapter 7.3.2. 

The ADA code, used to represent the geometric query which checks around a 

feature for interactions, is listed in appendix 5. Each of the implemented fixturing 

strategies, have been tested in the experiments described in chapter 11.3.4, which 

show that the approach taken is successful in providing a basis to check feature in- 

teractions. Setup plans generated through the use of each implemented fixturing 

strategy has been documented in appendix 7.4. 

9.3.2.5 Update Setup Data 

The Update Setup Data implementation, forms the final part of the ADA procedure 

listed in appendix 5.2. The implemented procedures follow from the duplication of 

features, performed in the Group Features by Spindle Axis Direction activity 
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described above. Such features must to be removed, and this action is performed 

at this stage. The procedures check the name of each feature, in succession 

throughout a setup, against the feature names in subsequent setups. Where duplica- 

tion is found the latter feature is removed. This procedure is repeated for each set- 

up in turn. As a result of this deletion some setups may have no features to be 

machined. Where this has occurred the setup has also been deleted from the se- 

quence. 

There is still a need to pursue an implementation of updates to setup geometry, as 

argued in chapter 7.3.4. This has not been pursued in the time available for the 

work, but no fundamental problem in the implementation of this requirement can 

be envisaged. 

9.3.3 Evaluate Features 

Feature recognition research generally aims to identify geometry of significance for 

manufacture. The Evaluate Features activity, MP13, takes as input the setup se- 

quence, and evaluates each machining feature, to identify the operations which are 

needed to machine it, and the possible tools which can be used in each operation's 

manufacture. The IDEFO activity MP13, provides a view of how the pre-defined 

and recognised features approaches may be combined once setup level data has 

been identified. By using pre-defined features in the implementation (MP133), the 

operation data required to identify cutting tools can be extracted from each pre- 

defined feature and hence, operation data can be found directly from the Product 

Model rather than requiring a recognition process. 
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The implementation of Evaluate Features, activity MP13, then contains, within 

MP133, an implementation of Extract Feature Operations (MP1331), and Identify 

Cutting Tools (MP1332), and an implementation of Calculate Processing Data 

(MP134). These activities extract operation data from each pre-defined feature, and 

select possible tools and cutting parameters for each of the defined operations, as 

described in the following sub-sections. These functions are called from the link to 

the PDM described in chapter 10.5.2. The ADA code, which provides these func- 

tion calls, is represented under variant 8 in appendix 5.1. 

The implementation of these functions have provided a basis from which to prove 

the operation data structure in the PDM. Each experiment, described in chapter 11, 

has involved tool and processing data calculation, and the machining instructions 

and part programs, provided in appendix 7, document the data resulting from these. 

9.3.3.1 Identify Cutting Tools 

This activity take data from an operation and identifies the possible tools which can 

be used in its manufacture. Tool selection research for milling operations, by 

Melkote [96], has addressed the assessment of tool parameters for specific machin- 

ing operations. Significantly, however, it has been recognised by Carlier [24] that 

specific tools should not be chosen for an operation without regard to the other 

operations to be performed during the machining sequence. As discussed in chapter 

6.3.1, a tool selection procedure has been implemented to follow Carlier's ap- 

proach. A listing of ADA code used in the procedure is provided in appendix 5.5. 

Selecting tools to machine an operation involves the assessment of a wide range of 

cutters. In the experimental implementation, is has been assumed that only cutters 

with inserted tips would be used, except in the case of drills, where high speed 

steel has been assumed. The limitation to the use of inserted carbide provided a 
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restriction on the experimental capability when wishing to include the use of slot 

drills. To overcome this, solid carbide slot drills have also been used, but they have 

been assumed, in the experimental software, to have an inserted tip. This has en- 

abled a wider exploration of the Close Coupling of a Machine Planner, without the 

need for major changes to the underlying software implementation. 

The Identify Cutting Tools procedure has provided a basis for the assessment of the 

operation data structure, defined in the PDM, and has provided data which has 

been used in operation sequencing and part program generation. In combination 

with the range of implemented Machine Planning functions, this has provided a 

valuable aid to the assessment of the Closely Coupled Machine Planner. 

9.3.3.2 Calculate Processing Data 

The role of this activity is to generate speed and feed rate information, and to iden- 

tify cut depths and cut widths, appropriate for use on the machine under considera- 

tion. Computer based cutting parameter determination generally uses either machi- 

nability data tables, such as those by Metcut [99] or an extended form of Taylor's 

tool life equation [100]. The latter method provides some flexibility by allowing 

the user some choice in selecting required tool life values, and provides the poten- 

tial for more comprehensive methods of cutting data calculation in future systems. 

The need in the author's research was to calculate cutting parameters which could 

be used in part programs, and which in turn could be used to machine components, 

confirming the PDM as an appropriate mechanism for the Close Coupling of a 

Machine Planner, rather than research improved methods for cutting parameter 

determination. 
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A listing of the key elements of the ADA code used in the Calculate Processing 

Data implementation is provided in appendix 5.6. The implementation was based 

on the use of data from the Production Engineering Research Association (PERA) 

[1001, who provided exponent values for a tool life equation for milling grade 17 

grey cast iron. The use of the implemented software gave problems in the relative- 

ly high speed and feed rate data which were generated. However, components 

could still be produced on the Wadkin V4-6, using the data, which was considered 

to be sufficient for the purposes of this research. Other machining situations were 

covered by the use of tabular data from Metcut Research Associates [99]. 

As in the case of the Identify Cutting Tools implementation above, this procedure 

has provided a basis for the assessment of the operation data structure, described in 

chapter 6.4, and has contributed to the overall ability to explore the Closely Cou- 

pled Machine Planner. 

9.4 THE SEQUENCE OPERATIONS FUNCTION 

Sequence Operations, MP3, takes as input the setup sequence, extracting a list of 

operations for each setup, where possible tools for each operation have been 

identified. The activity then produces a sequence of operations, identifying the 

specific tool which should be used in each case. The constraints on operation 

sequencing have been discussed in chapter 6.3.2. Joshi [73] has identified pre- 

cedence as a constraint, while Carlier [24] has identified technological constraints 

and Chen [29], considering turning operations included cost considerations in his 

sequencing method. This research has implemented a procedure which enables the 

Close Coupling of the MP Application to be explored by generating operation 

plans for a setup, rather than attempting to advance the understanding of operation 

sequencing in its own right. 
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A listing of the ADA code for the operation sequencing procedure is provided in 

appendix 5. The implementation has been divided into two parts to meet the re- 

quirements discussed in chapter 6.3.2. These parts being the grouping of operations 

into sub-groups, followed by the selection of a specific sequence of operations with 

related tooling, minimising the time taken to machine the setup. The first part of 

the implementation follows from the operation sequencing rules listed in appendix 

5.9. These are based firstly on performing roughing operations before finishing 

operations and secondly on performing operations in the order of facing, then end 

milling and slotting, then drilling. 

The second part of the implementation takes into account the influence of cutter 

selection on sequencing operations. This has been done by sequencing each group 

of operations on the basis of decreasing diameter constraints. This produces a list 

which has a trend towards smaller cutter diameters moving towards the end of the 

list. Each possible cutter is then checked, working backwards through the list of 

operations, to identify the cutter which will take the least time to machine the 

operation. This takes into account the time required to change the tool in the spin- 

dle. This produces a sequence, based on minimising the time taken to machine the 

setup. 

The effectiveness of the implementation could be improved by the inclusion of 

geometric precedence checks, as discussed in chapter 6.2.3. A comparison of 

inter-feature tolerances on an operation sequence is also needed as discussed in 

chapter 8. Nevertheless, the implemented procedure has produced operation plans, 

which have been used successfully in the production of part programs, as discussed 

in chapter 11 and represented in appendix 7. 
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9.5 THE FUNCTIONS USED TO GENERATE PART PROGRAMS 

The Part Programs generated in this research have been produced for a GE2000 

controller [50] on a Wadkin V4/6 machining centre. The extraction of a part pro- 

gram must ensure that the correct parameters are sent to the tool path description 

of each operation in turn, such that a segment of a part program is generated for 

each operation. It is necessary to produce NC code to start the program, set the 

fixture datum to zero, using a touch trigger probe, and end the program once code 

has been generated for each of the operations. 

Input from the user is requested to identify the approximate position of each fixture 

datum, relative to the machine table, as discussed in chapter 7.3.1. This data is then 

used, when generating the part programs, to control probing routines which locate 

the actual position of the fixture datum for each setup, and set fixture offset values 

in the machine controller accordingly. 

The utilities used to produce individual pieces of NC code, for operations, have 

been generated through separate work in the research laboratory by M. J. Corrigall 

[36]. The Author's research has used these routines to generate part programs 

from an operation sequence. These part programs have then been used to produce 

components which have been checked with the Product Model representation and 

used in the downstream Inspection Planning and Manufacturing Data Analysis Ap- 

plications, described in chapter 5.5. 

A listing of the ADA code used in the extraction of machine control code is pro- 

vided in appendix 5. This has been used to generate part programs, as described in 

the experimental work of chapter 11. These part programs have then been success- 

fully used to machine the testpiece components on the Wadkin V4-6 machining 

centre. 
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This chapter has explained and defined the Machine Planner functions, strategies, 

and rules which have been implemented in order to carry out the research explora- 

tion. The following chapter explains how a Product Model can be built from the 

PDM, and how the implemented Machine Planning functions can be linked to the 

PDM to produce the Closely Coupled Application which has then been explored 

experimentally as described in chapter 11. 
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CHAPTER 10 

THE REALISATION OF AN EXPERIMENTAL MACHINE PLANNING 

APPLICATION IN THE PRODUCT MODEL ENVIRONMENT. 

10.1 INTRODUCTION. 

This chapter describes the work performed to realise a Closely Coupled Machine 

Planning Application in the Product Modelling environment. It explains the link- 

age of the Machine Planning software, described in chapter 9, to the Product Data 

Model described in chapters 5 and 6. Appendix 4 documents data models which 

have been populated, and used in the experimental exploration of the Closely Cou- 

pled Application, while appendix 6 provides a guide to the use of the experimental 

software. The experiments performed, using the benchmark component, to explore 

the success of the approach, are described in chapter 11. 

The aspects of the research described in this chapter cover the experimental en- 

vironment, the population of Product Models, and the linking of Applications to the 

Product Data Model. The exploration of the Closely Coupled Machine Planning 

Application has been performed in parallel with the Inspection Planning, Manufac- 

turing Data Analysis, Cutter Path Generation, Relationship Graph and Geometry 

research of the ISS project, described in chapter 4. The realisation of an explorato- 

ry integrated system has been influenced by the rate of development of ideas across 

the research team and by the scale of work involved in drawing together the results 

of the integration issues being explored by the researchers. This has resulted in an 

exploration of integration where the integrating framework, the PDM, as well as 

the Applications, has been evolving. Some aspects of the integration work have 
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therefore been more highly developed than others, dependent on the progress 

achieved at particular stages in the research programme. 

10.2 THE EXPERIMENTAL ENVIRONMENT 

The work to realise an integrated experimental Machine Planning Application has 

been performed in an environment consisting of three main parts; computing, 

machining and a project environment in which a number of co-researchers interact- 

ed. 

The computing environment consisted of a software programming environment 

operating on a network of SUN workstations. The network being based on a SUN 

3/160 fileserver linked to SUN 3/50 diskless nodes. The software programming 

environment consisted of two parts; an experimental product modelling tool and a 

software programming language. The experimental product modelling tool used 

was the Structure Editor (SE) [161, described in chapter 4 and appendix 1. This 

provided the means for the integration exploration, by providing the facilities to 

build Product Data Models, instantiate particular Product Models and to generate 

interface routines to Applications. The software programming language used was 

ADA [661. This was chosen by the ISS project as an appropriate tool for data 

modelling because of its strong typing and suitability for the integration of large 

scale software projects. 

The machining environment consisted of a Wadkin V4/6 machining centre and a 

Ferranti coordinate measuring machine. The Machine Planning research has been 

targeted at the Wadkin V4/6 and the part programs, generated in the experiments 

described in chapter 11, have been tested using this machine. A range of cutters 

and fixtures were also available for use. The cutter range was a 63 mm diameter 
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face mill; 50,40,25, and 12 mm diameter end mills; 20,16,12,8 and 4 mm slot 

drills and 12,10 and 6 mm high speed steel twist drills. Except in the case of the 

twist drills, carbide tooling was used. A vice, bolts and clamps were available for 

fixturing, which were appropriate for use in the exploration of fixturing strategy 

selection. 

Links with other workers on the ISS project was the third main part of the experi- 

mental environment. The principal co-workers involved in the programme, whose 

work impinged on the Author's contribution were P. Bell (Cutter Path Generation), 

M. J. Corrigall (Inspection Planning), L. Lee (Manufacturing Data Analysis), 

L. P. Wickens (Dimensions and Tolerances), D. Dunnington (Geometry) and A. 

McKay (Structure Editor). 

In exploring integration in design and manufacture it was essential to ensure that 

the aspects being pursued by the various project members were co-ordinated and 

that each individual's research was contributing to a common integration goal. To 

achieve this, the researchers met regularly, to discuss the technical issues involved 

in integration, using the benchmark workpiece as a common focus for the problems 

being encountered, and as a basis for the exploration of their solution. The provi- 

sion of formal relationships between the manufacturing functions being pursued 

were generated by the use of the IDEFO modelling methodology. 
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10.3 THE POPULATION OF A PRODUCT MODEL. 

10.3.1 A Framework for a Product Model 

The SE has been used as the tool for the construction of Product Data Models and 

the population of related Product Models to provide a base for the research ex- 

ploration. To build a Product Model there is a range of data elements which need 

to be represented, but which are not specific to a product. In particular, features 

and manufacturing data fall into this catagory. Figure 10.1 illustrates the framework 

used in the construction of Product Models, providing manufacturing data on 

machine tools, and cutters, and a feature library. 

10.3.2 A Library of Machining Features 

The SE provides a parametric definition capability which has been used in the pre- 

definition of machining features, capturing the feature process data structure argued 

in chapter 6.4. Machining feature definitions have been built, within the feature li- 

brary, and then used to build component descriptions. These component descrip- 

tions have, in turn, been used in the experiments discussed in chapter 11. Section 

10.4 describes how these features have been defined and used in producing com- 

ponent descriptions, while machining features which have been defined in the 

feature library are represented in appendix 4. 
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10.3.3 The Solid Application 

The Solid Application within the PDM provides the ability to define a component 

as a solid plus features, as illustrated in figure 10.1. This provides a representation 

mechanism with which a component solid can be defined, either without the use of 

features; partially defined with features; or be fully defined using features. The ex- 

perimental realisation of the author's research has used the last of the above op- 

tions. However, the alternative capabilities of the mechanism open up future possi- 

bilities for the exploration of combined feature recognition and pre-definition tech- 

niques. Component descriptions, using this facility, have been defined as described 

in section 10.4.4 of this chapter, and have provided a basis for the experimental 

work described in chapter 11. 

10.3.4 Manufacturing Data. 

It is essential to be able to access manufacturing data while working within an in- 

tegrated environment. This data is needed for planning decisions, but is not specific 

to a particular product. Hence, manufacturing data has been represented as separate 

to the Product Model, but as a part of the Product Model framework. By taking 

this approach it has been possible to link from a Product Model directly to the 

relevant manufacturing data for a product. 

The manufacturing data represented in the research includes machine data and cut- 

ting tool data. The description of machine and cutter data, as represented in the 

Product Model framework, is documented in appendix 4, and has provided data to 

the procedures described in chapter 9.3.3, which identifying cutting tools and cal- 

culating processing data. 
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10.4 THE REPRESENTATION OF MACHINING FEATURES WITHIN THE PRODUCT 

MODEL ENVIRONMENT. 

10.4.1 The Pre-definition of Machining Features. 

The Structure Editor provides a capability for the representation of parametric 

definitions, as described in appendix 1. This capability has been used in the 

research to build a range of machining features which were then used to explore 

the feature level process data sub-set of the Product Data Model, argued in chapter 

6.4. 

A pre-defined feature consists of a list of parameters and a populated data struc- 

ture, based on the feature description, argued in general in chapter 5.4.1 and con- 

taining the detailed feature level process data sub-set, argued in chapter 6.4. Any 

parameters which are used in the population of the feature are included in the 

parameter list. These parameters can then be given specific values when the feature 

is used to build a component description. Parameters can be defined as Numeric 

Expressions as described in appendix 1, and these can be used to capture dimen- 

sional tolerances, as discussed in chapter 8.3.1. 

Surface parameters, such as roughness, can be defined as parameter values in their 

own right. This provides a basis from which Machine Planning assessments can be 

made. The definition of surface tolerances in this way does not identify to which 

surface the tolerance is linked, and only the general tolerance requirement for the 

feature can be defined. A further problem with using feature parameters is that they 

cannot provide inter-feature tolerance data. The relationship graph work of Wick- 

ens [148] provides the potential to overcome some of these problems, although his 

work is not feature related. Chapter 8 has argued a potential approach to assessing 
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Relationship Graph data, in conjunction with feature data, to provide inter-feature 

tolerance data for Machine Planning. 

10.4.2 The Range of Machining Features Defined in the Library. 

A library of machining features which have been used in the building of com- 

ponent models was produced as illustrated in figure 10.1. The features described 

were the Through Pocket, the Closed Pocket, the Channel, the Step, the Through 

Hole, the Four Corner Holes, and the Face. The full definition of these, as 

represented in the SE, is provided in appendix 4. These machining features are of 

"negative" and "surface" catagories, discussed in chapter 6.2.2. No "positive" 

features have been implemented as their seemed to be little advantage to be gained 

from this, which would aid the exploration of the feature level process data sub-set 

of the Product Data Model. Also the use of "positive" features were likely to intro- 

duce feature interactions which would require a level of analysis which is beyond 

the scope of this thesis. The use of these features in the experimental work is 

described in chapter 11.3.1 while the machining instructions generated from indivi- 

dual features are documented in appendix 2. 

10.4.3 General Parameter Representations 

Pre-defined features are parametrised functions, which can return particular data 

values in their data structure when they are evaluated. In addition to feature 

representation, the SE allows simple functions to be represented which can then be 

used in feature and component definitions. In this way, key values in component 

descriptions have been defined as parametrised functions. These include values for 

the component length, width and depth and the stock length width and depth. This 

has enabled these values to be readily used elsewhere in the component definition, 
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without the need to know their actual values. General parameters which have been 

represented and used in the research are provided in appendix 4.4.9. 

The ability to represent general parameters has been used to represent finishing al- 

lowances and clean up allowances, such that their effect on operation dimensions 

were captured. Each implemented feature consists of roughing and finishing opera- 

tions, with the two being related by the finishing allowance which is to be used. 

This finishing allowance has been represented as a general parameter which has 

then been available for inclusion in feature definitions. 

In a similar way, a function to define a clean up allowance has been used to identi- 

fy the minimum amount of material which should be removed from a stock surface 

to ensure a cleanly machined face. This has been used in the parameters of Face 

features, when they have been added to the component description, as described in 

the following section. The use of general parameters in component descriptions, 

can be seen in the following section, while there use in feature representations can 

be seen in appendix 4.4. 

10.4.4 Adding Features to a Component Description. 

The features described above have been used to produce component descriptions, 

which have then been used to explore the success of the approach taken in the 

research. Representative component descriptions are documented in appendix 4.5 

and have been used and the experiments described in chapter 11. 

Features applied to the component description have been given descriptive names, 

for identification, and are moved to their required position on the component model 

using geometric transformations. The parameters of each feature are given values 

and the description of the component is then evaluated so that the actual values of 
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each parameter are passed throughout the structure. An illustration of a component 

description of a pocket applied to a block is shown below. 

test_piece : Geometry: Transformed solid: 
block with origin at centre 

x= body length 
y= body width 
z= body thickness 

AT 
mx = body length / 2.0, 
my = body width / 2.0, 
mz =- ( body thickness / 2.0 ) 

left top pocket : Pocket with axes and top surf at (0,0,0) 
x_dim= 50.0 
y_dim= 40.0 

z_dim= 5.0 

corner rad= 7.0 
fillet rad= 1.0 

surf fin (Cla microns): 2.5 
AT 

mx = 50.0, 
my = 37.5 

where general parameter values: 
body length = 150 
body width = 75 
body thickness = 25 
(dimensions are in mm) 

Face features have been used in the research as a means of providing the link from 

the component description to the stock description. Hence, each face of the rec- 

tangular component, is defined as having a Face feature associated with it. The 

difference between the stock and component dimensions are therefore captured in 

the Face feature description, which then provides the operation data required to 

identify how each face is to be machined. This approach has been used to build a 

complete representation of a component with its six faces providing the link to the 

stock description as shown below. This forms the basic workpiece representation to 

which negative features can be added, and has provided a route to the exploration 

of the use of fixturing strategies and geometric queries in the setup planning part of 
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the Machine Planner implementation as described in chapter 9.2.3. In the descrip- 

tion of the Glacier workpiece, represented in appendix 4.5.2, the block with its six 

faces has been represented as a "machined block" in the feature library, which re- 

duced the complexity of the component description. 

test_block : Geometry: Transformed solid: 
block with origin at centre 

x= body length 
y= body width 
z= body thickness 

AT 

mx = body length / 2.0, 
my = body width / 2.0, 
mz =- ( body thickness / 2.0 ) 

+ 

top face : face block with origin at centre of bottom face 

x-dim= stock-length 
y-dim-" stock-width 
z-dim= rem-stock-height 
surf fin (Cla microns): 2.5 

AT 
mx =( stock_length / 2.0 - rem_stock_length), 
my =( stock-width / 2.0 - min-stock) 

bottom face : face block with origin at centre of bottom face 
x-dim= stock - 

length 
y-dim= stock-width 
z-dim= min-stock 
surf fin (Cla microns): 2.5 

AT 
rx = 180.0, 
mx =( stock-length 2.0 - rem-stock-length), 
my =( stock_width / 2.0 - min-stock), 
mz =-( body thickness ) 

back face : face block with origin at centre of bottom face 

x-dim= stock_length 
y-dim= stock height 

z-dim= rem stock width 
surf fin (CIa microns): 2.5 

AT 

rx=-(90.0), 
mx =( stock-length / 2.0 - rem_stock_length), 
mz =- (( stock height / 2.0 - rem stock_height) ), 
my = body width 

front face : face block with origin at centre of bottom face 
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x-dim= stock - 
length 

y-dim= stock height 
z-dim= min-stock 
surf fin (Cla microns): 2.5 

rx = 90.0, 
mx =( stock_length / 2.0 - rem_stock_length), 
mz =- (( stock height / 2.0 - rem_stock_height) ) 

left face : face block with origin at centre of bottom face 

x-dim= stock height 
y-dim= stock-width 
z-dim= rem_stock_length 
surf fin (CIa microns): 2.5 

AT 

ry =-(90.0), 
my =( stock_width / 2.0 - min_stock), 
mz =- (( stock height / 2.0 - rem-stock-height) ) 

right face : face block with origin at centre of bottom face 
x-dim= stock height 
y-dim= stock_width 
z-dim= min-stock 
surf fin (Cla microns): 2.5 

AT 
ry =90.0, 
my =( stock_width / 2.0 - min_stock), 
mz =- (( stock height / 2.0 - rem_stock_height) ), 
mx = body length 

where general parameters: 
body length, body width, and body thickness are component dimensional parameters. 
stock-length, stock-width, and stock height are stock dimensional parameters. 
min_stock = clean up allowance + finishing allowance. 
rem_stock_length = stock_length - (body length + min_stock). 
rem_stock_width = stock-width - (body width + min stock). 
rem_stock_height = stock height - (body thickness + min-stock). 

Component descriptions, such as the ones above, with their underlying data struc- 

tures, provided the key source of product data into the Machine Planning Applica- 

tion. The links to the Application are described in the following section, while 

component descriptions for testpiece component are provided in appendix 4.5. 

Sample machining instructions and part programs, for testpieces are documented in 

appendix 7.3 and 7.4. 
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10.5 LINKING THE APPLICATION TO THE PRODUCT MODEL ENVIRONMENT. 

10.5.1 Interfacing to a Product Data Model. 

In order that the data in a Product Model can be used by a software Application, 

interfaces must be written which transfer the data in the Product Model into the 

form required by the Application. This must be done for each section of the PDM 

being used. Similarly, interfaces must be written to put data back into the Product 

Model. 

The SE provides a facility which generates the skeleton of an interface. This skele- 

ton provides ADA code which will traverse the data structure and extract values 

for the data contained within it. These interfaces must be edited to extract the ap- 

propriate data for the Application. Similarly, data can be transferred back to the 

Product Model. Such interfaces have been produced to link the experimental 

Machine Planning functions to the PDM, enabling the Closely Coupled Machine 

Planner to be used as described in the following section. The ADA code listing, 

showing the link from the PDM to the Machine Planning Application is document- 

ed in appendix 5.1. 
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10.5.2 The Machine Planning Options in the Product Model Environment. 

The Options listed below were linked to the Product Data Model to explore the in- 

tegration of Machine Planning. The ADA code used is listed in appendix 5.1 and a 

software users guide is supplied in appendix 6. Figure 10.2 provides an illustration 

of the options, showing the Machine Planner linked to the relevant nodes in the 

PDM. From these nodes the product data structure is traversed to extract the data 

as required by the specific option. The italisised text in the list highlights the 

Machine Planning activities which are involved in particular options. 

1. Go to Main Menu 

2. Load tooling database 

3. Load machine tool data 

4. User data on tool life options 

5. Extract workpiece data (Identify Features) 

6. Create SDSM 

7. Plan setups for the workpiece (Identify Features and Sequence Setups) 

8. Identify possible tools for each operation (Evaluate Features) 

9. Sequence the operations in each setup (Sequence Operations) 

10. Relate fixture datums to the machine table (Generate Machine Controller Code) 

11. Generate part programs (Generate Machine Controller Code) 

12. Draw the SDSM model 

13. Remove drawing 

14. Relationship Graph 

15. Put back planned process data 
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Options 2 -> 6 above required interfaces to be written to extract the data, needed 

for Machine Planning as discussed in chapters 5,6, and 7, from the Product Model, 

and to link to the SDSM. Options 7 -> 11 provide the link to the Machine Plan- 

ning functions described in chapter 9 while options 12 and 13 provide control over 

the visualisation of the SDSM model being used. Option 14 was introduced to 

explore links to the relationship Graph as described in chapter 8, while Option 15 

allows data, which has been generated by the Closely Coupled Machine Planner to 

be put back into the Product Model. 

10.5.3 The Effect of Changing a Product Data Model. 

Changes to the data structures in the PDM produced significant timescale problems 

in regenerating new working interfaces. Interfacing to the Product Data Model is a 

time consuming and complex task. It was not uncommon in the ISS project for 

researchers to spend three to six months generating interfaces to link their Applica- 

tions. This was partly because of the number and complexity of the interfaces and, 

partly, because of the size of the software being produced. The executable file for 

the Machine Planning software, linked with the PDM was 2.7 Megabytes. The 

number and complexity of ADA packages involved in the software meant that ear- 

ly versions of ADA compilers gave problems. One compiler became unusable, 

while another although operating, could not be used in its debug mode. Debugging 

therefore became a very time consuming process. The most recent versions of 

ADA compilers appear to cope with our requirements, but the research software 

has apparently been operating at the bounds of compiler technology. The execut- 

able file for the full ISS software, linked to the PDM, was over 9 Megabytes. 
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Small changes to the structure of the PDM, which were restricted to the lower lev- 

els of a data structure, were less of a problem, as only the interfaces relating to that 

lower level needed to be changed, and instances of the PDM could be readily up- 

dated. However, when larger changes were made, not only were new interfaces re- 

quired, but the data for specific instances of the Product Model had to be regen- 

erated. 

Changes to the PDM were not, therefore, made on a regular basis. However, with 

the range of research topics being pursued on the ISS project, the PDM could not 

remain static. Therefore, upgrades had to be made on several occasions. The evolu- 

tion of the PDM, through these upgrades, is explained in the following section. 

10.6 THE EVOLUTION OF THE PRODUCT DATA MODEL 

The definition of the Product Data Model, described in chapters 5 and 6, has 

evolved over a period of time. This evolution has been influenced by two earlier 

versions of the PDM, which have been constructed to test the progress of the 

research work. The research of the author has explored three major versions of a 

PDM, "feat. lam", "machplan. lam", and "pms3_8. lam" to establish the product data 

structures described in chapters 5 and 6. The earliest version, "feat. lam", explored 

data structures to link a tooling data base to a tool selection procedure to cutter 

path generation. This involved the author in the exploration of operation data 

representations and links to machine tool and cutter data in order to select cutters 

and cutting parameters. The experimental work involved in this exploration is 

described in chapter 11.2. 



chapter 10 - 190 - 

The second version of the PDM, "machplan. lam", was used exclusively by the au- 

thor, for the exploration of the integration of Machine Planning functions, without 

linking specifically to the work of the other members of the ISS team. The 

knowledge that further integration linkages could be made at a later stage was 

maintained through discussions with other team members. "Machplan. lam" was 

used to link operation data to features and to extend the operation data representa- 

tion to include tool path data and operation constraint data. The feature process 

data representation was also added as a requirement for setup planning. 

As well as the exploration of feature data "machplan. lam" was used to explore the 

addition of features to a component model and the subsequent extraction of the 

relevant data; to explore the introduction of component level planning data as a 

necessary provision of workpiece stock and component parameters for Machine 

Planning; and to explore the use of the SDSM as a medium to provide feature in- 

teraction data. "Machplan. lam" was used in experiments to generate machining in- 

structions for individual features, features in a setup, components and in fixturing 

strategy selection experiments which are described in chapter 11.3. Features and 

component representations, built using this version, are provided in appendix 4. 

The final version of the PDM, "pms3_8. lam", has been argued in detail in chapters 

5 and 6. This version has evolved from the evaluation of the "machplan. lam", cap- 

turing data requirements identified from it, as well as the requirements for integra- 

tion which had been identified through interaction with the other members of the 

project team. The software representation of the final version of the PDM was con- 

structed by A. McKay, and used by the author and the other members of the ISS 

research team. This enabled the author to demonstrate the Closely Coupled 

Machine Planner. It also enabled the author, in conjunction with the other members 

of the ISS project team, to show the level to which integration had been achieved 

across the project. The Glacier workpiece, experiment, described in chapter 11.4, 
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was used for this purpose and its component description, captured in the PDM is 

documented in appendix 4.5.2. 

This chapter has shown how the Machine Planning functions, explained in chapter 

9, have been linked to the Product Model environment to produce a Closely Cou- 

pled Application. This has provided a software base from which experiments have 

been performed to explore the success of the approach taken. These experiments 

are described in the chapter 11 and the resulting machining instructions and part 

programs are documented in appendix 7. 
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CHAPTER 11 

A DISCUSSION OF THE EXPERIMENTS PERFORMED IN THE 

EXPLORATION OF THE CLOSELY COUPLED MACHINE PLANNER 

11.1 INTRODUCTION. 

This chapter reports the author's experimental work which was performed as part 

of a sequence of demonstrations which allowed the researchers on the ISS pro- 

gramme to test the progress of their work. The experiments principally used vari- 

ants of the Bolster plate workpiece, described in chapter 6.2, which was defined by 

the ISS research team as an appropriate means of drawing together the various 

research strands of the project. It also provided a basis for the discussion of 

research deliverables with the project's industrial collaborators and ACME review 

panel members. 

The experimental work starts with an early experiment in integration, and then 

moves through a number of experiments where the data requirements for the 

Machine Planning Application were explored, in isolation from other manufactur- 

ing Applications. The final experiment captured the understanding gained from the 

earlier work, plus the input from the other members of the ISS research team to 

produce a demonstration of the level of integration which could be achieved 

between the MCG activities of the ISS research project. 
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11.2 THE INTEGRATION OF A DATABASE, A TOOL SELECTION PROCEDURE AND 

A CUTTER PATH GENERATOR THROUGH A PDM 

The experiment described in this section used the "feat. lam" PDM described in 

chapter 10.6, which contained a geometry structure, an Operation data structure, 

and the machine and tooling database structure. The Operation data structure con- 

tained the "Operation definition data", "constraints", "geometric data" and "possible 

tools" described in chapter 6.4. The experiment demonstrated that different Appli- 

cations could be linked through the use of a PDM 

Three separate software Applications, as illustrated in figure 11.1, were linked. 

The first Application was a database linker, produced by A. McKay [93], to extract 

tooling data from a proprietory database and to populate the tooling database of the 

Product Model framework. The second application was a cutter path generator, in 

two parts, produced by P. Bell [10]. Part one evaluated the geometric description, 

of a single machining region, to identify the Operation data required by the tool 

selection procedure. These were then used to populate the Operation data structure 

defined by the author. Part two, of the cutter path generator, having received back 

the tooling to be used via the Product Model, generated a cutter path to rough 

machine the Operation. 

The third Application, produced by the author, was a tool selection procedure, as 

described in chapter 9.3.3.1, and encorporating the calculation of cutting parameters 

as described in chapter 9.3.3.2, with the exception of the tool path linkage. This 

procedure used the Operation data constraints generated by the cutter path genera- 

tor, and manufacturing data as described in chapter 10.3.4, with the tooling data- 

base having been populated by the database linker. With this data the tool selection 

procedure identified possible tools for the Operation and the cutting parameters to 

be used. This data was returned to the tooling data fields of the Operation data 
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sub-set of the Product Model, and then used by the second part of the cutter path 

generator. 

This experiment demonstrated the first achievement of integration through the use 

of a PDM. It showed, using the component illustrated in figure 11.2, which was 

modelled in the PDM, that a set of possible tools and associated cutting data could 

be generated from the data in the Product Model and passed back into the data 

structure for subsequent use [155]. It was also shown, through the parallel work of 
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P. Bell [10], that the necessary Operation data for tool selection could be generated 

through geometric analysis and that the subsequently generated tooling data could 

be used for cutter path generation. Data structures, representing a tooling database, 

which could provide cutter data for tool selection were constructed by A. McKay 

and it was shown by her that these could be populated from a proprietory database 

[93]. 

It was also found that there was a significant time overhead in constructing, popu- 

lating and interfacing to even a simple PDM. It took approximately six months to 

interface the exploratory tool selection software to the PDM and to populate a test 

Product Model to check and debug the interface. This was partly due to the learn- 

ing needed for the techniques involved, as this was the first experiment of its type. 

However, in later experiments the improved understanding of the techniques re- 

quired was counterbalanced by the increased complexity of the data structures and 

the increased time involved in populating an experimental Product Model frame- 

work. The time taken for each substantial change was in the order of three to six 

months. This was influenced by four factors: the scale of the change to the PDM 

and the resultant interfacing complexity; the clarity of understanding between the 

researchers linking to a new PDM and the need for revisions brought about by 

misunderstandings; the need. to repopulate the Product Model framework with data; 
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and lastly the scale of the integrated software made debugging difficult. 

Having proved the concept that separate software Applications could be linked 

through the use of the PDM, the next stage of the experimental work was to ex- 

plore, in greater depth, the product data requirements for planning. The issues in- 

volved in extending the cutter path generation work were carried forward by P. 

Bell who pursued methods of analysing a component setup to attempt to break it 

down into machining regions and then to identify the Operation constraints. At this 

point the author chose to pursue the use of pre-defined features with associated tool 

path plans as this allowed a more direct, and certain, route to the exploration of a 

Closely Coupled Machine Planner 

-t 

11.3 THE INTEGRATION OF THE MACHINE PLANNING APPLICATION THROUGH 

A PDM 

The experiments described in this section helped to define and confirm the feature 

level process data subset of the PDM and the planned processes subset of the PDM 

defined in chapter 6. They also demonstrate the success of the interaction between 

geometry and the Machine Planning Application. argued in chapter 7. 

11.3.1 Building and Testing a Set of Pre-defined Machining Features 

This set of experiments were aimed at checking the ability of the operation data 

sub-set of the PDM, defined in chapter 6.4, to provide appropriate data, from 

feature descriptions, to the Machine Planning Application. This was achieved by 

building a set of pre-defined machining features, as described in chapter 10.4.1; us- 

ing each feature definition, in turn, to produce a component description using the 

Solid Application, described in chapter 10.3.3; generating machining instructions 
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and part programs using the Machine Planning Application, as illustrated in figure 

11.3; and machining each feature, to check the validity of the machining code. 

A set of features were defined in the feature library, covering a range of operation 
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types and also using the pre-defined tool path plans of Corrigall [36]. The features 

defined were a through pocket, a closed pocket, a slot, a channel, a hole, a four 

corner hole and a face feature as represented in appendix 4. 
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From these feature definitions, component descriptions were built, using each 

feature in turn, and used to generate operation plans and part programs. The result- 

ing machining instructions and part programs were then successfully used to 

machine the defined features. An illustration of the parameters used for two instan- 

tiations of the closed pocket is provided in figure 11.4. The feature parameters. 

used, and the machining instructions generated for specific features, are document- 

Parameter list : 
: ==50.00+1.0.02 

w: == 40.00 0.02 
d : == 20.00 0.02 
Rc : ==15 
Ra :=2.5 microns 

(a) 

Parameter Values in Instances 
of the Closed Pocket Feature 

Figure 11.4 

ed in appendix 7.2. 

(b) 

This experiment showed that pre-defined features could be built using the PDM 

framework and that the operation data sub-set of the PDM, representing a sequen- 

tial set of operations, could provide the necessary data to the planning functions 

being used. At this stage in the exploration, the process data fields of the feature 

definition, other than operation data, had not been added. These were introduced 

for the setup planning experiments and were not required when addressing indivi- 

dual features or features confined to a single setup. 

11.3.2 Sequencing Operations and Extracting NC Code for Interacting 

Features in a Setup. 

The experiments under this heading were used to show how features could be posi- 

Parameter list : 
1 25.00 +l" 0.02 
w 20.00 +1.0.02 
d 5.00 +/" 0.02 
Rc : == 7 
Ra : _= 2.5 microns 

tioned within a component description, and how the resulting feature data could be 
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extracted, and evaluated, by the Machine Planning Application, resulting in opera- 

tion plans and a part program, as illustrated in figure 11.5. The features which had 

been built and tested in the previous experiments were used to build variants of the 

Bolster Plate workpiece, illustrated in figure 11.6. Two experiments were per- 

formed, both using the same set of features, but using alternative dimensions. This 

introduces the check that the Closely Coupled Application could capture different 

dimensions, from the same feature definition, and generate appropriate machining 

instructions accordingly. 

Component description for the Bolster Plate variants 1 and 2, shown in figure 11.6 

(b) and 11.6 (c), were built, with the component description for the latter version 

documented in appendix 4.5.1. These component descriptions contain a range of 

Facing, End Milling, Closed and Open Slot Milling operation types which use 

similar tooling types in their manufacture. The features used provided a variety of 

tool path plans which were also to be brought together into a part program. It was 

assumed that a vice would be used for fixturing. The Machine Planner Application 

was linked to the PDM and used to generate machining instructions and a part pro- 

gram, as illustrated in figure 11.5. 

It was found that simply applying features to the component model provided no 

basis for the identification of a fixture datum which could be used in part program 

generation. It was decided at this stage to assume a datum point at the front left 

top corner of the component and to position the global coordinate system at that 

point. This meant that the global transformation of each feature onto the com- 

ponent would reflect the position of each Operation with respect to the fixture da- 

tum, a requirement discussed in chapter 7.3.1. It was also assumed, that the 

overall stock dimensions would be the same as the component overall dimensions. 

The stock dimension and fixture datum problems were then reconsidered in relation 

to setup planning as described in the following section. 
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The experiments showed that Operation sequences and part programs could be gen- 

erated, and successfully used to machine components for both component descrip- 

tions. Listings of the experimental output are not included in appendix 7, as output 

from the experiments described in sections 11.3.4 and 11.4 are listed, and these 

provide operation plan and part program outputs, as a part of the total machine 

plan. 

A number of factors were unresolved in this experiment. These were feature pre- 

cedence identification; inter-feature dimensional constraint identification; an ap- 

propriate method for the identification of datum positions and the selection of ap- 

propriate fixtures. 

Inter-feature tolerance implications for planning were not be included in the imple- 

mentation. Features were positioned on the component by the use of geometric 

transformations relative to the global coordinate system. These transformations did 

not offer an appropriate mechanism for the representation of inter-feature dimen- 

sional constraints and no other mechanism was identified. The Relationship Graph 

was not available at this point in the work. 

Through the work of P. Bell [12], it was proposed to generate a geometric proximi- 

ty relationship between features which could satisfy the need for feature precedence 

data in operation sequencing. The author, therefore, pursued the problem of captur- 

ing the product data required for the integration of setup planning in the Machine 

Planning Application. 
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11.3.3 The Generation of Setup Planning data from Features which Interact 

across Multiple Setups. 

The experiment described in this section was performed to explore the feature pro- 

cess data sub-set of the PDM, described in chapter 6.4, and the use of general 

component and stock geometry in the generation of setup planning data. The use 

of the Side Clamping fixturing strategy, described in chapter 9.2.3, was assumed 

and no geometric interaction checks were made. The links made from the PDM to 
r9ot 
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the Machine Planner are illustrated in figure 11.7. The Bolster Plate variant 3 was 
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used, as illustrated in figure 11.6(d) which required all sides of the workpiece to be 

machined. 

The features in the feature library were re-defined to contain the feature process 

data sub-set described in chapter 6.4. A component description of Bolster Plate 

variant 3 was built in the PDM, using Face features to achieve the link from the 

component to the stock dimensions, as explained in chapter 10.4.4. Stock dimen- 

sional parameters, in addition to the component dimensional parameters, were 

defined as general parameters in the feature library, and captured in the component 

level planned processes structure described in chapter 6.3. This structure was not 

fully defined, in this experiment, but contained fields for the pre and post machined 

workpiece description, providing the required input to the Machine Planner. 

Machining instructions and part programs were generated successfully from the use 

of the Closely Coupled Machine Planner. These are not included in appendix 7, as 

the results of the experiments described in the next section capture similar data, of 

which the machining instruction for the Side Clamping Strategy are documented in 

appendix 7.3.3 

As a result of this experiment the feature level process data sub-set of the PDM 

was shown to provide the necessary feature specific planning data inputs to the 

Machine Planner. The following points concerning the general geometric data 

manipulation could also be made: 

" The conversion of Face features to profiles, in the process of using a fixturing 

strategy as argued in chapter 7.3.2, was used successfully. 

" The use of component and setup coordinate axes, argued in chapter 7.3, provided 

the means for the identification of the relative positions of machining features. 

" The representation of datum features as a part of a fixturing strategy has provided 

an appropriate mechanism to capture fixture datum features. 
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" The method of assessing the machined state of a datum feature, as described in 

chapter 7.3.1, was successful in capturing the position of the datum relative to the 

setup coordinate axe. 

11.3.4 Fixture Strategy Selection 

These experiments were performed to demonstrate how the geometric queries, ar- 

gued in chapter 7.4, could be used to identify fixture and machining feature interac- 

tions, and hence influence fixturing strategy selection. In order to explore these in- 

teractions, a component description of variant 4 of the Bolster Plate workpiece, il- 

lustrated in figure 11.6 (e), was built, with a representation of the component 

description provided in appendix 4.5.2. The component description was used in 

conjunction with the full Machine Planner implementation described in chapter 9, 

including the three fixturing strategies of Side Clamping, Through Clamping and 

Down Clamping described in chapter 9.2.3. 

To test the ability of the geometric queries to identify feature interactions, three 

sub-variants of the Bolster Plate variant 4 were described. These are illustrated in 

figure 11.8 and have been defined such that Case (a) should result in the use of the 

Through Clamping strategy; Case (b) should fail the Through Clamping strategy 

and result in the Down Clamping strategy; and case (c) should fail both the 

Through Clamping and the Down Clamping strategies and select the Side Clamp- 

ing strategy. The Machine Planning software was used with each of the above 

sub-variants and machining instructions and part programs were generated. In each 

case the experimental results confirmed the expected results. The machining in- 

structions generated for each are documented in appendix 7.3. This confirmed that 

a cell decomposition model was an appropriate model on which to base geometric 

queries to identify feature interaction data. 
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11.4 THE INTEGRATION OF MANUFACTURING CODE GENERATION THROUGH 

THE PDM 

This experiment brought together the product data requirements of the Manufactur- 

ing Code Generation Applications of Machine Planning, Inspection Planning and 

Manufacturing Data Analysis, to explore the viability of their integration, through 
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the Product Model environment. This experiment involved all members of the ISS 
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research team and was aimed at demonstrating the level to which the integration of 

the work of the various team members could be achieved through the PDM. To 

perform this experiment the final version of the PDM, "pms_8. lam", was construct- 

ed, a component description of the Glacier reduced size bearing built, and each of 

the three MCG Application implementations were linked to the PDM. The data 

flows expected between the Applications, via the PDM, is illustrated in figure 11.9, 

while a diagram of the Glacier Component used in the experiment is shown in 
4 holes 
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figure 11.10. The Glacier Reduced Size Bearing 
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The experimental component description was built using Pre-defined features as in 

the previous cases. The Relationship Graph was now implemented, but this provid- 

ed only links to geometric surfaces with no identifying links to feature data as dis- 

cussed in chapter 8. The Machine Planning software was used to generate machin- 

ing instructions and part programs for the component, following the procedure 

described in chapter 10.5.2. These machining instructions and part programs, listed 

in appendix 7.4, were used to produce a testpiece on the Wadkin V4/6 machining 

centre. Using the same Product Model, Plans and code to inspect the component 

I 51.5 I 
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were produced by the Inspection Planner and used to check the machined com- 

ponent. The Machining Plans and resultant measurements were then used by the 

Manufacturing Data Analysis Application to check the inspected results. Each of 

these activities called upon the common base of product data in order to perform 

its function, hence demonstrating the integration ability of the Product Model en- 

vironment. 

Postscript 

Work on the parallel path of machining code generation through the analysis of complex 

geometries was the responsibility of P. Bell [12]. Bell concentrated on achieving computationally 

effective algorithms to achieve the automatic generation of NC code. As such his work had a 

different emphasis from the author's, but has the potential to offer solutions in areas related to 

geometries beyond the scope of this thesis. 

The two levels of Identify Features, MP11, and Evaluate Features, MP13, in the IDEFO model in 

appendix 3, were produced by the author in combination with P. Bell. These offer a model of how 

pre-defined features, and feature recognition techniques could be combined within Machine Plan- 

ning. The work of Bell has gone some way to fulfilling the Evaluate Features requirement for the 

general machining case [1581, breaking down the pre and post setup geometry to identify Operation 

data which can be used in the Identify Cutting Tools, MP1323 activity. His work uses the SDSM 

and concentrates on rough machining. There is still a need to explore the analysis of geometry to 

identify finish machining operations. 

Bell has demonstrated his work within the planned processes data sub-set of the PDM described in 

chapter 6.5.3, [158). This provides further evidence that this data sub-set of the PDM offers an ap- 

propriate basis for the capture of necessary planning information and hence offers encouragement 

that this can offer an integrating capability between the pre-defined feature route to capturing pro- 

cess data and feature recognition routes requiring complex geometric analysis. 



7, 
chapter 12 -210- 

CHAPTER 12 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

12.1 INTRODUCTION. 

The research described in this thesis has explored the Integration of a Machine 

Planner in a Product Model Environment. An experimental Machine Planner has 

been implemented to test the thesis that a Closely Coupled Machine Planner can be 

integrated, through the Product Data Model which has been described in the 

research. The experiments which have been performed to explore the thesis have 

led to the conclusions and recommendations for further work, which are made in 

this chapter. 

12.2 CONCLUSIONS 

1. It has been shown that a Machine Planner can function as a Closely Coupled 

Application in a Product Model Environment. This has been demonstrated by 

building and populating a PDM, implementing the experimental Machine Planning 

Application, and integrating these to generate machining instructions and part pro- 

grams which have been used to machine testpiece components. 

2. It has been demonstrated, through collaboration with other researchers, that a 

range of design and manufacturing Applications can be integrated through the use 

of a PDM. Enough evidence has been gathered to suggest that a Closely Coupled 

Machine Planner offers a potentially more powerful capability than a stand alone 
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system, because of the interactions which are made possible. In particular, links to 

comprehensive geometric and tolerance anaysis routines and to data feedback sys- 

tems offer this potential. 

3. The understanding of Product Modelling has been advanced, by defining the 

lower levels of a Product Data Model, necessary for the integration of a Machine 

Planner. The feature level process data sub-set and the component level planned 

processes sub-set of the Product Data Model have been defined. 

4. The lower levels of the Product Data Model, which have been defined, have 

been shown to capture necessary product data for Machine Planning. Product Data 

Models have been populated, and used to the provide data to a Closely Coupled 

Machine Planner. 

5. It has been shown how a feature based component description can be analysed 

to generate machining part programs. In particular the author's work has explored 

relationships between global, component, setup and feature coordinate systems and 

has demonstrated, through the use of fixturing strategies, how fixture datum points 

can be identified, providing a reference point for part program generation. 

6. Feature interactions can be identified through the use of geometric queries on a 

cell decomposition model. In particular, interactions between fixture positions and 

machining features have been identified in the experimental implementation. 
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12.3 RECOMMENDATIONS FOR FURTHER WORK 

1. There is a requirement to prove that geometric queries on the SDSM are an ap- 

propriate mechanism to check for thin wall problems. To show this, a similar ap- 

proach to that described in chapter 9.3, should be followed. However, the cell size 

used should be smaller than that used in the fixture and machining feature interac- 

tion queries which have been implemented, to ensure that the accuracy of query is 

adequate. 

2. In future work on integrated systems the relationship between features, dimen- 

sions and tolerances and Machine Planning should be a major priority. The 

method described in chapter 10, linking from the Relationship Graph to feature 

descriptions should be explored. Also tolerance analysis methods, to compare 

design requirements with expected manufacturing tolerances, should be investigat- 

ed. 

3. A flexible representation of machine capability is needed in future integrated 

systems. In an integrated design and manufacture environment machine capability 

information should be available to a range of Applications. For example, in the ISS 

programme, the MDA work of L. Lee [82], would have been able to influence the 

code generation of a Machine Planner, if it could have accessed the representation 

of fixturing strategies and machining rules. 

4. There is a need to explore more complex geometries, and how feature recogni- 

tion techniques can provide the breakdown of such geometry into the meaningful 

data required for planning. Although feature recognition has been outside the scope 

of this work, the feature level process data sub-set of the PDM, and the component 

level planned processes sub-set of the PDM, should provide guidance to future 

research work on the data such recognition systems should be expected to generate. 
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APPENDIX 1. 

INFORMATION SUPPORT SYSTEMS FOR DESIGN AND MANUFACTURE 
(SOFTWARE UTILITIES AND ACTIVITY MODELLING) 

1.1 INTRODUCTION 

Information Support Systems for Design and Manufacture was a research programme pur- 
sued at Loughborough University of Technology and Leeds University. It was an ACME 

and DTI funded project, supported by a group of industrial collaborators. This appendix 
describes the software utilities used in the research as well as the IDEFO Modelling tech- 
nique used by the research team. 

1.2 PRODUCT DATA REPRESENTATION USING THE STRUCTURE EDITOR 

1.2.1 Building Data Models. 

The Structure Editor(SE) [16] provides an ability to build and edit data structures. These 
Structures can be created from a basic set of building blocks which are called collections, 
selections, lists and atoms. These represent typical software language constructs such as 
records, enumeration types, linked lists, integers, real numbers and strings as described in 
the ADA language reference manual [66]. 

"Collections" are equivalent to ADA records and describe a group of one or more unlike 
things. "Lists" are equivalent to ADA access types and are comprised of zero, one or 
many like things. "Selections" are the equivalent of ADA enumeration types and describe 
a choice from different things. The choice is made from a restricted range of pre- 
determined alternatives which comprise the set of possible selections. "Atoms" are the 
equivalent to some of the pre-defined types in ADA and describe the lowest level of struc- 
ture, i. e. the form of the leaf nodes in the structure. These can be "integer" numbers, "real" 
numbers, "names", "comments" or "nil" atoms. "Names" and "comments" are both charac-, 
ter strings, but the former is a string of pre-determined length which has some meaning 
when used while the latter has no pre-determined length and is intended to be used for 
general descriptive purposes only. "Nil" atoms leave the node with an empty value. 

These constructs provide the means by which the structure of a data model can be 
described, such as a Product Data Model. Figure Al. l provides an example of the use of 
such constructs to produce a structure to represent a solid object. 

1.2.2 Building Models from Data Models. 

Once the structure of the data has been defined as a data model, as described in the previ- 
ous section, models of specific instances of the data can be produced. This is best ex- 
plained by the use of an example. The data model of an object, as illustrated in figure A1.1 
can be used to represent specific instances of objects. For example typical Constructive 
Solid Geometry primitives such as block, sphere and cone can be described. Figure Al. 2 
shows how the object data model can be used to describe a block. Models of products can 
be described by following the same principles. 
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object 
COL 

name object-type 
ATOM SEL 

operation primitive null 
SEL SEL ATOM 

transform boolean spline solid 
CQL SL SL 

name transform object plane cone torus 
ATOM value ATOM ATOM ATOM 

SQL cyl sphere 
ATOM ATOM 

transform transform 
primitive operation 

T SEL LIST 

transform 
value 
ATOM 

III 
union interseaction difference 
LIST LIST T 

rSQL I 
object object object object 

move 
SL 

mx mz 
ATOM ATOM 

my 
ATOM 

rotate 
SL 

rx rz 
ATOM ATOM 

ry 
ATOM 

An Example Object Data Model using SE Building Blocks 
Figure A1.1 

x-dim /ý -dim 

z-dim 

Y 

X 

Block: intersection 
+xface : ry = 90, mx = x-dim : plane 
"xface : ry = -90 : plane 
+yface : rx = -90, my = y-dim : plane 
"yface rx 90: plane 
+zface : mz = z-dim : plane 
"zface : rx =180: plane 

An Example Instance from the 
Object Data Model 

Figure A1.2 
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1.2.3 Interfacing to Software Applications. 

The use of data from a Product Model in software applications requires interfaces to be 
written to extract data from the model for use by the software application program. Also, 
data generated by an application, which has implications for the product, should be written 
back to the Product Model. 

These requirements are aided by an interface generation capability within the Structure Edi- 
tor which produces ADA software source code which can be edited by the system builder 
to produce interfaces. This ADA code forms the basis for traversing the Product Model 
and extracting data which can then be converted into the form needed by the Application. 

1.2.4 Parametric Representations. 

The SE provides a capability which allows the representation of pieces of structure in 
terms of parameter values. For example the 3 parameters of length, width and depth could 
be specified. Volume could then be represented as being dependent on these 3 through the 
relationship 
volume = length * width * depth 
by changing the parameter values, different values for dependent variables can be evaluat- 
ed. e. g: 

PARAMETERVALUEVALUE 

length 43 
width 32 
depth 21 
DEP. VARIABLE: 

volume 24 12 

This facility has proved particularly valuable in exploring the association of manufacturing 
data with geometric shapes to define manufacturing features. 

1.2.5 Sharing Data 

A further capability of the SE is the ability to share data in different pieces of structure 
such that if one value is changed the other value will automatically change also. For exam- 
ple if a component is defined as containing 2 holes of equal diameter, then the diameter in- 
formation for the 2 holes should be shared. If the diameter of one of the holes is then 
changed, the diameter of the other hole will change automatically. 

1.3 DATA MODEL UTILITIES USED IN THE RESEARCH. 

1.3.1 General Data Structures. 

This section describes those data structures and related software utility functions which 
were available with the SE, for use in the research described in this thesis. These are relat- 
ed to the representation of numeric data, geometry and feature geometry 
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1.3.2 Numeric Representation and Evaluation. 

In modelling products there is a need to represent arithmetic and mathematical expressions. 
A data model structure to represent such Numeric Expressions as addition, subtraction, 
multiplication and division, as well a simple trigonometric functions was available. The 
calculated value resulting from any particular numeric expression could be found using a 
numeric evaluation software application. Tolerance values were also defined within the 
Numeric Expression structure. A tolerance value is represented as a nominal value with an 
upper tolerance and a lower tolerance. This provided a simple basis for the representation 
of dimensional tolerance data. 

1.3.3 Geometric Representation and Evaluation. 

Solid Model representations of the component under consideration and of feature shapes 
are used in this research. These representations have been built using the geometric data 

Infinite plane in XY 
space 
above 
plane 

Y 

solid 
below 
plane 

Z 

X 

Y 

positive rotations are 
clockwise looking along the axis 

Planar half-space and rotation definitions 
Figure A1.3 

model illustrated in figure A1.1 as a basic geometric structure. This enables typical Con- 

structive Solid Geometry operators and transforms to be used in building a model. It also 
enables shapes to be represented using half space definitions. An example half-space 
definition for a plane, and the definition for rotations, are illustrated in figure A1.3. Simi- 
larly, definitions exist for other half-space types. 

The geometric data model allows geometric shapes to be described and positioned in space. 
The evaluation of the geometric representation which can provide data describing how a 
piece of geometry relates to its surrounding environment is provide using a Spatially Divid- 
ed Solid Model (SDSM). This provides a cellular decomposition of a geometric represen- 
tation [105], where each cell can provide data on whether it is inside a solid, outside a 
solid, or on the surface of a solid. Also it provides its position in space and points to its 
neighbouring cells. Where a cell lies on a surface, pointers are held which point to the 
faces contained in the cell. 

The SDSM cell decomposition starts from a cube which totally encloses the solid under 
consideration. The cube is then sub-divided into 8 equal cubes. Each of these is checked to 
identify whether it contains a surface. If so, it is further decomposed. This cycle is repeated 
to a level defined by the user, or by the software application using the SDSM. Decomposi- 
tion is usually performed to between 5 and 7 levels. Level 5 provides a reasonable decom- 
position fairly quickly, while level 7 produces the SDSM to a smaller cell size and there- 
fore to much greater detail. Figure AI. 4 shows a2 dimensional representation of an SDSM 
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cell decomposition showing how cells containing faces are further decomposed, while cells 

S 
S 

S 
E 

S 
S 

E S S 

E S 
E 

E 
E E 

start cell 

E- Fully Empty 
S- Fully Solid 

Assume Solid 
in this Direction 

curve 

A 2-dimensional cell decomposition 
Figure A1.4 

which are fully solid or fully empty are not. 

1.3.4 Feature Representation and Evaluation. 

The Structure Editor allows features to be defined using its parametric capability. This en- 
ables features to be built in terms of the parameters which influence them, hence providing 
generalised feature shape and manufacturing definitions rather than definitions with specific 
dimensions. 

The Structure Editor allows features to be described as named, transformed or aggregate 
features. The named feature allows a descriptive name to be associated with a feature, 

while a transformed feature allows a geometric transform to be applied to a feature to 

change its position in space. Aggregate features allow a new feature to be built from al- 
ready available feature definitions. For example a group of holes can be defined as an ag- 
gregate of a number of single holes. The single hole definition is used and transformed to 
each of the relevant positions in the new aggregate feature. 

Features can be added to a geometric description to introduce them onto the component be- 
ing described. The Structure Editor enables this through a solid description capability called 
a Solid Application. This provides a data structure which is defined as a piece of solid 
geometry to which can be added any number of features. As features are added to a com- 
ponent description the values to be associated with each parameter is input by the user. 
Once this has been done a software utility can be used, which takes these supplied parame- 
ter values and evaluates each field in the data structure which involves their use. In this 
way the actual definition of a specific component description can be found. 
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1.4 IDEFO -A FORMAL METHOD OF EXPLORING ACTIVITY RELATIONSHIPS 

Activity modelling provides a way of representing activities, the data which they require, 
the data which they produce, and their relationships to other activities. By performing this 
type of modelling there is a greater chance of success in providing a valid representation of 
activity relationships and their data flows. 

One method of representing activities and interrelationships is IDEFO, which stands for 
ICAM Definition language, a representation technique based a Structured Analysis Design 
Technique (SADT) [123,124]. The name follows from the US airforce ICAM programme, 
where the technique was used to consider and overall concept for CIM [105]. The tech- 
nique has also proved valuable in industry in aiding the understanding of how aspects of 
companies' businesses operate [80]. IDEFO has been used successfully in research pro- 
grammes and industrial applications to model manufacturing activities. 

A IDEFO model consists of boxes and arrows coming in and out of each box as shown in 

Control 

Inputs 
ACTIVITY 

Outputs 

Mechanism 

IDEFO Notation 
Figure A1.5 

figure A1.4. The box is used to represent the activity to be performed. The arrows from the 
left describe the inputs to the activity. Arrows into the top also describe inputs, but inputs 

which have a controlling effect on the activity. Arrows into the bottom identify the means 
by which the activity is performed and arrows coming out from the right describe the out- 
puts from the activity. An individual activity can be broken into sub-activities and each 
sub-activity can be further sub-divided. This can be repeated as many times as suits the 
purposes of the model developers. An important rule in the use of IDEFO is that all data 
flows must be accounted for, i. e. any data going into an activity must come from an activi- 
ty, or be accepted as an input at the top level in the model. Similarly data coming from an 
activity must go to another. This means that no spurious assumptions can be made con- 
cerning data availability and, hence, ensures the consistency of the data requirements. 
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APPENDIX 2. 

AN IDEFO MODEL OF 
PRODUCING A PRODUCT. 
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PRODUCE PRODUCT - GLOSSARY OF TERMS. 

DESCRIPTION OUTPUT INPUT 

Company Data: MSG1 
Simple information about the company. 

Company Knowledge: MSG1 
Information about what the company knows. 
Often in the form of if 'condition' then 'action'. 

Customer Orders: MSG32 
Instructions from customers to supply specified 
goods to a specified deadline. 

Data for Analysis: MSG33 MSG3132 
A list of data to be analysed. 

Design Change Request: MSG311 MSG2 
A request for a specific change in the design 
to improve/enable manufacture. 

Design Data: MSG2 
Simple information required by designers. 

e. g. How similar components or products perform. 

Design Information: MSG2 
All information available to the company 
concerning design. 

Design Knowledge: MSG2 
Information about what the company knows about design. 
Often in the form of if 'condition' then 'action'. 

Design Tools: MSG2 
Tools to help designers, e. g. 2D/3D modellers, Features, 
Graphics, etc. 

Detailed Design: MSG311 
The description of the components to be produced, 
in a form suitable for interpretation by Manufacture. 

Engineering Support Tools: MSG 
All tools available to support in the Produce Product 
activity, including Design tools and Geometric Support 
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Expeceted Process Data: MSG312 
Data generated at the planning stage indicating how 
the process is expected to proceed. e. g. Tool Life 
Utilisation, Machine Power required. 

External Resource Orders: MSG32 
Orders for items required to achieve the product's 
production. 

Geometric Support Tools: MSG311, MSG: 
Tools to aid in the geometric analysis of the MSG3122, MS( 
component while planning its manufacture. 

Machine Knowledge: MSG312 
Information about what the company knows about 
how to use a particular machine type. Often in 
the form of if 'condition' then 'action'. 

Machine Plan: MSG312 MSG311 
Planning information detailing how to do what 
has been requested on a particular machine. 

Machine Requirement: MSG311 MSG312 
The description of what is needed of a particular 
machine. e. g. the pre- and post machined component 
descriptions, and the batch size. 

Machine Type: MSG311 MSG312 
The general description of the type of machine 
being considered. 

Manufacturing Data MSG3, MSG31, 
Data about the manufacturing environment. e. g. MSG312 
Machine data, tooling, fixturing, machinability, 
material data. 

Manufacturing Information: MSG3 
All information available to the company concerning 
Manufacture. 

Manufacturing Knowledge: MSG3 
Information about what the company knows about 
how to manufacture things. 

Manufacturing Planning Knowledge: MSG31 
Information about what the company knows about 
how to plan for the manufacture of things. 

New Process Requirement: MSG311 
The identification that currently available 
processes (in the company) are not suitable 
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for the component in question. 

Part Program Requirement, MSG32 MP4, ICG4 
Machine and Controller Identification: 
The identification of the specific machine and its 
controller to be used in the production of a component. 

Part Programs: MSG312 MSG313 
Generated NC code which has still to be proven. 

Part Programs for Proving: MSG3132 MSG33 
Part Programs under the control of MDA which are 
undergoing verification. 

Process Knowledge: MSG311 
Information about what the company knows about 
processes. 

Process Plans & Routes: MSG311 MSG32 
Approved descriptions of how components should be 
processed and the machine routes they should follow. 

Product: MSG3 
The item being supplied to a customer. 

Product Information: MSG 
All information available about the product. 

Product Requirements: MSG1 
A generalised description of what the product should do. 

Production Knowledge: MSG33 
Information about what the company knows about production. 

Production Plan: MSG32 MSG33 
Details of how and when the company's production 
capacity is to be used to produce the product. 

Production Planning Knowledge: MSG32 
Information about what the company knows about 
production planning. 

Proved Part Programs: MSG3132 MSG33 
Part Programs free from geometrical and technological 
errors, available for mainstream production. 

Raw Materials & Bought Out Items: MSG33 
All consumables which need to be sourced from outside 
the company to meet the production plan. 

Resource Availability: MSG32 
A description of the utilisation of company equipment. 
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Specification: MSG1 MSG2 
A description of the functions the product must perform. 

Specification Change Request: MSG2 MSG1 
A request to change a particular aspect of the 
specification. 

Specification Information: MSG1 
All information generated in the process of producing 
a specification. 

Stock Specification: MSG311 MSG32 
The description of the required raw material. 

Updated Manufacturing Information: MSG3132 
Manufacturing information changed in the process 
of Pre-production Proving. 

User request for Change: MSG313 MSG311 
request for changes by the user, in a specific activity. 

Verification Knowledge: MSG313 
Information about what the company knows about 
proving out workpieces. 

Verified Part Program: MSG3131 MSG3132 
Part Programs free from geometrical errors. 

Volume Required MSG311 
The number of items required over a given timescale. 
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APPENDIX 3. 

AN IDEFO MODEL OF 
MACHINE PLANNING 
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MACHINE PLANNING FOR MATERIAL REMOVAL. 

GLOSSARY OF TERMS. 

DESCRIPTION OUTPUT INPUT 

Component Features: MP11 MP121 
The break down of what has to be done on the 
machine into meaningful features. This will 
consist of a set of faces, with tool approach 
directions, spindle axes, and fixture face 
normals. Also an identified processing method. 

Component Setup Knowledge: 
, 

MP1 
Information about what the company knows about 
Component Setups. 

Component Setup Sequence: MP14 MP2 
A sequence of Setups for a conponent detailing the 
features to be machined, Operations to be performed, 
Possible Tools and Processing data for each Op/tool, 
Features for location and clamping. 

Component Setup Sequence Knowledge: MP123, MP124 
Information about what the company knows about 
Component Setup Sequencing. 

Expected Process Data: MP3 
Data indicating how the process is expected to proceed. 
e. g. Tool Life Utilisation, Machine Power required. 

Pre-defined Features: MP131 MP1331 
machining features which come from parametric Pre-defined data. 

General Features: MP131 MP132 
machining feature information generated from analysis of the 
machine requirement. 

Geometric Relationships: MP122 MP123 
The geometric relationships of features within a 
setup. This includes the position of a feature 
within a setup, the relationships between features 
in a setup, and the proximity of other features from 
any one feature. 
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Geometric Support Tools: MP11, MP122 
Tools which allow the computation of answers to MP132, MP14 
geometric queries. MP2 

Initial Component Setup List: MP121 MP122, MP123 
The first listing of groups of features. 

Machinability Data: MP1342 
Data which is used to calculate speed and 
feed rate information. 

Machine Batch Setup Knowledge: MP2 
Information about what the company knows about 
Machine Batch Setups. i. e. how to fixture 
batches of components onto specific machine types. 

Machine Batch Setup List: MP2 MP3 
A sequence of setups for the machine/component 
combination detailing the fixtures to be used, the 
features to be machined, Operations to be performed, 
Possible Tools and Processing data for each Op/tool, 
and features for location and clamping. 

Machine Data: MP123, MP124 
Data concerning the machine being considered, MP132, MP133: 
e. g. machine table size, speed/power graph, MP1342 
size of tool magazine, etc. 

Machine Knowledge: MP 
Information about what the company knows about 
how a Machine should be used. 

Machine Plan: MP 
Planning information detailing how to do what 
has been requested on a particular machine. 

Machine Requirement: MP11, MP122 
The description of what is needed of a particular 
machine. e. g. the pre- and post machined component 
descriptions, and the batch size. 

Machine Type: MP1, MP2 
The general description of the type of machine 
being considered. 

Manufacturing Data: MP12, MP2 
Data about the manufacturing environment. e. g. 
Machine data, tooling, fixturing, machinability, 
material data. 

Material Data: MP12, MP132 
Data describing the properties of the material MP1332, MP13, 
being used to produce a component. 
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Modified Component Setup List: MP14 MP13 
A component Setup List which has been changed, 
e. g. when tool accessability problems are 
identified. 

Modified Processing Constraints: MP1342 MP1341 
A changed processing constraint value. 
e. g. reduction in max. depth of cut due to 
machine power limitations. 

Operations, Possible Tools, MP132 MP134 
Processing Constraints: MP133 
a list of Operations, each of which has associated 
with it the tools which can be considered, and 
the constraints on how the tools can be used. 

Operation Data: MP1331 MP1341, MP13" 
Data which describes a tool specific piece 
of machining. 

Operation Identification Knowledge: MP132 
Information about what the company knows about 
how regions can be broken down to provide 
Operation data. 

Operation Knowledge: MP13 
Information about what the company knows about 
how features can be processed. 

Operation List: MP3 MP4 
A sequenced list of Operations, with specific 
tools, for a setup. 

Part Program Requirement, MSG32 MP4 
Machine and Controller Identification: 
The identification of the specific machine and its 
controller to be used in the production of a component. 

Part Programs: MP4 
Generated NC code which has still to be proven. 

Possible Operations: MP1342 MP14 
All data about how an Operation may be 
performed. 

Possible Tools with MP1332 MP1341, MP13, 
Processing Constraints: 
A list of tools which can be considered in 
performing an Operation, with the constraints 
on how the tools can be used. 
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Preliminary Setup List: MP124 MP125 
The status of the Component Setup List once any 
setups which need to be done before the principal 
setup have been identified. 

Principal Setup List: MP123 MP124 
The status of the Component Setup List once the 
principal setup has been identified. 

Proposed Component Setup List: MP12 MP13, MP14 
The status of the Component Setup List before 
features have been evaluated. 

Feature Identification Knowledge: MP11 
Information about what the company knows about 
how components can be broken down into features. 

Feature Types: MP131 
The types of feature which can be used, i. e. 
Pre-defined and General Features. 

Sequencing Knowledge: MP3 
Information about what the company knows about 
how a list of operations should be sequenced. 

Tooling & Processing Knowledge: MP1332 
Information about what the company knows about 
how to select tools and processing constraints. 

Tooling Data: MP132, MP133: 
Data specifying the tools available for use on 
a specific machine type. 

Tool Path Parameter Values: MP1341 MP1342 
Values of path length, cut depth and width for 

an Operation/tool combination. 
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APPENDIX 4 

DATA REPRESENTATIONS BUILT IN THE RESEARCH 

4.1 INTRODUCTION 

This appendix provides representations of machine tool data, cutter data, feature and com- 
ponent definitions from which the implemented Closely Coupled Machine Planner has talc- 
en its data. 

The machine and cutter data representation are taken from the first version of the PDM, 
"feat. lam". These have been reinstituted in subsequent versions as an adequate base for the 
exploratory software. The feature representations are provided from the "machplan. lam" 

version of the PDM, with the exception of the channel definition in section 4.4.1 which is 
drawn from the "pms3_8. lam" version of the PDM. The variant of the Bolster Plate 
definition is taken from "machplan. lam", while the Glacier reduced size bearing definition 
is taken from the "pms3_8. lam" version of the PDM, which drew together the key ele- 
ments of data required for all the MCG Applications. 

4.2 MACHINE DATA REPRESENTATION 

The following machine data representation has been populated with data related to the 
Wadkin V4-6 machining centre which has been used in the experimental machining work. 

2474 mc-tool-database: 
2475 Reference Number: 1 Description: "wadkin V4/6" 
2476 Magazine: 
2477 Pocket number: 1- Actual tool number: x 
2478 Pocket number: 2- Actual tool number: x 
2479 Pocket number: 3- Actual tool number: x 
2480 Pocket number: 4- Actual tool number: x 
2481 Pocket number: 5- Actual tool number: x 
2482 Pocket number: 5- Actual tool number: x 
2483 Pocket number: 6- Actual tool number: x 
2484 Pocket number: 6- Actual tool number: x 
2485 Pocket number: 7- Actual tool number: x 
2486 Pocket number: 8- Actual tool number: x 
2487 Pocket number: 9- Actual tool number: x 
2488 Pocket number: 10 - Actual tool number: x 
2489 Pocket number: 11 - Actual tool number: x 
2490 Pocket number: 12 - Actual tool number: x 
2491 Pocket number: 13 - Actual tool number: x 
2492 Pocket number: 14 - Actual tool number: x 
2493 Pocket number: 15 - Actual tool number: x 
2494 Pocket number: 16 - Actual tool number: x 
2495 Pocket number: 17 - Actual tool number: x 
2496 Pocket number: 18 - Actual tool number: x 
2497 Pocket number: 19 - Actual tool number: x 
2498 Pocket number: 20 - Actual tool number: x 
2499 Pocket number: 21 - Actual tool number: x 
2500 Pocket number: 22 - Actual tool number: x 
2501 Pocket number: 23 - Actual tool number: x 
2502 Pocket number: 24 - Actual tool number: x 
2503 Pocket number: 25 - Actual tool number: x 
2504 Pocket number: 26 - Actual tool number: x 
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2505 Pocket number: 27 - Actual tool number: x 
2506 Pocket number: 28 - Actual tool number: x 
2507 Pocket number: 29 - Actual tool number: x 
2508 Pocket number: 30 - Actual tool number: x 
2509 Machine spec: 
2510 Description : "wadkin V4/6" 
2511 Machine type : machining centre 
2512 Maximum part length : 450.0 
2513 Maximum part width : 300.0 
2514 Maximum part depth : 400.0 
2515 Minimum surface finish : 0.8 
2516 Minimum tolerance : 0.025 
2517 Minimum speed : 20.0 
2518 Speed characteristic - point 1: 2000.0 
2519 Speed characteristic - point 2: 4000.0 
2520 Maximum speed : 10000.0 
2521 Power constants : C1 = 0.005966, C2 = 11.5, C3 = 14.3000002, C4 = 0.0007 
2522 Maximum power : 11.5 
2523 Maximum torque : 57.0 
2524 Machining rate : 35.0 
2525 Tool change time : 0.17 
2526 Tool magazine change time : 60.0 
2527 Rigidity factor : 0.85 
2528 
2529 

43 CUTTER DATA REPRESENTATION 

The data representation shown below is taken from the tooling database representation in 
the PDM and represents the structure of data, for one tool, constructed by A. Mckay [93]. 
The tooling data required for Machine Planning was extracted from this representation. 

1845 xxxxxx: Base diameter = 63.0 mm Comer rad = 0.8 mm 
1846 Base angle = 15.0 degrees Side angle = 15.0 degrees 
1847 7.0 edges 10000.0 rpm (max) 
1848 
1849 Life used = 0.00000E+00% Holder assy: 
1850 Holding method of tool :0 
1851 Machine tool holder : 0.00000E+00 0 
1852 
1853 
1854 
1855 
1856 
1857 
1858 

2=0.00000E+00 
1859 

4=0.00000E+00 
1860 

6=0.00000E+00 
1861 
1862 
1863 
1864 
1865 

x 
1866 
1867 
1868 
1869 

1101. 
Flute length = 9.0 mm Gauge length = 96.0 mm 
True radius = 1.0 mm Dog angle = 96.0 degrees 
Tip details : 

tip details code :x 
Geometry Feature I=0.00000E+00 , Geometry Feature 

Geometry Feature 3=0.00000E+00 
, Geometry Feature 

Geometry Feature 5=0.00000E+00 
, Geometry Feature 

Cost per tooth = 2.1300001 pounds 
Norm Clearance =x, Tolerance class =x 
Cutting Edge Cond =x, Fixing and breakers =x 
Tip ISO code : SCMM090408TR 

Tip material : Tip material spec : k10st , code number 

Max chip thicknesses : 

Maximum chip thickness = 0.15 mm 
TCI = 9.95000E+06 * 10**6 
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1870 TC2 = 3.0, TC3 = 2.8 
1871 TC4 = 1.3 , TC5 = 1.0 , TC6 = 0.7 
1872 Chip Reference : 
1873 Material : grade 17 , Spec : grade 17 , Condition :x 
1874 Hardness range : 190.0 - 250.0 Bhn 
1878 Rigidity factor = 1.0 

4.4 FEATURE REPRESENTATIONS 

The first feature representation in the following list is taken from the "pms3_8. lam" version 
of the PDM, which has been argued in this thesis. The remaining features, represented 
below, have been taken from the "machplan. lam" version of the PDM, discussed in chapter 
10.6. These contain the same range of data, apart from the bounding box, but it is organ- 
ised differently and contains a number of data fields which are not required by the Machine 
Planner. Three features, the Channel, the Face and the Hole have been implemented in 
"pms3_8. lam" the version of the PDM, and tested using the Glacier workpiece, used in the 
experiment described in chapter 11.4. 

4.4.1 The "pms3_8" Channel Representation 

The feature definition data for the Channel feature 

using the final version of the PDM. The horizontal lines 

across the page represent a level change, where the data following 
the line provides a break down of one aspect of the data from above the 
line. 

--------------------------------- 
(feature machining data) -- Collection 

pre-machined feature : ??:?? 

relationship graph : coordinate relationship: <zoom in> 

machine class : mill 
machining approach directions : 

+x impossible 

-x : ?? 
+y impossible 

-y : ?? 
+z possible 
-z : ?? 

fixture face normals 
+x impossible 

-x : ?? 

+y possible 
-y : possible 
+z : possible 
-z :V 

bounding box : 
+x half ( (20) 

-x 
??: (-half((20))) 

+y half ( (23) ) 

-y ??: (-half((23))) 
t2 : 

zero :(0.00000E+00 mm ) 
-Z : 

) ??: (- (29 depth) 
volume : 

x'` y*z: (23 width) * (29 depth) * (20 length) 
operation activity : sequential set 

OPERATION ACTIVITY: 
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name :1 
basic activity data : <zoom in> 

comment : "rough cut" 

OPERATION ACTIVITY: 

name :2 
basic activity data : <zoom in> 

comment : "finish cut" 
post-machined feature : ??:?? 

--------------------------------- 
OPERATION ACTIVITY: 
name :1 
basic activity data : <zoom in> 

comment : "rough cut" 
(operation data) -- Collection 

primary regions : ... 
secondary regions : ... 
relationship graph : ... 
operation definition : ... 
constraints : ... 
geometric information : ... 
tooling : ... 

-257- 

(operation definition) -- Collection 

operation type : composite op ( open slot mill , end mill 
cut type: rough 
tool path plan : clear_channel 

------------------------------- 
(constraints) -- Collection 

tool approach directions : ??:?? 

dimensional tolerance : 

99 " 99 

surface roughness 
99 97 

99 " 99 

diameter constraints 
width -2* finish cut :( {23 width} - 

two * finish cut . ... ) 
corner radii constraints 

99" 79 

length constraints : (29 depth} 

--------------------------------- 
(geometric information) -- Collection 

operation length : (20 length) 
operation width : 

width -2* finish cut : ((23 width) - 
two * finish cut :( two * finish cut) ) 

operation depth : 
depth - finish cut : ((29 depth) - finish cut ) 

operation side width : 
99 79 

operation side depth : 

stock width : 
width -2* finish cut :( (23 width) - 

two * finish cut :( two * finish cut ) 
corner radius 

99 97 
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{tooling} -- Collection 
possible tools : ... 

chosen tool : 
relationship graph : ... 
actual tool : ... 
subops : ... 
tool plan : ?? 

maximum cut depth : ... 
minimum cut depth : ... 
cutting method : ?? 
tool offset : ... 

{ subops } List 
feed rate 

speed . 

power 
99 " 99 

cut depth 

cut width : 
7? " 97 

path length 
97 77 

--------------------------------- 
OPERATION ACTIVITY: 
name :2 
basic activity data : <zoom in> 

comment : "finish cut" 

(operation definition) -- Collection 
operation type : end mill 
cut type : finish face and side 
tool path plan : face-channel 

--------------------------------- 
(constraints) -- Collection 

tool approach directions : ??:?? 
99 91 

dimensional tolerance : (23 width) 
(29 depth) 
(20 length) 

surface roughness : surface finish 
diameter constraints : 

width -2 finish cut : ((23 width) - 
two * finish cut :(... * ... )) 

comer radii constraints 
79 " 99 

9? " 99 

length constraints : (29 depth) 

--------------------------------- 
(geometric information) -- Collection 

operation length : (20 length) 
operation width : finish cut 
operation depth : finish cut 
operation side width : (23 width) 
operation side depth : (29 depth) 
stock width : (23 width) 
comer radius : 

9? 79 

-258- 
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4.4.2 The Channel 

thru_channcl == ( 
width == 50.0, 
length == 40.0, 
depth == 20.0, 

surface finish == 2.5, 
xdatum = 0.00000E+00, 
ydatum == 0.00000E+00, 

zdatum == 0.00000E+00) _ 
Null 

Intersection: 
+x face : Transformed solid: 

Plane 
AT 

ry = 90.0, mx = length / 2.0 

-x face : Transformed solid: 
Plane 

AT 

- 259 - 

idth /, *, -7 

j depth Z. (0,0,0) 

-1---__ length 

ry =- ( 90.0 ), mx =- ( length / 2.0) 
+y face : Transformed solid: 

Plane 
AT 

rx =- ( 90.0 ), my = width / 2.0 

-y face : Transformed solid: 
Plane 

AT 
rx=90.0, my=-(width / 2.0) 

+z face : Plane 
-z face : Transformed solid: 

Plane 
AT 

rx = 180.0, mz =- ( depth ) 

machining data 

reg-constraints: 
spindle-axes: 

minus_z 
tool-app-dims: 

minus_z 
plus_x 
minus_x 

fix face_norms: 

plus_y 
minusy 
plus_z 

region volume: 
length * width * depth 

region length: length 
region width: width 
region depth: depth 

operations: 
machining method pre defined 
basic op data 

current cut roughing 
approach dim ?? 
machining element 

element number 6.0 
element name clear_channel 

constraints: 
operation tolerance 
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o? 

surface roughness 
9? 

diameter constraints 
( width - 

2.0 * finish allow 

radius constraints 
99 

length constraints 
depth 

op type data 

current op 
open-slotting 
end-milling 

width (width - 
finish allow * 2.0 

depth ( depth - finish allow) 
length length 

radius ?? 
stock width ( width - 

finish allow * 2.0 

width2 ?? 
dcpth2 ?? 

machining method pre-defined 
basic op data 

current cut fin facenside 

approach dim ?? 

machining element 
element number 7.0 

element name face-channel 

constraints: 
operation tolerance 

width 
length 
depth 

xdatum 
ydatum 
zdatum 

surface roughness 
99 

diameter constraints 
( width - 

2.0 * finish allow 

radius constraints 

length constraints 

op type data 

current op end-milling 
width finish allow 
depth finish allow 
length length 
radius ?? 

stock width finish allow 
width2 width 
depth2 depth 
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"channel length in x, (0,0,0) at mid x, y, top z 

4.43 The Closed Pocket 

moved clsd pocke =_ ( width 
width == ?? 
length== ??, depth (0,0,0) 
depth == ??, 
corner rad == ?? 
fillet rad == ?? length 
surface finish = ?? 

xdatum ??, fillet radius 
ydatum = ?? 

corner radius 
zdatum ?? _ 

Null 

Intersection: 
Plane 
Transformed solid: 

Plane 
AT 

rx = 180.0, mz =- ( depth ) 
Union: 

Union: 

narrow-one : Intersection: 
Transformed solid: 

Plane 
AT 

rx = -90.0, 
my =( width / 2.0 - corner rad) 

Transformed solid: 
Plane 

AT 
rx = 90.0, 

my =- (( width / 2.0 - corner rad) ) 
Transformed solid: 

Plane 
AT 

ry = -90.0, mx =- ( length / 2.0 ) 
Transformed solid: 

Plane 
AT 

ry =90.0, mx=length / 2.0 
short-one : Intersection: 

Transformed solid: 
Plane 

AT 
rx = -90.0, my = width / 2.0 

Transformed solid: 
Plane 

AT 
rx=90.0, my=-(width / 2.0) 

Transformed solid: 
Plane 

AT 
ry = -90.0, 

mx =- (( length / 2.0 - corner rad) ) 
Transformed solid: 

Plane 
AT 

ry = 90.0, 
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mx =( length / 2.0 - comer rad) 
Union: 

four-corners : Union: 

top-left-hand : Transformed solid: 
Cylinder: Radius = corner rad 

AT 
mx =- (( length / 2.0 - corner rad) 
my =( width / 2.0 - corner rad) 

top-right-hand : Transformed solid: 
Cylinder: Radius = comer rad 

AT 
mx =( length / 2.0 - corner rad), 
my =( width / 2.0 - corner rad) 

bot-right-hand : Transformed solid: 
Cylinder: Radius = comer rad 

AT 
mx =( length / 2.0 - comer rad), 
my (( width / 2.0 - corner rad) 

bot-left-hand : Transformed solid: 
Cylinder: Radius = comer rad 

AT 

mx =- (( length / 2.0 - corner rad) 
my =- (( width / 2.0 - corner rad) 

machining data 

reg-constraints: 
spindle_axes: 

minus_z 
tool_app_dirns: 

minus_z 
fix_face_norms: 

plus_z 
plus_x 
minus_x 
plusy 
minusy 

region volume: 
depth *( 

length * width 

4.0 * corner rad * comer rad 

3.1400001 * corner rad * corner rad 
)) 

region length: length 
region width: width 
region depth: depth 

operations: 
machining method pre_defined 
basic op data 

current cut roughing 
approach dim ?? 
machining element 

element number 1.0 
element name clear-pocket 

constraints: 
operation tolerance 

surface roughness 

diameter constraints 
C length - 

2.0 * finish allow 
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( width - 
2.0 * finish allow 

4.0 * corner rad 
radius constraints 

length constraints 
depth 

op type data 

current op 
closed-slotting 
open-slotting 
end_milling 

width ( width - 
1.0 * corner rad 

depth depth 
length ( length - 

1.0 * comer rad 

radius 0.00000E+00 

stock width ( width - 
1.0 * corner rad 

width2 ?? 
depth2 ?? 

machining method pre-defined 
basic op data 

current cut roughing 
approach dim ?? 
machining element 

element number 2.0 
element name profile_pocket 

constraints: 
operation tolerance 

surface roughness 

diameter constraints 
1.8 *( corner rad - finish allow) 

radius constraints 

length constraints 
depth 

op type data 

current op end_milling 
width ( width - 

2.0 * finish allow 

depth depth 
length ( length - 

2.0 * finish allow 

radius ( comer rad - finish allow) 
stock width 

width2 ?? 
depth2 ?? 

( comer rad / 2.0 - finish allow) 

machining method pre_defined 
basic op data 



appendix 4 - 264 - 

current cut finishing 

approach dim ?? 

machining element 
element number 2.0 

element name profile-pocket 
constraints: 

operation tolerance 
width 
length 

surface roughness 
surface finish 

diameter constraints 
1.8 * corner rad 

radius constraints 
fillet rad 

length constraints 
depth 

op type data 
current op end-milling 
width width 
depth depth 
length length 
radius corner rad 
stock width finish allow 
width2 ?? 
depth2 ?? 

"Pocket with axes and top surf at (0,0,0) 

4.4.4 The Through Pocket 

thru pocket == ( 

width ?? 
length ?? 
depth ?? 

corner rad == ?? 

surface finish == ??, 

xdatum = ?? 

ydatum = ?? 

zdatum == ?? ) _ 
Null 

Intersection: 
Plane 
Transformed solid: 

Plane 
AT 

rx = 180.0, mz =- ( depth ) 
Union: 

Union: 

narrow-one : Intersection: 
Transformed solid: 

Plane 
AT 

rx = -90.0, 
my =( width / 2.0 - corner rad) 

Transformed solid: 
Plane 

AT 
rx = 90.0, 
my =- (( width / 2.0 - comer rad) 

Transformed solid: 
Plane 

AT 
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ry = -90.0, mx =- ( length / 2.0 ) 
Transformed solid: 

Plane 
AT 

ry = 90.0, mx = length / 2.0 

short-one : Intersection: 
Transformed solid: 

Plane 
AT 

rx = -90.0. my = width / 2.0 
Transformed solid: 

Plane 
AT 

rx = 90.0, my =- ( width / 2.0 ) 
Transformed solid: 

Plane 
AT 

ry = -90.0, 
mx =- (( length / 2.0 - corner rad) ) 

Transformed solid: 
Plane 

AT 
ry = 90.0, 
mx =( length / 2.0 - comer rad) 

Union: 
four-comers : Union: 

top-left-hand : Transformed solid: 
Cylinder: Radius = comer rad 

AT 

mx =- (( length / 2.0 - corner rad) 
my =( width / 2.0 - corner rad) 

top-right-hand : Transformed solid: 
Cylinder: Radius = comer rad 

AT 

mx =( length / 2.0 - comer rad), 
my =( width / 2.0 - comer rad) 

bot-right-hand : Transformed solid: 
Cylinder: Radius = comer rad 

AT 

mx =( length / 2.0 - comer rad), 
my =- (( width / 2.0 - comer rad) 

bot-left-hand : Transformed solid: 
Cylinder: Radius = comer rad 

AT 

mx =- (( length / 2.0 - corner rad) ), 
my =- (( width / 2.0 - corner rad) 

machining data 
reg-constraints: 

spindle axes: 
plus -z 
minus_z 

tool app_dirns: 
plus_z 
minus_z 

6x face norms: 
plus_x 
minus_x 
plusy 
minusy 

region volume: 
depth *( 

length * width 
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0.86 * corner rad * corner rad 

region length: length 

region width: width 
region depth: depth 

operations: 
machining method pre_dcfincd 
basic op data 

current cut roughing 
approach dim ?? 
machining element 

element number 1.0 
element name clear-pocket 

constraints: 
operation tolerance 

surface roughness 

diameter constraints 
( length - 

2.0 * finish allow 

( width - 
2.0 * finish allow 

4.0 * comer rad 

radius constraints 
77 

length constraints 
depth 

op type data 

current op 
closed-slotting 
open-slotting 
end_milling 

width ( width - 
1.0 * comer rad 

depth 
depth + 3.0 

length ( length - 
1.0 * comer rad 

radius 0.00000E+00 

stock width ( width - 
1.0 * comer rad 

width2 ?? 
depth2 ?? 

machining method predefined 
basic op data 

current cut roughing 
approach dim ?? 

machining element 
element number 2.0 

element name profile-pocket 
constraints: 



appendix 4 

operation tolerance 
79 

surface roughness 
99 

diameter constraints 

radius constraints 

length constraints 
depth 

op type data 
current op end_milling 
width ( width - 

2.0 * finish allow 

depth 
depth + 3.0 

length ( length - 
2.0 * finish allow 
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1.8 *( comer rad - finish allow) 

radius ( comer rad - finish allow) 
stock width 

width2 ?? 
depth2 ?? 

( comer rad / 2.0 - finish allow) 

machining method pre-defined 
basic op data 

current cut finishing 

approach dim ?? 
machining element 

element number 2.0 
element name profile-pocket 

constraints: 
operation tolerance 

width 
length 

surface roughness 
surface finish 

diameter constraints 
1.8 * comer rad 

radius constraints 
99 

length constraints 
depth 

op type data 
current op end_milling 
width width 
depth 

depth + 3.0 
length length 
radius corner rad 
stock width finish allow 
width2 ?? 
depth2 ?? 

'"Mru pocket defined with axes and top surface at (0,0,0) 
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4.4.5 The Step 

stepped edge == ( 
width == 50.0. 
length == 40.0, 
depth == 20.0. 

surface finish = 2.5, 
fillet rad == ?? 

xdatum == 0.00000E+00, 
ydatum == 0.00000E+00, 
zdatum ý 0.00000E+00) _ 

Null 

Intersection: 
+x face : Transformed solid: 

Plane 
AT 

ry = 90.0. mx = length 

-x face : Transformed solid: 
Plane 

AT 
ry =-(90.0) 

+y face : Transformed solid: 
Plane 

AT 

rx =- ( 90.0 ), my = width 

-y face : Transformed solid: 
Plane 

AT 
rx = 90.0 

+z face : Plane 

-z face : Transformed solid: 
Plane 

AT 

rx = 180.0, mz =- ( depth ) 

machining data 

reg-constraints; 
spindle_axes: 

minus_z 
plus_y 

tool-app-dims: 
minus -z 
plusy 
plus_x 
minus_x 

fix-face-norms: 
plus_z 
minus_y 

region volume: 
length * width * depth 

region length: length 

region width: width 
region depth: depth 

operations: 
machining method predefined 
basic op data 

current cut roughing 
approach dim ?? 
machining element 

element number 3.0 

element name clear step 
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dep_1 tdth 
(0,0,0) 

length 

constraints: 
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operation tolerance 
o? 

surface roughness 
99 

diameter constraints 
99 

radius constraints 

length constraints 
depth 

op type data 

current op end_milling 
width ( width - finish allow) 
depth ( depth - finish allow) 
length length 

radius ?? 
stock width ( width - finish allow) 
width2 ?? 
depth2 ?? 

machining method pre-defined 
basic op data 

current cut fin facenside 

approach dim ?? 

machining element 
element number 4.0 

element name finish step 
constraints: 

operation tolerance 
width 
length 
depth 

xdatum 
ydatum 
zdatum 

surface roughness 
surface finish 

diameter constraints 
77 

radius constraints 
fillet rad 

length constraints 
depth 

op type data 

current op end-milling 
width finish allow 
depth finish allow 
length length 

radius ?? 
stock width finish allow 
width2 width 
depth2 depth 

"step length in x, (0,0,0) at front, left, top 

4.4.6 The Hole 

simp_thru_hole == ( 
diameter == dia, 
depth == depth, 

sfin=.??, 
xdatum ?? 

ydatum =_ ??, 

depth diameter 
ý_JC 

(0,0,0) 
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Null 
zdatum = ?? )= 

Cylinder: Radius = diameter / 2.0 

machining data 

reg-constraints: 
spindle axes: 

plus_z 
minus_z 

tool_app_dirns: 
plus_z 
minus_z 

fix-face-norms: 

all_xy 
region volume: 

depth * 
3.1400001 * diameter * diameter 
/ 4.0 

region length: depth 

region width: diameter 

region depth: depth 
operations: 

machining method pre defined 
basic op data 

current cut roughing 
approach dim ?? 
machining element 

element number 8.0 
element name drill_hole 

constraints: 
operation tolerance 

diameter 

surface roughness sfin 
diameter constraints 

diameter 

radius constraints 
99 

length constraints 
depth 

op type data 
current op drilling 
width diameter / 2.0 
depth 

depth + 7.0 
length 

depth + 7.0 
radius diameter / 2.0 
stock width diameter 
width2 ?? 
depth2 ?? 

"thru hole with xy origin at centre, z at top 

4.4.7 The Four Corner Hole 

four corner hole 
dia == ??, (0,0,0) 
depth = ?? 
surf fin = ??, deP 
xdatum - ??, 

-f--__ ydatum == 0.00000E+00, 
zdatum ??, 

I 

rng_y 

e_spacing_x 
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hole_spacing_x ?? 
hole_spacing_y ?? _ 

thru hole I: thru hole with xy origin at centre: 
dia= dia 
depth= depth 
surface roughness: surf fin 
ref. posn: 
x: xdatum 
y: ydatum 
z: zdatum 
AT 

mx =- ( hole_spacing_x / 2.0 ), 

my =- ( hole_spacingy / 2.0 ) 
thru hole 2: thru hole with xy origin at centre: 

dia= dia 
depth= depth 
surface roughness: surf fin 
ref. posn: 
x: xdatum 
y: ydatum 
z: zdatum 
AT 

mx =- (hole_spacing_x / 2.0 ), 

my = hole_spacingy / 2.0 
thni hole 3: thru hole with xy origin at centre: 

dia= dia 
depth= depth 
surface roughness: surf fin 

ref. posn: 
x: xdatum 
y: ydatum 
z: zdatum 
AT 

mx = hole_spacing_x / 2.0, 

my = hole_spacingy / 2.0 
thru hole 4: thru hole with xy origin at centre: 

dia= dia 
depth= depth 
surface roughness: surf fin 

ref. posn: 
x: xdatum 
y: ydatum 
z: zdatum 
AT 

mx = hole_spacing_x / 2.0, 
my =- (hole_spacing-y / 2.0 ) 

"4 hole set with xy origin at centre line intersection 

4.4.8 The Face 

moved face == ( 
x-dim = body length, 
y-dim == body width, 
z-dim stock height - (0,0,0) 

body thickness + cleanup allow + finish allow 
-dim ). 

surface roughnes == 2.5, f 
xdatum == 0.00000E+00, Vºýz 
ydatum == 0.00000E+00, 
zdatum == 0.00000E+00) 

Intersection: 
z"dim 
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+x face : Transformed solid: 
Plane 

AT 
ry = 90.0, mx = x-dim / 2.0 

-x face : Transformed solid: 
Plane 

AT 

ry =-90.0, mx=-(x-dim/ 2.0) 
+y face : Transformed solid: 

Plane 
AT 

rx = -90.0, my = y-dim / 2.0 

-y face : Transformed solid: 
Plane 

AT 
rx = 90.0, my =- (y-dim / 2.0 ) 

+z face : Transformed solid: 
Plane 

AT 
mz = z-dim 

-z face : Transformed solid: 
Plane 

AT 
rx = 180.0 

Intersection: 
+x face : Transformed solid: 

Plane 
AT 

ry = 90.0, mx = x-dim / 2.0 

-x face : Transformed solid: 
Plane 

AT 
ry = -90.0, mx =- ( x-dim / 2.0 ) 

+y face : Transformed solid: 
Plane 

AT 
rx = -90.0, my = y-dim / 2.0 

-y face : Transformed solid: 
Plane 

AT 
rx=90.0, my=-(y-dim/ 2.0) 

+z face : Transformed solid: 
Plane 

AT 
mz = z-dim 

-z face : Transformed solid: 
Plane 

AT 
rx = 180.0 

machining data 
reg-constraints: 

spindle-axes: 
minus -z 
all_xy 

tool_app_dims: 
minus_z 
all_xy 

fix-face-norms: 

plus_z 
region volume: 

x-dim * y-dim * z-dim 
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region length: x-dim 
region width: y-dim 
region depth: z-dim 

operations: 

- 273 - 

machining method predefined 
basic op data 

current cut roughing 
approach dim ?? 
machining element 

element number 5.0 
element name clear_face 

constraints: 
operation tolerance 

99 

surface roughness 
9o 

diameter constraints 
99 

radius constraints 
99 

length constraints 
9o 

op type data 

cur ent op facing 

width y-dim 
depth ( z-dim - finish allow) 
length x-dim 
radius ?? 

stock width y-dim 
width2 ?? 
depth2 ?? 

machining method pre-defined 
basic op data 

current cut finishing 

approach dim ?? 

machining element 
element number 5.0 
element name finish-face 

constraints: 
operation tolerance 

z-dim 
surface roughness 

9? 

diameter constraints 

radius constraints 
9? 

length constraints 
99 

op type data 

current op facing 
width y-dim 
depth finish allow 
length x-dim 
radius ?? 
stock width y-dim 
width2 ?? 
depth2 ?? 

"face block with origin at centre of bottom face 
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4.4.9 General Parameters 

cleanup allow = 3.0 
finish allow == 0.25 

body length =_ [ 140.0, ( 0.1, -0.1)] 
body width =_ [ 75.0, ( 0.2. -0.3)] 
body thickness =[ 15.0, ( 0.2, -0.1)] 

stock height == 47.0 
stock_width =_ [ 110.0, ( 1.0,1.0)] 
stock_length =[ 150.0, ( 1.0,1.0)] 
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min-stock == 
cleanup allow + finish allow 

rem-stock-length =( stock_length - body length + min-stock) 
rem_stock_width =_ ( stock_width - body width + min-stock) 
rem_stock_height =_ ( stock height - body thickness + min_stock) 

4.5 COMPONENT DESCRIPTIONS 

4.5.1 The Bolster Plate - Variant 2 

1 Transformed solid: 
2 block with origin at centre 
3x= body length 
4y= body width 
5z= body thickness AT 
6 
7 mx =( body_length / 2.00 ), my =( body-width / 2.00 ), 

mz =- (body thickness / 2.00) + 
8 
9 left top pocket : Pocket with axes and top surf at (0,0,0) 

10 x_dim= 50.00 
11 y_dim= 40.00 
12 z dim= 10.00 
13 comer rad= 15.00 
14 fillet rad= 1.00 
15 surf fin (Cla microns): 2.50 
16 ref posn: 
17 x: 0.00 
18 y: 0.00 
19 z: 0.00 AT 
20 
21 rz = 90.00, mx = 110.00, my = 75.00 
22 right top pocket : Pocket with axes and top surf at (0,0,0) 
23 x -dim= 

50.00 
24 y dim= 40.00 
25 z_dim= 10.00 
26 comer rad= 15.00 
27 fillet rad= 1.00 
28 'surf fin (CIa microns): 2.50 
29 ref posn: 
30 x: 0.00 
31 y: 0.00 
32 z: 0.00 AT 
33 
34 rz = 90.00, mx = 190.00, my = 75.00 
35 left thru pocket : 

Thru pocket defined with axes and top surface at (0,0,0) 
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36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 

Pocket dimensions: 
length = 40.00 
width = 30.00 
depth = ((5 body thickness) - (12)) 
Corner radius = 10.00 
Surf. fin (Cla microns): 2.50 
Ref. Coords: 
x: 0.00 
y: 0.00 
z 0.00 
AT 
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(21), (21), (21 ), mz =- ((12) ) 
right thru pocke : 

Thru pocket defined with axes and top surface at (0,0,0) 
Pocket dimensions: 
length = 40.00 
width = 30.00 
depth = ((5 body thickness) - 10.00) 
Corner radius = 10.00 
Surf. fin (Cla microns): 2.50 
Ref. Coords: 

x: 0.00 

y: 0.00 
Z: 0.00 
AT 

rz = 90.00, mx = 190.00, my = 75.00, mz =- ( 10.00 ) 
left channel : channel length in x, (0,0,0) at mid x, y, top z 

width = 35.00 
length = (4 body width) 
depth = 10.00 
finish (Cla microns): 2.50 
datum coords: 
x=0.00 
y=0.00 
z=0.00 
AT 

rz = 90.00, mx = 50.00, my =(4 body width) / 2.00 
right channel : channel length in x, (0,0,0) at mid x, y, top z 

width= 35.00 
length = (4 body width) 
depth = 10.00 
finish (Cla microns): 2.50 
datum coords: 
x=0.00 

y=0.00 
z=0.00 
AT 

rz = 90.00. mx = 250.00, my =(4 body width) / 2.00 
front step : step length in x, (0,0,0) at front, left, top 

width = 10.00 
length = (3 body length} 
depth= 15.00 
finish (Cla microns): 2.50 
fillet rad: 1.00 
Ref posn: 
x: 0.00 
y: 0.00 
z: 0.00 
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4.5.2 The Bolster Plate - Variant 4 

part: 
bolster : Geometry: Transformed solid: 

block with origin at centre 
x= body length 

y= body width 
z= body thickness AT 

mx = body length / 2.0, 
my = body width / 2.0, 
mz =- ( body thickness / 2.0 )+ 

left top pocket : 
Pocket with axes and top surf at (0,0.0) 
x_dim= 25.0 
y_dim= 20.0 
z_dim= 5.0 
corner rad= 7.0 
fillet rad= 1.0 
surf fin (Cla microns): 2.5 
ref posn: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 AT 
rz = 90.0, mx = 50.0, my = 37.5 

right top pocket : 
Pocket with axes and top surf at (0,0,0) 
x_dim= 25.0 

y_dim= 20.0 

z_dim= 5.0 

corner rad= 7.0 
fillet rad= 1.0 

surf fin (Cla microns): 2.5 
ref posn: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 AT 
rz = 90.0, mx = 90.0, my = 37.5 

left thru pocket : 
Thru pocket defined with axes and top surface at (0,0,0) 
Pocket dimensions: 
length = 20.0 
width = 15.0 
depth =( body thickness - 5.0) 
Comer radius = 5.0 
Surf. fin (Cla microns): 2.5 
Ref. Coords: 
x: 0.00000E+00 

y: 0.00000E+00 
z: 0.00000E+00 
AT 

rz=90.0, mx=50.0, my=37.5, mz=-(5.0) 
right thru pocke : 
Thru pocket defined with axes and top surface at (0,0,0) 
Pocket dimensions: 
length = 20.0 
width= 15.0 
depth =( body thickness - 5.0) 
Corner radius = 5.0 
Surf-fin (Cla microns): 2.5 
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Ref. Coords: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 
AT 

rz = 90.0. mx = 90.0, my = 37.5, mz =- ( 5.0 ) 
front step : 
step length in x, (0,0,0) at front, left, top 

width= 5.0 
length = body length 
depth= 7.0 
finish (Cla microns): 2.5 
fillet rad: 1.0 
Ref porn: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 

thru holes_12mm : 
4 hole set with xy origin at centre line intersection 

dia of holes: 12.0 
depth: body thickness 
surface finish: 2.0 

ref. posn: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 
hole spacing: 
x= 108.0 
y= 35.0 

AT 

mx = body length / 2.0, 
my = body width / 2.0 

top face : 
face block with origin at centre of bottom face 

x-dim= stock_length 
y-dim= stock_width 
z-dim= rem_stock_height 
surf fin (Cla microns): 2.5 

ref point: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 
AT 

mx =( stock length / 2.0 - rem_stock_length), 
my =( stock-width 2.0 - min-stock) 

bottom face : 
face block with origin at centre of bottom face 

x-dim= stock_length 
y-dim= stock-width 
z-dim= min-stock 
surf fin (Cla microns): 2.5 
ref point: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 
AT 

rx = 180.0, 
mx =( stock_length / 2.0 - rem-stock-length), 
my =( stock-width 2.0 - min-stock), 
mz =- ( body thickness ) 

back face : 
face block with origin at centre of bottom face 

x-dim= stock-length 
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y-dim= stock height 

z-dim= rem_stock_width 
surf fin (Cla microns): 2.5 

ref point: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 
AT 

rx=-(90.0), 
mx =( stock_length / 2.0 - rem-Stock - 

length), 
mz =- (( stock height / 2.0 - rem_stock_height)), 
my = body width 

front face : 
face block with origin at centre of bottom face 
x-dim= stock-length 
y-dim= stock height 
z-dim= min-stock 
surf fin (Cla microns): 2.5 

ref point: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 
AT 

rx = 90.0, 
mx =( stock_length / 2.0 - rem-stock - 

length), 
mz =- (( stock height / 2.0 - rem_stock_height) 

left face : 
face block with origin at centre of bottom face 

x-dim= stock height 

y-dirn= stock-width 
z-dim= rem-stock-length 
surf fin (Cla microns): 2.5 

ref point: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 
AT 

ry =-(90.0), 
my =( stock-width / 2.0 - min-stock), 
mz =- (( stock height / 2.0 - rem_stock_height) 

right face : 
face block with origin at centre of bottom face 
x-dim= stock height 
y-dim= stock-width 
z-dim= min-stock 
surf fin (Cla microns): 2.5 

ref point: 
x: 0.00000E+00 
y: 0.00000E+00 
z: 0.00000E+00 
AT 

ry = 90.0, 
my =( stock_width / 2.0 - min-stock), 
mz =- (( stock height / 2.0 - rem-stock height) ), 
mx = body length 

4.5.3 The Glacier Reduced Size Bearing 

solid definition : 
description : 
E3 geometry: 
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base plate geometry : 
SOLID: 
shape definition : geometry application: 
geometry : machined block 

( finished x: overall length 
, 

pre-machined x: stock length 
, 

finished y: overall depth 
, 

pre-machined y: stock depth , 
finished z: height, 

pre-machined z: stock height , 
finish cut : finishing allowance , 
rough cut : roughing allowance , 
surface finish : surface finish ) 

applied geometry : the features : as ordered 
( moved slot : transformed applied geometry 

( rigid motions :( mz ( half ( height))) 

applied geometry : slot : channel 
( width : slot width , 
depth : slot depth. 

measured width : 13.5 , 
measured depth : 5.5 , 
length : overall length , 
finish cut : finishing allowance , 
surface finish : surface finish) ) 

through holes : as ordered : 
+x holes : as ordered : 
+x+y hole : transformed applied geometry 

(rigid motions : (mx ( 
half x centres :( half * through hole x centres ) 
my ( 
half y centres :( half * through hole y centres)) ) 

applied geometry : through hole : through hole 
( diameter : through hole diameter 

, 
measured diameter : 10.0 , 
depth : height , 
surface finish : surface finish) ) 

+x-y hole : transformed applied geometry 
(rigid motions : (mx 

minus x centres : (- through hole x centres)) ) 

applied geometry : +x+y hole : transformed applied geometry 
(rigid motions : (mx 
half x centres :( half * through hole x centres )) 

my ( 
half y centres :( half * through hole y centres )) 
applied geometry : through hole : through hole 
( diameter : through hole diameter 

, 
measured diameter : 10.0 
depth : height , 
surface finish : surface finish))) ) 

-y holes : transformed applied geometry 
(rigid motions : (my ( 

minus y centres : (- through hole y centres)) ) 
applied geometry : +x holes : as ordered : 

( -x-y hole : transformed applied geometry 
(rigid motions : (mx ( 

half x centres :( half * through hole x centres) ) 
my ( 
half y centres :( half * through hole y centres)) ) 
applied geometry : through hole : through hole 

( diameter : through hole diameter 
, 

measured diameter : 10.0 
, 

depth : height, 
surface finish : surface finish) ) 
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+x-y hole : transformed applied geometry 
( rigid motions : (mx ( 
minus x centres :(- through hole x centres)) 
applied geometry : +x+y hole : transformed applied geometry 

( rigid motions : (mx ( 
half x centres :( half * through hole x centres) ) 
my ( 
half y centres :( half * through hole y centres) )) 
applied geometry : through hole : through hole 
( diameter : through hole diameter , 
measured diameter : 10.5 , 

depth : height , 
surface finish : surface finish)))))) 

material : Grade 17 cast iron 
evaluated geometry : 
relationship graph : coordinate relationship: 
planned processes : sequential set : 
decision network : 

------------------------------------- 
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APPENDIX 5 

ELEMENTS OF THE IMPLEMENTED MACHINE PLANNER CODE 

5.1 LINKS TO THE PRODUCT DATA MODEL 

The following listing of code illustrates the link from the PDM to the Machine Planning 
software, enabling the system user to draw data from a Product Model into the the 
Machine Planner, to use the Machine Planning functions, and to put data back into the Pro- 
duct Model. 

if choice. variant =I -- Return 
then 

main-choice 0; -- return to main menu 

elsif choice. variant =2 -- Attach Tooling Data Base 

then 
nodc_val := tool ing-db_cds. walk2(i); 
convert; 

elsif choice. variant =3 -- get machine data 

then 
float_val := machinc_tool cds. walk2(i); 

elsif choice. variant =4 -- Interactive dialogue for user data 

then 
background. cds_user_option 
(select_opt, tl_opt, input tool life); 

setup := new setup_rec; 
part. setups := new setup_rec; 
part. setups setup; 
background. get-env ironment (part); 
setup := part. setups; 

elsif choice. variant =5 -- get component data 

then 
ii := lambda evaluation. expand (i) 
walk_res := sei_pp_comp_defn. walk2 ( ii. sons. tl. hd) ; 
screen_text_io. put ("end walking"); 
material_info. material := pp_mp_conversions. convert ( walk-res 
part := pp_mp_conversions. convert ( walk_res) ; 
part. geom := pp_mp_conversions. convert ( walk_res) ; 
region := pp_mp_conversions. convert ( walk_res) 
manip_setupsnregions. goto_first reg_in_list (region); 

part. regions := region; 

elsif choice. variant =6 -- create sdsm 
then 

--- get data from component level 
display. current_inst := lambda_evaluation. expand ( i) ; 
sei4g_e3_rigid_motions_makes. cun ent_transform 
:= three transforms. identity 

screcn_text_io. new line; 
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if spelling(display. current_inst. form. nodc_id). all = "E3 solid" then 

screen text_io. put ( "Creating CSG tree" ); 

tree := seijg_solid. walk2 (display. current_inst); 
else 
screen_text_io. put ( "Wrong node type! " & ascii. bel) ; 
end if ; 

screen_text_io. ne w_line; 
screen text_io. put ( "calculating bounds" 
lower bounds first then upper 
bounds := sdsm_pack_ry. get_bounds( 
(- part. geom. length. num value / 2.0) + 
part. geom. posn. movex. num_value , 
(. part. geom. width. ntun_value / 2.0) + 

part. geom. posn. movey. num_value , 
(- part. geom. depth. num_value / 2.0) + 
part. geom. posn. movez. num_value , 
( part. geom. length. num_value 12.0) + 
part. geom. posn. movex. num_value , 
( part. geom. width. num_value / 2.0) + 
part. geom. posn. movey. num_value , 
( part. geom. depth. numvalue / 2.0) + 
part. geom. posn. movez. num_value ); 

tree. bounds: = bounds; 

--------------------------- 
screen_text_io. new_l ine; 

screcn_text_io. put ( "producing sdsm") 
component := sdsm_pack_ry. produce_sdsm (tree, bounds); 

part. geom. sdsm_object := component; 
reg := part. regions; 
while reg /= null 
loop 

screen_tex t_io. new_line; 
screen_text_io. put ("finding region cell address"); 
reg. geom. address := sdsm manip. get_region_cell address (part, reg); 
reg := reg. next; 

end loop; 

elsif choice. variant =7 -- id setups 
then 

comp_setups_sequ_method (part, region, setup); 

elsif choice. variant =8 -- identify operations list for setup 

-- and select possible tools 
then 

first-setup := setup; 
while setup /= null 
loop 

manip_setupsnregions. e xtract_ops_from_regions_list 
(setup, setup. regions, operation); 

head := operation; 
while operation. succ /= null 
loop 

operation := operation. succ; 
tool_select (operation, part, tl_opt, input tool_life, s_editor); 

end loop; 

setup. operations := head. succ; 
setup := setup. next; 

end loop; 
setup := first_setup; 

part. setups := setup; 

elsif choice. variant =9 -- sequ. ops and identify best tools 
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then 

283 

setup := part. sctups; 
while setup /= null -- sequence ops in each setup 
loop 
setup. machine_no 1; -- this needs to elsewhere, op has the me no. 
sequence_ops ( part, setup, tl_opt, input_tool_life) 
setup_info (part. setup); 
put-setup-info (setup); 

setup := setup. next; 
end loop; 

setup := first_setup; 

-- file planning and detail setup data for each comp. setup 
file_setup_info (part, setup); 

elsif choice. variant = 10 -- identify m/c batch info 

then 
identify_fix_datum_. posns (part); 

elsif choice. variant = 11 -- extract NC code to file. 

then 
while setup /= null -- extract part progs for each setup 

loop 

nc extraction. extract_nc_code (part. setup ); 

setup := setup. next; 
end loop; 

setup := first_setup; 

elsif choice. variant = 12 -- produce drawing 

then 
graphics . initgraf ; 
sdsm_query . draw_sdsm_boundary ( component . root_cell) ; 

elsif choice. variant = 13 -- remove drawing 

then 
graphics . end graf ; 

elsif choice. variant = 14 -- dims and tols 

then 

--- NOTE: this has a bug in "Evaluating Relationship Graph 

screen_text_io. put ( "Reading Component data") 

the_comp_def i :=i. sons. tl. hd ; 
the comp_def := sei_rge_comp_defn. walk2 (the-comp def i) ; 
the_e3_geom := sei_mgg. e3_geometry_pack. walk2 

( the_comp_def. thc single_material. the_e3_geometry) 

screen_text_io. put ( "Evaluating Relationship Graph") 

text_io. new_line; 
the_rel graph := rge-geom_walk. rg_from_e3. geom defn 

(the_e3 geom. the_definition) ; 

text_io. put ( "Walking Relationship Graph" ); 

rg_walking_ry. mp_data_analysis(the_rel-g raph. the_x_node ); 

rgwalking_ry. mp_data_analysis(the_relgraph . the-y_node) ; 
rg_walking_ry. mp_data_analysis( the_relgraph. the_z_node) ; 

elsif choice. variant = 15 -- put back setup data 

then 
se_sequ_setup := mp_pp_conversions. convert(setup); 
screen_text io. put (" put back setup data"); 

screen_tcxt_io. put ("create node inst"); 
if sundries. spelling (display. cur ent_inst. form. node_id). all = 

"setup activity" 
then 
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sei_pp_setup_activity. create (se_sequ_setup, display. current_inst); 
else 
screen_text_io. put_line ( "Node should be a (setup activity)" 

end if; 
else 

end if; 
screcn_text_io. put("No action taken"); 

5.2 THE SETUPS SEQUENCE METHOD 

Option 7 in software listing provided in section 5.1 calls the comp_setups_sequ_method. 
The following listing illustrates the main procedures used in this procedure which produces 
a setup sequence. 

procedures which identify features data beyond that 
which is identified directly from the PDM interface 

identify-reg-types (part, regions); 
ident_vol_removal_regs (part, regions); 
identify reg_posns ona_component (part, regions); 

--- group regions by spindle axis --- 
group_regions_wrt_appdim (part, regions, setups ); 

------------------------ 

--- identify geometric relationships 
setup := setups; 
while setup /= null 
loop 

update reg_posns by_sctup (part, setup); 
setup := setup. next; 
end loop; 

--- apply setup rules --- 
part. constraint. min_stock_dim_ratio = 
prefcred_min_stock_dim_ratiorule (part); 

part. constraint. crit_tot-grouping 
crit_toI_for_grouping_rule (part, machines. machine); 
part. cons trai nt. vol_ratio_bulk_temoval :_ 
early_bulk_removal_vol_ratio_rule (part ); 
group_setups_by_no_regions (setups); 
ident_vol removal setups (part, setups ); 

group_setups_by_bulk_removal (part, setups ); 

group setups_wrt_crit_tols (part, setups ); 
identify-likely-fix regions (part, setups ); 

prin_setup := setups; 
identify_rel_setup_posns (part, prin_setup, top, bottom, front, 
back, left side, right side ); 

--- select fixturing strategy --- 
top. constraint. side clamping_allowed 
side-clamping-allowed-rule (part, top); 

case top. constraint. side_clamping_allowed is 
when true => 
side clamp_method(part, setups, top, bottom, back, 
front, left-Side, right-Side, first setup); 
when false => 
if prin_setup_is thru_clamped (top) 
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then 
thru_clamping_mcthod (part, top, bottom, back, front, lcft_side, 

right_side, first_setup); 

else 
down-clamping-method (part, top, bottom, back, front, left-side, 

right_side, first-setup) 

end if; 
first_setup := setups; 
------------------------ 

-- update setup data --- 
remove_dup regions_from setuplist (setups); 

remove_unnec_setups_from_setuplist (setups); 

part. setups := setups; 

------------------------ 

5.3 THE THROUGH CLAMPING STRATEGY 

The following listing illustrates the "through-clamping-method", showing that the principal 
setup is checked for suitable holes. Assuming these are found, preliminary setups are 
identified, datum and clamping is finalised, and the side Face features are converted to 
"profiles". 

-- find possible through clamp regions for principal setup 

goto_first_reg_in_list (top. regions); 
while top. regions /= null 
loop 
if top. regions. suit_for_fix. clamp = ideal 

and top. regions. kind = thru_hole 
then 
if clamp_regs = null 
then 
clamp_regs := new region rec; 
clamp_regs. all := top. regions. all; 
clamp_regs. next := null; 
clamp_regs. last := null; 
else 
new-reg new region-rec; 
new_reg. all := top. regions. all; 
new_reg. last : ='clamp_regs; 
new_reg. next := null; 
clamp regs. next := new-reg; 
clamp_regs new reg; 
end if; 

end if; 
exit when top. regions. next = null; 
top. regions := top. regions. next; 
end loop; 

------------------------------------------------- 

---check available through holes have clearance 

reg_list := clamp regs; 

id_rcgs_with_bolt_clearance (part, top, clamp_regs, top. regions); 
--- uses "clear_around_region" to check clearance 

count_regs (clamp_regs, count); 
case count is 
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when 0 => 

-- this leads to down clamping 
down-clamping-method (part, top, bottom, back, 

front, left_side, right_side, first_setup); 

when 1 => 
down clamping_method (part, top, bottom, back, 

front, left-Side, right-Side, first-setup); 
this leads to hole + blind hole method 

-- down clamp used for now 
when 2 => 

-- this is ok for thru method, but datum will be on fixture 

-- or more prior machining must be done to give one. 
so down clamp used for now 

down_clamping_method (part, top, bottom, back, 
front, left-Side, right-side, first-setup); 

when others => 
id_regs_with-geatest_spacing (clamp_regs, clampl, clamp2, spacing); 
id_datum hole (reg-list, clampl, clamp2, datum_reg); 

create-prelim-setup (top, new setup, hold-reg); 

find_datum_and dctail_clamping_for-prin_setup (part, top); 

change_face_to_profile (back, top); 
change_face_to_profile (right-side, top); 
change_face_to_profile (front, top); 
change-face-to-profile (left-side, top); 

5.4 THE CLEAR AROUND FEATURE QUERY 

The following listing illustrates the "clear 
_around_region_query" which starts in a feature, 

moves to the edge of a feature and then checks for feature interactions in each of the per- 
pendicular directions, relative to the spindle axis, 

case spindle axis is 

when z => 
edge_px := next-valid-cell 

(rep => rep, 
in_ccll => mid_cell, 
axis => X, 
pos => true ); 

clear_in_dim :=c lear_dist 
(rep => rep, 
in_cell => edge-px, 
dist => requ Bist, 
axis => x, 
pos => true); 

if clear_in_dim = false 
then return false; 
end if; 

edge_nx := next valid cell 
(rep => rep, 
in cell => mid cell, 
axis => x, 
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pos => false ); 
clear-in-dim :=c lear_dist 

(rep => rep, 
in_cell => edge_nx, 
disc => requ_dist, 
axis => X. 
pos => false); 

if clear_in dim = false 
then return false; 
end if; 

edge_py := next-valid-cell 
(rep => rep, 
in cell => mid_cell, 
axis => y, 
pos => true ); 

clear_in_dim := clear_dist 
(rep => rep, 
in_cell => edge_py, 
disc => requ_dist, 
axis => y, 
pos => true); 

if clear_in_dim = false 

then return false; 

end if; 

edge_ny := next_valid_cell 
(rep => rep, 
in cell => mid-cell, 
axis => y, 
pos => false ); 

clear_in_dim := clear disc 
(rep => rep, 
in-cell => edge_ny, 
disc => requ_dist, 
axis => y, 
pos => false); 

if clear_in_dim = false 

then return false; 
end if; 

similarly for other spindle axis directions 

end case; 
return true; 

-287- 

5.5 THE IDENTIFY CUTTING TOOLS PROCEDURE 

The following listing illustrates the identify cutting tools procedure, which finds possible 
tools from a list extracted from a database. 

-- call machining rules 
machining_rules. tooling_rules (part, operation); 

for I in I.. NO_OF CUTTERS loop 
if CUTTER(I). CUTTER_TYPE = OPERATION. REQ_CUTTER. TYPEI 
or CUTTER(I). CUTTERTYPE = OPERATION. REQ. CUTTER. TYPE2 
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then 
if CUTFER(I). CUTTER_DIA >= OPERATION. MIN_CUTTER_DIA 

and CUTTER(I). CUTTER_DIA <= OPERATION. MAX_CUTTER_DIA 

then 
if cutter(I). lengthl >= operation. min_cutter_len 
then 
identify_tip_data (operation, I, part, tl_opt, input-tool-life); 
end if; 
end if; 

end if; 

end loop ; 

5.6 THE CALCULATION OF PROCESSING DATA 

The following listing provides key procedures in the calculate processing 
Cutting rules are shown as being called from this procedure. In future 
they should be repositioned at the end of the tool selection procedure. 
links to general feature evaluation to be made. 

machining_rules. cutting_rules (Operation, J); 
calc_cut_depth (Operation, J); 
calc cut_width (Operation, J); 

nc_extraction. find_path_lengths (operation); -- calculate path lengths 

case operation. current_op is 

when drilling I reaming I tapping => 
find_hole_cutdata (operation, part); 
when facing I end_milling I open-slotting I closed-slotting I composite => 
feedptooth (Operation. J); 

calc_tool_life (Operation, J, tl_opt, input_ttot_life, part); 

loop 

repeat := false; 

calc_speednfeed (Part. Operation, J); 

if Operation. posscutter. val. req. power > Operation. posscutter. val. mc_power 
then repeat := true; 
end if; 
if repeat = true 
then 

Operation. posscutter. val. detail. no_depth_passes 
Operation. posscutter. val. detail. no_depth-passes + 1; 
Operation. posscuttcr. val. detail. cut_depth := 
Operation. op_depth / gmp. real (Operation. posscutter. val. detail. no_depth_passes); 
nc extraction. find_path_lengths (operation); -- update path lengths 

end if; 
exit when repeat = false; 

end loop. 

5.7 THE SEQUENCE OPERATIONS PROCEDURE 

data procedure. 
implementations 

This will enable 

The following listing provides key procedures in the sequence operations procedure, 
highlighting in particular the "sequence_using_tools" procedure, which optimises the selec- 
tion of tooling an the basis of path time. 



appendix 5 -289- 

seq_using_cut_order (setup, cut_seq ); 
seq_using_op_order (setup, cut_seq, op_seq); 
seq_using_constraint_dias (op_seq ); 
setup. operations := new operation_data; 
setup. operations := op_seq; 

-- sequence using_tools (part, setup, tl opt, input_tool_life); 

operation := setup. operations; 
while operation. succ /= null -- to last op 
loop 

operation := operation. succ; 
end loop; 

--- backtrack through list finding best cutting data 
while operation /= null 
loop 
if operation. current_op /= unknown 
then 
init_posstool := operation. posscutter; 
while operation. posscutter /= null 
loop 
find_best_data (part, operation. j) ; 
operation. posscutter := operation. posscutter. next; 
end loop; 

operation. posscutter init_posstool; 

end if; 

operation := operation. pred; 
end loop; 
-- now go forward thru list checking the best data 

operation := setup. operations; 
while operation l= null 
loop 
if operation. current_op J= unknown 
then 
check_bcst_data (operation); 

put_best_data (operation); 

check_data ( part, operation, ti -opt. 
input tool_life); 

end if; 
end if. 

operation := operation. succ; 
end loop; 

5.8 THE EXTRACTION OF MACHINE CONTROL CODE 

The following listing provides sections of the extract machine control code procedure, 
showing how the initial code for a part program is produced, followed by the code for each 
machining Operation and finally by the code to finish the part program. 

p_prog_name. name. all := part. no. name. all & "_setno" & setup noval & ". prog"; 
p_prog. length := p_prog_name. length; 

p_prog. name (1.. p_prog. length) := p_prog_name. name. all; 

operation := setup. operations; 
while operation /= null 
loop 
if opcration. pred = null 
then 
new-code (p-prog); 

make_setup. start ( 

p_prog. tail code. name, -- file name 
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p_prog_name. name. all (I.. 6 )); -- name in p_prog 
new code (p_prog); 

tool_change_req := true; -- this is true because its the first op. 
call_requd_datumset (p_prog, 
p_prog. tail_codc. name , -- file name 
setup, -- data from setup 
tool_change_req ); -- boolean to identify if tool 

-- is already in spindle 
end if; 

if opcration. current_op = unknown 
then null; 
else 
tool_change_req := true; 

set-offsets (operation, x_offsct, y_offset. z_offset); 
op datum_to_safe rap :_ 
setup. safe_rapid_ht - z_offset; 
-- dirt from current op datum to safe rapid ht. 

t_code := operation. best_tool. detail. cutter_no; 
if operation. pred = null 
then 
tool_change_req := true; 
elsif 
operation. pred. best_tool. detail. cutter_no = 
opcration. best tool. detail. cutter_no 
then 
tool_change_req := false; 

elsif 
operation. pred. current_op = unknown 
then 
last_op := operation. pred; 
while last_op. current_op = unknown 
loop 
last_op := last_op. pred; 
end loop; 
if 
last_op. bcst_tool. detail. cutter_no = 
operation. best_tool. detail. cutter_no 
then 
tool_change_req := false; 
end if; 
else 
tool_change_req := true; 
end if; 
init_poss_tool := operation. posscutter 
loop 

exit when 
operation. bcst_tool. detail. cutter_no = 
operation. posscutter. val. detail. cutter_no; 
operation. posscutter := operation. posscutter. next; 
end loop; 

new code (p_prog); 
case operation. cut_method is 
when pre defined => 
case operation. machining_el. no is 

"-- example of one option follows 

when 2 => --- call profile pocket procedure 
make_cutter_path. profile_pocket 

p_prog. taii_code. name, 
operation. transform. rotz, 
operation. machining_el. pro_name, 
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t_code, 
setup. no, 
x_offset, 
y_offset, 
z_offset, 
opcration. op_length, 
operation. op_width, 
operation. op depth, 

operation. comer_rad, 
operation. stock_width, 
operation. posscutter. val. detai l. cut_width, 
operation. posscutter. val. detail. no_width_passes, 
operation. posscutter. val. detail. cut_depth, 
operation. posscutter. val. detail. no_depth_passes. 
operation. posscutter. val. detail. cutter_dia, 
operation. posscutter. val. feed_rate, 

operation. posscutter. val. feed_rate, 

operation. posscutter. val. speed, 
tool_change_req, 
op datum_to safe_rap ); 

if operation. succ = null 
then 
new-code (p_prog); 

); make_setup. finish (p_prog. tail code. name, t 
-Code 

compile_code (p_prog); 
nc support. standardise_spaces (p_prog_name. name. all); 
renumber. nc_code (p_prog_name. name. all); 
end if; 

exit when operation. succ = null; 
operation := operation. succ; 
end loop; 

5.9 MACHINING RULES 

This section describes the rules used in the experimental Machine Planner implementation. 
These rules have been used to enable the exploratory planner implementation to function 
and are not intended as an exhaustive set of machining rules. 

5.9.1 Cutting Rules 

Cutting rules provide a basis on which a number of questions can be answered. These 
questions are as follows: 

" What is the maximum percentage of cutter width which should be used in machining 
different types of Operation? 

" What is the maximum percentage of flute length which should be used in machining 
different types of Operation? 

" What is the value of surface roughness which should be used when calculating feed 
rates? 
" Should coolant be used? 
" If so, what coolant should be used? 

The first two questions identify the geometric constraints on the use of a particular cutter to 
machine a specific operation. The last two questions consider the material being machined 
and identify whether coolant is needed and, if so, which should be use. The surface 
roughness query compares the required surface roughness with the required tolerance, to 
identify the appropriate value of surface roughness to use, to achieve both requirements. 
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This follows the recommendations laid down in the Machinability Data handbook [95] on 
surface roughness and dimensional tolerance comparisons. The ADA functions used in the 
research to answer these queries were: 

function CHECK OP_RA_RULE (OPERATION : in LINK) return gmp. real; 
function MAX CUT_WIDTH RULE (OPERATION : in LINK) return gmp. real; 
function MAX_CUT_DEPTH_RULE (OPERATION : in LINK) return gmp. real; 
function NEED_COOLANT_RULE (PART : in part_data; 

OPERATION : in link) return BOOLEAN; 
function FIND_COOLANT_TYPE_RULE (PART : in part_data; 

OPERATION : in link) return MY_NAME; 

5.9.2 Tooling Rules 

As is the case with cutting rules, questions which relate to the suitability of cutters for use 
in machining an Operation can be identified, and rules used to provide answers. The 
queries addressed were as follows: 

" What cutter types are appropriate in machining a specific Operation? 
" What type of tip should be used? 
" What grade of tip material should be used? 
" What is the maximum cutter diameter which should be considered? 
" What is the minimum cutter diameter which should be considered? 
" What is the minimum cutter length which should be considered? 

The ADA functions implemented in the research to answer these queries were: 

function MAX CUTTER_DIA_RULE (OPERATION: in LINK) 
return MAX CUT_DIA_TYP; 

function MIN_CUTTER_DIA_RULE (OPERATION : in LINK) 
return MIN_CUT_DIA TYP; 

function OP TIP_REF3_RULE ( OPERATION : in LINK) 
return TIP_REF3 TYP; 

function OP_TIP_GRADE_RULE ( PART : in PART_DATA; 
OPERATION : in LINK) 

return TIP_GRADE_TYP; 
procedure FIND_REQ CUTTER_TYPES RULE (OPERATION : in LINK ; 

VAL TYPET : out VAL_REQ_CUTTER_TYP ; 
VAL_TYPE2 : out VAL_REQ_CUTTER_TYP); 

5.9.3 Setup Rules 

The rules used in setup planning can be grouped as general setup rules and rules which 
identify the suitability of features for fixturing. The implemented rules were: 

function preferedmin_stock_dim ratinrule (part : part-. data) 
return gmp. real; 

function erit_tol_for_grouping_rule (part : part-data- 
machine : machines. mc_type_data) 

return gmp. real; 
function early_bulk_removal_vol_ratio_rule (part : part-data) 

return gmp. real; 
function side clamping_allowed_rule (part : part-data; 

setup : setup_rec_ptr) 
return boolean; 

function region_suitability_for. prim_locrule (part : partdata; 
region : region_ptr) 

return suitability-typ; 
function region_suitability_for_sec loc Wile (part : part-data; 
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region : region_ptr) 
return suitability-typ; 

function region_suitability_for_clamp_rule (part : part-data; 
region : region_ptr) 

5.9.4 Operation Sequencing Rules 

return suitability-typ; 

Operation sequencing rules are employed to identify sequencing constraints. The rules used 
identify both cut type sequence, i. e. that roughing operations are performed before finishing 
Operations, and Operation type sequence, i. e. the order of preference between milling and 
drilling Operations etc. The resulting implemented rules are: 

function current_cut_order_rule (setup : in setup_params. setup_rec_ptr) 
return setup_params. cut_order_ptr; 

function current op_order_rule (setup : in setup_params. setup_rec_ptr) 
return setup_pararns. op_order_ptr; 
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APPENDIX 6 

A USER GUIDE TO THE SOFTWARE 

6.1 INFRODUCTION 

This appendix describes how the Closely Coupled Machine Planning software is used. It 
uses the Glacier Workpiece, described in the integrated experiment in chapter 11.4, as the 
basis for a walk through of the system. Structure Editor commands are illustrated in dou- 
ble quotes. File names are illustrated in single quotes. It is assumed that a "carriage re- 
turn" is required after each command. 

6.2 USING THE MACHINE PLANNING SOFTWARE 

6.2.1 Files Required 

Three files are needed to run the Machine Planning software. These are an executable file 
called 'main'; a Structure Editor file, which represents the PDM, called 'pms3_8. lam'; and 
another Structure Editor file, which contains the Product Model representation of the Gla- 
cier Workpiece, called 'dcmo. pms3_8'. It is assumed that these files are in the directory in 
which the program is to run. 

6.2.2 Entering the Program 

To start the program type 'main'. This starts the SE main program which provides the user 
with a menu as follows: 

Make selection from: 
IVTI00 
2 TV1920 or DT22 
3 TV1925 
4 VT52 
5 Insight 
6 Sun Controller 
7 Any other type 

Choose option 6 (it is assumed the software is being run on a SUN workstation). The sys- 
tern will reply with the prompt: 

Sun Controller 
Meta-Structure definition 
Please supply file name 
Type character string 
Input a character string 
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At this prompt type in the name of the PDM file, i. e. 'pms3_8. lam'. This file does not 
load instantly, so be patient. When it has loaded the system will return with the prompt: 

Reading Data 
Reading from /usr2/sun_bfiss/gmc/demo/pms3_8. lam 
Feb 89 version 
Meta-structure map complete 
{ Corresponds to meta structure in DSK$4: [DAVEH. SEDJMII. MI1; 1 
Data reading complete 
Converting levelO definition to meta form 

Transforming node 
Feb 87 version 
Starting to WALK 
Make_meta complete 

11459 node_inst cells reclaimed. 15995 inst_list cells reclaimed 
Ready for file to be edited 

Emptying name index 
Make selection from: 

I load from file 
2 interactive mode 
3 skeleton 
4 ditto nil lists 

Select option I to run the demonstration software. The software will return the prompt: 

load from file 
Please supply file name 
Type character string 
Input a character string 

At this point load the SE file containing the Glacier Workpiece Product Model, i. e. 
'dcmo. pms3_8'. The system will return: 

Reading Data 
Reading from /usr2/sun_bf ss/gmc/demo/demo. pms3_8 
Meta-structure map complete 
( Corresponds to meta structure in /usr2/sun_b/iss/gmcldemo/pms3_8. lam } 

This means the file is being loaded. This will take longer than the PDM file but the system 
will eventually return the following display to the screen: 

(root) -- Collection = Alternate 
PRODUCT RANGE: 

Ready 

This is the root description of the Product Model and can be traversed and used to drive 
the Machine Planning software as described in the following sections. 

6.2.3 The Root Description of The Product Model 

In the root description of the Product Model illustrated above, the "... " on the screen means 
that more data is contained in the structure, but it is hidden from view. The command "H" 
will provide the user with a deeper view of data. Using this command a few times will 
result in a screen image as: 
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(root) --Collection = Alternate 
PRODUCT RANGE: 

PRODUCT: 
structural bearing 

data about data : ... 
specification : ... 
definitions : ... 
actuals . ... 

Ready 

6.2.4 The "D" Option in the Structure Editor 

The SE provides a "D" command which allows linked Applications to be called. When this 
is first used it will provide a screen image containing the following selections: 

Make selection from: 
I Lambda evaluation 
2 B-spline evaluator 
3 SDSM evaluator 
4 CDS interface 
5 3D wireframe 
6 Multiple evaluators 
7 Dimensions & Tolerances 
8 Machine planning 
9 Inspection 

10 Manf'g data analysis 
II Other options 
12 Miscellaneous 

Choose option 8. This will result in a further listing: 

Machine planning 
Make selection from: 

I Main menu 
2 Features approach 
3 General approach 

Choose option 2. This will result in a further listing which provides the Author"s Machine 
Planning Options: 

Features approach 
Make selection from: 

I Go to Main Menu 
2 Tooling Database 
3 Machine Data 
4 User Data 
5 Component Data 
6 Create Sdsm 
7 Plan setups 
8 Find Poss. Tools 
9 Sequence Ops 
10 Find We Setups 
11 Extract NC Code 
12 Draw sdsm 
13 Remove drawing 
14 Dims and Tols 
15 Put back data 
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Options 2 -> 6 should be called, in sequence, before any other options are used. Options 
12 and 13 can then be used at any time. Options 7 -> 9 must be used in sequence, and 
must come before 10,11, and 15. Option 14 has not been implemented. Option 15 can be 
used before or after options 10 and 11. Before these Options can be used it is important to 
be at the correct point in the data structure in order to access the relevant data. The follow- 
ing sub-headings describe how each Option in the above listing can be used. 

6.2.5 Go to Main Menu - Option 1 

If the user is finished using the Machine Planning software, or wishes to move to an alter- 
native Application, then this option should be used. This will take the user back up through 
the menus. 

6.2.6 Tooling Database - Option 2 

The tooling database data is contained under the (manufacturing information) node in the 
Product Model framework. This is reached by moving down and traversing to the right in 
the structure. Moving down is done by using the "d" command and moving to the right is 
done using the "r" command. "drrr" moves from the root to the (manufacturinginforma- 

tion) node. "d" then moves down to the (tooling database) node. This is the position in 
the structure from which the tooling data can be loaded using option 2. When this has been 
done the SE will return "Ready" to the screen 

6.2.7 Machine Data - Option 3 

Data representing the Wadkin V4-6 is found to the right, and one level down from the 
(tooling database) node. "rd" moves to it. Option 3 can be used and again the SE will re- 
turn "Ready" to the screen. 

6.2.8 User Data - Option 4 

This option is used to identify the basis on which tool life is to be calculated and can be 
used at any point in the structure. Calling this option leads to a further menu selection: 

User Data 
Please choose tool life option. 

I Maximise Production Rate. 
2 Minimise Cost. 
3 Manual Input of Tool Life. 

Selection of options 1 or 2 will lead to the use of an appropriate equation from which the 
tool life will be calculated. Selection of option 3 will lead to the user being asked to pro- 
vide a value for the tool life, in minutes, to be used: 

Input the value of tool life (mins) to be used. 
Input a real number 

A real number, not an integer, must to be used. 

6.2.9 Component Data - Option 5 

This Option extracts the component data, needed by the Machine Planner, from the Product 
Model. The data which is extracted includes the features, which are defined within the 
component definition; the stock dimensions, bounding box and volume; the component di- 
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mensions, bounding box and volume; and the material specification. (refer to chapter 9.3.1) 
Before this option can be used it is important to be positioned at the correct node in the 
structure. This is achieved by using the following commands: 

"U" - moves back to the root; 
component" - sets the node (component) as a node to be searched for; 

"N" - finds the (component) node; 
"+u" - shows the data structure at the (component) node; 
"drdrrd" - moves to the (definition) node which is used in this option 

Having reached this point in the structure, option 5 can be called. 

6.2.10 Create Sdsm - Option 6 

This option links to the SDSM Application and generates an SDSM model of the com- 
ponent. This option is called from an (E3 solid} node. This is reached by using the follow- 
ing pair of commands: "'E3 solid" and "N". This will move down to the (E3 solid) node, 
under which lies the geometric representation of the component. Once at this node in the 
structure option 6 can be called which will produce the SDSM representation of the com- 
ponent. It also identifies the SDSM cell addresses for each of the feature reference coordi- 
nates. This then provides the basis for feature interaction checks which are contained in the 
next option. 

6.2.11 Plan setups - Option 7 

This option takes the data which has been extracted from the model in options 5 and 6 and 
performs part of the identify features activity described in chapter 9.3.1 and the and se- 
quence setups activity described in chapter 9.3.2. It results in a sequence of setups which 
have to be finalised using option 8. There is no need to be at any specific node when cal- 
ling this option. 

The software used when option 7 is called is listed in appendix 5.2. Before option 7 is 
called, features have already been extracted from the Product Model (option 5). The first 
procedures in option 7 complete the identify features requirement. Holes and Faces are 
identified as fixturing features (refer to chapter 9.3.1). The total volume of material to be 
removed from the stock is calculated and the region positions on the component are 
identified (refer to chapter 9.3.1). 

The remaining procedures under option 7 fulfil the sequence setups requirement. These 
procedures perform the following functions 

1. group the features according to their spindle axes; (refer to chapter 9.3.3.2.1) 
2. identify the relative position of each feature, with respect to each setup; (refer to chapter 
9.3.3.2.2) 
3. apply setup rules to identify the principal setup to be used, (refer to chapter 9.3.3.2.3) 
4. select a fixturing strategy; (refer to chapter 9.3.3.2.4) 
5. remove any duplicate features or setups. (refer to chapter 9.3.3.2.5) 

6.2.12 Find Poss. Tools - Option 8 

This option represents the Evaluate Features activity explained in chapter 9.3.3. It takes as 
input the setup sequence which has been generated by the last option and performs the fol- 
lowing functions: 
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1. Extract the Operation data associated with each feature in each setup. (refer to chapter 
9.3.3). 
2. Call tool selection procedure for each Operation. This procedure represents the Identify 
Cutting Tools and the Calculate Processing Data activities described in chapter 9.3.3. The 
relevant software listings for these are provided in appendix 5.5 and 5.6. 

The output from option 8 is a list of possible tools, for each Operation, and the cutting 
parameters to be used with each. In cases where no tools are found by the software then 
the user is prompted, provided with data describing constraints on the Operation, and asked 
to select a tool from a listing provided. If there are no suitable tools then the user must 
abandon the planning session until a suitable tool can be entered into the tooling database. 

Once the procedure has been completed successfully the setup plans are finalised, but the 
Operation plans are not. They still require to be sequenced and specific tools to be selected. 

6.2.13 Sequence Ops - Option 9 

This option fulfils the Sequence Operations activity as described in chapter 9.4. Each setup 
is taken in turn, the Operations and tooling are assessed, using the sequence operations 
procedure listed in appendix 5.7, and an Operation plan is generated for each setup. At the 
end of the procedure the final setup and operation plans are output to the screen. A file is 
also generated using the name of the component in the model, and adding ". plan" to the 
name. This file contains the setup plans and Operation plans for each setup. The machining 
instruction reproduced, in appendix 7.5, illustrate the contents of this file for the Glacier 
workpiece. 

6.2.14 Find M/c Setups - Option 10 

This option fulfils the first part of the Extract Machine Control Code activity as described 
in chapter 9.5. In option 10 the user is asked to specify the approximate position, of each 
fixture datum, relative to the machine table zero position. This data is then used, when gen- 
erating the part programs, to control probing routines which locate the actual position of 
the fixture datum for each setup, and set fixture offset values in the machine controller ac- 
cordingly. 

6.2.15 Extract NC Code - Option 11 

This option fulfils the second part of the Extract Machine Control Code activity described 
in chapter 9.5. In option 11, the data produced at the end of options 9 and 10 are used to 
produce part programs for each setup, for the GE2000 controller on the Wadkin V4-6 
machining centre. An extract of the ADA code used is documented in appendix 5. Files 
are automatically generate to store the part programs produced. File names use the com- 
ponent name, the setup number and ". prog" to distiguish the relevant part programs. For 
example, the file name for the part program for the first setup of a component named "test" 
would be "test_setnol. prog". The part programs produced for the Glacier workpiece are 
documented in appendix 7.5 

The part programs can then be downloaded to the GE2000 controller and used to machine 
the component. The part program uses the tool number in the tooling database as a "T 
code" in the part program. This means that either the tools must be loaded into the carousel 
to suit the database numbers, or the T codes in the part programs must be edited to suit the 
tool pockets being used in the carousel. In the experimental software there are less than 
twenty tools in the database, which means that the former option can be used as the Wad- 
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kin V4-6 being used in the experiments had a 20 pocket carousel. However, when a more 
realistic range of tools is covered there will be a need to relate the T codes to the appropri- 
ate pocket numbers in the carousel. 

6.2.16 Draw SDSM - Option 12 

This option calls a graphics utility to draw the SDSM model. On selecting this option the 
user is asked to specify the graphics device being used, 

Which graphics display device type is to be used? 
1) Autograph/Datatype X5A 
2) Autograph/Datatype XK-1 
3) Pericom M600 
4) Non graphics terminal 
5) Sun Workstation 
6) RasterTech 

Please select graphics display device type (1.6) 

Option 5 should be selected when working on a SUN workstation. A window will then be 
opened and a representation of the SDSM drawn. 

6.2.17 Remove drawing - Option 13 

This option is another graphics utility which removes the SDSM graphics window. 

6.2.18 Dims and Tols - Option 14 

This is the option which was being used to explore links to the Relationship Graph, as 
described in chapter 8. This option is inoperative. 

6.2.19 Put back data - Option 15 

This option takes the data which has been generated by the Machine Planner and populates 
the setup activity part of the PDM. Before this can be done it is necessary to move to the 
node. The command "uuuuuu" moves from the (E3 solid) node back up to the {definition) 
node. The commands "'setup activity" and "N" will move to the (setup activity) node. 
Option 15 can then be selected to put data back into the structure. 
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APPENDIX 7 

MACHINING INSTRUCTIONS AND PART PROGRAMS 
GENERATED FOR TESTPIECES 

7.1 INTRODUCTION 

This appendix documents a selection of the machining instructions and part programs 
which were produced in the course of the research. Machining instructions which were 
generated for various instances of the individual features represented in the Product Model 
environment are provided. The machining instructions produced from the three variants of 
the bolster plate, used in the exploration of queries on Fixturing Strategies described in 
chapter 9, are provided. This illustrates the resulting setup and operation plans produced 
for each Fixturing Strategy type. Finally the machining instructions and part programs pro- 
duced for the Glacier testpiece, are documented. 

7.2 INDIVIDUAL FEATURES 

7.2.1 A Closed Pocket 

The following machining instructions were generated for a Closed Pocket with Parameters: 
length 25 mm, width 20 mm, depth 5 mm, comer radius 7 mm, fillet radius l mm, and Ra 
2.5 microns. 

Possible Tools: 
For ROUGHING, clcar_pocket TOP POCKET are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm per min) 

10.12.00 mm SLOT_DRII. L EPEA161204FR 1568 88 (down_slotting) 

1568 175 (across slotting) 

11.8.00 mm SLOT DRIIl. EPEAI 10804FR 2351 122 (down-slotting) 

2351 244 (across slotting) 

12.4.00 mm SLOT DRILL EPEA070404FR 6016 240 (down slotting) 

6016 481 (across slowing) 

For ROUGHING, profile-pocket TOP POCKET are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm per min) 

10.12.00 mm SLOT_DRILL EPEA161204FR 1756 197 

11.8.00 mm SLOT DRILL EPEAI I0904FR 2432 253 

12.4.00 mm SLOT_DRILL EPEA070404FR 6216 497 
For FINISHING, profile_pocket TOP POCKET are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm Per min) 

7.12.00 mm END MILL MPFA0803PPFR 3017 103 

Actual Tools: 
11 8.00 mm SLOT_DRILL (rough clear and profile) 
7 12.00 mm END_MILL (finish profile) 
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7.2.2 A Through Pocket 

The following machining instructions were generated for a Through Pocket with Parame- 
ters: length 50 mm, width 40 mm, depth 20 mm, corner radius 15 mm, Ra 2.5 microns. 

Possible Tools: 

For ROUGHING, clear-pocket LEFT THRU POCKET are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm per min) 

8. 20.00 mm SLOT_DRILL EPEA222004FR 699 45 (down_slotting) 

699 89 (across slotting) 

9. 16.00 nun SLOT-DRILL EPEA191604FR 874 52 (down-slotting) 

874 105 (across slotting) 

10. 12.00 mm SLOT_DRILL EPEA161204FR 1346 75 (down slotting) 
1346 151 (across_slotting) 

11. 8.00 mm SLOT_DRILL EPEAI 10804FR 2236 116 (dawn slotting) 
2236 232 (across_slotting) 

For ROUGHING, profile-pocket LEFT THRU POCKET are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm per min) 

8. 20.00 nun SI. OT_DRILL EPEA222004FR 740 95 

9. 16.00 mm SLOT_DRILL EPEA191604IR 887 106 

l0. 1100 mm SLOT_DRILL EPEA161204FR 1475 165 

11. 8.00 mm SLOT_DRIIL EPEA11 0804FR 2269 236 

For FI NISHING, profile_pocket LEFT THRU POCKET are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (tpm/mm per min) 

6.24.90 mm END MILL. MPFA0803PPIR 2271 199 
Actual Tools: 

9 16.00 mm SLOT_DRILL 
6 24.90 mm END_MILL 

7.2.3 A Step 

The following machining instructions were generated for a Step with parameters: length 
300 mm, width 10 mm, depth 15 mm, Ra 2.5 microns 

Po sible Tools: 
For ROUGHING. clear step FRONT STEP are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm per min) 

4.40.00 mm EA'D_MILL TPKNI603PPFR 934 104 

8.20.00 mm SLOT_DRILL EPEA222004FR 974 125 

9.16.00 mm SLOT_DRILL EPEA191604FR 1162 139 

10.1200 mm SLOT-DRILL EPEA161204FR 1465 164 

11.8.00 mm SLOT_DRIU. EPEA110804FR 2320 241 

12.4.00 mm SLOT DRILL EPEA070404FR 5611 449 

For FINISHING FACENSIDE, finish step FRONT STEP are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm per min) 

3.50.00 mm END_NOLL APFA1604PDFR 5346 831 

5.40.00 mm END_NUU. TPANI6O3PPFR 10000 177 
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6.24.90 mm Eti'D_MIIL MPFA0803PPFR 6426 562 

7.1200 mmE\D-NU L MPFA0803PPFR &795 299 

Actual Tools: 

8 20.00 mm SLOT_DRILL 
3 50.00 mm END_MILL 

7.2.4 A Channel 

The following machining instructions were generated for a Channel with Parameters: length 
150 mm, width 13 mm, depth 6 mm, ra 2.5 microns. 

Possible Tools: 
For ROUGHING, clear channel CHANNEL are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm per min) 

to. 1200 mm SLOT_DRILL EPEA161204FR 1491 167 

11.8.00 mm SLOT DRILL EPEAI 10904FR 2236 232 

12.4.00 mm SLOT DRILL EPEA070404FR 5723 458 

For FINISHING_FACENSIDE, face_channel CHANNEL are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm per min) 

7.12 00 mm END-MILL MPFA0803PPFR 8795 299 
Actual Tools: 

10 12.00 mm SLOT DRILL 
7 12.00 mm END_MILL 

7.3 A Hole 

The following machining instructions were generated for a Hole with parameters: 12mm 
dia, 15mm depth 

Passible Tools: 

For ROUGHING, drill hole THRU HOLES_12MM are : 
NO. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm pcr min) 

14.12 00 mm DRILL 770 196 
Actual Tools: 

14 12.00 mm DRILL 

7.3.1 A Face 

The following machining instructions were generated for a Face with parameters: length 
150 mm, width 110 mm, depth 3.25 mm Ra 2.5 microns 

Possible Tools: 

For ROUGHING, clear-face BOTTOM FACE are : 
O. DIA. DESCRIPTION. TIP SPEED/FEED (rpm/mm per min) 

2.63.00 mm FACE MULL SCM41090408TR 550 330 

4.40.00 mm ENDNULL TPK. NI603PPFR 929 103 

For FINISHING, finish-face BOTTOM FACE are : 
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NO. DIA. DESCRIPTION. 

3.50.00 mm END MILL APFAI604PDFR 

5.40.00 nun ENb MILL TPAN1603PPFR 

6.24.90 mm Ehe MILL. MPFA0903PPFR 

Actual Tools: 

2 63.00 mm FACE_MILL 
3 50.00 mm END MILL 

7.4 THE BOLSTER PLATE 

- 304 - 

TIP SPEED/FEED (rpm/mm pcr min) 

1898 295 

5032 89 

2618 229 

7.4.1 Machining Instructions - Through Clamping Strategy 

Setup Information for setup number:! 
Number of tools required is 3 
The cutting time (mins) is 6.60 

The total tool path time (mins) is 7.46 

The Tools Required Are : 
TOOL NO. DESCRIPTION 

2 63.00 mm FACE-MILL 
14 12.00 mm DRILL 
3 50.00 mm END_MILL 

regions for primary location are: 
FRONT FACE 

regions for secondary location are: 
TOP FACE 
BACK FACE 

regions for clamping are: 
BACK FACE 
datum for setup is FRONT_LEFT comer, 
and top surface of workpiece. 
Operation Sequence: 

clear-face BOTTOM FACE, ROUGHING 

using tool no. 2-- 63.00 mm FACE-MILL 15 Tip SCMM090408TR 
drill hole THRU HOLES_12MM, ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
drill_hole THRU HOLES_12M 2, ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
drill-hole THRU HOLES_12M 3, ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
drill-hole THRU HOLES_12M 4, ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
finish-face BOTTOM FACE, FINISHING 

using tool no. 3-- 50.00 nun END_MILL 0 Tip APFA1604PDFR 
Setup Information for setup number 2 
Number of tools required is 2 
The cutting time (mins) is 22.20 
The total tool path time (minn) is 22.77 
The Tools Required Are : 
TOOL NO. DESCRIPTION 
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2 63.00 mm FACE-MILL 
3 50.00 mm END MILL 

regions for primary location are: 
FRONT FACE 

regions for secondary location are: 
BOTTOM FACE 
BACK FACE 

regions for clamping are: 
BACK FACE 
datum for setup is FRONT_LEFT comer, 

and bottom surface of wotkpiece. 
Operation Sequence: 

clear-face TOP FACE, ROUGHING 

using tool no. 2-- 63.00 mm FACE_MILL 15 Tip SCMM090408TR 
finish_face TOP FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 
Setup Information for setup number 3 
Number of tools required is 6 

The cutting time (mins) is 68.85 

The total tool path time (mins) is 71.93 

The Tools Required Are : 
TOOL NO. DESCRIPTION 

10 12.00 mm SLOT_DRILL 

4 40.00 mm END-MILL 

8 20.00 mm SLOT_DRILL 
11 8.00 mm SLOT_DRILL 
3 50.00 mm END-MILL 
7 12.00 mm END-MILL 

regions for primary location are: 
BOTTOM FACE 

regions for secondary location are: 
THRU HOLES_12MM 

THRU HOLES_12M 3 

regions for clamping are: 
THRU HOLES_12MM 
THRU HOLES_12M 3 
datum for setup is THRU HOLES_12M 2 

and top surface of workpiece. 
Operation Sequence: 

clear step FRONT STEP, ROUGHING 

using tool no. 10-- 12.00 mmSLOT_DRILL 0 Tip EPEA161204FR 

profile BACK FACE, ROUGHING 

using tool no. 4-- 40.00 mm END_MILL 0 Tip TPKN1603PPFR 

profile RIGHT FACE, ROUGHING 

using tool no. 8-- 20.00 mm SLOT_DRILL 0 Tip EPEA222004FR 

profile FRONT FACE, ROUGHING 

using tool no. 8-- 20.00 mm SLOT DRILL 0 Tip EPEA222004FR 

profile LEFT FACE, ROUGHING 

using tool no. 8-- 20.00 mm SLOT DRILL 0 Tip EPEA222004FR 

clear_pocket LEFT TOP POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

clear_pocket RIGHT TOP POCKET, ROUGHING 
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using tool no. 11-- 8.00 mm SLOT DRILL 0 Tip EPEA110804FR 

clear-pocket LEFT THRU POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

clear-pocket RIGHT THRU POCKE, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

profile-pocket LEFT TOP POCKET ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

profile_pockct RIGHT TOP POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

profile-pocket LEFT THRU POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

profile-pocket RIGHT THRU POCKE, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

profile BACK FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 

profile RIGHT FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 

profile FRONT FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 

profile LEFT FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 
finish step FRONT STEP, FINISHING_FACENSIDE 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 

profile_pockct LEFT TOP POCKET, FINISHING 

using tool no. 7-- 12.00 mm END_MILL 0 Tip MPFA0803PPFR 

profile_pocket RIGHT TOP POCKET. FINISHING 

using tool no. 7-- 12.00 mm END_MILL 0 Tip MPFA0803PPFR 

profile-pocket LEFT THRU POCKET, FINISHING 

using tool no. 11-- 8.00 mm SLOT DRILL 0 Tip EPEA110804FR 

profile-pocket RIGHT THRU POCKE, FINISHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

7.4.2 Machining Instructions - Down Clamping Strategy 

Setup Information for setup number I 
Number of tools required is 2 
The cutting time (minn) is 12.53 
The total tool path time (minn) is 13.02 

The Tools Required Are : 
TOOL NO. DESCRIPTION 

2 63.00 mm FACE_MILL 
3 50.00 mm END MILL 

regions for primary location are: 
TOP FACE 

regions for secondary location are: 
BOTTOM FACE 

FRONT FACE 

regions for clamping are:, 
BOTTOM FACE 
datum for setup is FRONT_LEFT comer, 
and top surface of workpiece. 
Operation Sequence: 
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clear_face BACK FACE, ROUGHING 

using tool no. 2-- 63.00 mm FACE_MILL 15 Tip SCMM090408TR 
finish_face BACK FACE, FINISHING 

using tool no. 3-- 50.00 mm END MILL 0 Tip APFA1604PDFR 
Setup Information for setup number 2 
Number of tools required is 4 
The cutting time (mins) is 15.38 
The total tool path time (mins) is 16.66 
The Tools Required Are : 
TOOL NO. DESCRIPTION 

2 63.00 mm FACE MILL 
8 20.00 mm SLOT-DRILL 
14 12.00 mm DRILL 
3 50.00 mm END-MILL 

regions for primary location are: 
BACK FACE 

regions for secondary location are: 
FRONT FACE 
FRONT STEP 
regions for clamping are: 
FRONT FACE 

datum for setup is FRONT_LEFT comer, 

and top surface of workpiece. 
Operation Sequence: 

clear-face BOTTOM FACE, ROUGHING 

using tool no. 2-- 63.00 mm FACE_MILL 15 Tip SCMM090408TR 

profile LEFT FACE, ROUGHING 

using tool no. 8-- 20.00 mm SLOT DRILL 0 Tip EPEA222004FR 
drill-hole THRU HOLES_12MM, ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
finish_face BOTTOM FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFAI604PDFR 

profile LEFT FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 
Setup Information for setup number 3 
Number of tools required is 2 
The cutting time (mins) is 2.80 

The total tool path time (mins) is 3.25 

The Tools Required Are : 
TOOL NO. DESCRIPTION 

2 63.00 mm FACE-MILL 
3 50.00 mm END MILL 

regions for primary location are: 
BOTTOM FACE 

regions for secondary location are: 
TOP FACE 

BACK FACE 

regions for clamping are: 
TOP FACE 
datum for setup is FRONT_LEFT comer, 
and bottom surface of workpicce. 
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Operation Sequence: 

clear-face FRONT FACE, ROUGHING 

using tool no. 2-- 63.00 mm FACE_MILL 15 Tip SCMM090408TR 
finish face FRONT FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFAI604PDFR 
Setup Information for setup number 4 
Number of tools required is 3 
The cutting time (mins) is 30.88 
The total tool path time (mins) is 32.04 
The Tools Required Are : 
TOOL NO. DESCRIPTION 

2 63.00 nun FACE-MILL 
8 20.00 mm SLOT_DRILL 
3 50.00 mm END-MILL 

regions for primary location arc: 
FRONT FACE 
regions for secondary location are: 
RACK FACE 
BOTTOM FACE 

regions for clamping are: 
BACK FACE 

datum for setup is FRONT_LEFT comer, 
and bottom surface of workpiece. 
Operation Sequence: 

clear-face TOP FACE, ROUGHING 

using tool no. 2-- 63.00 mm FACE_MILL 15 Tip SCMM090408TR 
profile RIGHT FACE. ROUGHING 

using tool no. 8-- 20.00 mm SLOT_DRILL 0 Tip EPEA222004FR 
finish-face TOP FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 
profile RIGHT FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFAI604PDFR 
Setup Information for setup number 5 
Number of tools required is 5 
The cutting time (mins) is 7.33 
The total tool path time (mins) is 9.59 
The Tools Required Are : 
TOOL NO. DESCRIPTION 

10 12.00 mm SLOT DRILL 
11 8.00 mm SLOT_DRILL 
14 12.00 mm DRILL 
3 50.00 mm END_MILL 
7 12.00 mm END_MILL 

regions for primary location are: 
BOTTOM FACE 

regions for secondary location are: 
BACK FACE 

BOTTOM FACE 

regions for clamping are: 
TOP FACE 

datum for setup is THRU HOLES_12MM 
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and top surface of workpiece. 
Operation Sequence: 

clear step FRONT STEP, ROUGHING 

using tool no. 10-- 12.00 mm SLOT_DRILL 0 Tip EPEA161204FR 
clear_pocket LEFT TOP POCKET, ROUGHING 

using tool no. 10-- 12.00 mm SLOT_DRILL 0 Tip EPEA161204FR 
clear_pocket RIGHT TOP POCKET. ROUGHING 

using tool no. 10-- 12.00 mm SLOT_DRILL 0 Tip EPEA161204FR 
clear_pocket LEFT THRU POCKET, ROUGHING 
using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 
clear_pocket RIGHT THRU POCKE, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 
profile-pocket LEFT TOP POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 
profile_pocket RIGHT TOP POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 
profile-pocket LEFT THRU POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 
profile-pocket RIGHT THRU POCKE, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 
drill-hole THRU HOLES_12M 2. ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
drill hole THRU HOLES_12M 3, ROUGHING 
using tool no. 14-- 12.00 mm DRILL 
drill hole THRU HOLES_12M 4, ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
finish step FRONT STEP. FINISHING_FACENSIDE 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 
profile-pocket LEFT TOP POCKET, FINISHING 

using tool no. 7-- 12.00 mm END_MILL 0 Tip MPFA0803PPFR 

proflc_pockct RIGHT TOP POCKET, FINISHING 

using tool no. 7-- 12.00 mm END_MILL 0 Tip MPFA0803PPFR 
profile-pocket LEFT THRU POCKET, FINISHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 
profile-pocket RIGHT THRU POCKE, FINISHING 

using tool no. I]-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

7.4.3 Machining Instructions - Side Clamping Strategy 

Setup Information for setup number 1 
Number of tools required is 2 
The cutting time (mins) is 12.53 
The total tool path time (mins) is 13.02 
The Tools Required Are : 
TOOL NO. DESCRIPTION 

2 63.00 nun FACE MILL 
3 50.00 mm END MILL 

regions for primary location are: 
TOP FACE 

regions for secondary location are: 
BOTTOM FACE 
FRONT FACE 
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regions for clamping are: 
BOTTOM FACE 
datum for setup is FRONT_LEFT comer, 
and top surface of workpicce. 
Operation Sequence: 

clear-face BACK FACE, ROUGHING 

using tool no. 2-- 63.00 mm FACE-MILL 15 Tip SCMM090408TR 
finish_face BACK FACE, FINISHING 
using tool no. 3-- 50.00 mm END MILL 0 Tip APFA1604PDFR 
Setup Information for setup number 2 
Number of tools required is 3 
The cutting time (mins) is 15.12 
The total tool path time (mins) is 16.17 
The Tools Required Are : 
TOOL NO. DESCRIPTION 

2 63.00 nun FACE MILL 
8 20.00 mm SLOT-DRILL 
3 50.00 mm END MILL 

regions for primary location are: 
BACK FACE 

regions for secondary location are: 
FRONT FACE 
FRONT STEP 
regions for clamping are: 
FRONT FACE 

datum for setup is FRONT_LEFT corner, 
and top surface of workpiece. 
Operation Sequence: 

clear-face BOTTOM FACE, ROUGHING 

using tool no. 2-- 63.00 mm FACE-MILL 15 Tip SCMM090408TR 
profile LEFT FACE, ROUGHING 

using tool no. 8-- 20.00 nun SLOT DRILL 0 Tip EPEA222004FR 
finish-face BOTTOM FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 
profile LEFT FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 
Setup Information for setup number 3 
Number of tools required is 2 
The cutting time (mins) is 2.80 
The total tool path time (mins) is 3.25 
The Tools Required Are : 
TOOL NO. DESCRIPTION 

2 63.00 mm FACE MILL 
3 50.00 mm END-MILL 

regions for primary location are: 
BOTTOM FACE 

regions for secondary location are: 
TOP FACE 
BACK FACE 

regions for clamping are: 
TOP FACE 
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datum for setup is FRONT_LEFT comer, 
and bottom surface of workpiece. 
Operation Sequence: 

clcar_face FRONT FACE, ROUGHING 

using tool no. 2-- 63.00 mm FACE_MILL 15 Tip SCNIM090408TR 
finish_face FRONT FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFAI604PDFR 
Setup Information for setup number 4 
Number of tools required is 7 

The cutting time (mins) is 38.65 

The total tool path time (mins) is 41.61 

The Tools Required Are : 
TOOL NO. DESCRIPTION 

2 63.00 mm FACE_MILL 
10 12.00 mm SLOT_DRILL 
8 20.00 mm SLOT_DRILL 
11 8.00 nim SLOT_DRILL 
14 12.00 mm DRILL 
3 50.00 mm END_MILL 
7 12.00 mm END-MILL 

regions for primary location are: 
FRONT FACE 

regions for secondary location arc: 
BACK FACE 
BOTTOM FACE 

regions for clamping are: 
BACK FACE 

datum for setup is FRONT_LEFT corner, 
and bottom surface of workpiecc. 
Operation Sequence: 

clear_facc TOP FACE, ROUGHING 

using tool no. 2-- 63.00 mm FACE_MILL 15 Tip SCMM090408TR 

clear step FRONT STEP, ROUGHING 

using tool no. 10-- 12.00 mm SLOT_DRILL 0 Tip EPEA161204FR 

profile RIGHT FACE, ROUGHING 

using tool no. 8-- 20.00 mm SLOT DRILL 0 Tip EPEA222004FR 

clear-pocket LEFT TOP POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

clcar_pockct RIGHT TOP POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

clcar_pockct LEFT THRU POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

clear_pocket RIGHT THRU POCKE, ROUGHING 

using tool no. 11-" 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

profile_pocket LEFT TOP POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEAI10804FR 

profile_pocket RIGHT TOP POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEAI 10804FR 

profile-pocket LEFT THRU POCKET, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

profilc_pockct RIGHT THRU POCKE, ROUGHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEAI 10804FR 
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drill hole THRU HOLES_12MM, ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
drill hole THRU HOLES_12M 2, ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
drill hole THRU HOLES_12M 3, ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
drill hole THRU HOLES_12M 4, ROUGHING 

using tool no. 14-- 12.00 mm DRILL 
finish-face TOP FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 
profile RIGHT FACE, FINISHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APFA1604PDFR 
finish step FRONT STEP, FINISHING_FACENSIDE 

using tool no. 3-- 50.00 mm ENU MILL 0 Tip APFAI604PDFR 

profilc_pockct LEFT TOP POCKET, FINISHING 

using tool no. 7-- 12.00 mm END_MILL 0 Tip MPFA0803PPFR 

profilc_pocket RIGHT TOP POCKET, FINISHING 

using tool no. 7-- 12.00 mm END_MILL 0 Tip MPFA0803PPFR 

profilc_pocket LEFT THRU POCKET, FINISHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

profilc_pocket RIGHT THRU POCKE, FINISHING 

using tool no. 11-- 8.00 mm SLOT_DRILL 0 Tip EPEA110804FR 

7.5 THE GLACIER TESTPIECE 

7.5.1 Machining Instructions 

Setup Information for setup number:! 
Number of tools required is 3 
The cutting time (mins) is 8.34 

The total tool path time (mins) is 9.21 
The Tools Required Are . 
TOOL NO. DESCRIPTION 

3 50.00 mm END-MILL 
IS 10.00 mm DRILL 
2 63.00 mm FACE_MILL 

regions for primary location are: 
FRONT FACE 

regions for secondary location arc: 
TOP FACE 

BACK FACE 

regions for clamping are: 
BACK FACE 
datum for setup is FRONT_LEFT corner. 

and top surface of workpicce. 
Operation Sequence: 

clear_face BOTTOM FACE, ROUGHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APMA1604PDFR 
drill hole THRU HOLEST, ROUGHING 

using tool no. 1S. - 10.00 mm DRILL 
drill hole THRU_UOLES2. ROUGHING 
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using tool no. 15-- 10.00 mm DRILL 
drill_hole THRU HOLES3, ROUGHING 

using tool no. 15-- 10.00 mm DRILL 
drill hole THRU HOLES4, ROUGHING 

using tool no. 15-- 10.00 mm DRILL 
finish-face BOTTOM FACE, FINISHING 

using tool no. 2-- 63.00 mm FACE_MILL 15 Tip SCFMO9048TR 
Setup Information for setup number: 2 
Number of tools required is 2 
The cutting time (mins) is 11.95 
The total tool path time (mins) is 12.47 
The Tools Required Arc : 
TOOL NO. DESCRIPTION 

3 50.00 mm END-MILL 
2 63.00 mm FACE-MILL 

regions for primary location are: 
FRONT FACE 

regions for secondary location arc: 
BOTTOM FACE 
BACK FACE 

regions for clamping arc: 
BACK FACE 

datum for setup is FRONT_LEFT corner, 
and bottom surface of workpiece. 
Operation Sequence: 

clear_face TOP FACE. ROUGHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APMA1604PDFR 
finish_face TOP FACE, FINISHING 

using tool no. 2-- 63.00 nun FACE-MILL 15 Tip SCFMO9048TR 
Setup Information for setup number: 3 
Number of tools required is 5 
The cutting time (mins) is 31.86 
The total tool path time (mins) is 33.77 

The Tools Required Are : 
TOOL NO. DESCRIPTION 

3 50.00 mm END-MILL 
10 12.00 mm SLOT_DRILL 
18 3.00 nun DRILL 
8 20.00 mm SLOT_DRILL 

7 12.00 mm END-MILL 

regions for primary location are: 
BOTTOM FACE 

regions for secondary location are: 
THRU_HOLESI 
THRU_HOLES3 

regions for clamping arc: 
TH R U_HOLES 1 
THRU_HOLES3 
datum for setup is THRU_HOLES2 

and top surface of workpiccc. 
Operation Sequence: 

profile BACK FACE, ROUGHING 
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using tool no. 3-- 50.00 mm END_MILL 0 Tip APMA1604PDFR 
profile RIGHT FACE. ROUGHING 

using tool no . 3-- 50.00 mm END_MILL 0 Tip APMA1604PDFR 

profile FRONT FACE, ROUGHING 

using tool no. 3- 50.00 mm END_MILL 0 Tip APMA1604PDFR 

profile LEFT FACE, ROUGHING 

using tool no. 3-- 50.00 mm END_MILL 0 Tip APMAI604PDFR 

clcar_channel CHANNEL, ROUGHING 

using tool no. 10-- 12.00 mm SLOT_DRILL 0 Tip EPEA161204FR 
drill hole BLIND_HOLES 3MM. ROUGHING 

using tool no. 18-- 3.00 mm DRILL 
drill hole BLIND-HOLES-3M 2, ROUGHING 

using tool no. 18-- 3.00 mm DRILL 
drill hole NLINU HOLES 3M 3, ROUGHING 

using tool no. 18-- 3.00 nim DRILL 
drill hole BLIND-HOLES-3M 4, ROUGHING 

using u oI no. 18. - 3.00 mm DRILL 

profile BACK FACE, FINISHING 

using tool no. 8-- 20.00 mm SLOT_DRILL 0 Tip EPFA222004FR 

profile RIGHT FACE, FINISHING 

using tool no. 8-- 20.00 mm SLOT_DRILL 0 Tip EPFA222004FR 

profile FRONT FACE, FINISHING 

using tool no. 8-- 20.00 min SLOT_DRILL 0 Tip EPFA222004FR 

profile LEFT FACE, FINISHING 

using tool no. 8-- 20.00 mm SLOT DRILL 0 Tip EPFA222004FR 
face channel CHANNEL. FINISHING_FACENSIDE 

using tool no. 7-- 12.00 mm END_MILL 0 Tip MPFA0803PPFR 

7.5.2 Part Program for Setup 1. 

n0010 (id, prog, glacil. 15/MAR/1990 at 11: 49) 
n0020 I 
n0030 I sct datum 
n0040 ! 
n0050 m06 tl 
n0060 dl 
n0070 p93 =20.000 1 safe rapid height 

nOOSO p87 =0.000 1zc ordinate of corner 
n0090 p86 =160.000 !y coordinate of comer 
nOlOO p85 =395.000 Ix coordinate of corner 
n0110 p84 =1 1 comer type 
nO120 p83 =1 I future offset number 
n013{) (gsub, cxtcm) 
n0140 ! 
n0150 I clear-face 
n0160 I 
n0170 m06 t3 
n0180 d3 
n0190 cl 
nO200 s1000 m03 
n0210 g53 
n0220 g56 x80.000 y62.500 x"3.000 
n0230 g00 0.000 yO. 000 223,000 
n0240 g00 x. 110.000 y64.167 -23.000 
n0250 g00 x- 110.000 y64.167 0.000 
n0260 g01 x 110.000 y64.167 zO. 000 1310.946 s378.339 
n0270 g00 x 110.000 y. 64.167 -0,000 
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n0280 g01 x"110.000 y-64.167 z0.000 
n0290 g00 x-110.000 y40.833 z0.000 
n0300 g01 x110.000 y40.833 z0.000 
n0310 g00 x110.000 y40.833 z0.000 
n0320 g01 x"110.000 y-40.833 z0.000 
n0330 g00 x-110.000 y12.500 20.000 
n0340 g01 x110.000 y12.500 z0.000 
n0350 g00 x110.000 y-12.500 x0,000 
n0360 g01 x" 110.000 y-12.500 z0.000 
n0370 g00 x-110.000 y12.500 z23.000 
n0380 1 
n0390 ! drill hole 
n0400 1 
n0410 m06 t15 
n0420 d15 

n0430 cl 
n0440 s1000 m03 
n0450 g53 
n0460 g56 x20.750 y96.250 z"3.250 
n0470 g00 x-110.000 y-12.500 z23.250 
n0480 g00 x0.000 y0.000 x23.250 
n0490 g00 x0.000 y0.000 23.000 
n0500 g01 z-23.000 (235.510 s923.566 
n0510 g01 73.000 
n0520 g00 x0.000 y0.000 z23.250 
n0530 ! 
n0540 1 drill hole 
n0550 1 
n0560 cl 
n0570 s1000 m03 
n0580 g53 
n0590 g56 x20.750 y32.250 z-3.250 
n0600 g00 X0.000 y0.000 223.250 
n0610 g00 x0.000 y0.000 z23.250 
n0620 g00 x0.000 y0.000 73.000 
n0630 g01 2.23.000 (235.510 s923.566 
n0640 g01 23.000 
n065ß gß0 x0.000 y0.0ß0 z23.250 
n0660 1 
n0670 1 drill-hole 
n0680 ! 
n069ß cl 
n0700 s1000 m03 
n0710 g53 
n0720 g56 x142.750 y32.250 2.3.250 
n0730 gß0 x0.000 yß. 000 z23.250 
n0740 gß0 X0.000 yß. 000 x23.250 
n0750 gß0 x0.000 yß. 000 73.000 
n076ß gß1 z-23.000 (235.510 s923.566 
n0770 g01 73.000 
n078ß gß0 x0.000 yß. 000 z23.250 
n0790 ! 
n0800 1 drill hale 
n0810 1 
n0820 cl 
n0830 s1000 m03 
nß840 g53 
n0850 g56 x142.750 y96.25ß z"3.250 
n0860 gß0 x0.000 yß. 000 z23.250 
n0870 gß0 x0.000 yß. 000 z23.250 
n0880 gß0 x0.000 yß. 000 23.000 
nß890 901 i"23.00ß (235.510 s923.566 
n0900 gO1 73.000 

- 315 - 
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n0910 g00 x0.000 yO. 000 z23.250 
n0920 ! 
n0930 I finish face 
n0940 I 
n0950 m06 t2 
n0960 d2 
n0970 el 
n0980 sl000 m03 
n0990 g53 
n1000 g56 x80.000 y62.500 z-3.250 
n1010 g00 x0.000 yO. 000 z23.250 
n1020 g00 x-117.800 y58.025 7.23.250 
n1030 g00 x-117.800 y58.025 zO. 000 
n1040 gOl x117.800 y58.025 zO. 000 1293.596 s3083.993 
n1050 g00 x117.800 y-58.025 7.0.000 
n1060 g01 x-117.800 y-58.025 zO. 000 
n1070 g00 x-117.800 y15.750 20.000 
n1080 g01 x117.800 y15.750 zO. 000 
n1090 g00 x117.800 y-15.750 70.000 
n1100 g01 x-117.800 y"15.750 zO. 000 
nI 110 g00 x-117.800 y. 15.750 z23.250 
n1120 g53 
nl130 cO 
n 1140 dO 
nl 150 mO6 t2 
n 1160 g00 x450 y450 
n1170 m30 
n9999 (cnd, prog) 

7.5.3 Part Program for Setup 2. 

n(X)10 (id, prog, glaci2,15/MAR/1990 at 11: 51) 
n0020 ! 
n0030 ! sct_datum x 
n0040 I 
n0050 m06 tl 
n0060 dl 
n0070 p93 =46.000 ! safe rapid height 

n0080 p92 =10 1 probing length 

n0090 p91 =-10.000 iz coordinate 
n0100 p90 =170.000 1y coordinate 
n0110 p89 =395.000 1x coordinate 
n0120 p88 = +1 ! probing direction 

n0130 p83 =2 ! fixture offset number 
n0140 (gsub, xdatum) 
n0150 I 
n0160 I scl datum_y 

n0170 I 

n0180 p93 =46.000 1 safe rapid height 
n0190 p92 =10 I probing length 
n0200 p91 ="10.000 Ia coordinate 
n0210 p90 =160.000 1y coordinate 
n0220 p89 =405.000 1x coordinate 
n0230 p88 = +1 ! probing direction 
n0240 p83 =2 l fixture offset number 
n0250 (gsub, ydatum) 
n0260 I 
n0270 I set_datum z 
0280 l 
n0290 p93 =46.000 1 safe rapid height 
n0300 p92 =10 1 probing length 
n0310 p91 ="26.000 1t coordinate 



appendix 7 - 317 - 

n0320 p90 =150.000 !y coordinate 
n0330 p89 =435.000 !x coordinate 
n0340 p83 =2 ! fixture offset number 
n0350 (gsub, zdatum) 
n0360 ! 
n0370 I clear-face 
n0380 ! 
n0390 m06 t3 
n0400 d3 

n0410 e2 
n0420 s1000 m03 
n0430 g53 
n0440 g56 x80.000 y62.500 z16.250 
n0450 g00 x0.000 yO. 000 z29.750 
n0460 g00 x-110.000 y64.167 729.750 
n0470 g00 x-110.000 y64.167 z3.250 
n0480 g01 x 110.000 y64.167 z3.250 1302.183 s367.676 
n0490 g00 x 110.000 y-64.167 73.250 
n0500 gOl x-110.000 y-64.167 7.3.250 
n0510 g00 z-110.000 y40.833 73.250 
n0520 g01 x 110.000 y40.833 7.3.250 
n0530 g00 x 110.000 y40.833 23.250 
n0540 gOl x-110.000 y-40.833 z3.250 
n0550 g00 x-110.000 y12.500 13.250 
n0560 g01 x 110.000 y 12.500 z3.250 
n0570 g00 x110.000 y-12.500 73.250 
n0580 gOl x-110.000 y-12.500 73.250 
n059{) g00 x-110.000 y64.167 73.250 
n0600 g00 x-110.000 y64.167 zO. 000 
n0610 g01 x 110.000 y64.167 x0.000 
n0620 g00 x 110.000 y-64.167 x0.000 
n0630 g01 x-110.000 y-64.167 zO. 000 
n0640 g00 x-110.000 y40.833 20.000 
n0650 gOI x 110.000 y40.833 x0.000 
n0660 g00 x 110.000 y. 40.833 20.000 
n0670 göl x-110.000 y40.833 x0.000 
n0680 g00 x-110.000 y12.500 x0.000 
n0690 g01 x 110.000 y 12.500 x0.000 
n07OO g00 x110.000 y-12.500 20.000 
n0710 g01 x-110.000 y-12.500 20.000 
n0720 g00 x-110.000 y-12.500 x29.750 
n0730 ! 
n0740 I finish-face 
n0750 I 
n0760 m06 t2 
n0770 d2 
n0780 e2 
n0790 s 1000 m03 
n0800 g53 
n0810 g56 x80.000 y62.500 x16.000 
n0820 g00 x-110.000 y-12.500 730.000 
nO830 g00 x-117.800 y58.025 730.000 
n0840 g00 x-117.800 y58.025 x0.000 
n0850 g01 x 117.800 y58.025 20.000 1293.596 s3083.993 
n0860 g00 x117.800 y. 58.025 20.000 
n0870 gOl x-117.800 y-58.025 x0.000 
nO880 g00 x-l 17.800 y15.750 20.000 
n0890 g01 x117.800 y15.750 x0.000 
nO900 g00 x117.800 y-15.750 x0.000 
n0910 g01 x-117,800 y-15.750 x0.000 
n0920 g00 x-117.800 y. 15.750 x30.000 
n0930 g53 
n0940 cO 
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n0950 dO 
n0960 m06 t2 
n0970 g00 x450 y450 
n0980 m30 
n9999 (cnd. prog) 

7.5.4 Part Program for Setup 3. 

n0010 (id, prog, glaci3,15/MAR/1990 at 11: 55) 
n0020 ! 
n0030 ! set_datum bore 
n0040 ! 
n0050 m06 tl 
n0060 d1 
n0070 p93 =20.000 ! safe rapid height 
n0080 p87 =-5.000 !z coordinate of comer 
n0090 p86 =262.000 !y coordinate of corner 
n0100 p85 =78.500 1x coordinate of corner 
n0110 p84 =5.000 ! radius 
n0120 p83 =3 ! fixture offset number 
n0130 (gsub. borc) 
n0140 1 
n0150 ! profile 
n0160 ! 
n0170 m06 t3 
n0180 d3 
n0190 e3 
n0200 s 1000 m03 
n0210 g53 
n0220 g56 x139.250 y32.250 z7.000 
n0230 g00 x0.000 yO. 000 z13.000 
n0240 g00 x-190.000 y18.500 z13.000 
n0250 g00 x-190.000 y18.500 8.000 
n0260 g00 x-190.000 y18.500 z-9.667 
n0270 g01 x30.000 y18.500 z-9.667 f291.283 s297.433 
n0280 g00 x30.000 y18.500 z3.000 
n0290 900 x-190.000 y18.500 z3.000 
nO300 g00 x-190.000 y18.500 73.000 
n0310 g00 x-190.000 y18.500 z-19.333 
n0320 g01 x30.000 y18.500 z-19.333 
n0330 g00 00.000 y18.500 -3.000 
n0340 g00 x-190.000 y18.500 73.000 
n0350 g00 x-190.000 y18.500 73.000 
n0360 g00 x-190.000 y18.500 z-29.000 
n0370 g01 x30.000 y18.500 z-29.000 
n0380 g00 x30.000 y18.500 z13.000 
n0390 ! 
n0400 ! profile 
n0410 I 
n0420 c3 
n0430 s 1000 m03 
n0440 g53 
nO450 g56 x139.250 y-92.750 z7.000 
n0460 g00 y-30.000 x18.500 z13.000 
nO470 g00 y155.000 x22.000 z13.000 
n0480 g00 y155.000 x22.000 13.000 
n0490 g00 y155.000 x22.000 z-9.667 
n0500 g01 y-30.000 x22.000 z-9.667 1345.844 s353.145 
n0510 g00 y-30.000 x22.000 73.000 
n0520 gOO y155.000 x22.000 73.000 
n0530 g00 y 155.000 x22.000 73.000 
n0540 g00 y155.000 x22.000 z-19.333 
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n0550 g01 y-30.000 x22.000 z-19.333 
n0560 g00 y-30.000 x22.000 6.000 
n0570 g00 y155.000 x22.000 x3.000 
n0580 g00 y155.000 x22.000 73.000 
n0590 g00 y155.000 x22.000 z-29.000 
n0600 g01 y-30.000 x22.000 z-29.000 
n0610 g00 y-30.000 x22.000 z13.000 
n0620 I 
n0630 1 profile 
n06r40 I 
n0650 c3 
n0660 s1000 nn03 
n0670 g53 
n0680 g56 x-20.750 y-92.750 z7.000 
n0690 g00 x-30.000 y-22.000 z13.000 
n0700 g00 x190.000 y-22.000 z13.000 
n0710 g00 x190.000 y-22.000 z3.000 
n0720 g00 x190.000 y-22.000 z-9.667 
n0730 g01 x"30.000 y-22.000 z-9.667 045.844 s353.145 
n0740 g00 x-30.000 y-22.000 x3.000 
n0750 g00 x 190.000 y-22.000 z. 3.000 
n0760 gOO x190.000 y-22.000 73.000 
n0770 g00 x190.000 y-22.000 z-19.333 
n0780 gOt x-30.000 y22.000 z-19.333 
n0790 g00 x-30.000 y-22.000 73.000 
n0800 g00 x190.000 y-22.000 73.000 
n0810 g00 x 190.000 y-22.000 73.000 
n0820 g00 x 190.000 y-22.000 z-29.000 
n0830 g01 x-30.000 y-22.000 z-29.000 
n0840 g00 x"30.000 y-22.000 213.000 
n0850 1 
n0860 1 profile 
n0870 ! 
n0880 0 
n0890 s1000 m03 
n0900 gS3 
n0910 g56 x-20.750 y32.250 27.000 
n0920 g00 y30.000 x-22.000 213.000 
n0930 g00 y155.000 x-18.500 x13.000 
n0940 g00 y-155.000 x-18.500 73.000 
n0950 g00 y-155.000 x-18.500 z-9.667 
n0960 g01 y30.000 x-18.500 z-9.667 f291.283 s297.433 
n0970 g00 y30.000 x-18.500 73.000 
n0980 g00 y-135.000 x-18.500 . 73.000 
n0990 g00 y-155.000 x"18.500 73.000 
n1000 g00 y-155.000 x-18.500 z-19.333 
n1010 g01 y30.000 x-18.500 z-19.333 
n1020 g00 y30.000 x-18.500 z. 3.000 
n1030 g00 y-155.000 x-18.500 x3.000 
n1040 g00 y-155.000 x"18.500 x3.000 
0050 g00 y-155.000 x-18.500 z-29.000 
n1060 g01 y30.000 x-18.500 z-29.000 
n1070 g00 y30.000 x-18.500 x13.000 
n1080 I 
n1090 I clcarch cl 
nl1001 
nl 110 mO6 110 
n1120 d10 
n1130 c3 
n 1140 s 1000 m03 
n1150 g53 
n1160 g56 x-14.000 y-38.250 
n 1170 g00 x-30.000 y-18.500 -20.000 
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n 1180 g00 x 157.200 y6.500 z20.000 
n 1190 g00 x 157.200 y6.500 73.000 
n1200 g00 x157.200 y6.500 z-5.750 
n1210 gOl x-7.200 y6.500 z-5.750 (166.917 s1491.438 
n1220 gOO x-7.200 y6.000 z-5.750 
n1230 g00 x-7.200 y6.000 z-5.750 
n1240 gOl x157.200 y6.000 z-5.750 [144.953 s1295.185 
n1250 g00 x157.200 y6.000 73.000 
n1260 g00 x157.200 y6.000 720.000 
n1270 I 
n1280 I drill hole 
n1290 ! 
nl300 m06 t18 
n1310 d18 
n1320 c3 
n1330 s1000 m03 
n1340 g53 
n1350 g56 x36.500 y-84.000 
n1360 g00 x157.200 y6.000 z20.000 
n1370 g00 x0.000 yO. 000 720.000 
n1380 g00 x0.000 yO. 000 z3.000 
n1390 g0l z-11.000 1785.032 s3078.557 
M400 gO l z3.000 
n1410 g00 x0.000 yO. 000 z20.000 
n1420 ! 
n1430 ! drill hale 

n1440 ! 

n1450 e3 
n14,60 s 1000 m03 
n1470 g53 
n1480 g56 x36.500 y20.000 
n1490 g00 x0.000 yO. 000 z20,000 
n1500 g00 x0.000 yO. 000 x20.000 
M510 g00 x0.000 yO. 000 ? 3.000 
n1520 g01 z"11.000 1785.032 s3078.557 
n1530 g01 73.000 
n1540 gOO x0.000 yO. 000 z20.000 
n1550 I 
n1560 ! drill hole 
n1570 I 
n 1580 c3 
n1590 s 1000 m03 
n1600 g53 
n1610 g56 x85.500 y20.000 
n1620 g00 x0.000 y0.000 720.000 
n1630 g00 x0.000 yO. 000 720.000 
n1640 g00 x0.000 yO. 000 z. 3.000 
n1650 gOl z"11.000 1785.032 s3078.557 
n1660 g01 73.000 
n1670 g00 x0.000 yO. 000 z. 20.000 
n 1680 ! 
n1690 I drill-hole 
n 1700 ! 
n1710 e3 
n 1720 s 1000 m03 
n1730 g53 
n1740 g56 x85.500 y-84.000 
n1750 g00 x0.000 yO. 000 x20.000 
n1760 g00 x0.000 yO. 000 720.000 
n1770 gM x0.000 yO. 000 x3.000 
n1780 gOl z-11.000 1785.032 s3078.557 
n1790 gOl x3.000 
n1800 g00 x0.000 yO. 000 220.000 
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n1810 ! 
n1820 ! profile 
n1830 I 
n1840 m06 t8 
n1850 d8 
n1860 c3 
n1870 s1000 m03 
n1880 g53 
n1890 g56 x 139.250 y25.750 x6.750 
n 1900 g00 x0.000 yO. 000 z13.250 
n1910 g00 x-172.000 y9.750 x13.250 
n1920 g00 x-172.000 y9.750 23.000 
n1930 g00 x-172.000 y9.750 z-14.500 
n1940 g0l x12.000 y9.750 z-14.500 f67.568 s3328.109 
n1950 g00 x12.000 y9.750 z3.000 
n1960 g00 x"172.000 y9.750 73.000 
n1970 g00 x-172.000 y9.750 -3.000 
n1980 g00 x"172.000 y9.750 z-29.000 
n1990 g01 x12.000 y9.750 z-29.000 
n2000 g00 x12.000 y9.750 x. 13.250 
n2010 ! 
n2020 ! profile 
n2030 I 
n2040 0 
n2050 s 1000 m03 
n2060 g53 
n2070 g56 x 136.250 y-92.750 x6.750 
n2080 g00 y-12.000 x9.750 z 13.250 
n2090 g00 y137.000 x9.750 x13.250 
n2100 g00 y 137.000 x9.750 x3.000 
n2110 g00 y 137.000 x9.750 z" 14.500 
n2120 g0! y"12.000 x9.750 z-14.500 167.568 s3328.109 
n2130 g00 y-12.000 x9.750 -3.000 
n2140 g00 y137.000 x9.750 13.000 
n2150 g00 y137.000 x9.750 -3.000 
n2160 g00 y137.000 x9.750 z"29.000 
n2170 gOI y-12.000 x9.750 z-29.000 
n2180 g00 y-12.000 x9.750 x. 13.250 
n2190 I 
n2200 ! profile 
n2210 I 
n2220 c3 
n2230 s 1000 m03 
n2240 g53 
n2250 g56 x"20.750 y-89.750 z6.750 
n2260 g00 x-12.000 y"9.750 x. 13.250 
n2270 g00 x172.000 y-9.750 213.250 
n2280 g00 x 172.000 y"9.750 13.000 
n2290 gOO x172.000 y9.750 z"14.500 
n2300 gOl x-12.000 y"9.750 z. 14.500 167.568 s3328.109 
n2310 g00 x"12.000 y"9.750 73.000 
n2320 g00 2172.000 y-9.750 0.000 
n2330 g00 x 172.000 y-9.750 z3.000 
n2340 g00 x172.000 y-9.750 x-29.000 
n2350 gOl x-12.000 y"9.750 z"29.000 
n2360 g00 x-12.000 y-9.750 *13.250 
n2370 I 
n2380 I profile 
n2390 I 
n2400 e3 
n2410 s 1000 m03 
n2420 g53 
n2430 g56 x-14.250 y32.250 x6.750 
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n2440 g00 y12.000 x"9.750 213.250 
n2450 g00 y-137.000 x"9.750 213.250 
n2460 g00 y-137.000 x-9.750 x3.000 
n2470 gOO y"137.000 x"9.750 z-14.500 
n2480 gOl y12.000 x"9.750 z-14.500 167.568 s3328.109 
n2490 g00 y12.000 x"9.750 x3.000 
n2500 g00 y-137.000 x-9.750 x3.000 
n2510 g00 y-137.000 x-9.750 73.000 
n2520 g00 y. 137.000 x. 9.750 z-29.000 
n2530 gOl y12.000 x-9.750 z-29.000 
n2540 g00 y12.000 x"9.750 213.250 
n2550 ! 
n2560 Iface channel 
n2570 ! 
n2580 m06 t7 
n2590 d7 
n2600 c3 
n2610 s 1000 m03 
n2620 g53 
n2630 g56 x-14.000 y-38300 
n2640 g00 x"12.000 y"9.750 720.000 
n2650 g00 x 157.200 y7.000 '20.000 
n2660 g00 x 157.200 y7.000 z"3.000 
n2670 g01 x-7.200 y7.000 z"3.000 1299.354 s4000 
n2680 g00 x-7.200 y7.000 x3.000 
n2690 g00 z 157.200 y7.000 x3.000 
n2700 g00 x157.200 y7.000 x"6.000 
n2710 g0l x-7.200 y7.000 2.6.000 
n2720 g00 x-7.200 y6.000 z"6.000 
n2730 g00 x-7.200 y6.000 z-3.000 
n2740 g01 x 157.200 y6.000 z-3.000 
n2750 g00 x 157.200 y6.000 73.000 
n2760 g00 x-7.200 y6.000 43.000 
n2770 g00 x-7.200 y6.000 z"6.000 
n2780 g01 x157.200 y6.000 z"6.000 
n2790 g00 x157.200 y6.000 x20.000 
n2800 g53 
n2810 cO 
n2820 dO 
n2830 m06 17 
n2840 g00 x450 y350 
n2850 m30 
n9999 (cnd. prog) 
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\1.1(111\I\(; 1IIF: GLACIER NSURKI'IFCE 

J: xaIIIplc Operations) 

`rIup 1"I)I IIIing Opcratiun 

'-cl III) '- Roughing Iltc I up Face 
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Setup 3- Datum Setting 

Setup 3- Profiling a Face 


