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ABSTRACT 

The structural behaviour of simply supported reinforced concrete (R. C. ) beams 

strengthened in flexure by externally bonded steel or fibre reinforced plastic (FRP) 

plates has been investigated. A novel theoretical model coupled with simple (hence, 

practical) procedure(s) for designing such beams against premature plate peeling failure 

has been developed. The theoretical model and the design procedures have been 

validated by an extensive number (169) of mainly large-scale test data (using steel or 
FRP plates) from other sources. The effects of variations in the magnitude of Young's 

modulus for FRP plates on the potential changes in the flexural ultimate load of R. C. 

beams with externally bonded FRP plates, in the absence and/or presence of plate 

peeling, have been investigated in some detail with the theoretical predictions of 

various failure loads and associated modes of failure supported by an extensive number 

of test results from other sources. Moreover, brief theoretical parametric studies for 

other first order composite beam design parameters have also been carried out in order 

to clarify the effects of variations in such parameters on the predicted modes of failure. 

It has been shown (both, theoretically and by using large scale experimental data) that 

the load bearing capacity for a plated beam could (under certain circumstances) be 

significantly lower than even that for the corresponding unplated beam with the mode 

of failure being of an undesirable brittle nature. Such brittle failures can obviously have 

serious implications in practice, where this method has been used extensively for 

upgrading both bridges and buildings in a number of countries, with the design 

calculations very often not having properly accounted for the possible occurrence of 

premature plate peeling phenomenon, especially when FRP plates have been used. 

Further work in this area included a quantitative theoretical insight into the effect of 

pre-cracking of the beams (under service conditions) on the ultimate plate peeling load. 

A critical quantitative examination of a number of previously available theoretical 

models, as proposed by others, has also been carried out, and some of these models for 

predicting the plate peeling failure of R. C. beams have been shown to suffer from 

rather serious shortcomings. 

I 



ACKNOWLEDGEMENTS 

The author would like to express his gratitude and appreciation to his supervisor 

Professor M. Raoof for his sincere guidance, invaluable advice, and stimulating 

supervision during the course of development of this thesis and the entire period of the 

research programme. 

The author wishes to extend his gratitude to his family and his wife for their 

understanding, continuous encouragement, and support throughout the different stages 

of this work. " 

II 



TABLE OF CONTENTS 

ABSTRACT 

ACKNOWLEDGEMENTS 

TABLE OF CONTENTS 

LIST OF FIGURES 

LIST OF TABLES 

NOTATION 

CHAPTER 1- PRELIMINARY REMARKS 

1.1 INTRODUCTION 

1.2 PREMATURE PLATE PEELING FAILURE 

1.3 AIMS AND OBJECTIVES 

1.4 METHODOLOGY AND ORGANISATION OF THE THESIS 

PAGE 

I 

II 

lu 

X 

XVIII 

XD( 

1 

1 

4 

6 

7 

CHAPTER 2- UPGRADING OF REINFORCED CONCRETE 
BEAMS - EXPERIMENTAL REVIEW 11 

2.1 INTRODUCTION 

2.2 EXPERIMENTAL REVIEW 

2.2.1 Composite Plates 

2.2.2 Steel Plates 

2.3 CONCLUSION 

11 

12 

12 

25 

48 

III 



CHAPTER 3- CRITICAL EXAMINATION OF VARIOUS 
METHODS FOR PREDICTING THE PLATE 
PEELING LOAD 

3.1 INTRODUCTION 

3.2 APPROXIMATE ANALYSIS OF SHEAR AND NORMAL STRESSES 

60 

60 

WITHIN THE ADHESIVE LAYER 61 

3.3 PLATE PEELING ANALYSIS 64 

3.3.1 Approach of Limiting the Normal and/or Shear Stresses in the 

Adhesive Layer 66 

3.3.1.1 Critical Examination 70 

3.3.2 Approach of Limiting the Axial and Curvature Peeling Stresses 79 

3.3.2.1 Axial Peeling Stress 82 

3.3.2.2 Curvature Peeling Stress 82 

3.3.2.3 Flexural Peeling Strength 83 

3.3.2.4 Critical Examination 89 

3.3.2.4.1 The Interaction Relationship 89 

3.3.2.4.2 Effect of Plate Width and Peeling Stress 

Distributions in Concrete 91 

3.3.2.4.3 Effect of the Flexural Cracking 93 

3.3.3 Approach of Limiting the Tensile Stresses within Concrete Cover 98 

3.3.3.1 Assumed Mode of Failure and Flexural Crack Spacing 99 

3.3.3.2 Estimation of Plate Peeling Failure 100 

3.3.3.3 Critical Examination 106 

3.3.4 Other Approaches 109 

3.4 DISCUSSION AND CONCLUSIONS 111 

IV 



CHAPTER 4- PREDICTION OF PLATE PEELING FAILURE 114 

4.1 INTRODUCTION 114 

4.2 CASES TO BE EXAMINED 115 

4.3 A PURELY EMPIRICAL METHOD 116 

4.4 EXTENSION OF THE THEORETICAL MODEL TO FRP PLATES 120 

4.5 CORRELATIONS BETWEEN THEORY AND TEST DATA 129 

4.6 EFFECT OF PRE-CRACKING 

4.6.1 Experimental Support 

4.7 COMPUTER PROGRAMME 

4.8 CONCLUSIONS 

142 

148 

156 

158 

CHAPTER 5- FLEXURAL FAILURE MODES FOR THE 
EXTERNALLY PLATED BEAMS 173 

5.1 INTRODUCTION 

5.2 PLATED BEAM FLEXURAL CAPACITIES 

5.3 THE EXPECTED MODES OF FAILURE 

5.3.1 Failure Mode C- - 

5.3.2 Failure Mode C-P 

5.3.3 Failure Mode CR- 

5.3.4 Failure Mode CRP 

5.3.5 Failure Mode -RP 

5.3.6 Failure Mode - -P 

5.3.7 Failure Mode -R- 

173 

173 

177 

181 

183 

184 

186 

187 

190 

192 

V 



5.3.8 Failure Mode --- 

5.4 CONCLUSION 

194 

196 

CHAPTER 6- EFFECT OF THE MODULUS OF 
ELASTICITY FOR THE FRP PLATE ON THE 
PLATED BEAM FLEXURAL LOAD 
CAPACITIES AND MODES OF FAILURE 197 

6.1 GENERAL 197 

6.2 EFFECT OF THE PLATE MODULUS OF ELASTICITY ON THE 

BEHAVIOUR OF PLATED BEAM 198 

6.2.1 Failure Mode CR- 

6.2.2 Failure Mode C- - 

6.2.3 Failure Modes -RP and -R- 

6.2.4 Failure Modes --P and --- 

6.2.5 Implications of Neglecting the Concrete in Tension 

6.3 PROGRESS OF THE FAILURE MODES WITH INCREASING 

198 

207 

211 

216 

222 

VALUES OF MODULUS OF ELASTICITY FOR THE PLATE 227 

6.3.1 Behaviour of Under-Reinforced Plated Beams 230 

6.3.2 Behaviour of Over-Reinforced Plated Beams 223 

6.4 NUMERICAL STUDIES 235 

6.5 CONCLUSIONS 238 

CHAPTER 7- CRITICAL MODULI OF ELASTICITY FOR 
THE FRP PLATE 257 

7.1 INTRODUCTION 257 

7.2 GENERAL 257 

VI 



7.3 CRITICAL MODULI OF ELASTICITY 258 

7.3.1 Moduli of Elasticity for Under-Reinforced Plated Beams 259 

7.3.1.1 Minimum Value of Ep for the Mode -RP (Point A) 260 

7.3.1.2 Minimum Value of Ep for the Mode - -P (Point B, Under- 

Reinforced) 262 

7.3.1.2.1 Case 1 264 

7.3.1.2.2 Case 2 265 

7.3.1.3 Minimum Value of Ep for the Mode -R- (Point a) 266 

7.3.1.4 Minimum Value of Ep for the Mode- -- (Point b, Under- 

Reinforced) 268 

7.3.1.4.1 Case 1 270 

7.3.1.4.2 Case 2 271 

7.3.2 Critical Values of the Moduli of Elasticity for Over-Reinforced 

Plated Beams 272 

7.3.2.1 Minimum Value of Ep for the Mode C- - (Point C) 273 

7.3.2.2 Minimum Value of Ep for the Mode - -P (Point D, Over- 

Reinforced) 275 

7.3.2.3 Minimum Value of Ep for the Mode --- (Point d, over- 

Reinforced) 277 

7.3.3 Determining the General Behaviour 280 

7.4 VERIFICATION OF THE DERIVED FORMULAE FOR THE 

CRITICAL VALUES OF Ep FOR THE FRP PLATE 281 

7.5 MAIN PARAMETERS AFFECTING THE BEHAVIOUR OF A FRP 

PLATED BEAM 284 

7.5.1 Concrete Compressive Strength 288 

VII 



7.5.2 Plate Ultimate Strength and Yield Strength for the Embedded Bars 288 

7.5.3 Total Area of Reinforcing Bars 289 

7.6 SUMMARY AND CONCLUSIONS 289 

CHAPTER 8- SIMPLE PROCEDURE(S) FOR PREDICTING 
THE PEELING LOAD OF STEEL AND/OR 
FRP PLATED BEAMS 294 

8.1 INTRODUCTION 294 

8.2 SIMPLE PROCEDURE(S) FOR PREDICTING THE PLATE PEELING 

LOAD CAPACITY 294 

8.2.1 Predicting the Depth of Neutral Axis 

8.2.2 Calculating the Plate Peeling Moment 

8.2.2.1 Parabolic Stress Distribution for Concrete 

8.2.2.2 Uniform Stress Block Approximation 

8.3 SUMMARY AND CONCLUSIONS 

CHAPTER 9- SUMMARY AND CONCLUSIONS 

9.1 INTRODUCTION 

9.2 RESEARCH OVERVIEW 

9.2.1 Experimental Review and Critical Examination 

9.2.2 Model Development and Parametric Studies 

9.2.3 Design Procedure(s) 

9.3 CONCLUSIONS 

9.4 RECOMMENDATIONS FOR FURTHER RESEARCH 

296 

301 

302 

308 

312 

315 

315 

315 

316 

318 

321 

323 

325 



REFERENCES 327 

APPENDIX A 339 

APPENDIX B 354 

ix 



LIST OF FIGURES 

Fig. 1.1 Reinforced concrete beam strengthened with externally bonded steeIFRP 
plate. 

Fig. 1.2 Possible types of premature plate peeling failure. 

Fig. 1.3 Guide to the thesis. 

Fig. 3.1 Typical cross-section of plated reinforced concrete beams. 

Fig. 3.2 A typical plate peeling failure for reinforced concrete beam upgraded with 
externally bonded plate. 

Fig. 3.3 Determination of the stirrups' efficiency factor K for, plated beams: (a) 
incorrect results of analysis as published by Baluch et W. (1995), (b) the 
presently corrected version of the results. 

Fig. 3.4 Flexural peeling stresses across the interface. 

Fig. 3.5 Flexural peeling forces. 

Fig. 3.6 Shear and normal stresses at end of adhesive layer. 

Fig. 3.7 Force and moment interaction diagram at the end of the plate. 

Fig. 3.8 Correlations between the experimental and predicted plate peeling loads 
(after Oehlers (1992)) based on the BS8110 (1985) method of calculating 
the shear strength: (a) mean values for Mup, (b) characteristic values for Mup. 

Fig. 3.9 Correlations between the experimental and predicted plate peeling loads 
(after Oehlers (1992)) based on the Australian Standard (1988: A & B) 
method of calculating the shear strength: (a) mean values for Mup, (b) 
characteristic values for Mup. 

Fig. 3.10 Correlations between the experimental and predicted plate peeling moment 
(after Oehlers (1992)) based on experimental values of Mup and V, from 
control beams. 

Fig. 3.11 Pattern of concrete cracking under plate peeling failure. 

Fig. 3.12 Behaviour of an individual tooth within the concrete cover. 

Fig. 3.13 Assumed concrete region in tension. 

Fig. 3.14 Correlations between the theoretical upper and lower bound solutions of 
Raoof and Zhang (1997) and experimental data after Oehlers (1992). 

Fig. 3.15 Correlations between the theoretical upper and lower bound solutions of 
Raoof and Zhang (1997) and experimental data after Oehlers and Moran 
(1990). 

X 



Fig. 3.16 Correlations between the upper and lower bound theoretical predictions of 
peeling bending moment of Raoof and Zhang and test data after Baluch et 
al. (1995) and Ritchie et al. (1991). 

Fig. 4.1 Influence of steel plate width/thickness ratio on plate peeling failure for 
cases when premature plate peeling has occurred. 

Fig. 4.2 Influence of steel plate width/thickness ratio on failure load for cases when 
premature peeling failure did not occur. 

Fig. 4.3 Influence of FRP plate width/thickness ratio on plate peeling failure. 

Fig. 4.4 Determination of FRP plate effective length, Lp 
, assuming u, =u=0.28 f. 

Fig. 4.5 Variation of FRP plate axial strains with changes in the theoretical values of 
minimum plate axial stresses - test data after Hollaway (1? 97) and Garden et 
al. (1997). 

Fig. 4.6 Correlations between upper and lower bound theoretical predictions of FRP 

plate peeling moment and test data after Quantrill et al. (1996: A), Quantrill 

et al. (1996: B) and Garden et al. (1997). 

Fig. 4.7 Correlations between upper and lower bound theoretical predictions of FRP 

plate peeling moment and test data after Saadatmanesh et al. (1991). 

Fig. 4.8 Correlations between upper and lower bound theoretical predictions of FRP 

plate peeling moment and test data after Ritchie et al. (1991). 

Fig. 4.9 Correlations between upper and lower bound theoretical predictions of FRP 

plate peeling moment and test data after Sharif et al. (1994). 

Fig. 4.10 Correlations between upper and lower bound theoretical predictions of steel 
plate peeling moment and test data relating to initial plate peeling moment 
after Oehlers (1992). 

Fig. 4.11 Correlations between upper and lower bound theoretical predictions of steel 
plate peeling moment and test data relating to ultimate plate peeling moment 
after Oehlers (1992). 

Fig. 4.12 Comparison of plated and unplated ultimate bending moments, Mput, and 
MRc, respectively, with FRP plate peeling moments: beam designs after 
Quantrill et al. (1996: A), Quantrill et al. (1996: B) and Garden et al. (1997). 

Fig. 4.13 Comparison of plated and unplated ultimate bending moments, Mpuir and 
MRC, respectively, with FRP plate peeling moments: beam designs after 
Saadatmanesh et al. (1991), Ritchie et al. (1991) and Sharif et al. (1994). 

Fig. 4.14 Comparison of plated and unplated ultimate bending moments, Mpurr and 
MRC, respectively, with steel plate peeling moments: beam designs after 
Oehlers (1992). 

xi 



Fig. 4.15 Determination of FRP plate effective length, LP , assuming ul = 0.8 N/mm2 

and u=0.284-f cu . 

Fig. 4.16 Correlations between upper and lower bound theoretical predictions of FRP 

plate peeling moment (assuming u, = 0.8 N/mm2 and u=0.284f ýu) and 

test data after Quantrill et al. (1996: A), Quantrill et al. (1996: B) and Garden 
et al. (1997). 

Fig. 4.17 Theoretical comparison of the peeling moments in pre-cracked and 
uncracked specimens using beam designs after Oehlers and Moran (1990). 

Fig. 4.18 Theoretical comparison of the peeling moments in pre-cracked and 
uncracked specimens using beam designs after Oehlers (1992). 

Fig. 4.19 Theoretical comparisons of the peeling moments in pre-cracked and 
uncracked specimens using beam designs after Baluch et al. (1995) and 
Ritchie et al. (1991). 

Fig. 4.20 Effect of plate width, b1, on the plate peeling moment - comparison of test 
data after Oehlers and Moran (1990) and theory. 

Fig. 4.21 Effect of plate width, t, on the plate peeling moment - comparison of test 
data after Oehlers and Moran (1990) and theory. 

Fig. 4.22 Effect of plate width/thickness, bi/t, on the plate peeling moment - 
comparison of test data after Oehlers and Moran (1990) and theory. 

Fig. 4.23 Stress-strain relationship: (a) for concrete after BS8110 (1985), (b) for FRP 

material. 

Fig. 4.24 Stress-strain relationship for steel: (a) bi-linear after BS8110 (1985), (b) tri- 
linear after BS5400 (1990). 

Fig. 5.1 Mode C--: Section strains, stresses, and dimensions. 

Fig. 5.2 Mode C-P: Section strains, stresses, and dimensions. 

Fig. 5.3 Mode CR -: Section strains, stresses, and dimensions. 

Fig. 5.4 Mode CRP : Section strains, stresses, and dimensions. 

Fig. 5.5 Mode -RP : Section strains, stresses, and dimensions. 

Fig. 5.6 Mode --P: Section strains, stresses, and dimensions. 

Fig. 5.7 Mode -R -: Section strains, stresses, and dimensions. 

Fig. 5.8 Mode ---: Section strains, stresses, and dimensions. 

Fig. 6.1 Effect of increasing Ep on the section strains for the failure mode CR -. 

Fig. 6.2 Effect of increasing Ep on the section strains for the failure mode C--. 

XII 



Fig. 6.3 Possible locations of the neutral axis for failure modes -RP and -R - as 
the value of Ep is increased. 

Fig. 6.4 Section strains, stresses for modes of failure --P and ---. 

Fig. 6.5 Stress-strain relationship for concrete in compression and/or tension after 
BS5400 (1990). 

Fig. 6.6 Distribution of concrete tension stresses. 

Fig. 6.7 Changes in the modes of failure associated with variations in the plate 
modulus of elasticity for under-reinforced plated beam. 

Fig. 6.8 Changes in the modes of failure associated with variations in the plate 
modulus of elasticity for over-reinforced plated beam. 

Fig. 6.9 Effect of increasing the plate modulus of elasticity, EP, on the depth of 
neutral axis (typical legends for Figs. 6.10 to 6.30). 

Fig. 6.10 Effect of Ep on the depth of neutral axis for beam H-Alb. 

Fig. 6.11 Effect of Ep on the depth of neutral axis for beam H-A2g. 

Fig. 6.12 Effect of Ep on the depth of neutral axis for beam H-B6. 

Fig. 6.13 Effect of Ep on the depth of neutral axis for beam H-B9. 

Fig. 6.14 Effect of Ep on the depth of neutral axis for beam H-2Cu. 

Fig. 6.15 Effect of Ep on the depth of neutral axis for beam H-2Ca. 

Fig. 6.16 Effect of Ep on the depth of neutral axis for beam CC. 

Fig. 6.17 Effect of Ep on the depth of neutral axis for beam AA. 

Fig. 6.18 Effect of Ep on the depth of neutral axis for beam BB. 

Fig. 6.19 Effect of Ep on the depth of neutral axis for beam DD. 

Fig. 6.20 Effect of Ep on the depth of neutral axis for beam C. 

Fig. 6.21 Effect of Ep on the depth of neutral axis for beam F. 

Fig. 6.22 Effect of Ep on the depth of neutral axis for beam H. 

Fig. 6.23 Effect of Ep on the depth of neutral axis for beam J. 

Fig. 6.24 Effect of Ep on the depth of neutral axis for beam L. 

Fig. 6.25 Effect of Ep on the depth of neutral axis for beam N. 

Fig. 6.26 Effect of Ep on the depth of neutral axis for beam F-PI. 

Fig. 6.27 Effect of Ep on the depth of neutral axis for beam F-P2. 

Fig. 6.28 Effect of Ep on the depth of neutral axis for beam F-P2B. 



Fig. 6.29 Effect of Ep on the depth of neutral axis for beam F-P2BW. 

Fig. 6.30 Effect of Ep on the depth of neutral axis for beam F-P3J. 

Fig. 6.31 Effect of increasing the plate modulus of elasticity, Ep, on the axial strain of 
the externally bonded plate (typical legends for Figs. 6.32 to 6.52). 

Fig. 6.32 Effect of Ep on the plate axial strain for beam H-Alb. 

Fig. 6.33 Effect of Ep on the plate axial strain for beam H-A2g. 

Fig. 6.34 Effect of Ep on the plate axial strain for beam H-B6. 

Fig. 6.35 Effect of Ep on the plate axial strain for beam H-B9. 

Fig. 6.36 Effect of Ep on the plate axial strain for beam H-2Cu. 

Fig. 6.37 Effect of Ep on the plate axial strain for beam H-2Ca. 

Fig. 6.38 Effect of Ep on the plate axial strain for beam CC. 

Fig. 6.39 Effect of Ep on the plate axial strain for beam AA. 

Fig. 6.40 Effect of Ep on the plate axial strain for beam BB. 

Fig. 6.41 Effect of Ep on the plate axial strain for beam DD. 

Fig. 6.42 Effect of Ep on the plate axial strain for beam C. 

Fig. 6.43 Effect of Ep on the plate axial strain for beam F. 

Fig. 6.44 Effect of Ep on the plate axial strain for beam H. 

Fig. 6.45 Effect of Ep on the plate axial strain for beam J. 

Fig. 6.46 Effect of Ep on the plate axial strain for beam L. 

Fig. 6.47 Effect of Ep on the plate axial strain for beam N. 

Fig. 6.48 Effect of Ep on the plate axial strain for beam F-PI. 

Fig. 6.49 Effect of Ep on the plate axial strain for beam F-P2. 

Fig. 6.50 Effect of Ep on the plate axial strain for beam F-P2B. 

Fig. 6.51 Effect of Ep on the plate axial strain for beam F-P2BW. 

Fig. 6.52 Effect of Ep on the plate axial strain for beam F-P3J. 

Fig. 6.53 Effect of increasing the plate modulus of elasticity, Ep, on the failure 
moment capacities of the plated beams (typical legends for Figs. 6.54 to 
6.74). 

Fig. 6.54 Effect of Ep on failure moments for beam H-Al b. 

Fig. 6.55 Effect of Ep on failure moments for beam H-A2g. 

Fig. 6.56 Effect of Ep on failure moments for beam H-B6. 

XIV 



Fig. 6.57 Effect of Ep on failure moments for beam H-B9. 

Fig. 6.58 Effect of Ep on failure moments for beam H-2Cu. 

Fig. 6.59 Effect of Ep on failure moments for beam H-2Ca. 

Fig. 6.60 Effect of Ep on failure moments for beam CC. 

Fig. 6.61 Effect of Ep on failure moments for beam AA. 

Fig. 6.62 Effect of Ep on failure moments for beam BB. 

Fig. 6.63 Effect of Ep on failure moments for beam DD. 

Fig. 6.64 Effect of Ep on failure moments for beam C. 

Fig. 6.65 Effect of Ep on failure moments for beam F. 

Fig. 6.66 Effect of Ep on failure moments for beam H. 

Fig. 6.67 Effect of Ep on failure moments for beam J. 

Fig. 6.68 Effect of Ep on failure moments for beam L. 

Fig. 6.69 Effect of Ep on failure moments for beam N. 

Fig. 6.70 Effect of Ep on failure moments for beam F-P1. 

Fig. 6.71 Effect of Ep on failure moments for beam F-P2. 

Fig. 6.72 Effect of Ep on failure moments for beam F-P2B. 

Fig. 6.73 Effect of Ep on failure moments for beam F-P2BW. 

Fig. 6.74 Effect of Ep on failure moments for beam F-P3J. 

Fig. 7.1 Various modes of failure for an under-reinforced plated beam. 

Fig. 7.2 Transition from the Mode CR - to the Mode -RP. 

Fig. 7.3 Transition from the Mode -RP to the Mode --P. 

Fig. 7.4 Transition from the Mode CR - to the Mode -R-. 

Fig. 7.5 Transition from the Mode -R- to the Mode ---. 

Fig. 7.6 Various failure modes for an over-reinforced plated beam. 

Fig. 7.7 Transition from the Mode CR - to the Mode C--. 

Fig. 7.8 Transition from the Mode C-- to the Mode - -P. 

Fig. 7.9 Transition from the Mode C-- to the Mode ---. 

Fig. 8.1 Linear strain and stress distributions in concrete. 

xv 



Fig. 8.2 Correlations between the results based on the approximate and the iterative 
procedures for calculating the depth of neutral axis for beams 59-169, which 
were strengthened with steel plates. 

Fig. 8.3 Correlations between the approximate and the accurate values for the neutral 
axis depth for beams strengthened with FRP plates. 

Fig. 8.4 Section strains, stresses, and dimensions after BS8110 (1985). 

Fig. 8.5 Correlations between the proposed simple (parabolic) and the accurate 
values for the plate peeling moment for beams strengthened with steel 
plates. 

Fig. 8.6 Correlations between the proposed simple (parabolic) and the accurate 
values for the plate peeling moment for beams strengthened with FRP 
plates. % 

Fig. 8.7 Comparisons between the proposed simplified plate peeling moment 
(parabolic) and the corresponding experimental results for beams 
strengthened with steel plates. 

Fig. 8.8 Comparisons between the proposed simplified plate peeling moment 
(parabolic) and the corresponding experimental results for beams 
strengthened with FRP plates. 

Fig. 8.9 Comparisons between the iterative plate peeling moments and the 
corresponding experimental results, for beams strengthened with steel 
plates. 

Fig. 8.10 Comparisons between the iterative plate peeling moments and the 
corresponding experimental results, for beams strengthened with FRP plates. 

Fig. 8.11 Section strains, stresses, and dimensions (concrete uniform stress block). 

Fig. 8.12 Correlations between the simplified (uniform stress block) and the iterative 
values for the plate peeling moment for beams strengthened with steel 
plates. 

Fig. 8.13 Correlations between the simplified (uniform stress block) and the iterative 
values for the plate peeling moment for beams strengthened with FRP 
plates. 

Fig. 8.14 Comparisons between the proposed simplified theoretical method (uniform 
stress block) and the corresponding experimental results for beams 
strengthened with steel plates. 

Fig. 8.15 Comparisons between the proposed simplified theoretical method (uniform 
stress block) and the corresponding experimental results for beams 
strengthened with FRP plates. 

Fig. A. 1 Assumed stress-strain relationship: (a) for concrete after BS8110 (1985), (b) 
for FRP material, (c) bi-linear for steel after BS8110 (1985), and (d) tri- 
linear for steel after BS5400 (1990). 

XVI 



Fig. B. 1 Stress-strain relationship for concrete in compression after BS5400 (1990). 

Fig. B. 2 Section compression stresses, strains and dimensions. 

Fig. B. 3 Equivalent stress block. 

Fig. B. 4 Section strains, stresses and dimensions (Case 1). 

Fig. B. 5 Section strains, stresses and dimensions (Case 2). 

XVII 



LIST OF TABLES 

Table 2.1 Various geometrical and material parameters for the reinforced concrete 
beams upgraded with external FRP plates. 

Table 2.2 Various geometrical and material parameters for the reinforced concrete 
beams upgraded with external STEEL plates. 

Table 3.1 Evaluation of K and KSF: incorrect published results of Baluch et al. 
(1995), and the subsequently corrected data in the present work. 

Table 3.2 Results based on Baluch et al. 's original (uncorrected) theory applied to 
Oehlers' test data (1992). 

Table 3.3 Experimental and analytical data after Sharif et al. (1924) compared with 
the presently corrected results. 

Table 3.4 Components of shear capacity of reinforced concrete beams used in the 
work of Baluch et al. (1995) and Oehlers (1992). 

Table 4.1 Various geometrical and material parameters plus experimental values of 
EUe for the R. C. beams tested by Hollaway and his associates (Hollaway 
(1997) and Garden et al. (1997)). 

Table 4.2 Values of various parameters for beam specimens after Quantrill et al. 
(1996: A), Quantrill et al. (1996: B), and Garden (1997). 

Table 4.3 Values of various parameters for beam specimens after Saadatmanesh et 
al. (1991), Ritchie et al. (1991), and Sharif et al. (1994). 

Table 4.4 Values of various parameters for beam specimens after Oehlers (1992). 

Table 4.5 Comparisons between the actual failure load and mode of failure for the 
plated beams and the predicted shear capacity of the corresponding 
unplated beams for beam designs after Oehlers (1992). 

Table 4.6 Values of various parameters for beam specimens after Baluch et al. 
(1995), and Ritchie et al. (1991). 

Table 4.7 Values of various parameters for beam specimens tested by Oehlers 
(1992). 

Table 4.8 Values of various parameters for beam specimens tested be Oehlers and 
Moran (1990). 

Table 5.1 Modes of failure for beams upgraded with external plates. 

Table 7.1 Critical values of Ep and modes of failure (full bond behaviour). 

Table 7.2 Critical values of Ep and modes of failure (partial bond behaviour, as(, )). 

Table 7.3 Critical values of Ep and modes of failure (partial bond behaviour, as(min))" 

XVIII 



NOTATION 

a Distance from where the plate is terminated and the support; Depth 
of equivalent concrete stress block 

A, The concrete stretched area 

Ap Plate cross-section area 

As Cross-section area of tensile bars 

As Cross-section area of compression bars 

b, k Width of the beam 

bi, bb, by Width of the externally bonded plate 

bQ Average width of the adhesive layer 

B Width of the externally bonded plate 

CR1 CR2 Normal stress indicator 

d Distance between the C. G. of the embedded tension bars and the 
top of the section 

d/ Distance between the compression bars and the top of the section 

da Average thickness of the adhesive layer 

dd Total depth of the beam cross-section 

dp Plate thickness 

D Distance between the bonded plate and the top of the section 

Ea Young's modulus of the adhesive material 

E(a) Minimum value of modulus of elasticity for the FRP plate for the 
-R- mode of failure 

E(A) 

E(b) 

Minimum value of modulus of elasticity for the FRP plate for the 
- RP mode of failure 

Minimum value of modulus of elasticity for the FRP plate for the 
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Chapter 1 

PRELIMINARY REMARKS 

1.1 INTRODUCTION 

A significant proportion of current expenditure in the United Kingdom, relating to 

repair and maintenance of existing structures, is directed towards maintenance and 

upgrading of its concrete infrastructure. Many of the bridges and other civil 

engineering structures are deteriorating world-wide, due to problems associated with 

corrosion of steel in reinforced concrete, and a large proportion of bridges are 

unsuitable for carrying current or projected traffic needs. In certain other countries 

(such as Egypt), such problems are much more acute, largely due to the lack of 

regular maintenance. Indeed, in such countries, it has only been in recent years that 

the urgent need for maintenance and upgrading of the infrastructure has been fully 

recognised. 

The effects of environment (harsh climate, de-icing salts, seismic activity, etc. ), the 

increase in both traffic volume and truck weights, and changes in the design codes 

which necessitate a re-evaluation of older structures, are factors which contribute to 

the infrastructure becoming either structurally deficient or functionally obsolete. 

Upgrading usually involves strengthening of existing members to carry higher 

ultimate loads and/or satisfy more stringent serviceability requirements. Provided, 

rapid, effective, and simple upgrading methods are available, strengthening of 

existing structures becomes both environmentally and also economically preferable to 

demolition and rebuilding. 
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With the development of strong epoxy adhesives back in the 1960's, bonding external 

steel or fibre reinforced plastic (FRP) plates to the tension side of reinforced concrete 

beams, Figure 1.1, has proved very attractive for increasing the flexural strength of 

beams and/or slabs: such externally bonded plates supplement the area of internal 

tension reinforcement and are, indeed, more effective (in terms of bending resistance) 

than the reinforcing bars, because the plates are located at a maximum possible 

distance from the centroid of the concrete compressive stress 

block. 

Fwf 

Reinforced coticrete' beam/slab 
L 

Epoxy glue layer 
External steel or FRP plate I 

Fig. 1.1 Reinforced concrete beam strengthened with externally bonded 

steel/FRP plate. 

The external plate bonding technique offers certain advantages when compared with 

other strengthening techniques and has, indeed, been extensively used in practice for 

both buildings and bridges, in a large number of countries (Oehlers (1992)). The work 

can be carried out relatively simply and quickly, even while the structure is still in 

use, and its application causes minimal changes in the member dimensions (including 

overhead clearance) and negligible increases in the self-weight. It also does not alter 

the configuration of the structure. Plates bonded to the tension side of reinforced 

concrete beams can be used to improve performance under service loads, by, for 

example, reducing cracking or deflections, and increase ultimate load in flexure. The 

plated member can carry the live load or live and dead load if propping is used. 
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As far as using externally bonded steel plate is concerned, it does, however, have 

some disadvantages when compared with using FRP plates as, for example, pointed 

out by Meier and his associates at Swiss Federal Laboratories for Materials Testing 

and Research (EMPA). These include difficulty in transportation and handling the 

heavy steel plates at the installation site, the possibility of corrosion at the 

steel/adhesive joint interface, the problem of forming clean butt joints between the 

relatively short lengths of commercially available plates, and expensive false work to 

hold the plates in position during adhesive curing. These difficulties have, in recent 

years, led to research into the potential use of the very light weight FRP plates as 

external reinforcement to replace the use of mild steel plates in practice. Such FRP 

materials have previously been used in, for example, aircraft and space industry: 

plates fabricated from these materials are characterised by their high strength to 

weight ratio, outstanding corrosion resistance, and, unlike steel plates which are 

available with limited lengths, they may be delivered on site in rolls of up to, say, 300 

m in length. Furthermore, the FRP plates are formable and can be bonded to curved 

and irregular surfaces. However, FRP plates are currently about 10 times more 

expensive than the steel used up to date which may pose some doubts on economical 

grounds, for their use in civil engineering applications. In addition, their use poses the 

increased possibility of brittle failure modes. However, as pointed out by Meier and 

Kaiser (1991), for example, in a typical strengthening application, steel material cost 

may only be about, say, 20% of the total cost, versus 80% for the labour cost, with the 

relative ease of handling the FRP plates reducing the labour costs drastically, hence, 

making their use in structural applications, perhaps, an economically viable option. 

One thing is for sure; research on the structural properties of reinforced concrete 
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beams strengthened by external FRP plates has (in recent years) been conducted with 

vigour in a number of institutions world-wide, and there is currently an ever 

increasing number of related publications appearing in the public domain. However, 

the vast majority of these publications are of a purely experimental nature, with a 

pressing need for the development of theoretical models which clearly identify 

various structural aspects of this external plate/concrete composite beam construction. 

In other words, many unresolved problems still remain in this area. 

1.2 PREMATURE PLATE PEELING FAILURE 

Reinforced concrete beams and slabs strengthened by external plates are usually 

designed for flexure on the basis of conventional ultimate load procedures such as, for 

example, those recommended by the British Standard BS8110 (1985), assuming full 

bond between concrete and the plate up to ultimate load, and using the plane section 

bending assumption and a concrete stress block at failure. However, as repeatedly 

reported in the literature, the designer should also check that premature anchorage 

failure (Figure 1.2) caused by peeling and debonding of the plate at its end, in a brittle 

fashion, does not occur prior to the beam achieving its full flexural strength. The 

premature failure mode shown in Figure 1.2 involves the plate and concrete cover 

becoming separated as a unit, from underside of the main reinforcing bars, which is 

the most commonly reported type of plate peeling phenomena. There is also the 

possibility of plate peeling off at the plate/glue or concrete/glue interfaces: with the 

strong nature of currently available epoxy glues, such failure modes are not common 

and if they happen, it is usually attributed to bad workmanship (Oehlers (1989)). 
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Main (embedded) 
reinforcement 

Reinforced concrete beam/slab 

Plate peeling from the 
underside of the main 
(embedded) reinforcement 

Plate separation at 
plate/glue/concrete 
interface 

Fig. 1.2 Possible types of premature plate peeling failure. 

The research in this thesis mainly focuses on the problem of premature plate peeling 

failure in which the concrete cover together with the external plate are peeled-off 

from underside of the main (embedded) tension reinforcement. This mode of failure is 

usually of a brittle nature, and happens at loads lower than those predicted by the 

design recommendations based on various codes of practice which have originally 

been developed for only concrete beams with internal reinforcement. So far, there is 

no design procedures recommended by any of the codes of practice which address the 

design of externally plated reinforced concrete beams or slabs against premature plate 

peeling failures. Meanwhile, none of the previously available methods of analysis in 

the public domain has been sufficiently reliable for general use in practice: these will 

be critically examined later on in this thesis. Over the last thirty years, rather 

extensive experimental parametric studies have been carried out by researchers in 

various institutions, world-wide. Due to the complexity of the problem, however, a 

great deal of disagreements exist among the findings based on such purely 

experimental parametric studies, and, to date, the researchers cannot even agree 

among themselves as to which beam design parameters are, indeed, the first order (i. e. 

controlling) ones, once one addresses the problem of premature plate peeling failures: 

a critical study of their findings will also be presented later on. 
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1.3 AIMS AND OBJECTIVES 

The primary aim of the work reported in this thesis is to develop a simple but reliable 

procedure for designing externally plated reinforced concrete beams against 

premature plate peeling failures. The reinforced concrete beams are assumed to be 

strengthened in flexure with external steel or FRP plates bonded to their tension side 

with the plates glued to either pre-cracked or uncracked (i. e. as cast) specimens. The 

following objectives were set at the onset of the work: 

1- Extending and further verifying the model originally developed by Raoof and 

Zhang for predicting premature plate peeling failures. The extended model 

should be able to handle beams plated with either steel or FRP plates with the 

original reinforced concrete beam being either cracked or uncracked prior to the 

application of the external plates. 

2- Identifying all the possible modes of failure associated with plated beams, and 

developing associated theoretical models, the predictions of which are to be 

compared with the previously reported experimental modes of failure in the 

literature. 

3- Identifying the main parameters which affect the behaviour of plated beams 

even in the absence of premature plate failures, and quantifying the effect of 

variations in these parameters on each mode of failure on an individual basis - 

even those modes of failure associated with which the plate remains fully 

bonded to concrete up to the ultimate load will be considered. 

4- Determining the critical values of such main parameters which trigger initiation 

of such alternative modes of failure, covering a wide range of material 

properties especially in relation to FRP plates. 
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5- Deriving formulae, based on such key parameters, for designing the plated 

beams, which should be simple but of general applicability and, hence, of value 

to busy practising engineers. 

1.4 METHODOLOGY AND ORGANISATION OF THE THESIS 

In order to accomplish the above objectives, a detailed programme of work was 

devised to ensure effective and reliable routes to be followed in the course of this 

research. In what follows, a general outline of the various chapters in this thesis will 

be presented: the final outcome (as presented in detail in subsequent chapters) is 

believed to have met all the main objectives which were set at the onset of the work: 

Figure 1.3 presents a guide chart for the contents of this thesis, including: 

1- Extensive and critical review of the available experimental data relating to the 

problem at hand. This review will save considerable time and effort, avoiding 

the otherwise necessity of carrying out extensive experimental work: it will 

secure a large number of experimental results covering a wide range of 

parameters as carried out by a number of independent institutions. Such 

valuable test data is obviously difficult to obtain by one research group or 

within one Ph. D. programme (considering the time and resource constraints). 

The review includes not only the gathering of raw experimental data but also a 

critical examination of the observations and conclusions made by different 

research groups. This information will later be used to assess the validity of 

different analytical models as proposed by others and also the presently 

proposed model. Using such information, the commonly reported modes of 

failure are studied, and a complete theoretical description for all the possible 
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modes of failure relating to plated beams will, subsequently, be developed. This 

review is presented in Chapter 2. 

2- Critical examination of the previously available methods of analysis relating to 

plate peeling failure will also be carried out: this will be presented in Chapter 3. 

This study will include a discussion of the basic assumptions, plus details of the 

derivations. Such previously recommended formulae will be used to produce 

numerical data to be checked against the available (but independent) 

experimental results as gathered in the experimental review (rcported in Chapter 

2). Such a critical examination will serve to clarify the general (or otherwise) 

reliability of the most widely cited models and, in addition, will help the present 

work to identify the most suitable assumptions to be adopted for the presently 

proposed methods of analysis. 

3- Guided by the above critical examination, a theoretical model for analysing the 

externally plated reinforced concrete beams will be developed. This will be 

coupled with a numerical procedure in order to handle the iterative analysis, and 

to produce numerical data which will, subsequently, be compared with 

experimental results. Details of the presently proposed analytical model are 

presented in Chapter 4, while the computer programme is included in appendix 

A. 

4- All the possible modes of failure associated with externally plated beams in the 

presence and/or absence of premature plate peeling failures will be identified. 

Full derivations of the formulae and the associated conditions for these modes 

will be presented in Chapter 5. 

5- A crucial material parameter for the FRP plate (i. e. its modulus of elasticity) 

will be selected to perform comprehensive theoretical parametric studies to 
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throw some light on its effect on the behaviour of the plated beams as regards 

their various associated modes of failure. Chapter 6 presents details of such a 

study. 

6- In Chapter 7, the critical values of modulus of elasticity for the externally 

bonded FRP plate which control the initiation of a number of widely different 

modes of failure will be derived theoretically, with the final numerical results 

checked against the available experimental data from various sources. 

Parametric sub-studies for the other key parameters will alsq be carried out in 

order to clarify their effect on the initiation of different modes of failure. 

7- Focusing on the behaviour of plated beams failing in the premature plate 

peeling modes, and guided by the outcome of parametric studies, certain 

assumptions will be made enabling one to obtain the stresses and strains in the 

critical plated beam section via simple formulations. Chapter 8 presents details 

of such simple formulations which are amenable to hand calculations, using a 

pocket calculator, and using which, the depth of the neutral axis and, hence, the 

flexural load bearing capacity of the plated beam may be predicted. The final 

numerical results based on such simple formulations will then be compared with 

the corresponding results based on the considerably lengthier iterative method 

which necessitates the use of a computer programme. The final output of the 

simple formulations will also be checked against experimental results, where 

very encouraging correlations have been found, hence, confirming the general 

validity of the simplified approach for use in practice. 

8- Finally, in Chapter 9, a summary of the research work carried out in this thesis 

will be presented in some detail, and the main conclusions will be highlighted. 

Recommendations will also be made for future research. 
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Chapter 1 
Preliminary Remarks 

Background to the research. Problem definition. Aims and objectives. Methodology and thesis 
organisation. 

Chapter 2 
Experimental Review 

Review of the relevant experimental 
results, observations and conclusions. 

Data base for 169 specimens is built-up 
which will be used for later verifications. 

Chapter 3 
Critical Examinations 

Approximate analysis, approaches of limiting normal or shear 
stresses in the adhesive, limiting curvature and peeling stresses, 

limiting tension stress in the concrete cover, and other 
approaches. Experimental results used to check various models. 

Chapter 4" 
Proposed Method of Analysis 

A purely empirical method examined. Proposed model for FRP plates. Model 
developed for pre-loaded beams prior to plating. Model verified against independent test 

results. Model examined by experimental parametric studies. Computer programme 
outlined with the assumptions mentioned. 

Chapter 5 
Modes of failure for Plated 

Beams 
Identifying and fully describing the 

eight possible modes of failure of plated 
beams. Derivation of the force and 

moment equilibrium equations for each 
mode. 

Chapter 6 
Effect of Modulus of Elasticity of the Plate 
Examining the effect of changes in the plate Young's 
modulus on the different eight modes. Progress of 

changes in failure modes with changes in the Young's 
modulus, and, hence, identifying different types of 

plated beam characteristics. 

Chapter 7 
Critical Values of Young's Modulus, E., for the Plate 

Derivation of the critical values of Ep associated with different modes of failure. 
Classification and description of the different types of plated beam behaviour. Numerical 

results compared with experimental data. Parametric studies for the key parameters. 

Chapter 8 
Simple Design Procedures 

Development of a simplified method to predict the depth of neutral axis and to 
propose a simple formula to calculate the premature plate peeling moment. 

Proposed design procedures verified against experimental results. 

Chapter 9 
Summary and Conclusions 

Summary and conclusions of the work, and recommendations for future research. 

Fig. 1.3 Guide to the thesis 

94 ý 
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Chapter 2 

UPGRADING OF REINFORCED CONCRETE BEAMS - 
EXPERIMENTAL REVIEW 

2.1 INTRODUCTION 

In this chapter, a review of literature will be presented which relates to the 

experimental studies associated with reinforced concrete beams strengthened by 

gluing external plates to their tension sides. A review of the published theoretical 

studies relating to this problem, on the other hand, will be presented in the next 

chapter which will, in turn, include a critical examination of the most promising 

available theoretical models for the plate peeling problem. 

It is, perhaps, worth mentioning that, unlike steel structures, repair and upgrading of 

reinforced concrete structures is generally more involved and needs well experienced 

designers and specialists for design and detailing in addition to well trained and 

skilled teams for execution. Different strengthening techniques have (in fairly recent 

years) been developed and utilised in practice depending on the structural system and 

the given situation (such as site conditions, traffic flow, etc. ). The external pre- 

stressing technique, additional supports, etc., have in the past been used, with varying 

degrees of success, to strengthen structural elements. With the development of strong 

adhesives back in the 1960's, the plate-bonding technique has proved to be an 

attractive option. With the introduction of new composite materials such as fibre 

reinforced plastics (FRP), such upgrading techniques are often used with advantages 

over other types of strengthening methods. As mentioned previously, the plate- 

bonding method for reinforced concrete beams and slabs is easy to apply in practice 
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and does not, for example, significantly alter the shape, weight, or the size of the 

structural element. In most cases, it may be carried out while the structure is still in 

use, with minimum disruptions to, say, traffic flow. 

Over the last twenty years, a large number of experimental studies relating to this 

technique (with either FRP or steel plates) have been reported in the literature, with 

the majority of the experimental studies concentrating on the behaviour of simply 

supported beams under symmetrical four-point loading. 

2.2 EXPERIMENTAL REVIEW 

2.2.1 Composite plates 

Saadatmanesh et al. (1991) experimentally studied rectangular and T-beams 

strengthened by gluing external glass fibre reinforced plastic (GFRP) plates to the 

tension sides of simply supported beams subjected to symmetrical four-point loading. 

Five externally plated rectangular and one T-beams were tested. The test specimens 

were all of large scale with a width of 205 mm and a depth of 455 mm, while having a 

clear span of 4570 mm. The flange width for the T-beam was 610 mm, while its 

thickness was 75 mm. The strengthening plates were of the GFRP type, with a width 

of 152 mm and a thickness of 6 mm, while their total length was 4260 mm. One of the 

rectangular beams was under-designed for shear (according to ACI-318), while the 

rest of the beams were designed so that shear failure did not occur, with the flexural 

behaviour controlling the final failure mode. One of the rectangular beams (which was 

designed against shear failure) was also externally pre-stressed by cambering it prior 
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to the GFRP plate being bonded to its tension side, in order to observe the effect of 

external pre-stressing. 

These authors measured the load versus axial strains in the GFRP plates, and steel 

rebars, plus the bending strains at the extreme compression fibre of concrete. Load 

versus mid-span deflection measurements were also taken. It is interesting to note that 

the beam which was not designed against shear failure did not develop major shear 

cracks, and the failure was as a result of concrete crushing on the compression side in 

the absence of any premature plate peeling. The beams which were designed against 

shear failure, on the other hand, suffered from plate peeling either within the adhesive 

layer or with the concrete cover ripping-off prior to the concrete crushing within the 

maximum moment section. 

It was also reported that brittle premature concrete cover ripping-off (initiated at the 

end of the plate) occurred in the beam which had been cambered (i. e. externally pre- 

stressed). A plate separation mode of failure occurred in an un-cambered beam 

associated with which yielding of the embedded bars also took place. 

In general, their results indicated that the flexural strength of reinforced concrete 

beams may significantly be increased by gluing GFRP plates to their tension face. It 

was also reported that epoxy bonded plates improved the cracking characteristics of 

the beams by delaying the formation of visible cracks, and reducing crack widths at 

higher load levels. 
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Sharif et al. (1994) experimentally studied the behaviour of initially loaded reinforced 

concrete beams to 85 percent of their ultimate flexural capacity, and subsequent 

strengthening of the beams with different types of fibreglass reinforced plastic (FRP) 

plates. 

Ten small-scale rectangular reinforced concrete beams with overall dimensions of 

150xl5Ox1280 mm and a clear span of 1180 mm were tested. The internal 

reinforcement ratio was chosen so as to ensure under-reinforced flexural behaviour. 

The beams were over-designed (by more than 200 percent) in shear to avoid a brittle 

shear failure in view of the expected increases in the failure load in the presence of 

external plates. The ultimate load bearing capacity of the unplated beam was 

determined from a loading to failure test on a control beam, and the pre-loading 

behaviour was determined from another control beam which had been loaded up to a 

central deflection of 10 mm (corresponding to 85 percent of the ultimate capacity of 

the associated control beam), unloaded and, then, reloaded to failure. They reported a 

similar behaviour up to failure for both control beams. 

To investigate the occurrence of plate peeling failure (initiated at the plate curtailment 

zone) due to the high concentration of shear and peeling stresses, and to ensure 

occurrence of a ductile mode of failure, a range of plate thicknesses and different 

types of anchoring schemes were used. Bolts in the vicinity of the ends of the plates, 

side plates within the shear span, and 1 -jacket plates were all used to provide the 

desired end anchorage. 
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The results of their study indicated that the flexural strength of plated beams is, 

indeed, increased, and the ductile behaviour of the strengthened beams is inversely 

dependent on the plate thickness. 

It was interesting to note that although using external plates to strengthen the beams 

improved their flexural load bearing capacity, doubling the plate thickness did not 

lead to any further improvements in the flexural load bearing capacity. Furthermore, 

using much thicker plates was found to reduce the enhancement in the flexural 

capacity for the un-anchored beams associated with which the premature type of plate 

failure (i. e. plate separation) was reported to take place. 

Their results showed insignificant increases in the beam flexural capacity when 

anchor bolts were used for medium plate thicknesses. Moreover, the rates of increase 

in the flexural capacity were found to diminish, when thicker plates were bonded to 

the beams. It was reported that although using bolts eliminated the occurrence of plate 

separation, it caused the formation of diagonal tension cracks leading to failure. It 

should be noted that the shear strength of the upgraded beams with anchor bolts was 

estimated to be 1.5 times their flexural strength, however, the ultimate failure 

generally occurred at a load level equivalent to 60-65 percent of the beam shear 

strength. For the medium thickness plates, adding side plates improved the ductility, 

and developed the full flexural strength, while for the thicker plates neither of these 

beam characteristics were found to have been improved with the plate peeling being 

found to be the dominant failure mechanism. 

15 



Their results also showed that, in general, thicker plates caused brittle premature 

failure even when anchor bolts or side plates were used. However, using I -jacket 

plates was found to lead to a higher ductility index with the full development of 

flexural strength: in such cases, failure was due to crushing of concrete in 

compression within the constant moment zone under symmetrical four-point loading. 

In another experimental study by Ritchie et al. (1991), composite plates reinforced 

with different types of fibre reinforcement plastics such as glass, carbon, and aramid 

were used to externally reinforce concrete beams by gluing the plates to their soffits 

and testing them to failure. In addition, some beams were reinforced with external 

steel plates. The purpose of these tests was again to study the effectiveness of the 

external strengthening of reinforced concrete beams with FRP and steel plates. 

Their test program included 16 reinforced concrete beams of 152 mm width, 304 mm 

depth, and 2440 mm clear span. Two beams were strengthened with steel plates, while 

the rest were upgraded with different types of FRP plates. The overall lengths of the 

plates differed from one beam to another: four beams had plates extended from one 

support to the other support, and certain beams were also reinforced with side plates at 

the location of plate curtailment, while in other cases, the beams were upgraded with 

angle shaped plates. 

In the absence of end anchorages, plate peeling failures were reported not to occur 

within the maximum moment region but were initiated at the end of the plates within 

the shear span. In an attempt to shift the location and the mode of failure as well as to 

increase the ultimate load capacity of the beam, these researchers introduced four 
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alternative modifications. In the first case, unequal leg fibreglass angle was used at the 

end of the plate, with the longer leg being in an upside position, which led to a higher 

load capacity but the failure mode was not found to have been altered. In the second 

case, full-height FRP plates were bonded to the sides of the beam in the vicinity of the 

end of the plate and, then, were connected to the plate (at the soffit) by using bonded 

fibreglass angles. This scheme led to a higher load capacity and successfully altered 

the failure mode for one beam, while in the other beam, where the angle connection to 

the plate failed, the failure mode was not altered. In their third scheme, they replaced 

the plate with a pair of angles bonded along the underside of the beam, but the failure 

mode was not found to alter and this was inferred to be due to the use of insufficient 

upside leg length. Finally, the extension of the plates from one support to the other 

support was adopted: this technique was reported to be very effective in terms of 

increasing the load capacity and in changing the final failure mode. 

Their investigation indicated that using FRP plates increased (within their 

experimental range) the overall flexural stiffness from 17 to 99 percent, and the 

ultimate strength of the beams by 40 to 97 percent. Significant improvements in the 

crack patterns were reported, which were found to change from several widely spaced 

and relatively large cracks to the desirable situation whereby many more closely 

spaced and narrower cracks were formed. To avoid the occurrence of premature 

failure mode initiated at the end of the plate, it was recommended that one should 

reduce the average anchorage stresses, by extending the plates towards the support(s), 

in preference to using other types of plate end anchorage systems. In spite of using 

different types of FRP plates with different fibre orientations, their findings about the 

practical implications of using different FRP materials were largely inconclusive. 
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In a preliminary experimental parametric study aimed at identifying the main 

parameters affecting the plated beam behaviour, Garden et al. (1996) tested small 

scale beams reinforced with carbon fibre reinforced polymer (CRP) plates. The cross- 

section dimensions were 100x100 mm with a clear span of 900 mm. To ensure the 

occurrence of flexural failures, the beams were internally under-reinforced with a 

tensile steel percentage ratio of 1.0. The plates had width/thickness ratios ranging 

from 45.0 (4511) to 180.0 (90/0.5) with an intermediate value of 92.8 (67/0.7) while 

the overall plate cross section area was kept constant. The simply supported beams 

were tested under symmetrical four-point loading with the distances between the 

external point loads being varied, from one test to another, in order to study the effect 

of the shear span/depth ratio: this ratio was considered to express the plate anchor 

length as the overall lengths of the plates were kept constant for all the beams. 

Moreover, through extending certain plates to the supports, such plates were anchored 

at their ends by using the external force acting from the point support(s). The axial 

strains in the plates at their end, at the sections under the point loads, and at the mid- 

span were all monitored. In addition, bending strains at selected locations of the 

beams were measured as were deflections at the mid-span. 

In their discussion of the results, it was pointed out that the shear cracks were not 

found to be wide due to the presence of sufficient shear reinforcement, and that the 

failures were accompanied by separation of concrete cover from the underside of 

internal main reinforcement. The beams with low shear span/depth ratios failed with 

concrete cover separation occurring across the whole width of the beam when the 

wide (i. e. 90 mm width) plates were used, while, for the narrower plates, the width of 
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separated portion of concrete cover was less than the width of the beam at the end of 

the plate but these approached the full width of the beam as one moved towards the 

mid-span. Beams with large shear span/depth ratios were found to fail with the width 

of separated portion of concrete cover being equal to the width of the plate all along 

the beam. The failure was reported to happen at only one end of the plate, and was 

never found to simultaneously happen at both its ends. 

It was concluded that for externally plated beams, and in the absence of premature 

plate peeling failures, the overall bending stiffness throughout the loading range to 

failure was increased with an associated significant loss of ductility. It was also 

reported that the ultimate loads and deflections at failure were relatively high for those 

beams with plates extended to their ends, with the reactions from the supports 

providing increased end anchorages. 

For a constant cross-section area of the plate, the failure load was, in general, reported 

to be reduced with reductions in the width of the plate and/or increases in the plate 

thickness for either the beams with anchored plates or where no end anchorages were 

provided. The load-deflection curves were reported to be similar for both the beams 

with and without end anchorages up to the yielding of internal reinforcement: beyond 

the yielding of embedded bars, however, the plated beams with end anchorages were 

found to be stiffer in bending. 

When compared to the corresponding control (unplated) beams, greater incremental 

increases in the ultimate moments over the initial yield moments were found. The 

measured bending strains along the beams showed that the plate axial strains were 
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compatible with the bending strains in concrete while, at the mid-span, plane sections 

were reported not to have remained plane (due to the presence of large cracks in the 

concrete in tension). Moreover, they reported lower neutral axis depths associated 

with the plated beams (i. e. larger concrete compression blocks), compared to the 

corresponding unplated beams. 

The measured tensile strains at the end of the plates versus external loads were 

reported not to have been increased by significant margins until the, failure loads were 

approached. Plate axial strains within the shear spans were found to be more 

symmetrical about the mid-span for those beams with a high shear span/depth ratio, 

while the strains were greater in the shear span where failure happened. In all cases, 

remarkable reductions were reported in the magnitudes of the plate axial strains upon 

failure initiated at the end of the plate, once plate separation had occurred with 

associated relaxation. 

In a later publication (Garden et al. (1997)), more details regarding the material 

characteristics, beam configurations, and test results for tests conducted by Garden 

and his associates were reported. 

Garden (1997) extended his programme of research to cases when large scale beams 

with lengths from 2200 to 4500 mm were tested. The advantage of providing 

anchorage at the ends of the plate was demonstrated to be greatest for low shear 

span/depth ratios, preventing or delaying the occurrence of plate peeling. 
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Garden's studies also included the use of pre-stressed plates which were claimed to 

improve the composite action between the beam and the plate for low shear 

span/depth ratios. It was noted that improvements in the serviceability loads can be 

expected in the presence of plate pre-stressing. Moreover, the magnitude of ultimate 

load was found to depend on the mode of failure, also being related to the shear 

span/depth ratio and the initial level of plate pre-stress. 

The long term effects of environmental durability were also experimentally 

investigated, and it was concluded that deterioration of the adhesive mechanical 

properties is not necessarily translated into reduced structural performance of the 

plated member. The experimental study of the response to cyclic loading showed that 

the concrete cracking characteristics, which give rise to plated beam failures under 

static loading, may be expected to occur under a lower maximum load if the load is 

applied cyclically. However, at the serviceability load level, it was concluded that 

fatigue loading is not expected to cause overall failure, and that the maximum values 

of stresses in the internal reinforcement, located in the vicinity of the concrete cracks, 

are reduced due to external plating. 

The flexural response of the plated beams to externally applied loads was modelled 

using a simple analytical approach which was then applied to beams with both non-- 

pre-stressed and also pre-stressed plates. The unsatisfactory correlations between 

experimental and numerical results were attributed to the poor representation of 

concrete flexural cracking inherent in the ABAQUS finite element program. Various 

previously proposed analytical methods for analysing the separation of steel plates 
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from reinforced concrete beams were also critically examined, and were found, in 

general, to be inappropriate for obtaining accurate results. 

In a private communication, Hollaway (1997) provided the present author with some 

more details regarding the measured plate axial strains at the point of application of 

the external loads for some selected beams from the above research programme: these 

results (as discussed later) proved to be very useful for developing the plate peeling 

model (when FRP plates are used) in this thesis. 

Quantrill et al. (1996: A) carried out an experimental parametric study on small scale 

beams externally plated with either glass fibre reinforced plastics (GFRP) or carbon 

fibre reinforced plastics (CRP). Their experimental parametric study covered a wide 

range of plate parameters such as area, width/thickness, material, and the method of 

anchoring the ends of the plate. 

In these series of tests, ten beams were tested with typical dimensions of 100x100 mm 

and a clear span of 900 mm, with under-reinforced tension steel ratio of 1.0%, while 

the plate dimensions were varied. 

One control (unplated) beam and nine plated beams were tested as simply supported 

specimens under symmetrical four point-point loading with the two external point 

loads being 300 mm apart. Four of the beams were reinforced with GFRP and five 

with CRP plates. One of those reinforced with GFRP was provided with plate end 

anchorages in the form of steel clamps, and the other three beams had no plate end 

anchorages. While the end of the plate in only one of those reinforced with CRP was 
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not anchored, one was anchored by steel clamps, two anchored by extending the plate 

up to the supports, and one was provided with GFRP angles at the end of the plate. 

Except for those which were extended up to the supports, the plates were terminated 

20 mm away from either support. Their theoretical results were compared with test 

data, and certain conclusions (to be discussed in Chapter 3) were drawn. 

Quantrill et al. (1996: B) continued their study by testing more of similar types of 

beams but with externally bonded GFRP plates. Eleven beams were tested with two 

unplated control specimens. All the plates were terminated 20 mm away from the 

supports, except for one beam in which the plate was terminated 150 mm from the 

support with no plate end anchorage provided. The plate cross-sections were kept the 

same with 80 mm width and 1.2 mm thickness, and two different batches of concrete 

were used with concrete cube strengths of 70 and 42 MPa. Two of the beams in the 

second batch (with a cube strength of 42 MPa) were provided with side plates, with a 

height of 50 mm and length of 150 mm, in order to provide the plate with end 

anchorages: one of the beams was steel clamped, and the other one was provided with 

GFRP angles - the rest of the beams were not provided with any plate end anchorages. 

Moreover, none of the beams in the first batch were provided with any end 

anchorages. The test results were presented in terms of experimental failure modes 

and ultimate loads. As in their previous work, the experimental data were compared 

with their analytical results, and certain conclusions were drawn - their analytical 

method will be discussed later (in Chapter 3). 

In an experimental parametric study aimed at examining the influence of the FRP 

plates on the failure mechanisms, ductility, and overall bending stiffness of the 

23 



upgraded beams, Triantafillou et al. (1992) tested (to failure) seven small scale beams 

strengthened with FRP plates. They also tested one unplated beam as a control 

specimen. The beams were designed with the only change relating to the plate cross- 

section dimensions, in order to study the effect of the plate area on the behaviour of 

the composite beam. The beams were small scale specimens with a width of 76 mm, 

depth of 127 mm, and length of 1350 mm, internally reinforced with 2 steel bars of 

4.6 mm diameter (i. e. steel percentage ratio of 0.38 %). The externally plated beams 

were strengthened with unidirectional CFRP plates with a length of 1070 mm, being 

tested as simply supported with an effective span of 1220 mm. The plates had a very 

high ultimate strength of 1450 MPa, and a high Young's modulus of 186,000 GPa. 

The test specimens were loaded to failure under symmetrical four-point loading, with 

a shear span of 457.5 mm, and a spacing of 305 mm between the external point loads. 

For low ratios of plate/concrete area, their results showed that the most probable mode 

of failure is the plate rupture, provided that the original unplated reinforced concrete 

beam is under-reinforced. For relatively higher ratios of plate-to-concrete area, the 

failures happened due to plate debonding, with the FRP plate peeling-off. In general, it 

was reported that strengthening of concrete beams with externally bonded composite 

sheets is a feasible way of increasing the load-carrying capacity and overall flexural 

stiffness of existing structures. However, the need was emphasised for performing 

further detailed studies, prior to applying this technique in practice: it was argued that 

one needs to address certain additional issues, such as the behaviour under sustained 

loading, fatigue, thermal and humidity cycling, and the fact was underlined that the 

FRP-adhesive system has a very low fire resistance unless the burning rate of the 
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plastic materials is reduced by either using additives or by chemical modification of 

the polymer chains. 

These authors also carried out analytical studies in order to analyse the collapse 

mechanisms, and used some of the test results to calibrate their analytical model. 

Their analytical work will be discussed later in Chapter 3. 

2.2.2 Steel plates % 

To investigate the problem of premature plate peeling in reinforced concrete beams 

externally reinforced with steel plates, Oehlers and Moran (1990) proposed a semi-- 

empirical model, using results based on 57 beams as tested by Moran (1988), and 

Moloney (1986). Fortunately, by and large, full details for the test data, relating to 

which so many loading and design parameters were varied, were reported. 

In 49 beams, the plates were terminated within the constant moment region of the 

simply supported beams subjected to symmetrical four-point loading, while only 8 

beams were tested with the plates extended to the shear span. Some of these beams 

were precracked prior to the application of external steel plates, certain others were 

pre-cracked and then pre-cambered during the upgrading, while a certain number of 

external plates were pre-curved before gluing them to the beam in order to induce pre- 

stressing. 

The beams were tested with their clear span being varied from 1650 to 2500 mm. The 

width of the beams was either 120 or 125 mm, while their depth varied from 150 to 
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240 mm. The plate thickness was varied from 2 to 15 mm, while the concrete cover 

varied from 10 to 50 mm, and the width of the plates was chosen so as to cover the 

whole width of the beams except for a minor number of the beams where the widths 

of the plates varied from 25 mm to 100 mm. Based on a semi-empirical approach, a 

method was proposed for predicting the premature plate peeling loads. Their method 

will be discussed in some detail later, while plenty of use will be made of their test 

results in the subsequent chapters in this thesis. 

Oehlers (1992) continued his previous studies by carrying out more tests on plated 

beams, with the tests including 26 specimens which were externally strengthened with 

steel plates: in the vast majority of these tests, the plates were extended to the shear 

span (only two of the beams had plates terminated within the constant moment 

region). All these specimens had the same dimensions and configurations with the 

exception of the lengths for those plates which were extended to the shear span. 

Moreover, slightly different concrete cube strengths were achieved. In some of these 

beams, shear reinforcement in the form of vertical stirrups were used, while others 

were left without any shear reinforcement. A typical width of the beams was 130 mm 

with a depth of 170 mm. The plates had thicknesses of 5 mm with widths of 130 mm 

to cover the whole width of the beams. The spans of the beams were not quoted in 

Oehlers' paper, although the distances of the external point load(s) from support(s), 

and the plate termination locations (as a distance from the support) were given, and 

these were varied from one beam to another. 

These tests showed that external shear and flexural forces may (for a given beam 

design) cause the occurrence of plate peeling prior to the beam reaching its design 
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ultimate load. In some cases, the failure load was found to be even lower than that 

expected for the corresponding unplated beam. A semi-empirical design procedure 

was, then, proposed by Oehlers, which was based on the so-obtained experimental 

results. Oehlers concluded that the debonding initiated at the ends of the plate due to 

shear forces is not influenced by the presence of stirrups, and depends on the 

formation of diagonal shear cracks, the magnitude of which is given as that of the 

shear strength for an unplated beam in the absence of any stirrups. Accordingly, it was 

suggested that limiting the shear flow at the steel plate-concrete, interface will not 

prevent the occurrence of plate debonding. A strong interaction was found between 

what was claimed to be debonding due to shear and flexural forces. Such an 

interaction was quantified by employing a curve fitting exercise using the test results. 

Guided by the test results, Oehlers concluded that such plate strengthening systems 

are best suited for the strengthening of reinforced concrete slabs rather than reinforced 

concrete beams, although it was suggested that this technique enhances the 

serviceability requirements for both types of such elements. 

In a later publication, Oehlers et al. (1998) reported an experimental study on a series 

of continuous reinforced concrete beams strengthened with steel plates glued to their 

tension faces in addition to their vertical sides. Oehlers and his associates also used 

the method proposed by Lue (1993) to develop a design procedure using such a set of 

test results. The side plates were positioned so as to prevent the occurrence of plate 

shear peeling failure. A study of continuous beams for any load combination or 

distribution or changes in the cross-section properties is of considerable practical 

importance. 
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Jones et al. (1980) carried out three series of tests to investigate the influence of the 

glue thickness, plate lapping, multiple plates, and of pre-cracking prior to plate 

bonding, on the composite behaviour of concrete beams strengthened with steel 

plates. 

Their experimental work included testing unplated (control) plain (internally un- 

reinforced) concrete beams, plain concrete beams reinforced only with external steel 

plates, unplated (control) reinforced concrete beams, and reinforced concrete beams 

with steel plates glued to their tension faces. The beams were all of small scale, and 

two types of epoxy glue were used for each beam design. 

The first series of tests was on plain concrete beams and included eight beams out of 

which two were of the unplated (control) type. Two beams were tested with the 

adhesive thickness varying linearly along the beam. Four beams had constant adhesive 

thicknesses, with two of these specimens not provided with any shear reinforcement 

while the rest of the beams in this series were reinforced against shear at the supports 

to avoid shear failure outside the plated length. The beams were tested under three- 

point loading. The beam dimensions were 150x15Ox710 mm with a clear span of 610 

mm, and the plate dimensions were l00xl. 0x500 mm. 

The second series included ten unreinforced beams (i. e. without embedded main 

tensile steel bars) with limited shear reinforcement within the portion of the beam 

between the end of the plates and the supports. The beam cross-sectional dimensions 

were 100x 150 mm, and they had a total length of 1200 mm with a clear span of 1100 
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mm. Four beams were not plated, and the rest were externally reinforced with plates 

of dimensions 75x1. Ox1000 mm. All the beams were tested under three-point loading. 

The third series consisted of 16 internally reinforced beams with the same overall 

dimensions as those in the second series. All these under-reinforced beams were 

internally reinforced in flexure using high strength deformed bars with a steel 

percentage ratio of 0.75%. Most of these beams were provided with shear 

reinforcement (stirrups) near their ends. To study the effect of the glue thickness, the 

average adhesive thickness for these beams was varied from 1.6 to 8.0 mm. While, in 

general, the beams in this series were tested under three-point loading, a group of four 

beams were tested using symmetrical four-point loading in order to study the change 

in the mode of failure by varying the external load configurations. In most cases, 

single plates of dimensions 80x1.6x1000 mm were used and terminated 50 mm away 

from the supports. However, a group of these beams was provided with double plates 

or half plates which were joined together with a splice plate in order to study the effect 

of plate lapping and use of multiple plates. To check the effect of concrete pre- 

cracking, one beam was pre-loaded prior to bonding of the external plate. 

By analysing the test results, it was concluded that using external reinforcement in the 

form of steel plates glued to the tension face of plain or reinforced concrete beams 

will affect the structural behaviour by increasing the elastic range, and delaying the 

initiation of the first visual cracks, hence, increasing the serviceability loads. 

Moreover, it was concluded that gluing external plates increases the flexural stiffness 

at all load levels, and, consequently, reduces beam deflections at the corresponding 

external loads. It was concluded that the ultimate flexural capacity is generally 
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enhanced, and the ductility at flexural failure would be increased once one uses 

external plates. For a given load, it was suggested that, in the presence of full 

composite action, the tensile bending strains in the concrete will be reduced when 

compared with the corresponding unplated beams. 

In addition, the results of their study showed that, for a constant plate area, the 

stiffness of the beam increased with increases in the glue thickness, with a negligible 

associated effect on the magnitude of ultimate strength. Similarly, for a constant glue 

thickness, the stiffness of the beams and their ultimate strength were found to increase 

with increasing plate area, but the mode of failure was found to change from flexural 

to combined flexural-shear. The steel plates failed by yielding, and subsequent 

crushing of concrete within the compression zones was found to take place. It was 

shown that pre-cracking prior to plate bonding slightly reduces the flexural stiffness, 

whilst plate lapping increases the magnitude of flexural stiffness to the corresponding 

levels associated with un-cracked plated beams. Bending strain measurements showed 

that plane sections very nearly remain plane throughout loading. 

Regarding the use of more than one plate and/or lapping of the plates for 

strengthening and/or stiffening pre-cracked or un-cracked reinforced concrete beams, 

it was suggested that such external plate bonding arrangements may be carried out 

efficiently and successfully, and that the external plate bonding method is sufficiently 

reliable for use in practice. 

Jones et al. (1982) carried out tests on internally reinforced concrete beams, rather 

than the previously mentioned plain concrete specimens, in order to study the 
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behaviour of the internally under- and over-reinforced sections when strengthened 

with external steel plates glued to either their tension or compression side. 

Eight beams were cast: five were under-reinforced with a percentage steel ratio of 

1.2%, and three were of the over-reinforced type with a percentage steel ratio of 

6.76%. All these beams had the same overall dimensions, and were identically 

reinforced for shear in order to ensure that failure would occur in the flexural mode. 

Two beams (one under-reinforced and the other one over-reinforced) were left 

unplated as control specimens. The other beams were externally reinforced using mild 

steel plates with a width of 80 mm, which were terminated 50 mm away from the 

supports, and a constant glue thickness of 3.0 mm was used. The plates used for the 

over-reinforced beams had a thickness of 5.0 mm, and were glued to the tension face 

for one of the test specimens while, for the second beam, the plate was glued to the 

compression face. Plates with different thicknesses were externally bonded to the 

under-reinforced beams with their thickness varying from 1.5 to 10.0 mm. In the case 

of the under-reinforced beams, the plates were invariably glued to the tension face. 

Typical beam dimensions were 100x 150 mm. The beams were tested as simply 

supported under symmetrical four-point loading, with a clear span of 2250 mm. The 

measurements included variations against the external loads of concrete strains at the 

compression face and over the sides, embedded bar axial strains, plate axial strains, 

vertical deflection at mid-span and under the external point loads, plus the 

longitudinal displacements at the end of the plate. 

For two of the under-reinforced plated beams, the modes of failure were reported to 

have involved yielding of the embedded steel bars and external plates prior to the 
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crushing of concrete in compression, with limited plate separation under the point 

load just after crushing of concrete. The other under-reinforced beams with larger 

plate thicknesses (5 and 10 mm) were reported to have failed with neither the steel 

elements yielding nor concrete crushing but suffered from plate separation at one end 

of the plate (plate peeling failure). The two over-reinforced plated beams (with the 

external plates glued to either tension or compression faces) both failed due to plate 

separation. 

Their results demonstrated a general reduction in the average crack widths by using 

external plates and by increasing the plate thickness (up to a certain limit), within the 

range of service loads, for both under- and over-reinforced beams. However, 

increasing the plate thickness beyond a certain limit was found to have an 

insignificant effect regarding the size of crack widths although it was found to change 

the overall behaviour of the beam at failure which was then of a brittle nature. 

Regarding the crack spacings, it was reported to be generally not influenced by plating 

in relation to both the ultimate loads and the loads within the serviceability range. 

As regards the mid-span deflections, the test results, in general, showed a significant 

reduction for both the under-reinforced and also the over-reinforced plated specimens. 

The deflection was found to be reduced with increases in the plate thickness. 

Measured concrete bending strains showed that (to a large extent) for plated beams 

under low levels of external loads, plane sections remained plane after bending (prior 

to the yielding of steel). It was noticed that, for similar levels of external loads, 

increasing the plate thickness (i. e. area) reduces the overall section bending strains. 
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The axial strains in the steel bars and in the plates (at the plate mid-span) were found 

to reach the yield condition for under-reinforced beams strengthened with thin plates 

and that, in general, the steel strains were found to be reduced with increasing cross- 

section area of the external plate. 

Regarding the slippage at the end of the plate, larger and multiple slips were measured 

for the over-reinforced beam compared with the corresponding under-reinforced 

specimens which had the same plate dimensions. It was noticed, that the interface 

shear stresses for the under-reinforced beams which were plated with thinner plates 

were lower in magnitude than those for similar beams with thicker plates, while, for 

the beams with considerably thicker plates, the interface shear stresses were not found 

to change significantly with increasing thickness of the plates (i. e. plate cross-section 

area). 

Bearing in mind the small number of tests performed to investigate the influence of 

various parameters, one should exercise caution in drawing any definite conclusions 

from such a brief study. However, their main conclusions may be summarised as 

follows: 

" Up to failure by either yielding of steel or plate separation, composite action 

between the reinforced concrete beam and the steel plate was achieved. 

" The plates increased the ultimate strengths of the original (unplated) beams in all 

cases. Thicker plates generally had a greater effect, but the mode of failure 

changed from yielding to separation as the plate thickness was increased. The 

maximum increase in strength for the under-reinforced beams was over 100%. For 
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the over-reinforced beams, a 44% increase in ultimate load was achieved with a 

tension plate and a 22% increase with a compression plate. 

" The plates increased the bending stiffness of the beams with associated decreases 

in deflection and rotation. Thicker plates, again, had a proportionately greater 

effect. 

" The appearance of the first visible crack was delayed by the presence of external 

plates on the tension face. For under-reinforced beams, the delay was insignificant, 

but for over-reinforced beams, the first cracking load was increased by a factor of 

four. 

" Generally, for beams with relatively thin plates, the application of external plates 

had little effect on the spacing of cracks, but this was not the case for the beams 

with very thick plates. 

" Plates applied to the tension face of beams reduced the crack heights and widths, 

and thicker plates had the greatest effect. 

" For tension plated beams, plate separation occurred when the interface shear stress 

reached a limiting value of about 2.15 N/mm2. Plate separation was through the 

concrete adjacent to the glue layer and was accompanied by low angle cracks up to 

the level of reinforcement. 

Jones et al. (1988) also carried out more tests on steel plated beams. Seven rectangular 

reinforced concrete beams strengthened by epoxy-bonded steel plates, and one control 

(unplated) beam were tested. The beams were simply supported over a span of 2300 

mm, with external loads applied at the third points. The test specimens were 

externally reinforced with 2200 mm long mild steel plates which had a width of 125 

mm. The beams were internally reinforced with high yield deformed bars, and had 
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3.2% internal reinforcement ratio. Sufficient shear reinforcement was used in order to 

avoid shear failure. Typical beam cross-section dimensions were 155x225 mm. 

Various plating and end anchoring schemes were used. One beam was provided with a 

constant thickness (6 mm) plate, while another one was similarly plated but with 4 M6 

anchor bolts at both ends of the plate. Two plates with a thickness of 3 mm were glued 

to a beam with the outer plate terminated at the mid length of the part of the second 

plate in the shear span. A similar plated beam was provided with 6 M6 anchor bolts at 

both extended ends of the plate. Two beams were provided with 6 mm thickness 

plates, one of them was anchored at each end of the plate, with two short angles (250 

mm length) of unequal legs (l30x60 mm), and the other was provided with two short 

angles (250 mm) at one end of the plate and two long angles (770 mm) to nearly cover 

the whole shear span; these angles also had unequal legs (100x50 mm). The seventh 

beam was strengthened with a plate along which the thickness varied from 6 to 2 mm. 

Compared to the failure load for the control beam, three beams had failure loads lower 

than that for the unplated beam: in other words, the external plating not only did not 

strengthen, but rather, weakened the beams. This was associated with the occurrence 

of plate separation for the three beams which had no plate anchorages; namely: the 

beam with one 6 mm thick plate, the beam with double 3 mm thick plates (outer 

terminated), and the beam with a tapered 6/2 mm thick plate. 

For the beams with plate end anchorages in the form of bolts, there was nearly full 

composite action up to the corresponding unplated failure load (for the control beam) 

when the debonding happened. Following plate debonding, it was noticed that the 
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bolts prevented occurrence of complete plate separation, and the beams were able to 

carry higher loads. As the load was increased, more plate debonding took place, and 

some tearing actions occurred in the region close to the bolts. Total failure eventually 

took place by crushing of concrete within the constant moment region, without 

yielding of the plates. The failure load was about 5-8% higher than that of the failure 

load for the unplated (control) beam. 

Beams anchored with angles at their ends failed after yielding of the plate subsequent 

to crushing of concrete within the constant moment region. The failure load was about 

35% higher than the failure load for the unplated (control) beam. 

Regarding the ductility of plated beams, when compared to that of the unplated 

specimens, using the load-deflection records it was shown that the beams without 

plate end anchorages were less ductile than the corresponding unplated beam(s), while 

the beams with plate end anchorages had the same ductility as the unplated (control) 

beam(s). 

An interesting observation by these authors was that the use of bolts did not prevent 

occurrence of plate debonding, but prevented complete plate separation and increased 

the strength by only 8% over that of the unplated beam. It was concluded that the 

anchored plates with the angles were the most effective ones, producing yielding of 

the tensile plates and achieving the full theoretical strengths above the failure load of 

unplated beams. 

36 



In addition, it was reported that the specific details of plate end anchorage systems had 

no effect on the deflection performance in the service load regime, and that all the 

plated beams had approximately the same stiffness equivalent to that of the cracked 

plated section which had about 60% greater ultimate load than the corresponding 

unplated beams. The rate of plate strain and stress build-up within the plate anchorage 

zone was found to increase as the plate thickness was reduced, and very high interface 

bond stresses were reported within that zone in the vicinity of the plate ends, with a 

limiting value of plate end stresses approximately equal to 

J2 x tensile cylinder splitting strength of concrete . 

Another experimental study relating to the provision of end anchorages to externally 

bonded steel plates was reported by Jansze et al. (1996). These authors investigated 

the influence of plate bonded length and the use of a bolt to provide plate end 

anchorage. Reinforced concrete beams with cross section of 100x200 mm and a steel 

percentage ratio of 0.5% in conjunction with shear reinforcement in the form of 6 mm 

diameter links at 75 mm spacing were tested. Two reference beams were tested under 

symmetrical four-point loading with an effective span of 2400 mm - i. e. a shear span 

of 800 mm. One of the reference beams was not plated, while the other one had 

external steel plates with a thickness of 5 mm covering the whole 100 mm width of 

the beam. The plate was terminated 100 mm away from either support. The reference 

plated beam was found to fail by plate separation with flexural capacity having 

increased by a factor of 2.2 over that of the corresponding unplated reference beam. 
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Using specimens with a span of 800 mm but with plates clamped and the whole 

assembly configured to obtain the statically equivalent loading conditions as that of 

the reference (simply supported) plated beam, three plated specimens were tested with 

plates terminated by 100,200 and 300 mm away from the support in order to study the 

effect of the plate length. As the terminated end of the plates moved closer to the 

support, significant increases in the beam load bearing capacity were achieved, but the 

final failure modes were found to be of a brittle nature. It was shown that a shorter 

length of the external plates significantly reduced the so-obtained ultimate loads. 

However, the maximum load was found to increase if the bonded plate was (at its end) 

anchored by a pre-stressed bolt. 

To generate a more ductile mode of failure, and to study the effect of using bolts to 

provide extra plate end anchorage, different schemes of bolting were used. In one 

case, a 10 mm diameter bolt was used to anchor the end of the plate without exerting 

any tensile forces (i. e. pre-stressing) on the bolt. Under such conditions, the beam's 

load bearing capacity was slightly increased as the bolt acted as a kind of extra 

reinforcement crossing the separation (horizontal) crack. Similar diameter bolts with 

different pre-stressing forces were, then, used to generate a compression force on the 

adhesive layer as a preventative means against plate separation. Two different pre- 

stressing forces (namely, 10 and 25 kN) were used on the bolts. Generally, the initial 

overall flexural stiffness was not found to have been affected by the plate bolting, up 

to the initiation stages of the plate separation. Even when the plate separation cracks 

were initiated, the bolts were found to prevent total collapse of the specimens. In all 

the pre-stressed bolted plates, plate separation was found to occur at the interface 

between the epoxy glue and concrete which is totally different from the plate 
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separation mechanism within the concrete cover at the level of internal reinforcement 

which was the mechanism of plate peeling associated with the unbolted plates. 

It was concluded that using pre-stressed bolts to anchor the end of the plate not only 

increased the load bearing capacity of the beam, but also changed the mechanism of 

plate separation failure from a brittle concrete cover rip-off to a more ductile type of 

failure at the interface between the concrete and the epoxy glue. In a preliminary study 

of the effect of cyclic loading on the behaviour of plated beams, it was concluded that 

(within their experimental range) the plate anchorage capacity was not sensitive to 

repeated loading. 

Swamy et al. (1987) presented a comprehensive set of test data relating to the effect of 

glued steel plates on the first cracking load, general cracking behaviour, structural 

deformations, serviceability loads, and ultimate strength of reinforced concrete beams 

strengthened with steel plates bonded to their tension face. In total, twenty beams 

were tested with cross section dimensions of 155x255 mm, and the specimens were 

2500 mm long. The beams were reinforced for flexure with an internal steel 

percentage ratio of 2.76%. The shear spans were provided with 6 mm diameter links 

at 75 mm spacing. The beams were tested as simply supported with a clear span of 

2300 mm. They were loaded at the third points. The externally bonded steel plates 

were 2200 mm long. 

In general, three different glue thicknesses equal to 1.5,3, and 6 mm were used and, 

for each glue thickness, three different plate thicknesses were chosen (1.5,3, and 6 

mm). All the plates had a constant width of 125 mm. Some beams were strengthened 
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with more than one plate either as an additional one or by lapping to another at either 

mid-span or at the point loads at the supports. Certain beams were pre-loaded, 

cracked, and unloaded before the plates were bonded externally. The thickness for the 

adhesive was varied from 3 to 8 mm along the length of one beam. One beam had V 

notches induced in its tension face (at the external point loads) in order to produce 

points of stress concentration. Two beams were not plated and were used as control 

specimens, but one of them was provided with adhesive with a thickness of 3 mm in 

the absence of any external plate. 

It was concluded that the addition of glued steel plates to reinforced concrete beams 

can substantially increase their flexural stiffness, reduce cracking and structural 

deformations at all load levels, and contribute to a modest increase in their ultimate 

flexural capacity. The restraining effect of the glue and the plate could be observed 

even on first cracking, and when the glue alone was present. The reduction in cracking 

and deformations were found to increase with increasing the plate and the glue 

thicknesses. 

From a structural point of view, it was concluded that the stiffening effect was far 

more influential in reducing the axial strains in the reinforcing bars and the steel plate 

than in reducing deflections. Thus, the glued plates contributed more to controlling the 

cracking rather than the deflections. The structural effect of glued plate was also 

argued to be much greater than when the area of reinforcing bars had been increased 

by the same amount as that of the plate. The net effect of the reduced structural 

deformations is that the serviceability loads are substantially increased by the 

stiffening action of the external plates. Lapped plates, pre-cracking prior to plating, 
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variable glue thickness, and the presence of stress concentrations in the adhesive, were 

all found to have no adverse effect on the structural behaviour of the plated beams. It 

was argued that provided appropriate glues were chosen and adequate precautions 

were taken in the gluing procedure, the composite behaviour could be preserved up to 

failure. Moreover, the glued plates were found to increase the ultimate flexural 

capacity by 10 to 15 %, and this was argued to be satisfactorily predicted by the 

current ultimate limit state design procedures. These authors, however, recommended 

certain limitations on the plate width/thickness ratio, beyond which premature brittle 

shear/bond failure may occur without achieving the full flexural strength accompanied 

with the desired ductility. 

Two tentative design criteria for plated beams were, therefore, proposed in order to 

ensure occurrence of their full flexural capacity and ductility at failure: firstly, the 

plate width/thickness ratio was recommended not to be less than 50; secondly, the 

neutral axis depth was suggested not to be greater than 0.4 times the effective depth. 

In another experimental study to examine the applicability of the plate bonding 

technique to strengthen structurally damaged reinforced concrete, Swamy et al. (1989) 

conducted laboratory tests on nine beams with rectangular cross-sections. Their main 

objective was to study the structural implications of applying external plates to 

reinforced concrete beams that had already been loaded and had significantly cracked, 

and also the effect of external bonding of the plates when the beams were under load 

and were substantially cracked. For the latter case, seven beams were plated on their 

tension faces using glue of 1.5 mm thickness and steel plates with dimensions 1.5x125 

mm and a length of 2200 mm. The other two beams were not plated: one was 
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manufactured with only a3 mm glue thickness, and the other with no glue (to be used 

as a control beam). All these specimens were tested as simply supported with a clear 

span of 2300 mm, and were loaded at the third points. All these beams were identical 

in size (155x255x2500 mm), internally reinforced for flexure using steel bars with a 

steel percentage ratio of 2.76%, and were provided with 6 mm diameter shear links at 

75 mm spacing within both of the shear spans in order to avoid shear failure. 

Based on the value of the experimental ultimate flexural load capacity of the unplated 

control beam, two sets composed of three beams in each set, were loaded by different 

extents and were, then, tested when plated to simulate the repair process while the 

structure is in different conditions of use. In the first series, the beams were loaded at 

the age of 28 days to 30%, 50% and 70% of their ultimate load, and then strengthened 

using external plates while loaded. The external loads were sustained for 14 days 

subsequent to which the beams were tested to failure at an age of 42 days. In the 

second series, three beams were pre-loaded to the same loads as in the first series at 

the same age, unloaded, and were, then, strengthened with a similar set of external 

plates. They were, then, tested to failure at an age of 42 days. 

As regards the test results for the beams initially loaded up to 70% of their ultimate 

flexural strength (which were either strengthened after unloading or while loaded), it 

was concluded that the epoxy resin adhesive ensures full composite action of 

structurally damaged reinforced concrete beams strengthened by externally bonded 

steel plates, and such a strengthening procedure results in increased stiffness and 

strength. Moreover, a flexible epoxy system was recommended to ensure that the 

adhesive layer does not crack prior to the beam failure, and, therefore, acts not only as 
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a stress transfer agent but also as a full participant in the structural resistance of the 

composite section. 

As these beams were severely cracked prior to strengthening, and for the specimens 

which were strengthened while unloaded, it was concluded that the specific method of 

strengthening had no practically significant effect on the flexural behaviour of plated 

beams. The restraining effect of the plates on the existing cracks was, however, found 

to be more pronounced when the load was increased beyond the original pre-loading 

value. It was noticed that damaged beams, strengthened while under very high loads, 

showed deformations and crack widths slightly larger than those of the control beam 

plated when in an undamaged condition. But despite the increases in creep 

deformations during the epoxy curing, these deformations and crack widths were 

found to be less than those of the unplated (control) beam. Thus, it was suggested that 

plating severely damaged beams under load is structurally efficient and can restore a 

structural member to stiffness and strength conditions, perhaps, even better than the 

original undamaged beam. It was suggested that, when strengthening is carried out 

under external loads, the yield strain and plastic properties of the plates should be 

chosen in such a way as to enable the full structural exploitation of the added plates, 

even though they become active only beyond the applied pre-loads. With the increases 

in stiffness and strength borne in mind, it was mentioned that the external steel plates 

are able to restrain the opening of the tensile cracks and allow a high stress transfer 

within the cracks, resulting in an improved performance of concrete in the tension 

zone. Thus, a higher overall beam stiffness was suggested to be achieved by 

strengthening even damaged beams, compared to conventional (internal) 

reinforcement designed to achieve the same performance. 
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Regarding the plate peeling failure, Martins and Guimaräes (1996) carried out an 

experimental study on large (full scale) beams. They tested six beams with an 

effective span of 4800 mm and a 1200 mm long cantilever with a rectangular cross- 

section of 150x600 mm. Four of the tested beams were reinforced using thin plates 

with a thickness of 3.34 mm, while, the other two beams were reinforced with 

additional external rebars grouted with high resistance mortar to form a cage-like with 

overall cross-section dimensions of 200x700mm. 

Their final conclusions placed much emphasis on the need for practically convenient 

devices to ensure plate end anchorage stability. It was stressed that, even in the case of 

glue failure, the existence of good anchorage devices will cause the beam to behave as 

a layered beam without bond between the materials which, as they described, is 

perfectly possible and acceptable as a guarantee for ductility of the beam. Fastening 

the plates to concrete was suggested as to be the most efficient and simple way to 

anchor such plates. Using external stirrups to press the plates against the concrete 

surface during the glue hardening period was advocated in order to avoid air bubbles, 

though it was admitted that this was more difficult to apply in practice. 

Despite the availability of the extensive and wide ranging experimental studies in 

relation to various characteristics of externally strengthened reinforced concrete 

beams, there is, however, very limited data currently available in the public domain on 

the long-term performance and durability characteristics of these elements. This is of 

particular practical importance in terms of the long-term effectiveness of epoxy resin 

adhesives. In a series of publications, Calder (1979-1989) reported the results of 
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exposure tests on un-reinforced (plain) concrete beams of dimensions 102x 102x508 

mm, strengthened with external mild steel plates with dimensions 38x3x508 mm, 

which were loaded centrally. These tests were subsequently extended to include 

another series of beams with overall dimensions 150x250x3500 mm which were 

strengthened with external mild steel plates of dimensions 85x3x2800 mm. Two 

different epoxy resins (types I and II) were used to bond the plates to the beams in the 

second series: half the number of these beams were loaded in such a way as to 

produce cracking in the concrete prior to plating, and the other half of the test 

specimens were loaded centrally after plating. The beams were kept under external 

load for up to 8 years. Light corrosion was observed at the plate-resin interface of the 

beams bonded with resin type I, and the structural performance of these beams was 

not believed to have been adversely affected by the 8 year exposure period. Premature 

failure of the beams with plates bonded using resin type II led to the conclusion that 

this type of resin was of an inappropriate nature for such applications. 

A comprehensive experimental programme on the structural behaviour of beams with 

externally bonded steel plates was undertaken by Swamy et al. (1995) who initially 

left reinforced concrete beams exposed in an industrial (polluted) area for periods of 

11 to 12 years, following which the specimens were loaded to failure. The main 

variables in this study included the thickness of the adhesive layer, number of steel 

plates, presence and location of plate laps, and the loading regime (i. e. some were only 

stacked as unloaded, while others were kept under load). During the exposure period, 

the test specimens were purposely left exposed directly and continuously without any 

maintenance whatsoever, and were subjected to air, water, snow, and wind to pass 

through and circulate around them. No attempt were made to clean the beams or 
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remove the accumulated natural debris and remnants of water, snow or ice. Eight 

beams were kept under sustained load in specially designed creep test rigs and the 

other 13 were left unloaded. The loaded beams in the sustained loading rigs were 

simply supported over an effective span of 2300 mm, and loaded at the third points for 

the whole exposure period and, then, they were unloaded immediately before testing 

to failure. All the beams were identical in size and internal steel reinforcement. The 

beams with overall dimensions 155x255x2500 mm were reinforced with 3x20 mm 

diameter bars (2.76% flexural reinforcement ratio), and were provided with adequate 

shear reinforcement according to the British Standard: the shear spans had 6 mm 

diameter links at 75 mm centre to centre. The plates were bonded to the tension face 

of the reinforced concrete beams, and consisted of three main plating categories. The 

first category consisted of ten beams which were each reinforced with a single 

continuous plate. The second category consisted of six beams which had a jointed 

single plate system with lap plates at one or more locations. The third category 

consisted of five beams which had two layers of plates throughout their length. 

One beam was tested after 18 months of exposure to give an idea about the short-term 

exposure, and a similar beam, but from another set, was tested after 28 days: this 

beam was used as a reference (control) plated beam for non-exposed behaviour. In 

their theoretical predictions of the failure load, full interaction between the plate and 

the beam was assumed, and the actual material properties at the time of the tests were 

used in their theoretical analysis (which was based on BS8110 (1985) with the 

material partial safety factors removed). Their durability study led to the following 

conclusions 
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" The overall condition and structural performance of the plated beams was very 

satisfactory despite the complete lack of maintenance during the 11-12 year 

exposure period. 

" Deflections and crack widths at service load levels of beams tested after exposure 

were similar to or less than those of the control plated beam. 

" Failure loads of the plated beams after exposure were 1% to 29% higher than the 

failure load of the equivalent short-term control plated beam. 

" The extent of corrosion arising from the exposure, and its effect on structural 

performance, varied markedly with the plating system. As a result, failure in some 

of the exposed beams occurred in modes other than the originally anticipated 

flexural yielding, although most of the beams showed a good degree of ductility at 

failure and failed at loads in excess of 90% of the theoretical failure load for the 

plated beams (allowance being made for the increased concrete strength). 

" Beams with a single continuous plate showed (on average) no adverse effect due 

to exposure, and these beams carried a higher load (by some 10%) than the 

theoretical prediction. 

" Beams with a jointed single-layer plate system with lap plates at one or more 

positions showed some corrosion between the plates. These beams suffered from 

shear failure or lap bond failure, resulting in concrete anchorage zone failure at the 

joint. However, the failure loads were reduced by only 3 to 4% below the 

theoretical value. 

" In beams with two layers of plates throughout their length, there were areas of 

corrosion between the outer and the inner plates in some of the beams, and these 
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specimens showed reduced failure loads by 5-6% when compared with the control 

beam (possibly because of the reduced plate width/thickness ratio). 

" The plating system proved to be very tolerant to even fairly large areas of 

corrosion, and no deterioration in structural performance occurred other than in 

those cases of very severe plate corrosion. 

" Great care was urged in attending to details in the plate bonding system, and in the 

application and maintenance of a protective system in vulnerable areas such as 

interfaces between the plate layers, corners, and ends of the plates. 
. 

" Since the anchorage zone appeared to be particularly vulnerable to deterioration, 

the provision of end U-shaped anchor plates was strongly recommended (wherever 

possible) even if they were theoretically not taken into account. Alternatively, in a 

continuous soffit (e. g. slabs), the use of anchor bolts was recommended. 

" In beams with multiple-plates, the design rules relating to acceptable plate 

width/thickness ratio were suggested to be strictly observed for the total range of 

plate thicknesses. 

" It was finally concluded that with careful detailing and adequate maintenance, the 

use of a plate bonding system for strengthening and rehabilitating concrete 

structures can be durable and reliable, and may be carried out with confidence. 

2.3 CONCLUSION 

The literature on the experimental studies relating to reinforced concrete beams 

strengthened with externally bonded steel and/or fibre reinforced plastic (FRP) plates 

has been reviewed in considerable detail. In a number of areas, it is evident that there 

is an undue amount of repetition and imprecise conclusions. Details of the individual 
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experiments have nevertheless been presented in view of the fact that a considerable 

number of test results will be used in the subsequent chapters (Chapters 3,4,7, and 8) 

for verifying different aspects of the theoretical works of others in addition to the 

present work. The experimental work, reported by others, has covered many aspects 

such as the effect of plate and beam dimensions, external loading configurations, 

characteristics of the materials involved, and the schemes of plating, on the plated 

beams' structural performance such as ultimate strength, flexural stiffness, 

serviceability, cracking, durability, and fatigue strength. Depending on the extent of 

completeness of the published data, certain geometrical and material data from 

different sources are given in Table (2.1) for beams plated with external FRP plates, 

and in Table (2.2) for beams with steel plates: these include the basic data regarding 

the beam configurations, dimensions and strength of materials. In the following, a 

summery may be presented for the common conclusions by various researchers 

1- Regarding the ultimate strength, using external plates generally increases the 

load bearing capacity of the plated beam, provided that the thickness of the 

plate (i. e. the cross-section area) does not exceed a certain limit. 

2- Regarding the mode of failure, it is concluded that extending the ends of the 

plate to the supports, avoiding thick plates, and using appropriate anchorage at 

the ends of the plate, may ensure largely ductile behaviour at failure. 

3- Regarding the flexural stiffness, in general, external plating improves the 

cracking behaviour by reducing the crack widths and spacing. It also delays 

formation of initial cracks, increases the flexural stiffness and the level of 

service loads. 
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4- Strengthening of the beams with external plates has by and large been 

successful in terms of durability and resistance to harsh outdoor weather 

conditions. 

5- At the serviceability load levels, it is concluded that fatigue loading is not 

expected to cause failure, and the maximum values of axial stresses in the 

internal reinforcement, located in the vicinity of the concrete cracks, are 

reduced in the presence of external plating. 

6- Increasing the thickness of the plate has been found to tend to cause brittle 

failure and in some cases would reduce the load bearing capacity to such levels 

which are lower than the unplated beam capacity. The same conclusion is 

applicable in relation to the cross-section area of the plate. 
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Chapter 3 

CRITICAL EXAMINATION OF VARIOUS METHODS FOR 

PREDICTING THE PLATE PEELING LOAD 

3.1 INTRODUCTION 

In this chapter, a critical examination of various methods for the prediction of plate 

peeling failure in reinforced concrete beams strengthened/upgraded with external 

plates will be carried out. Attention will be devoted to examining the most promising 

methods in some detail, while certain other approaches will also be briefly reviewed. 

The predictions of so-examined methods will be checked against a wide range of 

experimental data previously reported by others as discussed in Chapter 2. 

The most promising methods are developed by Zhang et al. (1995), Sharif et al. 

(1994), Baluch et al. (1995) and Oehlers and Moran (1990). The method developed by 

Zhang et al. (1995) will be shown to predict safe values for the plate peeling capacity 

of uncracked reinforced concrete beams strengthened with external steel plates and, in 

particular, it enables one to identify the first order beam design parameters which 

control the plate peeling phenomenon. 

In a number of cases, the analytical methods are based on the approximate analysis of 

shear and normal stresses within the adhesive layer of the plated reinforced concrete 

beams as proposed by Roberts (1989) and Roberts and Haji-Kazemi (1989); this 

method will, therefore, be presented first followed by a detailed review of other 

available models. 
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3.2 APPROXIMATE ANALYSIS OF SHEAR AND NORMAL 

STRESSES WITHIN THE ADHESIVE LAYER 

Roberts (1988,1989) and Roberts and Haji-Kazemi (1989) have presented a purely 

theoretical (and approximate) analysis for predicting the magnitudes of shear and 

normal stresses within the adhesive layer located between the reinforced concrete 

beam and the external plate. To simplify the derivations, the process was divided into 

three stages. During the first stage, the stresses were determined assuming presence of 

full composite action between the concrete beam and the external steel plate. In the 

course of the second and third stages, the model was modified to take the actual 

boundary conditions at the ends of the steel plate into account. The complete solution 

was, then, obtained by superposition. 

A number of simplifying assumptions was made in order to obtain a relatively simple 

solution. One simplifying assumption (related to the second and third stages) was that 

the steel plate is bonded to a rigid concrete beam, neglecting the effect of flexibility in 

the concrete. Another assumption was that the curvatures (at the end of the plate) of 

both the concrete beam and the steel plate were equal and, hence, the global straining 

actions in that location were assumed to be distributed between the steel plate and the 

concrete beam, in proportion to their section stiffnesses. 

For a beam with geometrical details as shown in Figures 3.1 and 3.2, the governing 

differential equations were derived and solved, employing reasonable boundary 

conditions. One of the assumed boundary conditions was that the relative 

displacements between the steel plate and the rigid concrete beam, are decreased in 

magnitude as one moves away from one end of the plate and approaches the other 
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end; gradually tending to zero. Obviously (due to the symmetry of the problem), this 

reduction in relative displacements is expected not to continue up to the other end, as 

there will also exist similar trends of changes in displacements being initiated at the 

other end of the plate. To cater for this, the mirror image of the problem was 

considered in the solution procedure, with each term in the equations (which was 

related to the far end of the plate) being expressed as that corresponding to the nearest 

end. 

`--ý Lý- 
b 

"I by -i 
Fig. 3.1 Typical cross-section of plated reinforced concrete beams. 
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Fig. 3.2 A typical plate peeling failure for a reinforced concrete beam 
upgraded with externally bonded plate. 
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A further simplification was made which involved assuming cosh as = sinh as , 

where a is the length of the plate as in Figure 3.2 and a= K, ((Epbpdp) 
, with K: 

and Ep representing the shear stiffness of the adhesive and the modulus of elasticity 

of the bonded plate, respectively, and bp and dp denoting the plate width and 

thickness, respectively. 

The approximate magnitude of shear stresses within the adhesive layer located at the 

end of the plate, r, , was, then, found to be given by the following: 

To= F, +( 
Ks )'/z Mo 

bPdP (hp-h) 
E, bPdP IbQ 

(3.1) 

with the approximate values of normal stresses at this same location, or o, given by 

dp K" y 
cso=zo 4Ep lp 

= 
K. 

V 
Fo+i K, )yMo 

bpdp(hp-h) 
4E, Ip Epbpdp Iba 

(3.2) 

where, Fo and Mo are the shear force and the bending moment, respectively, acting 

on the section of the beam located at the end of the plate, Kn is the normal stiffness 

of the adhesive. K� and KS are given by K. = E. ba/d Q and K. = Ga ba/d a with E. 

and Ga being the Young's and shear moduli of the adhesive material, respectively. 

ba and d,, denote the width and the thickness of the adhesive layer, respectively, 

with hp and h representing the depth of the centre of gravity of the plate and the 

concrete stress block in compression (as measured from the top fibre of concrete 

section), respectively. 
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To check the accuracy of this approximate method, Roberts compared the so- obtained 

results with the corresponding ones based on a so-called more accurate theoretical 

analysis as proposed elsewhere (Roberts et al. (1989)) in which the analysis was based 

on the partial interaction theory. The comparisons between these two alternative 

methods indicated that the proposed approximate solution may underestimate the 

magnitudes of stress concentrations by up to 30% and such differences were attributed 

to the approximation made in the first stage of the analysis which assumed the 

presence of full composite action between the concrete beam and the externally 

bonded steel plate. To improve the accuracy of the approximate results, it was 

recommended that one should replace the global moment at the end of the plate, in the 

above equations, by the moment at a certain distance from the end of the plate in the 

direction of the applied point load. This recommended distance was proposed to be 

equal to half the sum of the depths of the beam and the plate (i. e. = (dv + dj/2 ), 

which resulted in a more satisfactory correlation with certain test data as reported by 

Jones et al. (1988), and also with the results based on the other (more rigorous) 

theoretical solution as developed by Roberts and Haji-Kazemi (1989). 

3.3 PLATE PEELING ANALYSIS 

Due to the rather complicated nature of the plate peeling problem, it has largely not 

been possible (in previous literature) to deal with this issue in a comprehensive way 

by considering the simultaneous combinations of shear and flexural stresses. Most of 

the theoretical research in this area has only focused (for simplicity) on either the 

shear or flexural behaviour in isolation. In this section, various available analytical 
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methods relating to either shear or flexural behaviour will be briefly discussed. The 

available models may be categorised into three main approaches. 

The first approach is based on using the approximate analysis for calculating the 

normal and shear stresses within the adhesive layer at the end of the plate (as 

developed by Roberts (1989)), and, then trying to either limit the shear stresses within 

the adhesive layer, as presented by Sharif et al. (1994), or adjust the capacity of the 

shear reinforcement of the plated beam according to the level of the normal stresses 

within the adhesive layer, as suggested by Baluch et al. (1995). 

Another (second) approach is based on limiting the peeling stresses in such a way that 

the curvature peeling stresses of the plated beam do not exceed the tensile strength of 

concrete in plated beams subjected to pure flexural loads, or limiting the load bearing 

capacity so as not to exceed the shear capacity for the plain concrete beam 

experiencing pure shear: such an approach was presented by Oehlers and Moran 

(1990) and Oehlers (1992). 

The third approach introduced by Zhang et al. (1995) is based on limiting the tensile 

stresses in the cracked concrete cover to be lower in magnitude than the tensile 

strength of concrete. In view of the central role that this last model plays in the present 

thesis, its various features will be explained in some detail later on in this chapter. 
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3.3.1 Approach of Limiting the Normal and/or Shear Stresses in 

the Adhesive Layer 

Based on the approximate expressions for normal and shear stresses located at the end 

of the plate as developed by Roberts (1989), fairly recently Baluch et al. (1995) 

claimed that they have identified the most important design parameters that play a 

primary role in connection with shear or concrete rip-off failure which invariably has 

been reported to happen with the plate peeling off from the tension side of reinforced 

concrete beams while the plate remains attached to the concrete cover and peeling 

occurs at the underside of the main (embedded) tensile bars. 

In their paper, these authors argued that changes in the mode of failure for the 

externally plated beams are greatly influenced by the plate thickness and classified the 

various modes of failure into four types as in the following: 

(1) The flexure failure mode: this flexure dominated mode is characterised by 

extensive yielding of the internal reinforcement and the external plate, deep 

intrusion of flexural cracks and crushing of concrete in the compression zone 

(this mode of failure is equivalent to the mode CR- as discussed in Chapter 5). 

(2) The plate separation mode: this mode is characterised by the premature 

separation of the plate at the concrete-glue-plate interface, initiated at the zone 

of plate curtailment. Separation leads to a reduced bonded plate length with 

ultimate failure resulting from the formation of a diagonal crack proceeding 

from the inward delimitation at the plate/concrete interface to the point of 

loading (this is equivalent to the mode --- as discussed in Chapter 5). 

(3) Shear mode of failure: this is characterised by horizontal tearing of concrete 

cover, initiated at the location of plate curtailment. The interface remains 
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intact, with the crack passing through the concrete below the level of main 

internal reinforcement. This horizontal crack proceeds upwards to the point of 

external loading in a steep vertical ascent (this is equivalent to the mode -- -). 

(4) Flexure/Shear-Hybrid mode of failure: here, there is yielding of the internal 

reinforcement and the external plate prior to total beam failure, with actual 

failure being precipitated by the horizontal tearing of concrete cover below the 

level of internal reinforcement (this is equivalent to the mode -R- as discussed 

in Chapter 5). 

Using test data reported by Jones et al. (1980,1982), Charif (1983), and Swamy et al. 

(1987) in the United Kingdom, and by Munawar (1992) in Saudi Arabia, these authors 

developed a semi-empirical expression that enabled one (as they put it) to check the 

efficiency of the stirrups for use in the design for plated reinforced concrete beams. 

They showed that the ultimate load for certain plated reinforced concrete beams 

failing in shear is overestimated by the ACI expression for shear strength of even 

unplated reinforced concrete beams, because, as they argued, crack profile renders 

stirrups ineffective. Moreover, in their work, the premature failure was inferred to be 

due to the lack of efficiency of the stirrups: this lack of efficiency was, then, correlated 

with a parameter called the normal stress indicator CRI CR2. The value of this normal 

stress indicator was obtained using the approximate expressions for predicting the 

magnitude of normal stress within the adhesive layer at the location of plate 

curtailment as originally developed by Roberts (Ref. Equation (3.2)), divided by the 

applied shear force, i. e. CRI CR2 = Qo/Fo 9 where 
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CR1 CR2 - 
ýyl bp z l4Ep1pJ 1+ 

Epbpdp 
Lc 

IbopýhP-hý 
(3.3) 

In the above, Lc = Mo/Fo = distance from the support to the nearest end of the plate. 

Accordingly, they suggested that the ACI expression for shear strength of unplated 

reinforced concrete beams is not safe for use in connection with certain plated beams 

and should be modified. More specifically, it was assumed that the modification 

should be applied only to the part of shear strength due to the presence of shear links, 

Vs" 

Assuming that the shear strength of the plain concrete section, Vt, , (as calculated by 

the expression suggested by ACI) is fully utilised, these authors calculated what they 

called the actual shear strength of shear links by subtracting the nominal shear 

strength of the plain concrete, V,, from the actual failure loads, pest , (as obtained by 

tests) for 26 test results as reported by others. 

By plotting the so-obtained values of the ratio of actual/nominal shear reinforcement 

strength, KsF, against the corresponding normal stress indicator CR1 CR2X106 ,a 

correlation was found between these two parameters and an exponentially decaying 

curve was fitted to the data points, suggesting an empirical expression which predicts 

the value of an adjusting factor k for the shear reinforcement strength as given by 

k=2.4e(-0.08 CR. CR3XI06) 

where KsF = (0.5 P, xP, -V c)lV s 

c 

(3.4) 
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The suggested adjusted ACI-formula for the overall ultimate shear strength, V., 

relating to the plated beams was, then, given as 

V. =V, +kV, (3.5) 

According to this method, the capacity of the beam is determined by the lower value 

of their ACI-formula-adjusted shear load, V., and the flexural load, pfles, based on 

ACI recommendations, with the calculation for flexural strength assuming presence of 

full bond between the external plate and concrete with both the steel plate and the 

embedded steel bars reaching yield while the concrete in compression reaches the 

maximum crushing strain. Based on this method, the predicted failure load and mode 

of failure will correspond to the lower value of the shear and/or flexural loads. 

Though developed for steel plates, Sharif et al. (1994) adopted the same approximate 

expressions for predicting the shear and normal stresses as derived by Roberts (1989), 

to predict the plate separation load for reinforced concrete beams upgraded with FRP 

plates after the unplated beams were preloaded to 85% of their ultimate strength. In 

their analysis, Equation (3.1) was used to calculate the load on the beam assuming that 

the limiting value of shear strength within the adhesive layer zo = 3.5 MPa. However, 

the failure load was calculated considering the critical stresses at a constant distance 

(d v+d, )/2 from the support, assuming that the plate separates due to the presence of 

excessive shear stresses within the adhesive layer. Moreover, these authors calculated 

the flexural capacity of the beam, adopting the ACI ultimate strength method, using an 

iterative technique that assumed presence of full bond between the plate and concrete. 
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Although these authors claimed satisfactory agreement between their predictions 

based on such a theoretical approach and their test data, later detailed critical 

examination of their numerical results strongly suggested an oversight in their 

calculations: their subsequently corrected numerical results (presented later in this 

chapter) were found to be grossly different from both their corresponding test and 

theoretical results. 

3.3.1.1 Critical Examination 

The first method as developed by Baluch et al. (1995) introduces a, predictor equation 

which, as they claim, can determine the load bearing capacity for a reinforced concrete 

beam externally reinforced with a steel plate glued to its tension side. 

As explained early on in this chapter, these authors have suggested that using the ACI 

expression for calculating the shear capacity of unplated beams is not safe when it is 

used for certain plated beams and, hence, have introduced an adjusting factor for the 

shear capacity provided by the shear reinforcement. This adjusting factor is applied to 

the part of the beam shear capacity which is related to the shear reinforcement and the 

total (modified) shear capacity of the plated beam is the summation of the adjusted 

capacity due to shear reinforcement and the shear capacity of the plain concrete 

section. The overall beam capacity and the expected mode of failure, then, are 

determined by choosing the lower value of either the full bond flexural capacity for 

the plated beam (as calculated by the ACI code of practice) or the so-obtained 

modified shear capacity, whichever is smaller. 
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To check the reliability of this model, two types of checks will be carried out next: the 

first involves reviewing the numerical data as published by the authors. 

The individual steps described in their paper (to develop the empirical expression for 

the adjusting factor) were carefully followed, using the same input data and the same 

formulae as used by the authors. Surprisingly, it was found that their reported 

numerical results were neither accurate nor were they consistent, and the individual 

parameters as presently recalculated from the curve fitting exercise, were not found to 

match their previously published values. Table (3.1) and Figure 3.3 show both the 

modified analysis by the present author and the incorrect published data as it appeared 

in the original paper. In view of the large number of parameters involved in this semi- 

empirical approach, it has not been possible to determine as to what has exactly gone 

wrong in the authors' original work. One may, nevertheless, suggest that the most 

likely reason for the error in their calculations relates to the mistakes in the way the 

moment of inertia of the transformed section was originally calculated. The 

underlying reason for such a suggestion will be clarified through a critical 

examination of the method developed by Sharif et al. (1994) which will be discussed 

later on in this section. 

Furthermore, to check the general reliability of their model, this technique has been 

applied to some other (different) experimental results to predict the failure load and 

mode of failure for beams with other design parameters. To this end, 26 test data as 

previously published by Oehlers (1992) have been used. The results are presented in 

Table (3.2) with the final outcome as follows: 
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1- The modes of failure predicted by this method for the majority of the beams (i. e. 

24 out of 26) were found to be of the shear failure type while according to the 

reported experimental observations, only 7 beams failed due to shear (these 

appear in bold letters in the last column of Table (3.2)). 

2- The predicted minimum (i. e. the lower of flexural and adjusted shear capacities) 

total failure load, 2P, for 9 beams was higher than the experimental total failure 

load, p,,,: the predictions were, therefore, unsafe. The adjusted shear capacities 

for these 9 beams were based on the parameter V, as the adjusting factor K for 

all these specimens was found to be equal to zero. In other words, the actual 

failure loads, pexp: /2 
, were lower than both the plated beam flexural capacity, 

Pjiex/2, and also the shear capacity for the plain concrete section, V,. 

3- The range of the predicted total failure loads (equal to the total external load on 

the beam = 2P) for all the beams was relatively narrow (from 50.3 kN to 58.6 kN) 

despite the obvious great varieties of the beam spans and plate lengths. On 

account of the largely different beam and load configurations, the experimental 

total failure load, p,, P1, varied (as expected) from 29.6 to 92.2 kN. 

The authors' model is based on correlations between the reduction of the shear 

reinforcement capacity as influenced by the normal stress in the adhesive layer in- 

between the plate and the concrete beam. In practice, however, the normal stress in 

the adhesive layer is transferred to the concrete beam directly through the concrete 

cover with the cover obviously lying outside the concrete section confined by the 

shear reinforcement. Indeed, it is unlikely that the normal (peeling) stress in the 

adhesive layer affects or, indeed, reduces the contribution from the shear 
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reinforcement. As demonstrated by the experimental results, such predictions of the 

failure load are lower than even the shear capacity of the plain concrete section that 

completely neglects the shear reinforcement capacity. This assumption is not believed 

to be justified and it is highly unlikely that there exists a link between the reductions 

in the shear strength of the shear links and the normal stress within the adhesive layer. 

Finally, for certain beams, neither the ACI flexural full bond bearing load nor, indeed, 

the ACI shear load predictions for a plain concrete section provided a safe value 

(when compared to the experimental failure load): the suggested failure mode 

classification in their model is also not satisfactory and, in view of our largely 

incomplete knowledge of shear in concrete, such speculative suggestions are fraught 

with uncertainties and far from convincing. In conclusion, this model is not 

considered to be a reliable one for design purposes. 

A detailed examination of the previously reported work by Sharif et al. (1994), which 

is also based on the approximate theoretical solutions of Roberts (1989), will also 

demonstrate that there has been an oversight in their proposed model and that it 

suffers from major shortcomings. Their numerical results have been found not to be 

accurate, and, once corrected by the present author, their predicted failure loads were 

found to be substantially higher in magnitude than the theoretical flexural capacity for 

all their beam designs (with these having been based on the ACI recommendations 

and assuming full bond between concrete and plate up to the ultimate load). Their 

numerically corrected results plus their experimental and the incorrect analytical 

results are presented in Table (3.3). Here, their corrected predictions of load bearing 

capacities are all higher in magnitude than the corresponding experimental data for all 
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the beams some of which failed due to plate separation. It should also be noted that in 

certain cases, these beams (with external FRP plates) had plate end anchorages. 

3 

2 

0 

Beams with Flexure/Shear 
and Shear modes of failure 

ö. 
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(a) 

*Beams with Flexure/Shear 
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ý ti 
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(b) 

Fig. 3.3 Determination of the stirrups' efficiency factor K for plated beams: (a) 
incorrect results of analysis as published by Baluch et al. (1995), (b) the 
presently corrected version of the results. 
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A comparison of their analytical (incorrect) results with the experimental loads, 

demonstrates that their method failed to predict a safe failure load in more than 25% 

of the cases, while failing to predict the correct mode of failure for more than 50% of 

the test results. An examination of their presently corrected theoretical results and 

their subsequent comparison with their experimental data, on the other hand, shows 

that for each beam category, the so-obtained predicted plate separation loads are 

higher than the corresponding experimental failure loads in addition to the flexural 

load relating to most of the beams (i. e. their subsequently corrected premature failure 

load predictions are invariably unconservative). 

Analytical results 

Beam 
title 

Experimental ultimate load 
(kN) and mode of failure ACI 

Load based on plate 
se aration Flexural 

strength Incorrect 
results after 
Sharif et al. 

Presently 
corrected 

results 

P1 67 Flexural by rupturing of 
the plate 

66 100 143.3 

P2 68 Plate separation 

P2B 65 Diagonal tension crack 80 77 103.1 

P2BW 78 Flexural by crushing of 
concrete 

P3 66 Plate separation 

P3B 73 Diagonal tension crack 

P3BW 72 Horizontal and vertical 
crack around win 

80 65 86.4 

P3J 82 Flexural by crushing of 
concrete 

Table 3.3 Experimental and analytical data after Sharif et at. (1994) compared 
with the presently corrected results. 
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Sharif et al. (1994) have given a numerical example (in an appendix in their paper) 

which presents, in some detail, their method of calculating the plate peeling load: a 

careful examination of their calculations does, indeed, provide the clue as to where 

the mistake has occurred. They have calculated the moment of inertia of the fully 

composite transformed (equivalent) sections, 1, wrongly and this is believed to be at 

least partly the source of error in their work. In that numerical example, their 

calculated incorrect value for I is 1.59x107 mm4 while the corresponding correct 

value as calculated by the present author is 2.08x107 mm4. It is, perhaps, worth 

mentioning that most of the authors for Baluch et al. 's (1995) paper have also 

contributed to Sharif et al. 's (1994) paper which was also shown to suffer from 

numerical mistakes, and it is likely that the same mistake relating to the moment of 

inertia for a transformed section has also been made in this second paper. 

Moreover, although it was specified (in the original derivations by Roberts (1989)) 

that the critical location of the stress concentration is to be at a distance (d p +d, )/2 

from the end of the plate, Baluch et al. (1995) (in their application of Roberts' 

method) have mistakenly calculated the shear stress in the adhesive layer at a distance 

(dp+d, )/2 from the support. In addition, Baluch et al. (1995) assumed that the plate 

separation failure happens when the shear stress in the adhesive layer reaches a 

certain value (r0 = 3.5 MPa) ignoring that the plate separation failure invariably 

happens by plate peeling away (with the plate and concrete cover separating as a unit) 

rather than plate debonding at the steel/glue/concrete interface where the normal 

stresses within the adhesive layer are probably the more appropriate type of stresses to 

be considered. Indeed, the theoretical normal stress equation developed by Roberts 
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(1989) is more relevant to the plate debonding problem at the steel/glue/concrete 

interface rather than the plate peeling phenomenon of the type where the plate and 

concrete cover peel off as a unit from underside of the main (embedded) tensile 

reinforcement. In conclusion, it may, therefore, be concluded that the method 

presented by Sharif et al. (1994) is not a reliable one and is fraught with uncertainties. 

3.3.2 Approach of Limiting the Axial and Curvature Peeling 

Stresses 

Oehlers and Moran (1990), derived a simple semi-empirical expression to determine 

the moment at which plate peeling starts within the serviceability limit state, and the 

flexural moment that causes complete separation of the plate at the ultimate limit 

state. Their derivations needed experimental calibrations in order to determine the 

values of some critical parameters, in their model, and to select the most appropriate 

way to calculate the magnitude of flexural rigidity which was to be used in their 

expressions. The plate peeling failure was assumed to be due to the presence of 

excessive peeling stresses. The influence of two different types of peeling stresses 

was considered: axial peeling stresses due to the axial strain in the plate, and 

curvature peeling stresses due to the curvature of the reinforced concrete beam. 

The derivation was initially based on the basic assumptions that the plated beam is 

isotropic and uncracked and that the plated section is subjected to pure flexural loads 

only. Obviously, these last two assumptions are not generally applicable to the 

upgrading of reinforced concrete beams under normal conditions of loading, however, 

it was mentioned that, using the experimental results, the model may be calibrated in 

79 



order to override the assumption of an uncracked beam. On the other hand, it was 

argued that flexural cracking of the concrete beam has opposite effects on the 

assumed two underlying causes of plate peeling, as flexural cracking increases the 

curvature but (at the same time) reduces the bending strains in concrete. To ensure 

that the peeling forces, which were assumed to act normal to the plate/concrete 

interface, depend only on the plate thickness, it was assumed that the plate thickness 

is much less than the depth of the beam which is a reasonable assumption for normal 

practice. 

peeling stress distribution: 

axial 

----- curvature 

4t 

distance from the end of the plate 

C 
0 

.., ý ý 
aý w 

S 

Fig. 3.4 Flexural peeling stresses across the interface. 

To get an idea about the distributions of both the plate axial and curvature peeling 

stresses, these authors used a finite element analysis. The results based on such a 

preliminary analysis showed that both of the plate peeling stress distributions have the 

same general shape but extend over different lengths of the plate with the maximum 

tensile stress positions being coincident at the end of the plate, Figure 3.4 (after 

Oehlers et al. (1990)). The forces acting on the beam and the plate are shown in 
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Figure 3.5 (after Oehlers et al. (1990)). Different expressions were derived for 

estimating the plate axial and curvature peeling stresses: these are discussed next. 
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Fig. 3.5 Flexural peeling forces. 
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It is, perhaps, worth noting that all the analytical and numerical solutions as 

previously reported by Goland and Reissner (1994), Cornell (1953), Adams and 

Peppiatt (1964), Allman (1977), Crocombe and Adams (1981), and Adams and Wake 

(1984) for the shear and normal or peeling stresses in adhesive joints, subjected to 

bending and axial forces, indicate the characteristics and the general trend shown in 

Figure 3.6. 

y 

ý ý 
.. N 

Shear 

`Norm' Distance along the plate 

Fig. 3.6 Shear and normal stresses at end of adhesive layer. 
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3.3.2.1 Axial Peeling Stress 

The maximum peeling stress, f. in Figure 3.4, that is induced by an axial plate 

strain, Ea , is determined from the equilibrium of the forces po and F. in Figure 3.5 

pat=2 Fake (3.6) 

Substituting for Pa = Es Ea bb t, where Es = Young's modulus for the steel plate, and 

bb = the width of the plate, and also substituting for F. = so k2 t bb fa 9 where S. = the 

ratio of the mean-to-maximum tensile peeling stress in the region k2t in Figure 3.4, 

with ca = hO, where 0 =the curvature of the beam, and h =the distance from the 

neutral axis of the beam to the plate; leads to the following expression 

fa= ka Es ho (3.7) 

where, kQ = (2 ki k2 Sa)-1 

3.3.2.2 Curvature Peeling Stress 

The maximum peeling stress, f' in Figure 3.4, that is induced by the curvature 0 in 

the plate, is determined from equilibrium of forces pa and Fa in Figure 3.5 

Mc = F, k3 t (3.8) 

Substituting for Me = (EI), 0, where (EI)., = the flexural rigidity of the steel plate, 

and using Fe = Sc k4 t by fe gives 

fe= kc Es tO (3.9) 
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where, k, = (12k3 k4 sc)-' , and Sc = the ratio of the mean-to-maximum tensile peeling 

stress in the region k4t in Figure 3.5. 

3.3.2.3 Flexural Peeling Strength 

As the positions of f,, and f, coincide, the peeling cracks will occur when the sum 

of these two stresses reaches the tensile strength of concrete, f, : 

fr=fQ+f, (3.10) 

Substituting into Equation (3.10), the previously derived values of fn, fc, and 

0=M p/(EI )b , where Mv= the moment at the end of the plate that will cause 

peeling, with (EI)b =the flexural rigidity of the beam, results in the following 

expression for predicting the peeling strength: 

(EI)bft 
MP__ 

kýEtt+kaE, h 
(3.11) 

Initially, the values of ka and k, were obtained using an isotropic finite element 

analysis and both of these parameters were found to have values around 0.7, and (as it 

has been assumed that h» t) it is expected that the axial strain effect is at least an 

order of magnitude greater than the curvature effect, hence, it was suggested that E. 

should govern the peeling load. It was, however, argued that, in real life, the problem 

is further complicated by the flexural cracking which causes large local variations in 

the bending strains in concrete, large local variations in the curvature along the beam, 

and, hence, large local variations in the flexural rigidity. To take such variations in 

practice into account, these authors used the experimental results of Moran (1988) 
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and Moloney (1986) (44 and 13 tests, respectively) in order to experimentally 

determine the most appropriate values of ka and k, and also establish the most 

realistic method for determining the flexural rigidity of the beam (EI),,, plus the 

influence of other factors such as pre-cracking and pre-cambering of the reinforced 

concrete beam or pre-stressing of the plate prior to gluing. 

Details of the test data are already described in Chapter 2. These authors noticed that 

the experimental strengths are not consistent with the predictions of the equations 

relating to the behaviour of plated beams (which will be derived later) with the plates 

having a width less than that of the concrete beam and for those beams with plates 

terminated within the shear span: the test data relating to such beams were, therefore, 

excluded from their regression analysis. Moreover, by selecting the method which 

gives the minimum scatter, the cracked flexural rigidity for plated beams was 

suggested to be more appropriate than those for cracked unplated, uncracked plated 

and uncracked unplated cases, exhibiting a relatively lower scatter factor. Using the 

test results for the remaining 49 plated beams, and using their corresponding values of 

cracked flexural rigidities, Oehlers and his associate determined the values of the 

parameters ka and k, using linear regression analysis, and, surprisingly, found these 

to be equal to 0.0083 and 0.603, respectively. Although the value of 0.603 for k, is 

relatively close to the figure of 0.7 as previously determined using the isotropic 

analysis, the so-obtained value of ka was very small, suggesting that the effect of the 

axial peeling stress, and strain, is negligible when flexural cracking is catered for. The 

value of the parameter k, was suggested to be equal to 0.474 if the effect of the plate 
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axial strain is ignored and, hence, the predicted value of ultimate peeling moment, 

Mup, was suggested to be given by the following 

(EI ), P f, MuP - 
0.474 Et t 

(3.12) 

where, (EI),,, =the flexural rigidity of cracked plated beam, with a coefficient of 

variation equal to 0.283 which suggests a significant degree of scatter in the results. 

The same type of approach was also adopted for the serviceability limit state, and the 

theoretical peeling moment, M5 , 
for such cases was found to be given by the 

following: 

(El),, f, MsP - 0.827 Es t 
(3.13) 

Using the above equation for predicting the ultimate peeling moment of plated beams, 

M. P, these authors also suggested that one can predict the ultimate plate peeling 

moment for plated beams for other conditions such as pre-cracked, pre-cambered, and 

pre-loaded beams. In other words, it was suggested that these conditions have no 

practically significant effect on the strength of plated beams. Guided by the test 

results, it was reported that beams plated over part of their width have strengths 

higher than those plated across their full width. Unexpectedly, it was noticed that, for 

the same plate thickness, reducing the plate width increases the ultimate strength of 

the plated beam. In fact, the strength of the beam was found to be increased with 

reductions in the cross-section area of the external plate. 
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Although they claimed that their method is also applicable to plated beams subjected 

to combinations of shear and flexure, these authors excluded (from their analysis) the 

test results for plated beams, in which shear diagonal cracking had occurred. 

The above semi-empirical model was developed for the plated sections subjected to 

pure bending only and in practice the beams are usually subjected to both flexure and 

shear: in a later publication, Oehlers (1992), therefore, extended the aforementioned 

analysis to cover cases when the beams had their external plates terminated within the 

shear span. The experimental results for symmetrical four-point loading cases with 

the tests carried out on 26 simply supported plated beams (as discussed in Chapter 2) 

were, therefore, used to develop an appropriate design procedure against plate peeling 

failure, when the end of the plate is subjected to both shear and flexural loads. 

A careful examination of the experimental results indicated that plate peeling failures 

had occurred at almost the same levels of external loads regardless of the amount of 

shear reinforcement even when shear links were completely absent and, hence, it was 

concluded that the plate peeling strength of a beam is controlled (and may be 

predicted) only by the theoretical shear strength of the corresponding unpiated 

concrete beam in the total absence of shear reinforcement, V,,,. For cases when the 

plated beam is subjected to pure flexural forces, on the other hand, the beam's plate 

peeling strength was assumed to be solely controlled by the ultimate peeling moment, 

MuP, as previously derived by Oehlers and Moran. (1990), and fully discussed before. 

In view of the fact that the external plates are usually extended to the shear span 

where a combination of shear and flexural loads are imposed at the end of the plate, 
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the test data was used in an interaction diagram, presenting variations of M p/Mup 

against changes in V p/Vuc, where Mp and VP are the applied moment and the shear 

force, respectively, at the end of the plate, where plate peeling was invariably 

initiated. Based on this interaction diagram, Figure 3.7, the failure envelope with a 

slop of minus one through the mean of the experimental values was plotted with the 

governing relationship being of the following form 

MP+vp<117 (3.14) 
Mup V uc 

It was, then, suggested that, as a simple procedure for the design of plated beams or 

one-way slabs, one should use the characteristic values of the ultimate peeling 

moment, MuP, which may be predicted using the following 

(EI), P fr Mup = 0.9 E: t 
(3.15) 

with the characteristic or nominal value of the shear strength for the member in the 

total absence of shear reinforcement in the form of links v., to be estimated using the 

design formulations given in any limit state code of practice, depending on national or 

international standards. 

Based on the same approach, Oehlers et al. (1998) extended their analysis to include 

the effect of other practical factors such as creep and shrinkage which affect the 

curvature (and, hence, the peeling stress) of the plated beam. Considering the ultimate 

peeling moment, m., , as a property of the plated section, the above relationship 

defining the failure envelope was re-written as 
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xp 
+yp<_1.17 

X pure Vuc 
(3.16) 

where, X pure is the curvature to cause debonding if the beam section, at the end of 

the plate, is subjected to pure flexural load, and Xp is the sum of curvatures at the 

end of the plate. The sum of curvatures consists of the curvature induced by the short- 

term loads after plating, X short, and the increase in curvature due to creep after 

plating, X creep, in addition to the increases in curvature due to shrinkage after 

plating, X shrink " 
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Fig. 3.7 Force and moment interaction diagram at the end of the plate. 

It was emphasised that the sum of curvatures Xp is the curvature in the tension-face 

of the plate, equal in magnitude to that of the curvature induced in the beam after 

plating: X pure does not include the curvature present in the beam prior to plating. 

As the parameter V, on the other hand, represents the shear capacity of the unplated 

beam which is characterised by the formation of diagonal shear cracks, the term Vp 
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represents the total shear load regardless of the prior loading conditions or the method 

of construction (i. e. whether propped or un-propped): it was suggested that it is the 

formation of the diagonal crack which in part causes shear peeling as quantified in the 

equation defining the failure envelop. 

3.3.2.4 Critical Examination 

The primary assumptions in this approach (regarding the axial and curvature peeling 

stresses as the causes of peeling failure) are more reasonable when compared with the 

previously discussed models by the group at King Fahad University in Saudi Arabia. 

However, a careful examination of the detailed derivations in conjunction with the 

final design equation(s) suggests that this model also suffers from certain 

shortcomings and is far from exact. The main points of concern are the proposed 

interaction relationship for design, the effect of the width of the plate, and the effect 

of the flexural cracking either in beams which have been precracked prior to plating 

or for those cases where the external steel plates have been bonded to uncracked (i. e. 

as cast) reinforced concrete beams: in what follows, these issues will be discussed in 

some detail. 

3.3.2.4.1 The Interaction Relationship 

As concluded by many researchers, using external plates to strengthen reinforced 

concrete beams increases both the serviceability and also the ultimate load bearing 

capacities in the absence of premature plate peeling failures. The common 

recommendation by various researchers is to avoid occurrence of plate peeling 

failures (despite their disagreements about the final values of load bearing capacities), 
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by extending the plate as far as is practically possible towards the supports, and 

reducing the thickness of the plate by as much as possible. 

Theoretically, if the ends of the externally bonded plate are extended to the supports, 

and if the plate is very thin, the load bearing capacity is expected to be equal to the 

full bond capacity of the plated beam. Increasing the thickness of the plate will 

increase the load bearing capacity until, for a certain (large enough) plate thickness, 

premature plate peeling failure is initiated leading to reductions in the ultimate load 

with this becoming (sometimes) even less than that of the corresponding original 

(unplated) specimen - Refer Chapters 4 and 7. 

A careful study of the simple interaction relationship presented by Oehlers (1992) 

which is meant to predict the maximum possible combination of moment and shear 

forces at the end of the plate suggests that the capacity of the specimen is assumed to 

be limited by the shear capacity of the corresponding unplated beam, hence, taking no 

account of the contribution from the shear links regardless of the thickness of the 

plate or the extension of the plate within the shear span to the support. In Equation 

(3.14), it is clear that the plate peeling is expected to initiate at a load Vp which is, 

indeed, lower than that of shear capacity of a plain concrete beam (i. e. the one with no 

shear links). 

It should be noted that for an average R. C. beam (even with minimum internal shear 

reinforcement), the shear reinforcement makes a considerable contribution to the total 

shear capacity. For example, for beam designs reported by Baluch et al. (1995), the 

shear capacity due to the shear links, V� is calculated to lie between 70 to 232% of the 
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shear capacity for the corresponding plain concrete, K, while the contribution from 

shear links is found to vary from 99 to 335% for those beams which were tested by 

Oehlers (1992), Table (3.4). In other words, according to Oehlers' design method, the 

load bearing capacity of the plated beam never exceeds a fraction of the load bearing 

capacity for the corresponding unplated (original) reinforced concrete beam: this 

contradicts the widely reported and practically successful upgrading cases by others 

who have reported fairly substantial increases in the ultimate load in the presence of 

external plates. 

The above observation suggests that the interaction equation proposed by Oehlers 

may considerably underestimate the beam load capacity and gives substantially 

reduced values for the design load of plated beams with the predicted values 

sometimes being even lower than those for the corresponding unplated beams. 

3.3.2.4.2 Effect of Plate Width and Peeling Stress Distributions in Concrete 

In Oehlers' model, the plate peeling stresses (resulting from the axial peeling stress 

and curvature effects in the plate) are calculated at the level of adhesive layer and not 

at the location where the plate/concrete cover peeling is expected to happen (which is 

just under the main reinforcing bars). The distribution (or flow) of these stresses from 

the adhesive layer to the critical location just under the main (embedded) 

reinforcement has not been considered. Indeed, it may be argued that Oehlers' model 

would be more suitable for estimating the load bearing capacity relating to the plate 

separation at the glue interface between the plate and concrete. 
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ACI-318 

Beam title Vc (kN) Vs (kN) V s/V c% 
URB5 18.5 43.1 232 
BI 21.0 46.8 223 
CI1 19.6 29.0 148 
C12 19.6 29.0 148 
MFI 22.7 46.8 206 
FRB5 21.0 46.8 223 
URB4 18.5 43.1 232 
F31 54.4 53.7 99 
205 58.9 41.5 70 
209 58.9 41.5 70 
218 58.9 41.5 70 
204 58.9 41.5 70 
208 58.9 41.5 70 
217 58.9 41.5 70 
203 58.9 41.5 70 
C3 19.6 29.0 148 
CS 19.6 29.0 148 
C7 19.6 29.0 148 
C16 19.6 29.0 148 
FRB2 21.0 46.8 223 
URB2 18.5 43.1 232 
BIO 21.0 46.8 223 
URB3 22.3 43.1 193 
Fll 54.0 53.7 100 
207 58.9 41.5 70 
216 58.9 41.5 70 

2/2/N 28.2 28.0 99 
2/2/S 28.2 28.0 99 
2/3/N 28.2 56.6 201 
2/3/S 28.2 56.6 201 
2/4/N 28.2 94.4 335 
2/4/S 28.2 94.4 335 
5/1/N 28.6 94.4 330 
5/1/S 28.6 94.4 330 

Table 3.4 Components of shear capacity of reinforced concrete beams used in 
the work of Baluch et al. (1995) and Oehlers (1992). 
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The effect of this approximation is probably more significant for beams which have 

external plate widths smaller than the total width of the beams because the associated 

area over which the peeling forces act at the underside of main embedded 

reinforcement (where the peeling-off takes place) is wider than the contact area at the 

adhesive level. Obviously, this effect becomes more pronounced with increases in the 

thickness of the concrete cover. Because the re-distribution of the such stresses 

reduces the level of stresses at the underside of the main reinforcement where plate 

peeling takes place, one would expect the actual load capacity of the plated beam to 

be higher than the corresponding predicted one (as such redistribution of stresses are 

not considered). In fact, these authors (Oehlers and Moran (1990)) have reported 

higher experimental load bearing capacities than the corresponding predicted ones, 

based on their statistical analysis, for those beams with plate widths less than the 

overall width of the beam which supports the present argument. In their work, Oehlers 

and Moran (1990) excluded the results for such beams from their statistical analysis 

in order to achieve an apparently more satisfactory calibration. Their model is, 

therefore, only applicable to those plated beams with plates covering the whole width 

of the beam and fails to cater for cases when the ratio of the width of the plate to the 

width of the beam is less than one. 

3.3.2.4.3 Effect of the Flexural Crackin, 

The finite element analysis carried out by Oehlers and Moran (1990) showed that the 

significance of the plate axial strain is at least an order of magnitude greater than that 

of the curvature effect. However, their experimental calibration, surprisingly, showed 

that this effect is at least two orders of magnitude smaller than the effect of curvature 
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which suggests that the significance of the curvature stress is raised by three orders of 

magnitude (through the experimental observations) and, hence, in the peeling 

problem, the plate axial stress has a relatively negligible effect (compared to the 

curvature). 

These authors justified such contradictions between the theoretical isotropic analysis 

and the experimental observations by attributing the cause of such discrepancies to 

the ever presence of flexural cracking which was assumed not to be present in their 

isotropic analysis. It was argued that flexural cracking causes large local variations in 

the direct bending strains in concrete associated with which are large local variations 

in the beam curvature and, hence, substantial local variations in the flexural rigidity 

can exist in practice. This is in direct contrast to the basic assumption in the 

theoretical model developed by Zhang et al. (1995), the predictions of which have 

been supported by a very large number of test data relating to beams with widely 

varying design details (including all the test data of Oehlers and Moran (1990) and 

Oehlers (1992)) to be discussed later. Indeed, in Raoof and Zhang's model, the plate 

axial strain is assumed to be the controlling parameter with the curvature effects being 

of hardly any significance. 
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Fig. 3.8 Correlations between the experimental and predicted plate peeling 
loads (after Oehlers (1992)) based on the BS8110 (1985) method of 
calculating the shear strength: (a) mean values for M p, (b) 
characteristic values for M�p. 
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Fig. 3.9 Correlations between the experimental and predicted plate peeling 
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A final point, regarding this method, is related to the concept of trying to predict a 

single (i. e. unique) value for the plate-peeling load for a plated beam. Careful 

examination of the proposed design procedure by Oehlers (1992) suggests a very wide 

degree of scatter for the experimental results even for nominally similar beams: 

Figures 3.8,3.9 and 3.10 show the very wide scatter of their experimental data when 

plotted against their predicted plate peeling moments. Here, Figures 3.8 and 3.9 

present the correlations between the experimental and the predicted plate peeling 

moments based on the formulae recommended by BS8110 (1985) änd the Australian 

Standard (1988: A) and (1988: B), respectively, for calculating the ultimate shear 

capacity of the unplated beam, V. The predicted values of peeling loads based on the 

mean and characteristic values of the ultimate peeling moment Mup are presented in 

parts (a) and (b) of Figures 3.8 and 3.9, respectively. In these figures, the values of the 

mean Mup are calculated by using Equation (3.12), and the characteristic values of Mup 

are based on Equation (3.15), with the predicted peeling load calculated using the 

interaction Equation (3.14). In Figure 3.10, even with the values of Mup and Vu, being 

obtained from actual (experimental) results, nominally similar beams are found to 

exhibit significant scatters (note that for the plots in Figure 3.10, Equation (3.15) for 

Mup or the code recommendations for Vu, have not been used). 

Oehlers' semi-empirical model fails to correctly identify the most important beam 

design parameters, and its predictions (although safe in most cases) are overly 

conservative for practical applications. As discussed next, its prediction of a unique 

solution is also questionable. 
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3.3.3 Approach of Limiting the Tensile Stresses within Concrete 

Cover 

In this approach, the tensile stresses in the concrete cover, located at the end of the 

plate, are limited by the magnitude of concrete tensile strength and the plate peeling 

phenomena is assumed to be controlled by the spacings of stabilised cracks within the 

concrete cover zone. 

Fig. 3.11 Pattern of concrete cracking associated with plate peeling failure. 
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Fig. 3.12 Behaviour of an individual tooth within the concrete cover. 

3.3.3.1 Assumed Mode of Failure and Flexural Crack Spacing 

Zhang , Raoof and Wood (1995), and Raoof and Zhang (1997) suggested a mode of 

failure, Figure 3.11, which is controlled by the characteristics of the individual teeth 

in between adjacent cracks within the concrete cover and forms the basis of the 

proposed theoretical model which very much depends on the size of stabilised crack 

spacings. An extension of the classical theory of cracking after Watstein and Parsons 

(1943) was used for calculating the minimum and maximum stabilised crack 

spacings, loo and lax , respectively, in the case of a reinforced concrete beam with 

an externally bonded plate, where 

p_ 
rý+ýe�r L1 

loun 
u(ý ýbars + blý 

(3.17) 

and 

lmax=2'nun (3.18) 

In the above, u= steel/concrete average bond strength, f= tensile strength of 

concrete, E Oban = the total perimeter of the tension (reinforcing) bars, b, = width of 
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the externally bonded plate, and A, =the assumed area of concrete in tension, Figure 

3.13. 
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Fig. 3.13 Assumed concrete region in tension. 

3.3.3.2 Estimation of Plate Peeling Failure 

Consider the behaviour of an individual plain concrete tooth formed between two 

adjacent cracks (within the concrete cover) deforming like a cantilever under the 

action of lateral shear stresses r applied at the interface between the steel plate and 

concrete beam (or one-way slab), Figure 3.12. Ignoring the interactions between 

neighbouring teeth, the tensile stress at point A in Figure 3.12, CA, reaches the 

concrete tensile strength, ft , for the largely brittle plate peeling failure to initiate - 

i. e. at the critical state: C TA = ft. Assuming elastic behaviour for the structural 

deformations of an isolated tooth up to failure, it may reasonably be assumed that 

(although, to be more exact, in practice the concrete tooth is likely to act more like a 

deep beam) 

aA = 
M A12) 

IA 

where, IA =b L3/12 , and 

h2 

h2 

(3.19) 

100 



MA= Lblh' (3.20) 

In the above, b1= width of the steel plate, b= width of the beam, r= shear stress at 

the interface between the concrete and the steel plate, L= depth of the cantilever, and 

h' =net height of the concrete cover (= length of the cantilever). It, then, follows that 

6Th' bl 
Qa =Lb (3.21) 

At the instant of plate peeling failure (i. e. when QA =f), therefore, Equation (3.21) 

gives 

f, Lb 
6h bi 

(3.22) 

From Equation (3.22), it appears that the ultimate shear stress sustained by an 

individual tooth is proportional to stabilised crack spacing, L. Following the 

arguments in the previous section on crack spacing, the minimum and maximum 

stabilised crack spacings are lam,, and l, respectively, as given by Equations (3.17) 

and (3.18). It, then, follows that from Equations (3.17), (3.18) and (3.22), the upper 

and lower bounds to shear stress r. x and za,;,, , respectively, are 

fl fib 

zý 3h' bi 

and 

I, 
' P 

_ ýlýo 
b 

zý, fl -6 h' bi 

(3.23) 

(3.24) 
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Within the region D-B in Figure 3.2, the shear stress, r, is balanced by the axial 

stress in the steel plate, c r, so that at the location under the point load nearest to the 

support (i. e. at a distance LP from where the plate is terminated): 

zLp 
Qs =t (3.25) 

where Lp = effective length of the steel plate in the shear span over which equivalent 

shear stresses at the plate/concrete interface may be assumed to remain uniform, and 

t= plate thickness. The magnitude of effective length, Lp, is given by the lower value 

of the actual length of plate within the critical shear span in Figure 3.2, Lp, and the 

value of LP as calculated from the following Equations - whichever is smaller (Raoof 

and Zhang, (1997)) 

L2 - -1° 
(21-0.251, P, n) 1P, ß <-72 (3.26) P nun 

L22 = 31 P, i> 72 (3.27) 
P MI 

In the case of a beam under symmetrical four-point loading with the plate positioned 

within the constant moment zone (where it terminates) the value of effective Lp in 

Equation (3.25) may be obtained by only using Equations (3.26) or (3.27). The 

majority of tests reported by Oehlers and Moran (1990) were, indeed, of such a 

configuration and the correlations between theoretical upper and lower bound 

solutions and this set of experimental data as reported by Raoof and Zhang (1997) are 

based on the estimates of effective Lp as obtained from Equations (3.26) and (3.27). 

Using Equations (3.17), (3.23), (3.24), and (3.25), therefore, the lower bound to steel 

plate direct tensile stresses, Qs(n,; n) 1 is 
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_ 
A, (ftyLp b 

Qt c,,,, o> 6 h'tu (E Oba. s + bi) bi 
(3.28) 

The upper bound to QS , on the other hand, (noting that Zs(max) = 2D(, )) is given as 

Qs(max) =2 Qs(min) (3.29) 

The effective area of concrete in tension, A, is calculated from Figure 3.13 (Nawy, 

1992) 

Ae =2h, b (3.30) 
% 

Assuming that u=0.28j-,. (Mosley, 1990), where f 
cu = concrete cube strength, 

and the cylinder splitting tensile strength f, ' = 0.36 f 
cu 

(after BS8110), with the 

units of fu and f, in MPa . 
Equation (3.28) may be written as 

= 0.154 
LP hl b2 f 

cu Qs(ýn'- h'blt(EObars+bi) 
(3.31) 

With the magnitudes of Qsc,,,; o> and o's(max) =2 Qs(,,,; oý directly under the point load 

nearest to the support estimated, it is, then, straight-forward to predict the 

corresponding lower and upper bounds to the peeling bending moment at this 

location: this may be done by using the traditional simple bending theory with the 

assumption of plane-section bending as fully explained elsewhere (Zhang et al. 

(1995)), with the influence of tensile stresses below the neutral axis taken into 

account (Raoof and Zhang (1997)). 
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Fig. 3.14 Correlations between the theoretical upper and lower bound solutions of 
Raoof and Zhang (1997) and experimental data after Oehlers (1992). 

Using the above procedure, then, the theoretical upper and lower bounds of the initial 

peeling bending moments for all the test results of Oehlers and Moran (1990) and 

Oehlers (1992) have been calculated, and these are compared with experimental data 

in Figures 3.14 and 3.15 (after Raoof and Zhang (1997)): the presently proposed 

theory is found to provide very encouraging bounding solutions to such a set of 

extensive large scale test data relating to 83 individual beams. Most importantly, it 

was argued that owing to large variations (by a factor of, say, 2) in spacings of 

stabilised cracks (and, hence, the width of a tooth within the concrete cover) in 

practice, wide scatter is to be expected in the test data from even closely controlled 

experiments. It was, therefore, concluded that due to this inherent property of the 

problem, a lower/upper bound theoretical approach is the most appropriate one to 
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adopt with the lower bound solution being the suitable (i. e. safe) one for design 

purposes. In view of the absence of a unique solution, therefore, the previous practice 

among various researchers of carrying out experimental parametric studies was shown 

to be fraught with difficulties and uncertainties with the wide scatter problem making 

any conclusive deductions based on purely experimental comparisons very difficult if 

at all possible. 
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Fig. 3.15 Correlations between the theoretical upper and lower bound solutions 
of Raoof and Zhang (1997) and experimental data after Oehlers and 
Moran(1990). 

Raoof and Zhang (1997) also used non-linear finite element method to demonstrate 

the significant influence of the ratio of plate area to the total area of main embedded 

(tensile) reinforcement on the ultimate flexural load of reinforced concrete beams 

with external steel plates in the presence of full bond between the plate and concrete 

up to the ultimate load. Changes in the flexural stiffness in the presence of external 

I'I'LI'l I 
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plates bonded to under- or over-reinforced concrete beams but in the absence of 

premature plate peeling failures up to the ultimate load were also investigated by 

Raoof and Zhang (1997), using non-linear finite element method: it was shown that 

inclusion of external steel plates leads to practically significant increases in the 

overall flexural stiffness of the composite beams such as those tested by Jones et al. 

(1982) with the increases in the flexural stiffness being more pronounced for under- 

reinforced beams. Moreover, using non-linear finite element method, these authors 

showed that even in the presence of full bond between the external plate and concrete 

up to the ultimate load, there are noticeable deviations from `the plane-section 

bending, with R. C. beam's cross-section experiencing significant distortions. Based 

on test data and numerical studies, however, it was demonstrated that despite such 

deviations from the classical (i. e. plane-section bending) methods of ultimate limit 

state design as recommended by various codes of practice, such traditional methods 

may still be used in practice to provide reasonably accurate estimates of the ultimate 

flexural load bearing capacity for externally plated beams. 

3.3.3.3 Critical Examination 

The method of Raoof and his associates certainly looks promising and (in what 

follows) its various aspects will be checked against a large body of test data as 

reported by others. 

Neglecting the curvature peeling stresses of the beam and assuming that the axial 

plate stress is the controlling one regarding the premature plate peeling forms one of 

the basic assumptions in this model: this assumption has been proven to be a 
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reasonable one by the isotropic analysis previously reported by Oehlers and Moran 

(1990) in which these authors have shown that the effect of axial plate peeling 

stresses is at least one order of magnitude greater than that due to the effect of the 

beam curvature. 
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Fig. 3.16 Correlations between the upper and lower bound theoretical 
predictions of peeling bending moment of Raoof and Zhang and test 
data after Baluch et al. (1995) and Ritchie et al. (1991). 

The second cautionary point relates to their assumed behaviour of the concrete tooth 

in-between two adjacent cracks which was taken to follow Bernolli's assumption of 

plane section bending despite the usual large depth of the cantilever compared to its 

arm. This potential shortcoming of their model has, however, been catered for by 

employing certain calibration factors relating to what Raoof and Zhang called the 

effective length of the critical section of the plate located within the shear span to be 

discussed fully later on in this thesis. 
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Raoof and Zhang's neglect of the transverse deformations in the adhesive layer is, on 

the other hand, believed not to significantly affect the accuracy of their model unless 

the thickness of the adhesive layer is relatively large with very low values of shear 

modulus for the adhesive material which is not the usual case in practice. 

In this thesis, Raoof and Zhang's model will be checked against further (i. e. more 

extensive) experimental results, as reported by others, relating not only to steel but 

also FRP plated beams, in order to verify its reliability for general use in practice. A 

computer programme has been developed to calculate lower/upper bound theoretical 

peeling capacities of the plated beams: some details of this programme and the final 

numerical results are reported in Chapter 4. The experimental results from a large 

body of references as cited by Baluch et al. (1995), plus the test data of Ritchie et al. 

(1991), Oehlers (1992), and Oehlers and Moran (1990) have, indeed, been found to 

correlate well with the predicted lower/upper bound solutions of this model: these are 

shown in Figures 3.14,3.15 and 3.16, which suggest that despite the wide variations 

of beam design details, this method predicts a safe (lower bound) peeling load 

capacity. Details of the calculations regarding the predicted moments are fully 

covered in Chapter 4. With this model verified, it will then be extended to cover other 

aspects of the problem: this includes studies on beams which have been pre-cracked 

prior to strengthening by external plates, and beams upgraded with external FRP 

plates. Details of such extensions of the model are also reported in Chapter 4. 
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3.3.4 Other Approaches 

Ritchie et al. (1991) adopted an iterative method, as originally developed by 

Geymayer (1968), to predict the stiffness and the maximum strength in bending of 

plated beams. The external plate was assumed to be fully bonded to the concrete beam 

throughout the numerical iterations which were terminated by either the plate 

rupturing or the plate acting effectively (i. e. in full composite action with concrete) up 

to the maximum beam strength. The iterative method assumed initial values for the 

magnitudes of bending strain in the top fibre of concrete and the depth of neutral axis 

and, then, calculated total tension and compression forces to check equilibrium. If 

needed, the initially assumed depth of neutral axis was changed until the equilibrium 

condition was satisfied. Once this was achieved, the moment about the neutral axis 

was determined, and the curvature calculated, with the deflection and slope of the 

beam estimated, using the finite difference method. The maximum strength of the 

beam was assumed to have been reached, when either the externally bonded FRP 

plate was fractured or the moment was reduced with increases in the magnitude of 

bending strain at the top fibre of concrete. The ACI limiting value of 0.003 for the 

maximum concrete compressive strain was not adhered to, but the actually measured 

material properties were used. The so-obtained theoretical results were, then, 

compared with the experimental data relating to tests carried out on 16 beams, out of 

which 14 were plated (Ref. Chapter 2). Although their theoretical load-deflection 

curves were found to be stiffer than the corresponding experimental curves, there 

were fairly good correlations between the experimental and predicted load-deflection 

curves. However, in the majority of cases, the experimental failure was not found to 

occur within the maximum moment region as predicted by the theoretical model. 

Moreover, out of the 14 tested plated beams, the theoretical failure load for only 1 
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beam provided a conservative answer, with the predictions for the other 13 beams 

being larger than the experimental failure load: this was believed to be as a result of 

assuming full bond between the plate and concrete, and not considering other possible 

modes of failure. 

Wei An et al. (1991), reported analytical models, based on the compatibility of 

deformations and equilibrium of forces, to approximate the behaviour of R. C. beams 

externally reinforced with epoxy-bonded fibre composite plates. These authors 

assumed full transfer of forces from the composite plate to the concrete beam. It was 

shown that the composite plate bonded to the tension side of the beam increases the 

stiffness, the yield moment, and the ultimate moment of the beam, and reduces the 

curvature at failure. Their theoretical parametric studies indicated that the technique 

of strengthening the existing concrete beams with epoxy-bonded composite plates is 

particularly effective in reinforced concrete beams with a relatively low internal steel 

reinforcement percentage ratio. Moreover, it was argued that although increases in the 

compressive strength of concrete did not appreciably increase the ultimate moment of 

under-reinforced and unplated beams, in the presence of external composite plates, 

increases in the concrete compressive strength could lead to practically significant 

increases in the ultimate moment of the section. 

In an analytical study, focusing on the behaviour of side plated beams with the side 

plates anchored using steel bolts, Oehlers and Ahmed (1996) proposed a model based 

on full and also partial-shear connection, using a rigid-plastic procedure, for 

determining the increases in the shear and flexural strength of side-plated reinforced 

concrete beams. It was shown that both the shear and also the flexural strengths may 
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be increased, and the deflections and crack widths are reduced by using bolted steel 

side plates. It should be pointed out that, in certain cases, a reinforced concrete beam 

upgraded in flexure by only gluing an external plate to its tension side may not have 

the shear strength to carry the load that the increased flexural capacity would permit, 

and, hence, external shear reinforcement (in the form of, for example, external plates 

bonded and/or bolted to the sides of the beam) would be required: the work of 

Oehlers and Ahmed (1996) obviously addressed this issue regarding which there 

remains a number of unresolved problems. This aspect of the plated beams is, 

however, outside the scope of the present thesis which only concentrates on various 

structural characteristics of reinforced concrete beams upgraded by gluing steel or 

fibre reinforced plastic (FRP) plates to their soffits, in order to strengthen them in 

flexure. 

3.4 DISCUSSION AND CONCLUSIONS 

In this chapter, the salient features of a number of previously reported analytical 

and/or semi-empirical models for predicting various structural characteristics of 

reinforced concrete beams upgraded by gluing steel or FRP plates to their tension side 

has been presented. Critical quantitative examinations of the previously reported 

models of Baluch, Sharif, Oehlers, and Raoof and Zhang have been undertaken in 

order to identify their potential advantages and/or shortcomings. Further experimental 

verifications of the model proposed by Raoof and Zhang, have been carried out, using 

test data reported by others. It is concluded that, contrary to all the other models, the 

model which was reported by Zhang and Raoof is, indeed, a promising one from the 

prospective of a safe prediction for the plate peeling load and regarding the basic 
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assumptions of their theory. In addition, this model has the highly desirable feature of 

enabling one to easily identify the first order design parameters which affect the plate 

peeling phenomenon. 

In a number of areas, unresolved issues have been identified, and these will be 

critically addressed in the following chapters which include detailed studies as 

follows: 

1- The effect of pre-cracking of the plated reinforced concrete beams on the 

upper/lower bound predictions of plate peeling load as predicted by Raoof and 

Zhang's model (which was originally developed for uncracked beams prior to 

plating) will be critically examined. Further insights will also be given 

regarding certain practical implications of this model. 

2- Using test data recently reported by the group at Surrey University, Raoof and 

Zhang's model (which was originally developed for external steel plates) will 

be extended to predict upper/lower bounds to the values of plate peeling 

moments in those cases when FRP (as opposed to steel) plates are used for 

upgrading reinforced concrete beams in flexure. 

3- Using the model of Raoof and Zhang, a theoretical parametric study will be 

carried out in order to identify the influence of various beam design parameters 

on the magnitude of plate peeling moment. 

4- A detailed study will be carried out in order to identify all the possible flexural 

modes of failure for R. C. beams strengthened with either external steel or FRP 

plates. In particular, various characteristics of each of these failure, modes will 

be studied in a quantitative fashion. 
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5- The effect of variations in the magnitude of Young's modulus for FRP plates on 

potential changes in the flexural ultimate load of reinforced concrete beams 

upgraded with externally bonded FRP plates, in the absence and/or presence of 

plate peeling, will be investigated in some detail, with the theoretical 

predictions of various failure loads and associated modes of failure supported 

by an extensive set of test results from other sources. 

6- Finally, simple formulations (amenable to hand calculations, using a pocket 

calculator) will be recommended for designing reinforced concrete beams, with 

either external steel or FRP plates, against occurrence of premature plate 

peeling failure which should prove of value to busy practising engineers. 
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Chapter 4 

PREDICTION OF PLATE PEELING FAILURE 

4.1 INTRODUCTION 

In this chapter, certain unresolved issues relating to premature plate peeling 

phenomenon will be critically addressed. A semi-empirical model will be developed 

for predicting the peeling failure of FRP plated reinforced concrete (R. C. ) beams. 

Moreover, the question of pre-cracking of the beam prior to upgrading it with 

externally bonded steel plates will be addressed in some detail. Previous experimental 

studies have largely used uncracked laboratory specimens to which external plates 

have been bonded with the upgraded beams tested to failure, and little attention has 

been devoted to the real life situations where the R. C. beams in actual structures 

(under service conditions) are already cracked to some degree. The purpose of the 

present study is to clarify as to whether or not testing uncracked R. C. beams provides 

conservative answers for the practical conditions, and to provide a reasonable 

quantitative theoretical insight into the problem. 

In the following sections, it will also be demonstrated that, unlike steel plated beams, 

purely empirical approaches based on limiting the ratio of plate width/thickness do 

not always ensure safety against premature plate peeling failure for R. C. beams 

upgraded with external FRP plates. 
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4.2 CASES TO BE EXAMINED 

Despite the extensive experimental studies available in the literature that focus on the 

so-called most influential parameters affecting the plated beam behaviour, there is no 

theory which deals with all of the primary parameters in a systematic fashion. The 

previously reported formulations are largely either purely empirical or semi-empirical 

in nature and have invariably ignored the effect of certain first order beam design 

parameter(s). For example, many tests have been carried out to study the effect of pre- 

loading prior to external plating which is quite an important factor as it represents the 

practical situations associated with repair works in which the structures have already 

been in use for some time and, hence, are cracked prior to strengthening. However, 

the final results have invariably been inconclusive. Similarly, the previous semi- 

empirical models (originally developed for steel plated beams) are unable to properly 

model the effects of different types of plate material. The theory developed by Zhang 

et al. (1995), however, has the potential for further development to cover such aspects 

of the problem. Certain issues which are in need of further development and/or 

clarification are as follows: 

1- As the original theory of Zhang et al. (1995) was developed for beams 

strengthened with external steel plates, there is a need to extend it to cover 

those cases with external FRP plates as this type of plate material is emerging 

with advantages over steel and is a promising one to be used extensively for 

future strengthening applications. Experimental results for beams strengthened 

with FRP plates will be used to determine the effective length of the plate 

located within the shear span, adopting alternative (but reasonable) values of 

bond strength between the FRP plate and concrete. 
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2- The vast majority of strengthening works which use external plates are carried 

out on R. C. beams which have already been in use. Any experience of pre- 

loading (even due to self-weight) leaves the flexural element(s) with some sort 

of cracking. It is, therefore, of prime importance to examine the influence of 

pre-cracking in flexural elements which are to be upgraded with externally 

bonded steel/FRP plates. 

4.3 A PURELY EMPIRICAL METHOD 

Figure 4.1 presents plots of Mep1M p z: against the ratio of the width of the plate, b, 

to its corresponding thickness t (i. e. b/t ), for a total number of 94 simply supported 

R. C. beams, upgraded with externally bonded steel plates, using test data after Ritchie 

et al. (1991), Baluch et al. (1995), Oehlers (1992), and Oehlers and Moran (1990), 

where mexp is the experimental ultimate plate peeling moment, and M p. 1, is the 

ultimate flexural moment of the plated beam according to BS8110 (1985) with 

material partial safety factors set equal to unity. All the beam specimens were 

experimentally found to suffer from premature plate peeling failure, and, as shown in 

Figure 4.1, the values of Mexp/MP�rr for all the beam specimens (apart from only two 

cases) are less than 1.0 - i. e. full bond between the plate and concrete up to the beams' 

ultimate load (associated with which the steel plate will, according to the traditional 

design approaches, yield) was not maintained. 

It is, however, interesting to note that the limiting value of bit = 60 may (as a simple 

empirical bounding value) be established from the plots in Figure 4.1: in other words, 

as a simple preliminary design approach, in order to avoid occurrence of premature 
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plate peeling failures, the width to thickness ratio, b/t, of bonded steel plates should 

not be less than 60. This limiting value of b/t = 60 is the same as that previously 

recommended by McDonald (1982) who based his tentative recommendations on 

somewhat limited number of test results in contrast to the present study which is 

based on a rather extensive set of data relating to test results for simply supported 

beams covering a wide range of beam design parameters. 
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Fig. 4.1 Influence of steel plate width/thickness ratio on plate peeling failure 
for cases when premature plate peeling has occurred. 

It is, perhaps, worth noting that the corresponding recommended limit suggested by 

Swamy et al. (1987), who only used very limited number of test data, is b/t = 50. On 

the other hand, Figure 4.2 presents plots of bit versus MexplM pult with the 

experimental results after Ritchie et al. (1991) and Baluch et al. (1995) again relating 
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to reinforced concrete beams upgraded by gluing steel plates to their soffits. All the 

experimental results, Mexp, relate to cases when the external steel plate remained fully 

bonded to concrete up to the ultimate (failure) load with non of the 15 test specimens 

suffering from occurrence of premature plate peeling failures: the values of 

Mexp/M puU are (as a whole) greater than 1.0 over the wide range 26< b/t S 100 . 

Eleven of the test specimens from Baluch et al. (1995) failed in flexure, while the 

other four test specimens failed in shear. It is, then, obvious that for even the values of 

bIt < 60, occurrence of premature plate failure is not definite, and there must be other 

first order design parameters such as the cross-section area of the plate (as discussed 

later in this chapter) which control this phenomena. Moreover, as it is the case with 

most purely empirical methods, the range of values for the design parameters used 

associated with test specimens leading to plots such as those in Figure 4.1, are 

unlikely to have covered all the possible practical ranges of controlling design 

parameters and, in certain instances (not covered by the corresponding tests), one may 

be faced with the breakdown of this purely empirical method. The value of a reliable 

theoretical model such as the one to be reported is, then, obvious: using such a model, 

one is able to carry out extensive theoretical parametric studies at reasonable cost and 

effort and, hence, identify the first order beam design parameters with reasonable 

confidence. Once identified, these parameters may be controlled in a systematic 

fashion for efficient and reliable design purposes. 

Finally, Figure 4.3 presents similar plots of b/t versus McXp/M pull , for a total number 

of 18 simply supported R. C. beams which were (unlike the plots in Figures. 4.1 and 

4.2 which correspond to steel plated R. C. beams) strengthened in flexure by external 

bonding of fibre reinforced plastic (FRP) plates: the test data presented in Figure 4.3 
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are after Quantrill et al. (1996), Saadatmanesh et al. (1991), and Ritchie et al. (1991), 

with all the beams suffering from premature plate peeling failures - i. e. 

Mexp/M Punt < 1.0. 

120 
110 
100 
90 
80 
70 

bit 60 
50 
40 
30 
20 
10 

0 

Experimental data after 
" Ritchie et aL (1991) :1 data point, bit= 60 
X Baluch et aL (1995) : 15 data points, 26 < bit < 100 

ý 

x 

x 
ý 

x 

Mexp : Full-bond flexural moment 

x 

.x=4 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Mexp / Mpult 

Fig. 4.2 Influence of steel plate width/thickness ratio on failure load for cases 
when premature peeling failure did not occur. 

An examination of the results in Figure 4.3, however, suggests that, unlike externally 

bonded steel plates, even for the ratios of bit greater than 60, premature FRP plate 

peeling failures can, indeed, happen and one is not able to sensibly suggest a simple 

empirical limiting value of b/t for design against FRP plate peeling. This is believed 

to be (at least partly) due to the very large variations in the values of Young's 

modulus, Ep, and ultimate tensile strength, or,,, associated with FRP plates as 

currently available on the market: for the test data presented in Figure 4.3, 

10.3: 5 Ep 5118.5 GPa and 160.7: 5 U.: 51490 MPa. Unlike FRP plates, the values of 

Young's modulus for steel plates are very nearly constant, with their associated 
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magnitudes of yield (or ultimate strength) lying within a fairly narrow range, which 

enable one to come up with a constant empirical limiting value of b/t = 60 for 

preliminary design purposes. 
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Fig. 4.3 Influence of FRP plate width/thickness ratio on plate peeling failure. 

4.4 EXTENSION OF THE THEORETICAL MODEL TO FRP 

PLATES 

Raoof and Zhang's (1997) theoretical model was originally developed for reinforced 

concrete beams strengthened by externally bonded steel plates with the extensive 

large scale experimental support for this model already presented in Chapter 3. The 

other case of practical interest relates to externally bonded FRP plates which is to be 

discussed in what follows, and is based on an extended version of Raoof and Zhang's 

peeling model. A close examination of Equations (3.17) to (3.31) in Chapter 3 

suggests that the necessary modification to the theoretical model, when applied to this 
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alternative plating material, involves replacing the semi-empirical Equations (3.26) 

and (3.27) with the alternative ones applicable to cases when FRP plates are used. 

Moreover, there are uncertainties regarding the choice of an appropriate value for the 

bond strength, ui, between FRP plates and concrete, with the value of parameter u, 

needed as an input into a modified version of Equation (3.28), which is 

Ae (f, ')2 LP b 
ýscýaý - 6h't (uZ Obas + u, b, ) b, 

(4.1) 

where, u= bond strength between the embedded steel bars and concrete, 

u=0.28 f. (after Mosley and Bungey (1990)), and ut = bond strength between the 

FRP plate (with a width equal to bi) and concrete. Obviously, for cases when external 

steel plates are used ut =u=0.28 f., 
u , as implicit in Equation (3.31). Unfortunately, 

to the best of present author's knowledge, no equivalent simple relationship for 

determining the value of ul has been reported in the literature for cases when FRP (as 

opposed to steel) plates are used and, in this respect, the subject is still in its infancy. 

The ever presence of a thin layer of strong epoxy glue between the FRP plate and 

concrete will also further complicate the matter. Moreover, due to the inherent nature 

of concrete as a material, wide scatter is to be expected in practice, in any empirical 

method adopted for determining the parameter ul (or indeed, u ), over the practical 

range of concrete strengths and mix designs. 

In passing, however, it is, perhaps, worth mentioning that as reported by Ritchie et al. 

(1991), by using a full-length plate, one of the plates with 26-kip strength was 

fractured within the constant moment region (under symmetrical four-point loading) 

at an average bond stress of about 120 psi (= 0.83 N/mm2): these authors, then, 

suggested a limiting average bond stress, iii, between FRP plate and concrete for their 
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beams of about 110 to 120 psi (= 0.76 to 0.83 N/mm2). The very tentative nature of 

their suggested value for ui should be born in mind. It is also, perhaps, worth 

mentioning that the values of allowable shear stresses as recommended in BS5400 

(1990), part 4, for grade 40 concrete or stronger is 0.8 N/mm2 with this allowable 

ultimate shear stress relating to constructions in which two concrete surfaces, one in 

situ and one pre-cast, act compositely. The closeness of the tentative value of 0.8 

N/mm2 for ultimate shear stress between FRP plates and concrete as recommended by 

Ritchie et al. (1991) and also the figure of 0.8 N/mm2 for two concrete surfaces as 

recommended by BS5400 (1990) is interesting. In the absence of any more conclusive 

results, the figure of 0.8 N/mm2 may be taken as a very rough (perhaps, lower bound) 

value for the bond strength between FRP plates and concrete, u1, and this will be used 

as a double check on the final results based on alternative assumed values of ul, as 

discussed next. 

As previously mentioned, an extended version of the original theoretical model 

reported by Zhang et al. (1995) was developed by Raoof and Zhang (1997) for 

predicting the steel plate peeling moment which removed certain limitations imposed 

by the original version of the model. Unlike the original version which (for 

sufficiently short lengths of the plate within the shear span) assumed a uniform 

distribution of shear stresses between the steel plate and concrete over the whole 

portion of the plate within the critical shear span where plate peeling occurred, the 

extended semi-empirical version enabled one to cater for the more general cases when 

the portion of the steel plate within the critical shear span (where it terminates) can be 

as long as is desired: under such conditions, it is reasonable to assume that non- 

uniform variations of shear stresses over the steel plate/concrete interface can exist 
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which may be modelled by the concept of effective length, Lp (similar to Equations 

(3.26) and (3.27) in Chapter 3), with the effective length being defined as the 

equivalent length of the plate within the critical shear span along which a state of 

uniform shear stresses may be assumed. For the present purposes, using a method 

similar to that previously reported for steel plates, alternative semi-empirical 

equations based on test data reported by others will be developed which are applicable 

to FRP plates: rearranging Equation (4.1), with A, given by 

A, =2kb 

and f, = 0.36 f, one gets 

Qsh'b, t (uEOban +u, b, ) 1 
LP «2 0.0431h, b2 fcu 1.5 

(4.2) 

where, the axial tensile stresses in the plate lie between Qs(min) and O s( )=2Q, cnin, , 

and, following Raoof and Zhang (1997), one may reasonably assume that the average 

a. in Equation (4.1) is equal to 1.5 Qscmin) : hence the factor 1.5 in Equation (4.2). All 

the terms in Equation (4.2) are as defined in the relevant section in Chapter 3. Using 

test data relating to the value of the plate axial stress, a, directly under the point load 

nearest to the support, then, the value of effective Lp for any given beam design may 

be obtained by Equation (4.2). 

Recently, Hollaway and his associates (Hollaway (1997) and Garden et al. (1997)) 

obtained test data relating to the critical plate axial strain, Fue (at plate peeling 

failure), directly under the point load nearest to the support, of 13 simply supported 

R. C. beams having a span of 1000 mm with external FRP plates bonded to their 

soffits. All these beams were loaded to failure under symmetrical four-point loading, 

and exhibited premature plate peeling failures. Table (4.1) presents various 
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geometrical and material properties for these beams with the information for the nine 

beams S1-S9 after Hollaway (1997), and the data for the other four beams being after 

Garden et al. (1997). The effective length, LP, for all the beams of Garden et al. 

(1997) and Hollaway (1997) may, then, simply be obtained by using Equation (4.2) in 

conjunction with the experimental data for the elastic strains Cue as given in Table 

(4.1), and assuming Q= EPCue, where E. = Young's modulus for FRP; once 

appropriate values for the bond strength, u, , are chosen. 

Following the earlier discussions in this section, the value of u, remains (at least for 

the present) rather uncertain. However, in view of a number of other uncertainties in 

the model such as the usual wide scatter problem associated with certain concrete 

material properties such as its cube and tensile strengths, ff� and fJ, respectively, 

which are needed as an input into the model, plus the simplifying assumption of 

plane-section bending implicit in Equation (3.19) in Chapter 3 (although, as 

mentioned before, in practice the concrete tooth is likely to act more like a deep beam 

with significant deviations from the plane-section behaviour), and finally, the semi- 

empirical method to be used for determining the values of effective lengths, LP, 

(which follow next), one may, in the absence of any other reliable information, 

reasonably assume ul =u=0.28 fT. - i. e. the bond strength between FRP plates and 

concrete, ut , may be estimated using the same relationship as that reported by Mosley 

and Bungey (1990) for determining the bond strength between the embedded steel 

bars and concrete, u. In other words, by calibrating the model against test data (by 

way of the semi-empirical approach for determining the effective Lp ), one may 
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reasonably cater for a number of, perhaps, inevitable practical uncertainties 

surrounding the problem. Once a semi-empirical method is established for 

determining the effective length, L., the theoretical predictions may, then, be checked 

against other independent test data (which have not originally been used for 

calibrating the model) in order to check the general reliability of the proposed model: 

indeed, as discussed in the next section, such an independent check of the proposed 

model has been found to result in encouraging correlations between theory and test 

data reported by others, hence, confirming the practical soundness of various 

underlying assumptions in the proposed model. 
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Bearing the above in mind, it is, then, possible to plot variations of Lp/1i°�o against 

I as shown in Figure 4.4, where lP, ß and lax = estimated minimum and maximum 
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stabilised crack spacings, respectively, as given by Equations (4.3) and (4.4) below 

(with their various terms as defined previously) which assume u, =u=0.28 f. 
, and 

the parameter L. is determined by using Equation (4.2) (again, assuming 

u1= u=0.28 f 
cu) in conjunction with the plate axial strain measurements, Cut , (and, 

hence, stresses a, =EpEue) at plate peeling failure from Hollaway (1997) and Garden 

et al. (1997) as given in Table (4.1). 
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The fitted line through the semi-empirical data points in Figure 4.4 is defined by the 

following equations: 

Lp=i . (24.0-0.51ý, ý) lnP, n <- 40.0 (4.5) 

Lp = 4.01ý; n 1Pn > 40.0 (4.6) 

The rather tentative nature of Equation (4.6) should, however, be noted at once: for 

JP- > 40.0, no experimental data is currently available, and this equation is proposed 

as guided by the work of Raoof and Zhang (1997) on steel plated beams. There is 

clearly a need for experimental data relating to cases when Imo > 40.0. 

The above equations, then, provide a simple means of estimating reasonable values 

for the effective length of the FRP plate within the critical shear span, LP, to be used 

in Equation (4.7) (see the derivation of Equation (3.31) in Chapter 3): the correct LP 
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is the lower value of L. as calculated from Equations (4.5) and (4.6), L, -,, and the 

actual length of the plate as shown in Figure 3.2 in Chapter 3, LP_2 (whichever is 

smaller). Obviously, if the plate is only positioned within the constant moment zone, 

the value of L. in Equation (4.7) (given below) may only be estimated by using 

Equations (4.5) and (4.6). With the above borne in mind, one can predict ýsýýaý from 
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At first glance, the scatter of experimental data points about the mean fitted line in 

Figure 4.4, may perhaps, appear as rather too much. It must at once be noted, 

however, that due to large variations (by a factor of, say, 2) in the spacings of 

stabilised cracks in practice, a unique solution for the parameter Lp probably does not 

exist, and similar large variations of Lp for even a given beam design are to be 

expected in practice. As reported by Raoof and Zhang (1997), a theoretical approach 

based on either linearly elastic or non-linear interaction of the plate with concrete, 

aimed at determining the magnitude of an effective Lp, over which the plate/concrete 

shear stresses may be assumed to be constant, is, on the other hand, fraught with 

difficulties. These authors argued that even the application of formulations for the 

complex non-linear Finite Element technique which may either use the smeared, 

discrete or mixed smeared/discrete crack modelling is (in the present state of art) 

highly unlikely to lead to more meaningful answers than those using the very simple 

proposed semi-empirical method based on the plots of Figure 4.4. In this context, it is 

instructive to examine the plots in Figure 4.5; here, the experimentally determined 

plate axial strains are plotted against the theoretical values of minimum plate axial 

stresses, Qscmio), as determined by Equation (4.7a), with the values of Lp in this 

equation determined by Equations (4.5) and (4.6). The test data in Figure 4.5 are all 

after Hollaway (1997) and Garden et al. (1997) and relate to the beams under 

symmetrical four-point loading in which the plates were extended to the shear span. It 

is interesting to note that (apart from only one data point) the test data lie within the 

region between the upper and lower bound theoretical lines. Only one data point falls 

below the theoretical lower bound line, and even this is (for all practical purposes) 

very close to the lower bound line which thus provides one with a reasonable degree 

of confidence in that the use of a fitted mean line to the test data in Figure 4.4 has 
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resulted in a semi-empirical formulation (or calibration) which leads to sensible lower 

and upper bound solutions for the critical axial stresses in the plates at peeling failure. 

However, it should be noted that unless one checks the same semi-empirical 

formulations against a much wider set of large scale test data, one cannot assume the 

proposed semi-empirical formulations to be of general applicability. 

In the following section, the numerical results based on the above semi-empirical 

model will be checked against test data for a wide range of beam designs, from 

various sources, to demonstrate its general applicability. 

4.5 CORRELATIONS BETWEEN THEORY AND TEST DATA 

Figure 4.6 presents the correlations between upper and lower bound theoretical 

predictions of plate peeling moment and test data after Quantrill et al. (1996: A), 

Quantrill et al. (1996: B) and Garden et al. (1997). 

Similar to all the other theoretical results presented in this section, a bi-linear (elasto- 

plastic) axial stress-strain relationship as recommended by the British Standard, 

BS8110 (1985), has been assumed for the embedded steel bars, while the FRP plate is 

assumed to be linearly elastic with a brittle fracture at ultimate axial load. The total 

number of test data points in Figure 4.6 is 34, all of which are independent of the 13 

test data points originally used for calibrating the proposed model (i. e. deriving the 

semi-empirical Equations (4.5) and (4.6)), so that the correlations between theory and 

test data in Figure 4.6 provide an independent check of the general applicability of 

the proposed model. 

129 



10 

Specimen no. 

Fig. 4.6 Correlations between upper and lower bound theoretical predictions of 
FRP plate peeling moment and test data after Quantrill et al. (1996: A), 
Quantrill et al. (1996: B) and Garden et al. (1997). 

The test data in Figure 4.6 are expressed as bending moment at premature FRP plate 

peeling failure with the bending moment corresponding to the beam section directly 

under the point load nearest to the support. It is important for the theoretical 

predictions of the bending moment, which are based on the concept of effective length 

as given by Equations (4.5) and (4.6), to take concrete tensile stresses below the 

neutral axis into account: such concrete tensile stresses must be taken into account in 

view of the sometimes very low values of axial stresses in the FRP plates, at the 

critical instance of premature plate peeling failure, with the net tensile force in 

concrete, then, becoming significant in magnitude when compared with the total 

tensile force in the FRP plate. An examination of the results in Figure 4.6 suggest that 

the test data reasonably lie in-between the upper and lower bound theoretical 

predictions with the lower bound predictions providing a safe solution in almost all 
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cases apart from one case (i. e. specimen number 6) where the test data is significantly 

lower than the corresponding theoretical lower bound solution. This is believed to be 

due to the rather small-scale of the beam specimens tested by Hollaway and his 

associates, with the beams only having a span of 1000 mm with a reinforcement 

concrete cover of only 16 mm (i. e. h'=13 mm), while the coarse aggregate used in 

their concrete mix was of 10 mm maximum size with the largest fine aggregate being 

5 mm: although (as suggested by the good correlations between theoretical bounding 

predictions and this set of extensive test data which cover a wide range of beam 

design parameters) these small scale specimens are (as a whole) believed to have been 

carefully manufactured, adhering to closely controlled manufacturing tolerances, there 

may nevertheless have been some out of straightness imperfections in the 6 mm 

diameter steel reinforcing bars. Bearing in mind the prime (controlling) influence of 

the parameter h' in the model, a concrete cover of only 16 mm in the presence of 

such large aggregates coupled with the possible out of straightness imperfections of 

the reinforcing bars for the test result relating to specimen number 6 may be the 

responsible factors for this particular experimental result to be of a suspect nature and 

probably unreliable. 

Similar correlations between the theoretical bounding solutions and (this time) large 

scale test data are, on the other hand, presented in Figures 4.7 and 4.8, where the test 

data in Figure 4.7 is after Saadatmanesh and Ehsani (1991: I), while the test data from 

Ritchie et al. (1991) is used for the plots in Figure 4.8. In particular, the reinforced 

concrete beams tested by Saadatmanesh and Ehsani (1991: 1) had a very large clear 

span of 4570 mm. The beam specimens tested by Ritchie et al. (1991) had a clear 
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span of 2400 mm. The theoretical lower bound solution is found to provide a safe 

answer in all cases in Figures 4.7 and 4.8. 
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Fig. 4.7 Correlations between upper and lower bound theoretical predictions of 
FRP plate peeling moment and test data after Saadatmanesh et at. 
(1991). 

Finally, in Figure 4.9, the theoretical upper and lower bounds for the premature FRP 

plate peeling bending moments are found to be equal in magnitude with 

Qs(maX) = Qs(min) = Qu for all the beams tested by Sharif et al (1994): the correlations 

between theoretical predictions and the corresponding test data are found to be 

encouraging. 
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To identify the underlying reason as to why certain experimental data points lie above 

the theoretical upper bound to plate peeling moment in Figures 4.7,4.8, and 4.9, a 

careful study of the test results of Oehlers (1992) is instructive. Oehlers (1992) has 

fortunately reported both the initial and also the ultimate values of premature plate 

peeling loads for beams strengthened with external steel plate. There is significant 

differences between the experimentally determined values of the premature plate 

peeling ultimate moments (at which total collapse occurs) and those which correspond 

to the initiation of premature plate peeling for Oehlers' beams'which had plates 

terminated within the shear span. 
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Fig. 4.10 Correlations between upper and lower bound theoretical 
predictions of steel plate peeling moment and test data relating to 
initial plate peeling moment after Oehlers (1992). 

Plots in Figures 4.10 and 4.11 show the correlations between upper and lower bound 

theoretical predictions and test data relating to the initial plate peeling moments and 
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the ultimate peeling moments, respectively. It is particularly noteworthy that the test 

data points of ultimate peeling moments in Figure 4.11 are located significantly above 

the theoretical upper bound line while the test data points of the initial plate peeling 

moments, in general, lie within the lower and upper bounds with the lower bound in 

both plots providing a safe prediction against plate peeling failure. It is, then, 

concluded that, in certain cases, the plate peeling ultimate moments are higher than 

the theoretical upper bound as the theory was originally developed to predict fully 

brittle upper and lower bounds for the plate peeling moments and can not handle 

presence of any (although practically not very significant) degree of ductility in the 

plate peeling process. 
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Fig. 4.11 Correlations between upper and lower bound theoretical predictions 
of steel plate peeling moment and test data relating to ultimate plate 
peeling moment after Oehlers (1992). 

Unfortunately, no such detailed description of experimental results as of Oehlers 

(1992) have been reported by Saadatmanesh and Ehsani (1991) and Ritchie et al. 
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(1991): this, then, may be the underlying reason for a number of test data in Figures 

4.7 and 4.8 lying above the theoretical upper bound solutions with these experimental 

results probably relating to the ultimate plate peeling moments, although (considering 

the usual inherent variability of concrete as a material) particularly the test data in 

Figure 4.7 are (as a whole) quite close to the corresponding upper bound solutions and 

the theoretical predictions are not believed to be too conservative for practical 

purposes. Moreover, in certain cases (particularly relating to the test data after Ritchie 

et al. (1991)) the test specimens had plate end anchorage arrangements which delay 

the occurrence of plate peeling and, hence, could have well increased the level of 

plate peeling load to be higher than the theoretical upper bound. 
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MP�u and MRC, respectively, with FRP plate peeling moments: 
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Fig. 4.13 Comparison of plated and unplated ultimate bending moments, 
MP�rf and MRc, respectively, with FRP plate peeling moments: 
beam designs after Saadatmanesh et al. (1991), Ritchie et aL 
(1991) and Sharif et al. (1994). 

From the above encouraging experimental support for the present theory, covering a 

wide range of beam design parameters, with the test data as obtained from a number 

of independent sources, it is concluded that the basic underlying assumptions used in 

developing the model are all reasonable ones. Tables (4.2) and (4.3) give the full set 

of numerical data used for producing Figures 4.6 to 4.9 in addition to certain other 

geometrical and numerical properties corresponding to each beam design with FRP 

plates, while Table (4.4) gives the corresponding numerical data used for producing 

Figures 4.10 and 4.11 which is related to beams with steel plates. In these tables, the 

specimens have been grouped according to the ascending values of theoretical lower 

bound plate peeling moments, M pee,,, , which is meant to make the plots more 

presentable with specimen numbers varying from 1 to 58 in Tables (4.2) and (4.3), 
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and from 87 to 112 in Table (4.4), which is different from the original labelling 

designations of Saadatmanesh and Ehsani (1991), Ritchie et al. (1991), Sharif et al. 

(1994), Quantrill et al. (1996: A), Quantrill et al. (1996: B), Garden et al. (1997), and 

Oehlers (1992), with these also quoted in the tables for completeness. 
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Fig. 4.14 Comparison of plated and unplated ultimate bending moments, M,,, u 
and MRC, respectively, with steel plate peeling moments: beam 
designs after Oehlers (1992). 

Values of the parameters M purr and MRC for each beam design are also included in 

Tables (4.3), (4.3) and (4.4), where mP�rr = ultimate bending moment of plated beam 

assuming full bond between the plate and concrete up to the failure load according to 

BS8110 (1985) with the material partial safety factors set equal to unity, and 
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MRC = ultimate bending moment of unplated beam according to BS8110 (1985) with 

the material partial safely factors included in the calculations. 

Figures 4.12 and 4.13 compare plots of M, u, t, MRc, MaxP, M, «i. u, and M, «r.:, for 

beams 1-34 after Quantrill et al. (1996: A), Quantrill et al. (1996: B), and Garden et al. 

(1997), and beams 35-58 after Saadatmanesh and Ehsani (1991), Ritchie et al. (1991), 

and Sharif et al. (1994). A careful examination of the values of MRC and M, «u 

relating to specimen 36 as presented in Figure 4.13 is interesting: for this specimen, 

MRC is greater than the corresponding M peer.:. Similar observations are made in 

Figure 4.14 in connection with simply supported R. C. beams strengthened by gluing 

steel plates to their soffits where, for the vast majority of the 26 large scale beam 

specimens tested by Oehlers (1992), values of MRc are found to be substantially 

higher than both the corresponding theoretical values of M Peel,,, (let alone M PeeIJ) and 

also their associated values of experimental initial peeling moment, M. 

One may argue, however, that the reported premature failures might have been due to 

insufficient shear capacity of the plated beams. By careful examination of the modes 

of failure for the beams tested by Oehlers (1992), for example, it is found that only 8 

specimens out of the 26 tested beams failed in shear: this, then, leads to the 

conclusion that the premature failure was not (at least for most cases) due to lack of 

shear capacity. Moreover, in order to further confirm this, the shear capacity of the 

unplated beams as calculated according to ACI-318 (1983) are compared with the 

actual failure loads of the plated beams in Table (4.5). This table also includes the 

reported experimentally observed failure modes. Table (4.5) presents some numerical 

data in which, based on the reported material and geometrical data, the shear capacity 
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of the unplated beam, V. (according to the ACI-318 (1983)) for 9 cases is found to be 

higher than the actual failure load, V, XP, 
for the corresponding plated beams, hence, 

confirming that the failure, in general, has not been due to the presence of insufficient 

shear capacity and the plate peeling capacity has, indeed, been the underlying cause of 

failure. In conclusion, therefore, bonding external steel and/or FRP plates to 

reinforced concrete beams in order to strengthen them in flexure may (if one does not 

guard against premature plate peeling failures) reduce their flexural ultimate strength! 

Such largely brittle failures can obviously have serious implications in practice where 

the plate bonding technique has been used extensively for upgrading both bridges and 

buildings in a number of countries. 

  

4 
  

3 
4 
ý 
\ 

ä2ý 
  

  

  

  

1 Experimental results 
Fitted line 

0 
40.0 45.0 50.0 55.0 60.0 

ip , r; n (mm) 

Fig. 4.15 Determination of FRP plate effective length, L., assuming 

u1= 0.8 N/mm2 and u=0.28 f 
T,, . 

Finally, in order to clarify the implications of assuming u1= u=0.28 f implicit in 

the plots of Figure 4.4 (and, hence, semi-empirical Equations (4.5) and (4.6)), Figure 
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4.15 presents plots of Lp/lam against ln; o for all the beam specimens in Table (4.1) 

with the provision that the results presented in Figure 4.15 are based on the 

assumption in Equation (4.2) that u1= 0.8 N/mm2 and u=0.28 f 
ýu . The fitted lines 

through the semi-empirical data points in Figure 4.15 are defined by the following 

Lp m =lpin. (11.6-0.171n,; o) , IP. <--56.5 (4.8) 

and 

LP = 2. Olý; 
o 

9 lmin > 56.5 
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Fig. 4.16 Correlations between upper and lower bound theoretical 
predictions of FRP plate peeling moment (assuming 

u, = 0.8 N/mm2 and u=0.28 f 
cu ) and test data after Quantrill et 

A (1996: A), Quantrill et al. (1996: B) and Garden et al. (1997). 

In other words, such alternative values of ul lead to different relations (i. e. Equations 

(4.8) and (4.9)) to Equations (4.5) and (4.6). Using Equations (4.8) and (4.9), new 

estimates of theoretical MPee1, 
u and M 

pee1. i 9 may, then, be obtained for all the beam 
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designs of Quantrill et al. (1996: A), Quantrill et al. (1996: B), and Garden et al. 

(1997), and these are compared with the corresponding experimental plate peeling 

moments, Mexp , in Figure 4.16. Comparing the plots as presented in Figure 4.16 with 

the alternative plots in Figure 4.6 (which relate to these same beams but assume 

u, =u=0.28 f 
ý�) strongly suggest the largely insignificant influence of the exact 

value chosen for the parameter ui (within reasonable limits 0.8: 5 u: 5 0.284f,. ) on 

the theoretical predictions of M 
pee(, u and M 

peei, i , provided that the appropriate forms 

of semi-empirical equations are used for estimating the values of 'ffective Lp with 

such equations being a function of the assumed value for u, . 

4.6 EFFECT OF PRE-CRACKING 

As discussed earlier, previous (largely experimental) studies have (in the vast majority 

of cases) used uncracked (i. e. as cast) R. C. beam specimens to which external steel (or 

FRP) plates have been bonded prior to testing the beams to failure, with little attention 

devoted to the real life situations where R. C. beams in actual structures (under service 

conditions) are already cracked to some degree. In view of the central role that crack 

spacings play as regards the premature plate peeling failure (as discussed earlier), 

then, the question arises as to whether the test results from uncracked specimens 

provide a safe (i. e. conservative) answer for the real life conditions. Moreover, due to 

the inherent wide scatter problem in the test data from even the same beam designs, 

by comparing the test results from uncracked and pre-cracked specimens (which are 

otherwise nominally identical), one is unlikely to come up with any conclusive 

deductions with the wide scatter problem making experimental comparisons (i. e. 

experimental parametric studies) fraught with difficulties. The present model, 
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however, enables one to study the pre-cracking phenomenon in a reasonable way, and 

makes it possible to gain a rational quantitative theoretical insight into the problem. 

As discussed earlier, the minimum and maximum stabilised crack spacings in R. C. 

beams in the presence of external plates are given by Equations (4.3) and (4.4). In the 

extreme case, on the other hand, when no externally bonded plate is present, the 

stabilised crack spacings are given by the following equations (Watstein and Parsons 

(1943)) 

_ 
Aýf, lmin 

- 
uE Obars 

lmax 
=2 1nun 

(4.10) 

(4.11) 

In other words, the only difference between Equations (4.3) and (4.10) is that the term 

representing the plate width, b1, in the denominator of Equation (4.3) is omitted in 

Equation (4.10). An examination of Equations (4.3) and (4.4), on the one hand, and 

Equations (4.10) and (4.11), on the other, then, suggests that addition of externally 

bonded plates will lead to a reduction in the magnitudes of minimum and maximum 

stabilised crack spacings in R. C. beams. This observation, provides the clue for 

identifying the difference in the magnitudes of the plate peeling moments in 

uncracked and pre-cracked beams. 

As discussed in some detail earlier (Chapter 3), the plate peeling moment is controlled 

by the structural behaviour of the teeth formed in-between adjacent stabilised cracks. 

It, then, follows that the difference between the magnitudes of plate peeling moments 

in pre-cracked and/or uncracked R. C. beams is directly related to the size of their 
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associated critical concrete teeth as determined by their patterns of stabilised crack 

spacings. In the relatively simpler case of an uncracked plated R. C. beam, the sizes of 

minimum and maximum crack spacings, 1, and 1, ux , respectively, may be estimated 

using Equations (4.3) and (4.4). In the case of plated pre-cracked beams, on the other 

hand, it may reasonably be assumed that (provided, under service conditions, the 

unplated R. C. beam has been loaded with its reinforcing tensile bars not reaching 

yield) the associated stabilised crack spacings He in between two extreme conditions: 

(a) stabilised crack spacings, ln,; 
o and l. x , as determined by Equations (4.10) and 

(4.11), respectively; and (b) stabilised crack spacings, JP.. and lPx , as determined by 

Equations (4.3) and (4.4), respectively, with the actual size of crack spacings lying in- 

between these limiting conditions. For a pre-cracked beam, one may calculate the 

limits to plate peeling moment firstly by using Equation (4.12), which is based on lP 

as determined by Equation (4.3) (as derived in Chapter 3) with Q: -ýc ý= 2ý: 
-ý( » 

which is associated with the uncracked section, where 

i 
Qs-1(min) = 0.154 

h 'b trjý 0+bl 
(4.12) 

1 \` bars 1/ 

and, secondly, Equation (4.13), based on ln,; 
n , may be used for determining 

as-2(max) = 2°s-2(min)' which is associated with the cracked section, where 

- 0.154 
L° Ih b2 fcu 
h, b, tEOba. s 

(4.13) 

The safe solution will, then, be the lowest value of plate peeling moments as 

determined by the above two alternative approaches for determining the upper and 

lower bounds for the magnitudes of plate direct stresses in both uncracked and also 

pre-cracked beams. 
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Fig. 4.17 Theoretical comparison of the peeling moments in pre-cracked and 
uncracked specimens using beam designs after Oehlers and Moran 
(1990). 

Figures 4.17,4.18 are produced using the above procedure: Figure 4.17 is based on 

the 57 beam designs used by Oehlers and Moran (1990), and Figure 4.18 relates to the 

26 beam designs used by Oehlers (1992), where Oehlers and Moran (1990) and 

Oehlers (1992) adopted a very wide range of beam design parameters. In both Figures 

4.17 and 4.18, the following estimates of flexural moments are presented for each 

beam design: absolute maximum bending moment for the plated section, M pull , 
based 

on BS8110 (1985) as defined previously (with material partial safety factors set equal 

to unity); upper and lower bound plate peeling moments for uncracked sections based 

on estimates of Q, 
_1(ý10) and Qs_1(max) (as given by Equation (4.12)), M 

peel-l. u and 

M 
peep-i, t , respectively; and, finally, the upper and lower bound plate peeling moments 
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based on estimate of as-2(min) and 0 s_2( ) as given by Equation (4.13), M 
p,, 1-2., and 

Mp«! 
_2,19 respectively. 
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Fig. 4.18 Theoretical comparison of the peeling moments in pre-cracked and 
uncracked specimens using beam designs after Oehlers (1992). 

Similarly, Figure 4.19 is produced using the same procedure and is based on the 26 

beam designs reported by Baluch et al. (1995), and the 2 beam designs used by 

Ritchie et al. (1991), covering a very wide range of beam design parameters. 

It is interesting to note that for all the 111 specimens covered in Figures 4.17,4.18 

and 4.19, the safest (i. e. most conservative) solution is invariably that of Mpee, 
-,., - 

i. e. 

the lower bound plate peeling moment for an uncracked section. It may, then, be 

reasonably concluded that the previous practice among various researchers is, 

perhaps, a conservative approach and the so-obtained test data on uncracked beams 
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may, indeed, be used for deriving reasonably safe solutions for use in practice. 

Finally, Tables (4.6), (4.7), and (4.8) present the values of M pu,, , 
Mpeer-,. 

v and 

Mpee, 
_i. i , and M 

pee, -2. u and M 
pee, -2., , 

for each of the specimens using associated 

designated specimen numbers 59 to 86,87 to 112 and also 113 to 169, with the results 

for specimens 113-169 in Table (4.8) (after Oehlers and Moran (1990)) presented in 

Figure 4.17, the data for specimens 87-112 in Table (4.7) (after Oehlers (1992)) 

plotted in Figure 4.18, and the data for specimens 59-86 in Table (4.8) shown in 

Figure 4.19, where the latter data is after Baluch et al. (1995) (specimens 59-84) and 

Ritchie et al. (1991) (specimens 85-86). 
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Fig. 4.19 Theoretical comparisons of the peeling moments in pre-cracked and 
uncracked specimens using beam designs after Baluch et al. (1995) and 
Ritchie et al. (1991). 

147 



4.6.1 Experimental Support 

In what follows, the extensive large-scale test data after Oehlers and Moran (1990) 

will be used to provide experimental support for certain theoretical predictions. In 

their tests, Oehlers and Moran (1990) reported results for 57 large-scale R. C. beams 

with externally bonded steel plates glued to their soffits, covering a wide range of 

design parameters. The simply supported length of the beams varied from 1650 mm to 

2500 mm, their depth from 150 mm to 240 mm, and the reinforcement cover from 10 

mm to 50 mm, the plate thickness from 2.0 mm to 15.0 mm, the length of the plate 

from 600 mm to 1400 mm, and the width of the beam was either 120 mm or 125 mm. 

The top reinforcement diameter was either 10 or 12 mm, and the diameter of bottom 

reinforcement varied from 12 mm to 20 mm. In the majority of cases, straight plates 

were glued to uncracked and unstressed R. C. beams and the plates covered the full 

width of the beams, i. e. b1= b. Exceptions to this were: series 12 (with four beams) 

where b1/b was varied; series 6 and 9 (with four beams in each series) where the 

plates were pre-curved in order to induce pre-stresses at the ends on plating; series 3 

and 4 (with four beams in each series) where the R. C. beams were pre-cracked prior 

to gluing; and series 5, where the beams were pre-cambered and pre-cracked prior to 

gluing; as might occur in practice. All the specimens were tested with the plates 

terminated within the constant moment regions under symmetrical four-point loading 

except in series 7 and 8 (with four beams in each series) which were designed with the 

plates terminating within the shear span with varying ratios of external shear/moment 

imposed at the ends of the plates where plate peeling failures were invariably found to 

initiate in the beam specimens. 
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The very encouraging experimental support for the upper and lower bound theoretical 

predictions relating to all the beams tested by Oehlers(1992) have already been shown 

in Figure 4.14. For the present purposes, more emphasis will be placed on the 

correlations between the predictions of present theory and test data of Oehlers and 

Moran (1990) as regards the general trends of variations in the plate peeling moment 

with changes in the values of specific beam design parameters. The numerical data 

relating to the following discussions are also included in Table (4.8). 
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Fig. 4.20 Effect of plate width, bl, on the plate peeling moment - comparison 
of test data after Oehlers and Moran (1990) and theory. 

Figure 4.20 presents the correlations between the test data of Oehlers and Moran 

(1990) and theoretical lower bound predictions of plate peeling moment, M 
peer , 

relating to variations of the plate peeling moment with changes in plate width for 

uncracked plated R. C. specimens 10/1-2 and 12/1-4, where the first number denotes 

the series number with the following numbers referring to the number of beams 

considered (i. e. beams 10/1 and 10/2 for the first set, series 10, and 12/1,12/2,12/3 
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and 12/4 from series 12). In all cases, the plate thicknesses were kept constant equal 

to 10 mm with the widths of the beams set equal to 120 mm. To avoid the scatter due 

to slight variations in the concrete cube strength, f 
'u , all the theoretical and test data 

relating to the plate peeling moment have been non-dimensionalised with respect to 

the absolute maximum moment, Mputt 
, as calculated according to the British code 

BS8110 (1985), with material partial safety factors set equal to unity. As shown in the 

plots in Figure 4.20, the theory successfully predicts the general trend of variations 

between M 
Peet 

/M 
putt and the plate width, with the theoretical lower bound solution 

predicting a safe solution in all cases. Both the theoretical and the corresponding 

experimental results in the same figure indicate that increasing the plate width (while 

keeping the plate thickness constant) reduces the efficiency of the plated beam as 

expressed in terms of the ratio of the plate peeling moment to the corresponding 

moment capacity of the plated beam with fully bonded plate, M 
peC, 

/M 
putt . 

The effect of changes in the plate thickness on the magnitude of the plate peeling 

moment, M 
peel , 

is shown in Figure 4.21 where test data of Oehlers and Moran (1990) 

for series 10 and 11 (with 4 beams in each series) is used to provide support for the 

lower bound theoretical predictions relating to uncracked plated beams with all the 

steel plates having the same width as the beams equal to 120 mm Both the theoretical 

and the corresponding experimental results in Figure 4.21 indicate that increasing the 

plate thickness (while keeping the plate width constant) reduces the efficiency of 

plated beam as expressed in terms of the ratio of the plate peeling moment to the 

corresponding moment capacity of the plated beam with fully bonded plate, 

M 
peel 

/M 
puU 
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Fig. 4.21 Effect of plate width, t, on the plate peeling moment - comparison of 
test data after Oehlers and Moran (1990) and theory. 

It is particularly noteworthy that the above reported reductions in the predicted ratio 

M¬1/M1, and its corresponding test data, as shown in Figures 4.20 and 4.21, is 

accompanied with matching reductions in the values of the theoretical and 

experimental plate peeling moments. It, then, shows that increasing the area of the 

external bonded plate (either by increasing the plate thickness, width, or both) reduces 

not only the efficiency of the plated beam (expressed by the M 
peeI 

/M 
pu<< ratio) but 

also reduces the corresponding absolute plate peeling moment. 

Figure 4.22 presents variations of experimental and also lower bound theoretical 

predictions of plate peeling moment (non-dimensionalised with respect to MPuI, ) with 

changes in the ratio of plate width/plate thickness, with the test data relating to the 

beams of series 10,11, and 12 of Oehlers and Moran (1990) including four beams in 

each series: yet again the correlations between the test data and theory are very 
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encouraging. Notice that all the plated test specimens in Figure 4.22 were uncracked 

with the test specimens having plate thicknesses, t, ranging from 3.0 to 10.0 mm, and 

varying widths of plates with other beam design parameters kept nominally constant. 

It is noticeable in Figure 4.22 that although the theoretical plate peeling- moment 

provides a safe prediction and is always lower than the experimental results, no 

general trend may be identified in connection with changes in the plate peeling 

moment with increases in the plate width/thickness ratio. A careful study of the results 

presented in Figures 4.20,4.21, and 4.22, however, indicates that it is the area of the 

plate rather than the plate width, thickness, or width/thickness rätio, which is the 

primary factor controlling the magnitude of plate peeling moment. Moreover, it may 

be concluded that increasing the total area of the externally bonded plate would 

reduce the load bearing capacity of the plated beam with the higher possibility of the 

brittle premature plate peeling failure to occur. This conclusion will be clarified 

further in the course of the theoretical study reported in Chapter 6: it will be proven 

that increasing the area of the plate may lead to an over-reinforced type of plated 

beam even for under-reinforced unplated beams and, hence, may result in a brittle 

type of failure at a lower load bearing capacity. 

The data presented in Tables (4.7) and (4.8) are also meant to throw some 

experimental and related theoretical light into the effect of pre-cracking on the plate 

peeling moment (non-dimensionalised with respect to MPu, 
r ). The test data after 

Oehlers and Moran (1990) relating to the beams 1-4 in series 4 (i. e. 4/1-4) were pre- 

cracked prior to bonding steel plates to their soffits, and beams 2/1 and 2/2 had 

nominally identical design parameters to the beams of series 4 with the exception that 

beams 2/1-2 were both uncracked. An examination of the results in Table (4.8) 
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suggests that for the 6 beams tested, comparing the presented test data MCXP/MPU,, 

from series 2 with those of series 4 does not provide any clue as regards the effect of 

pre-cracking on the magnitude of M. 
XPl 

MPu, 
r , with the scatter in the test data 

masking any possible differences. Both, the theoretical uncracked and pre-cracked 

lower bound solutions M 
peei_, j 

/M 
p1 and M 

pee, -2d 
/M 

pu, t , respectively, on the other 

hand, are found to provide safe answers with the predictions of MPee, 
_IJ/MPu, r 

for 

beams 4/1-4 and 2/1-2 being less than the corresponding theoretical estimations of 

M 
peel-2J 

lM 
Pult 

Plate width/thickness ratio, b 1/t 

Fig. 4.22 Effect of plate width/thickness, bl/t, on the plate peeling moment - 
comparison of test data after Oehlers and Moran (1990) and theory. 

The effect of plate curving (prestressing) in the case of group 6/1-4 where the plates 

were pre-curved in the course of the experiments in order to induce pre-stresses at the 

ends on plating, as reported in Oehlers and Moran (1990), may be deducted from the 

data in Table (4.8). In this same Table are also included the test data relating to the 
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non-dimensionalised plate peeling moments, MexP/MPUI, of uncracked specimens 

2/1-2 which (otherwise) had nominally identical design parameters to all the four 

beams of series 6. An examination of such non-dimensionalised results in Table (4.8) 

relating to M, 
xPlMPu,, suggest some significant scatter in the test data relating to the 

four beams of series 6 which all had the same geometrical and material design 

parameters with two of its test data exceeding the corresponding values of 

MexPI MPuI, for the uncracked beams 2/1-2 and the other two test data points giving 

the same values of Mexp/M 
pu, r as the beam 2/1. It is encouraging that the theoretical 

predictions of Mpee, 
_, j/M pu,: (for uncracked sections) for beams 6/1-4 and 2/1-2 are 

found to provide a conservative solution to all the associated non-dimensionalised test 

data relating to beams 6/1-4 and 2/1-2. 

Table (4.8) also presents the test data relating to M, 
xp/MPd, 

for 4 nominally identical 

beams 9/1-4 which had pre-curved plates, in conjunction with the corresponding 

McxplMPuI, test data for the 4 beams in series 3 (i. e. 3/1-4) which were pre-cracked 

but (otherwise) had nominally identical construction details to the beams 9/1-4. 

Again, significant scatter is observed in the test data relating to Mexp/MPulf of beams 

9/1-4 and 3/1-4 with their associated lower bound theoretical predictions for 

uncracked section, M 
peel-ld 

/M 
pu1, 

(or, indeed, M 
peel-2,1 

/M 
pui, 

), offering conservative 

solutions. 

, XPlMPU, t for the beams In addition, Table (4.8) presents the test results in terms of M. 

in series 5 (i. e. beams 5/1-4) where the beams were pre-cracked and pre-cambered 
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prior to gluing, as might occur in practice. In this Table are also included the test data 

for the uncracked beams 2/1-2 which (otherwise) had nominally identical design 

parameters to the beams 5/1-4. Again, significant scatter is observed in the test results 

(under nominally identical conditions) for the four beams, 5/1-4, and when compared 

to the experimental results for beams 2/1-2, deriving any conclusive deductions based 

on purely experimental comparisons becomes difficult. It is encouraging that the 

corresponding non-dimensionalised theoretical lower bound predictions for uncracked 

sections, Mpee! 
_i, I/MP�j: , are found to offer conservative answers in all cases relating 

to MexpIMPult for beams 5/1-4 and 2/1-2. 

Finally, Table (4.8) compares the four test results as regards MexPlMPurt for beams 

5/1-4 (which, as mentioned in the above, were pre-cracked and pre-cambered) and 

corresponding experimental values of MexP/MPult for the beams 4/1-4 which were 

pre-cracked but (otherwise) had nominally identical design parameters to the beams 

511-4. Yet again, no definite conclusions may be drawn by comparing such non- 

dimensionalised test data in Table (4.8), which are found to suffer from a significant 

degree of scatter. However, the non-dimensionalised lower bound theoretical 

estimates M 
pee, _2, r 

/MPurt are found to provide a safe solution to all the associated 

non-dimensionalised experimental data in Table (4.8) relating to the beams 5/1-4 and 

4/14. 

Bearing the above observations in mind, it may be concluded that, in view of the 

inherent wide scatter problem associated with the plate peeling phenomenon in 

practice, use of purely experimental data for investigating the influence of various 
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beam design parameters and/or plating techniques (i. e. purely experimental 

parametric studies) is, even under closely controlled laboratory conditions, unlikely to 

lead to any conclusive deductions: such purely empirical approaches are fraught with 

difficulties and uncertainties. In view of the absence of a unique solution, therefore, 

the presently developed version of lower/upper bound model which is based on an 

extended version of the model suggested by Raoof and Zhang (1997) should prove 

useful in this context, with the lower bound formulations being the appropriate ones 

for design purposes, relating to a wide range of beam design parameters and steel 

and/or FRP plating techniques. 

4.7 COMPUTER PROGRAMME 

As most of the published results are concerned with the ultimate failure load/moment 

and very few sources present the direct axial stresses (or strains) in the externally 

bonded plates, the need arises to develop a computer programme to predict the 

flexural load bearing capacity of the plated beam in terms of moments at the instant of 

plate peeling failures. The computer programme used throughout this research was 

written to fulfil these needs with certain added features (for further analysis of data). 

The computer programme predicts the theoretical upper and lower bound plate 

peeling moments for the plated R. C. beam corresponding to the maximum and 

minimum axial stresses in the external plate. It considers the pre-loading conditions 

(i. e. pre- or uncracked conditions) prior to plating, and it can cater for various material 

characteristics for the plate. The programme handles the stress-strain relationships for 

concrete as in Figure 4.23a, FRP as in Figure 4.23b and steel with the option that the 

tensile stresses in concrete may be ignored (or included) if desired. 
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and 4.24b, respectively, for the steel material (bars and/or plates) can be handled. 

tension 

r f. 
compression 1+ f1+ f' 2000 

157 



Different types of bond stresses between the plate and concrete beam may also be 

selected. The material partial safety factors may be included or omitted as desired. 

Although the numerical analysis throughout the programme generally follows the 

recommendations of BS8110 (1985) and/or BS5400 (1990), details of the strain 

compatibility throughout the cross-section of the plated beam are catered for, and a 

numerical integration technique is used in order to calculate the section forces with an 

iterative method implemented for achieving the force equilibrium. 

The full list of the computer programme which is written in FORTRAN-77 (release 

9.0) for HP-UX system with its sub-programmes is presented in appendix A. 

Appendix A also presents the algorithm for the programme in addition to the 

numerical techniques adopted. 

4.8 CONCLUSIONS 

Following the previously reported (Chapters 2 and 3) critical review of available 

literature on external FRP plate bonding technique, certain major gaps were identified 

in the state of knowledge. This chapter reports a semi-empirical model backed by 

extensive large and small scale test data from a number of independent sources, 

covering a wide range of beam design parameters, for predicting the upper and also 

lower bounds to premature FRP plate peeling moments of R. C. beams strengthened in 

flexure by externally bonded FRP plates. The proposed model is an extended version 

of the one developed by Raoof and Zhang, with the original version applicable to 

cases when steel (as opposed to FRP) is used as the plating material. The presently 

developed model deals with R. C. beams strengthened with steel/FRP plates and 

enables one to study the pre-loading conditions of the beam prior to the application of 
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external FRP and/or steel plates. The model depends on the spacings of stabilised 

cracks in the concrete cover zone, and in view of large variations (by a factor of, say, 

2) in spacings of such cracks in practice, it is argued that a unique solution for the 

premature FRP and/or steel plate peeling moment does not exist and, hence, one has 

to resort to theoretical bounding solutions with these being different from upper/lower 

bounds in the sense used in, for example, plastic analysis of frames. 

In total, 58 individual test data for FRP plated beams, and 111 individual test results 

relating to steel plated beams (as reported by others) have been found to support the 

theoretical bounding solutions: this, then, provides ample evidence for the general 

applicability of the proposed model for use in practice. It is particularly noteworthy 

that out of the 169 individual test data, only in connection with one test result has the 

model been found not to provide a safe (lower bound) solution with this individual 

test result being believed to be of a suspect nature. Moreover, it has been shown 

(particularly in the case of steel plated beams) that the premature plate peeling 

moment may in certain cases be significantly lower than the associated flexural 

ultimate moment of unplated R. C. beam which has been designed according to, for 

example, BS8110 (1985) even when (unlike the corresponding calculations for the 

externally plated beam) material partial safety factors are included in the calculations 

for the unplated beam. In other words, it is noteworthy that adding externally bonded 

plates to R. C. beams in order to strengthen them in flexure may (if one does not guard 

against premature plate peeling failure) reduce their flexural ultimate load. Such 

largely brittle failures can obviously have serious implications in practice where this 

method has been used extensively for strengthening both bridges and buildings in a 

number of countries. 
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Based on extensive test data, it has also been demonstrated that in the case of 

externally bonded steel plates to R. C. beams, by keeping the plate width to thickness 

ratio above 60, one may, as a simple preliminary design approach, avoid occurrence 

of premature plate peeling failures. No such simple empirical bounding value for the 

plate width to thickness ratio, however, has been shown to exist in relation to cases 

when externally bonded FRP plates (which unlike steel plates are available with a 

wide range of ultimate strengths and Young's moduli) are used, hence, the pressing 

need for a generally applicable and reliable model such as the one ptesently proposed. 

This chapter also addresses the question of pre-cracking in R. C. beams prior to 

bonding steel plates to their soffits and testing them to failure. It is theoretically 

shown that the previous practice by most researchers who have tested uncracked (i. e. 

as cast) plated R. C. beams to investigate the influence of various beam design 

parameters on the plate peeling moment, is, perhaps, a conservative approach and the 

so-obtained test data on uncracked beams may reasonably safely be used for 

predicting the behaviour of R. C. beams in actual structures which (under service 

conditions) are invariably pre-cracked to some degree. 

Finally, using a rather comprehensive set of large scale test data (from other sources), 

encouraging support has been provided for certain aspects of theoretical predictions as 

regards the influence of various beam design parameters on the magnitude of plate 

peeling moment. In particular, it is shown that in view of the inherent wide scatter 

problem associated with the plate peeling phenomenon in practice, purely 

experimental parametric studies for investigating the influence of various beam design 
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parameters and/or plating techniques on the plate peeling moment are, even under 

closely controlled laboratory conditions, unlikely to lead to any conclusive 

deductions, and such purely empirical approaches are fraught with uncertainties. 

In conclusion, the lower/upper bound semi-empirical model presented in this chapter 

is believed to be of general applicability and its lower bound (i. e. conservative) 

predictions are the appropriate ones to be used for design purposes 
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Beam title 
ACI unplated 

predicted shear 
capacity V. (kN) 

Actual failure 
load for plated 
beam VeSp (kN) 

Reported mode 
of failure 

1/1/N 27.3 41.0 Shear 
1/2/S 27.3 29.7 Shear 
1/2/N 27.3 32.5 Shear 
1/3/S 27.3 41.6 Shear 
1/3/N 27.3 34.6 Shear 
1/4/S 27.3 41.0 Shear 
211/N 28.2 44.0 Flexural 
2/1/S 28.2 40.1 Shear 

2/2/N 56.2 43.8 Flexural 
2/2/S 56.2 43.8 Flexural 
2/3/N 84.8 44.9 Flexural 
2/3/S 84.8 45.2 Flexural 
2/4/N 122.6 46.1 Flexural 
2/4/S 122.6 44.9 Flexural 
5/1/N 123.0 45.9 Flexural 
5/1/S 123.0 43.9 Flexural 
6/1/- 29.3 25.0 Flexural 
6/2/- 29.3 25.5 Flexural 
6/3/- 29.3 21.4 Flexural 
6/4/- 29.3 21.1 Flexural 
7/1/N 28.6 17.0 - 
7/1/S 28.6 17.5 Flexural 
7/2/* 28.6 23.8 Flexural 
8/1/N 26.2 14.7 - 
8/1/S 26.2 14.8 Flexural 
8121* 26.2 32.0 Flexural 

Table 4.5 Comparisons between the actual failure load and mode of failure for 
the plated beams and the predicted shear capacity of the 
corresponding unplated beams for beam - designs after Oehlers 
(1992). 
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Chapter 5 

FLEXURAL FAILURE MODES FOR THE EXTERNALLY 

PLATED BEAMS 

5.1 INTRODUCTION 

The purpose of this chapter is to address all the possible modes of failure which are 

likely to occur in connection with reinforced concrete beams upgraded with externally 

bonded steelFRP plates glued to their soffit (tensile side). The different types of 

beam-plate interaction phenomena and the related composite beam load carrying 

capacities will be discussed in some detail in the next chapter. 

5.2 PLATED BEAM FLEXURAL CAPACITIES 

In view of the fact that the external plate is not (similar to the internal steel bars) 

monolithic with the concrete, the interaction between the plate and concrete will not 

be as strong as it is in the case of the internal steel bars. 

The external plates are usually glued to the tensile side of the beams by using a strong 

adhesive. There is no direct contact between the concrete and the plate and the latter is 

not confined by the concrete. In view of these conditions, the plate may not remain 

fully bonded to the beam up to its full flexural capacity. 

In what follows, the term `full bond flexural capacity' refers to the load carrying 

capacity of the beam when the externally bonded plate remains fully bonded to 

concrete up to the ultimate load, with plane sections remaining plane over all the 
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beam sections. In the presence of full bond, the external plate will act in a similar 

fashion to the embedded steel bars and, then, the strain compatibility and equilibrium 

conditions for forces and moments over all the beam sections will be similar in form 

for both the plate and the embedded bars. Under such conditions, at least one 

maximum moment section exists, and the beam will eventually reach its full load 

carrying capacity at that section: the beam's flexural load bearing capacity will, then, 

be referred as the full bond capacity. 

There are, however, certain other modes of failure which are premature in nature and, 

hence, reduce the plated beam's load bearing capacity below that of the full bond 

capacity. These undesirable modes of failure occur, for example, due to separation and 

slippage at the steel/concrete interface, or due to the plate/concrete cover ripping off 

(peeling). The plate separation occurs either between the plate and the adhesive layer, 

or between the concrete and the adhesive layer. The plate peeling phenomenon, on the 

other hand, is always initiated at the end of the plate with concrete cover peeling at the 

underside level of the internal (embedded) reinforcing steel bars with the plate and 

concrete cover, as a unit, splitting away from the beam. 

There are currently a number of research projects world-wide which address the 

question of enhancing the bond between the plate and concrete, and avoiding the 

occurrence of plate peeling, using many techniques such as end anchoring, side 

plating, etc.. By using strong adhesives, and adopting more sensible glue application 

techniques, it has (in certain cases) been found that the plate separation problem at the 

glue line can be avoided. The plate/concrete peeling failure, however, still poses an 
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obstacle in the way to achieve the full bond capacity for the externally plated 

reinforced concrete beams. 

When the plate does not interact fully with the reinforced concrete beam up to the 

ultimate load (i. e. premature failure occurs), the load bearing capacity of the 

composite beam will be referred to as the `partial bond capacity', and the beam's 

failure may happen outside the maximum moment zone: this may be due to premature 

failure within the adhesive material or, can, indeed, happen in the concrete cover. 

As discussed in the previous chapters, partial bond (peeling) behaviour is largely 

controlled by the tensile strength of concrete. In the present work, it is assumed that 

estimates of the tensile stresses at the critical location within the concrete cover may 

be based on the stabilised crack formation theory within the concrete cover which, due 

to the complicated nature of the problem, embodies an upper (maximum) and a lower 

(minimum) limit on the spacings of stabilised flexural cracks. 

The axial force carried by the plate which is responsible for the presence of such 

tensile stresses in the concrete cover, depends on the spacings between two adjacent 

stabilised cracks, the effective length of the plate, the width of the beam, the thickness 

of the concrete cover, and the concrete tensile strength. The crack spacings are the 

most uncertain factors in practice, and have a wide range of values varying from a 

minimum to a maximum limit. 

Considering that there generally exist two largely different minimum and maximum 

values for the axial plate stresses, the plated beam will have two corresponding 
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limiting values of load bearing capacities (i. e. flexural moments): these correspond to 

cases when the axial plate stress reaches its minimum (for the lower partial bond 

capacity) or its maximum (for the upper partial bond capacity). 

In what follows, the estimates of flexural beam capacities will be based on the 

following assumptions: 

1- plane sections remain plane after bending, and 

2- the stress-strain relationships for steel and concrete as recommended by the 

BS5400 (1990) and BS8110 (1985) (wherever appropriate), will be used. 

Moreover, the strain compatibility along the plated beam sections, and the equilibrium 

of forces and moments will be considered: these results will, then, be used in the 

subsequent chapters in order to throw some light on the changes of the modes of 

failure as influenced by variations in, for example, the magnitude of the modulus of 

elasticity for the FRP plate material (within current manufacturing limits). 

The material partial safety factors which are used in the following formulations 

relating to the flexural beam capacity, follow those recommended by the codes of 

practice, and are assumed to be 1.0 in certain cases while in other instances (wherever 

appropriate) those recommended by the British code BS8110 (1985) will be used. 

According to BS8110 (1985), the material partial safety factor of 1.15 is used for the 

steel plates and the reinforcing bars, while for the concrete, a material partial safety 

factor of 1.5 is assumed. The material partial safety factor for the FRP used as the 

plating medium (in the absence of any code recommendations) is (for the present 
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purposes) chosen as that for steel (i. e. 1.15): this is in view of the high quality control 

usually adopted in producing composite materials.. 

The full bond capacities relate to the moments Mpuu and Mmim for the plated and 

unplated sections, respectively: these moments will be calculated using material 

partial safety factors of 1.0. In addition, the plated and unplated beam moments Mp1 ed 

and MRc, respectively, are (in what follows) calculated according to the BS8110 

(1985) recommendations using the material partial safety factors as recommended by 

BS8110 (1985). % 

The partial bond capacities relate to the lower bound moment, Mtower, and the upper 

bound moment, Mupper. The assumed material partial safety factors for these two 

limiting premature flexural moments will be taken to be equal to 1.0. 

5.3 THE EXPECTED MODES OF FAILURE 

As regards the failure characteristics of reinforced concrete beams, the flexural modes 

of failure may be classified as either ductile (where the failure happens after the 

internal bars have yielded associated with which are large deformations and 

curvatures), or brittle, where the failure occurs without any warning and no significant 

associated beam overall deformations, and in the absence of yielding of the embedded 

bars. 

Failure of plated beams may either be due to over-stressing (or over-straining) in the 

brittle elements such as compressive or tensile failure of concrete, and rupture of FRP 
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plate, or it may be due to failure of the ductile materials such the internal steel bars 

and/or the steel plates which may be strained far beyond their initial yield points, up to 

total failure (i. e. rupture). 

Brittle materials such as the FRP or concrete can not carry any load when strained to 

their elastic limits and fail suddenly, while the ductile materials such as reinforcing 

steel bars or steel plates continue to carry the yield load subsequent to being strained 

to the initiation of yield, whereby their corresponding load level very nearly remains 

unchanged with increasing levels of imposed axial strains. 

Unplated beams have only one type of brittle material (i. e. concrete). Their brittle 

mode happens when the maximum concrete strain, 8m , reaches the crushing value (e. g. 

cm = 0.0035 in BSS110 (1985)), while the steel bars never reach the yield point. Their 

ductile mode of failure, on the other hand, happens if the concrete is crushed after the 

bars have yielded and, in such cases, the beam experiences large overall deformations 

and curvatures. 

In contrast to unplated reinforced concrete beams, the externally plated beams have up 

to three different types of brittle elements (i. e. crushing of concrete, rupture of FRP 

plate, and failure of concrete in tension initiated at the end of the plate): it then 

follows (at least theoretically) that, for plated beams, there are up to eight different 

possible flexural modes of failure. 
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Since the steel plates are of a ductile type, certain number of these eight modes of 

failure will not occur in the case of composite beams which are reinforced with 

external steel plates, and will only be applicable to those beams which are upgraded 

using externally bonded brittle FRP plates. 

Similarly, because the FRP plates and concrete are both brittle, a certain number of 

the failure modes which correspond to simultaneous over-straining of both the 

concrete in compression and the FRP plate in tension, are extremely unlikely to occur 

in practice. The reason being that these two brittle materials are unlikely to fail 

together at the same instance, and (most probably) only one of them will be the 

controlling factor for the theoretical ultimate failure. Such brittle modes of failure, in 

which the concrete and the plate would fail simultaneously, are not considered here 

when addressing the behaviour of beams which are externally reinforced with only 

FRP plates and are assumed to be applicable only to those beams with external steel 

plates. 

In the case of beams with external steel or FRP plates, ductile failure modes are 

assumed to occur only if the internal steel reinforcing bars reach yield. Their failure 

mode will be described as brittle if the axial stresses in the steel bars, at the instant of 

beam's total collapse, are lower in magnitude than that of yield stress for steel. 

In summary, the load carrying capacity of the beam will be classified as a partial bond 

capacity due to premature plate peeling failure, if the concrete in tension within the 

cover, is the controlling factor for the failure mode, while it will be classified as full 

179 



bond capacity, if the failure is controlled by either the crushing of concrete or the 

rupture of FRP plate at the maximum moment section. 

The possible eight modes of failure for the externally plated beams may, thus, be 

listed as in the following, with the element which controls the final failure in each 

mode underlined: (the symbols C, R or P refer to Concrete, Rebar, or Plate, 

respectively) 

1- Crushed concrete, unyielded bars and unruptured/unyielded plate C. -, 

2- Crushed concrete, unyielded bars and yielded plate C-P, 

3- Crushed concrete, yielded bars and unruptured/unyielded plate CR-, 

4- Crushed concrete, yielded bars and plate CRP, 

5- Uncrushed concrete, yielded bars and ruptured plate -RP, 

6- Uncrushed concrete, unyielded bars and ruptured plate - -P, 

7- Peeled end plate, yielded bars and unruptured/unyielded plate -R-, and 

8- Peeled end plate, unyielded bars and unruptured/unyielded plate ---. 

Table (5.1) lists all the theoretically assumed modes of failure for the beams upgraded 

with either external steel or FRP plates, classified according to the type of the bond 

(full/partial bond capacity), and the ductile or brittle nature of failure mode. 

The stress and strain distributions corresponding to each of the above failure modes, 

and the associated equations of equilibrium are addressed in some detail in what 

follows. In the present work, tension in concrete will be neglected for simplicity, as its 

effect is of relatively minor importance compared to the other tensile forces in the 
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reinforcing bars and the external plate. For the present purposes, the simply supported 

beam is assumed to be subjected to symmetrical four-point loading. 

Beam externally reinforced with 
Capacity Ductility FRP plate Steel plate 

CR- 

acit d ll b F 
Ductile modes CRP 

y on cap u 
-RP 

C- - 
Brittle modes C-P 

- -P 
Partial bond Ductile modes -R- 

capacity Brittle modes ... 

Table 5.1 Modes of failure for beams upgraded with external plates. 

5.3.1 Failure Mode C- - 

This mode corresponds to cases when, the brittle failure is due to concrete crushing 

(e0 = Em = 0.0035) at the maximum moment section (i. e. between the external point 

loads), while the stress in the embedded bars is lower than the steel yield stress 

(fs < f, ), and the axial plate stress is lower than either the FRP ultimate strength or 

the steel yield stress (f n<f nu or fv<f,, ) - see Figure 5.1. 

The failure will happen suddenly, following the crushing of concrete at the top surface 

of the beam. In this mode, the beam capacity is classified as full bond capacity, and 

this type of failure may occur in the beams reinforced with either steel or FRP plates. 
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Fig. 5.1 Mode C- -: Section strains, stresses, and dimensions. 

From Figure 5.1, the following may be derived: 

Ep 
_ 

Es 
= 6j, Eo 

D-y d-y y-dý y 

Es=sod 
Y andsP=SoD-y 

y 

From the equilibrium condition, FF =F, 

where, F= FS + Fp, 

z' - F'r -4 77 r 
d-y 

lS nS'USýS ýaS'ýSýO ý 

Y 

FP = 
APEPEP = APEPEo 

D-y 

y 

F's 
Fcc 

and, the total compression force, FF, as derived in Appendix B (Equation B. 51), is 

dý 
Fc =ASESEo 

Y +0.67fcu ybaf 

where, af ýu =1+ 
nn f ýu 17e 17' 

- E0 43 Ec = 17e fu and /3 = 17, f ýu 

4=e. =0.0035 fý=0.67fý� 
, --. ý 
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with, 7/b = 2.44 x 10-4 , eo = Em = 0.0035, and if the concrete modulus of elasticity is 

not determined experimentally, one may assume (according to the BS5400 (1990)) 

77 =5.5. 

The above equilibrium equation will, then, lead to the following: 

/ 
ASEseo 

d-Y 
+APEPEa 

D-Y 
= AsE, ea 

Y-d +0.67fý�Ybaf 
yY 

5.3.2 Failure Mode C-P 

(5.1) 

This case corresponds to the brittle failure due to crushing of concrete 

(e = Em = 0.0035) at the maximum moment section, while the stresses in the 

embedded bars are lower than the steel yield (f 
s<f Y), 

but the attached steel plate 

has yielded (i. e. EP > e, y and fP=f 
Py) - see Figure 5.2. The final failure will happen 

suddenly, following the concrete crushing at the top surface of the beam. 

In this mode, the composite beam has full bond capacity. It should be noted that this 

case is assumed not occur when the plate material is FRP, as, in such cases, the final 

failure is highly unlikely to simultaneously happen in both the concrete and the FRP 

plate. 
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eo =cm =0.0035 fe=0.67fcu 

C 
, 
Eay 

Ep 
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NA 
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PfPY 

Fig. 5.2 Mode C"P: Section strains, stresses, and dimensions. 

. FI s 
"Fýý 

The equilibrium equation for this mode may be derived following the same procedure 

as that used for the previous mode C- - (Equation (5.1)), with the only difference 

being that the tensile force acting on the external steel plate, F., will be 

FP = `4PfPx 

Equation (5.1) may, then, be replaced by 

ASESEod 
yy+Apfpy=AsE, 

{eo 

y 

yd 
+0.67fcuybaf (5.2) 

5.3.3 Failure Mode CR- 

In this mode, ductile failure is due to crushing of concrete (co = em = 0.0035) at the 

maximum moment section subsequent to the bars yielding (i. e. e> ey and f, =fY), 

and the axial plate stress is lower than either the FRP ultimate strength or the steel 

yield strength (f P<f Pu or fP<f 
y) - see Figure 5.3. 
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The final failure will happen after large overall beam curvatures and deformations, 

associated with propagation of the cracks on the tension side, and subsequent crushing 

of concrete at the top surface of the beam. In this mode, the load bearing behaviour of 

the beam is classified as the full bond capacity, and this type of failure can occur in 

beams upgraded with either steel or FRP plates. 

e, =Em=0.0035 f, =0.67fcu 

Fig. 5.3 Mode CR-: Section strains, stresses, and dimensions. 

_A : 
-Fcc 

The equilibrium equation for this mode may be derived following the same procedure 

as that for the previous mode C- - (Equation 5.1), with the only difference being that 

the tensile force acting on the internal reinforcing bars, Fs, will, then, be 

Fs = A.. fr 

which leads to 

_ ASfy+APEPeo 
yD 

yAsEseo y+0.67fýuybarý (5.3) 
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5.3.4 Failure Mode CRP 

In this case of ductile failure, crushing of concrete (60=6, =0.0035) at the 

maximum moment section is associated with yielding of the embedded bars and the 

attached steel plate (i. e. es > Ey and f, =f y) - see Figure 5.4. 

Co =Em =0.0035 fc=0.67fcu 
[7ý7 

ý-- r"- I 

L EM 

NA 

A sfý 
AP fPY 

Fig. 5.4 Mode CRP: Section strains, stresses, and dimensions. 

Fls 
F, c 

The final failure will happen with large overall changes in curvatures and 

deformations, with the propagation of the cracks within the tension side of the 

specimen (with the plate having yielded), and subsequent crushing of concrete at the 

top surface of the beam. In this mode, the beam load bearing capacity is classified as 

the full bond capacity with full utilisation of all the section materials. It should be 

noted that this case is highly unlikely to occur when FRP plates are used, as the failure 

is extremely improbable to simultaneously occur in both the concrete and the FRP 

plate. 
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The equilibrium equation for this mode may be derived following the same procedure 

as that used for the mode C- - (Equation 5.1), with the provision that, in this case, the 

value of tensile forces acting on the internal reinforcing bars, Fs, and the external steel 

plate, Fp, will be 

Fj=A,. fy and FP=APfPY 

which lead to Equation (5.1) being re-written as 

i 
Asfy+APfP=AEsEo Y_d +0.67f, 

uYbar (5.4) 

5.3.5 Failure Mode -RP 

In this ductile mode of failure, the FRP plate ruptures (i. e. EP = EPu and fP=fP. ) 

within the maximum moment zone, while the internal bars have yielded (i. e. ES > EY 

and f=fY), but the maximum concrete strain is not large enough to cause crushing 

of concrete (co = Em = 0.0035) - see Figure 5.5. 

The final failure will happen following the development of large curvatures and 

deformations at the tension side of the beam, and after the rupture of FRP. In this 

mode, the load bearing capacity of the beam is classified as full bond capacity. It 

should, however, be noted that this mode of beam failure will not occur when ductile 

steel plates are used. Due to the concrete not crushing, there are two possible cases to 

be studied associated with the maximum concrete strain-stress distribution. 

The first case relates to instances when the maximum concrete compressive stress is 

less than the crushing value (=0.67f,,, ) and the concrete stress distribution is of a 
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parabolic form (i. e. e,, <_ fl, where ß=2.44 x 101 j-,, ), see Figure 5.5, (Case 1), 

using which the total compression force, FF, may be expressed by the following 

equation (as derived in Appendix B (Equation (B. 52)) 

Fc=AJEse Y-dl +ffic 16P Y2+bKt 
ýn 2Y3 

P D- 2 
(D-Y) 

3 
(D-Y) 

Y 

where 

- V. 
0.67f cu - Ec ß 

III - ýZ 

and, the tension forces are 

F, =A, fy and FP =Apffu 

By applying the force equilibrium condition 

F, =F1= F, + FP , then 

Afy+APfp� =AiEsEP 
y-d' +bE EP )y2+bKl( EP 

y3 
D_y2 D-y 3 D-y 

Fig. 5.5 Mode -RP: Section strains, stresses, and dimensions. 

(5.5) 
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Relating the above equation to the axial strains in the embedded steel bars, t,, one gets 

/ 

ýfy+ApfPu =AiE, ES 
dd +bE, 

r Esyl 2+bKt(dý, 
y) 

23 

y2Y3_y 
(5.6) 

The second case relates to instances when the maximum concrete compressive stress 

reaches the highest possible value (=0.67 f 
. 
), with the maximum concrete strain, 4, 

being higher than ß but not large enough to cause crushing of concrete (i. e. 

fl :5e< Em =0.0035). In this case, the compression stress distribution is a 

combination of parabolic and linear distributions as shown in the Figure 5.5 (Case 2): 

the total compression force, FF, may, then, be expressed by Equation (B. 54) as derived 

in Appendix B, - i. e. 

F, =AsE, Ep 
ý_d 1 

y+0.67f�ub 

i 2 ý3 

y+ßy-QD +bE (D-y)+b3'sp(D-y) 
DD 

\/ 

and by applying the equilibrium condition F, =F, = Fs + FP 

where, Fs =A, fy, and FP =APfPu 

one gets 

dý 
A, 

4fy+APfpu=A; 
EsEP +0.67f, u Y+ 

ß 
Y- )6 D+ 

D-Y CP CP 

bE 
2 , 

ý(D-Y)+ 3 ý(D-Y) 

By multiplying both sides by e p, Equation (5.7) may be re-written as 

dý 
AsfyeP+APfPUEP=A, Es eP +0.67ffub[yEP-ß(D-y)] + 

2ß2(D- Y) + bKt ß3(D-Y) 

(5.7) 

(5.8) 
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and, relating the above equation to the axial strains in the embedded bars, r, one 

finally arrives at the following: 

Affy+Apfp4ýJ =AsEsý2 d-y 
, 

+o. 67f, 
ubýy6s-ß(d-y)]+ 

b2`, ßZ(d -y)+b3 `ß3(d - y) 

5.3.6 Failure Mode - -P 

(5.9) 

This case relates to the brittle failure due to FRP plate rupture (i. e. ep = ipu and 

fp = ff�) at the maximum moment zone, while the embedded steel bars have not 

yielded (i. e. e<e and fs < fy ), and the maximum concrete strain is not large 

enough to cause total crushing of concrete (i. e. eo < e,,, = 0.0035) - see Figure 5.6. 

The final failure will happen suddenly, without any prior warning. In this mode, the 

load bearing capacity of the beam is classified as full bond capacity. It should, 

however, be noted that this mode will not occur when ductile steel plates are used. As 

in the previous mode of failure, there are two cases to be considered as regards the 

value of maximum concrete strain (or stress) distribution. 

For both cases, the previously derived equations for the -RP mode may still be used 

with the provision that the axial force in the embedded bars, Fs, may, then, be 

expressed as 

F, =AsEsE, orF, =AsEe pd-y D-y 

and, the equilibrium equation for Case 1 will be 
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AsEsCp(d - y)(D-y) +Apfpu(D-y)Z = AsEsEp(y-d')(D- y) 

2 
bEc 

Ev(D_y) y2+ 3 Epy3 

4 -<-V. 
0035 

i 

NA 

Case 

As fs 

Apfp� 

(5.10) 
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fý=0.67fýu 

ý FIS F 

cc 
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A d, 
f5 

-, 

Apfpu 

Fig. 5.6 Mode - -P: Section strains, stresses, and dimensions. 
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If one relates the above equation to the axial strains in the embedded bars, 4, one 

arrives at the following 

ASEsss(d - y)2 + Ap fPu(d - Y)2 = As E: eS(Y-d')(d - y) +36s y3 + 
(5.11) 

bE, 
2 Es(d_y)y2 

Applying the same procedure as that adopted for Case 2, then, the equilibrium 

equation will be 

ASE ed -y +Ap 
D-y 

f C=AsEs62 
y-d 

+0.67ffuby[cp -ß(D- y)] D-y 

bE, ß2 (D - y) + 
b3 ß3 (D - y) 

or, in terms of the axial strains in the embedded steel bars: 
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+0.67f, ub[yE: -, ß(d-y)]+ AEsss+APfPuEs=AsEfes d_-y/ 

b2 ̀ /32(d - y) + b3', ß3(d - y) 

(5.13) 

5.3.7 Failure Mode -R- 

This corresponds to a ductile mode of failure due to the concrete cover ripping off (i. e. 

plate peeling), where fp = Qs, associated with which the embedded bars are Melded 

(i. e. es > $y and fs > fy ), but the maximum compressive strain in concrete is not 

large enough to lead to total crushing of concrete (e0 < 0.0035) - see Figure 5.7. The 

final failure will happen subsequent to the development of large curvatures and 

deformations at the tension side of the beam, and after the plate with concrete cover 

have peeled off, as a unit, from underside of the beam. According to the stabilised 

crack formation theory, the critical plate peeling stress, a,, may vary by a factor of 

two. In this mode, the load bearing capacity of the beam is classified as partial bond 

capacity. 

I 
ý- býýý. 0035 fý 

-<-V. 
67fýu fý-0.67f,.. 

NNW 

-1 

eý 3 

- I- 

r-z7-7p 

ly 

_.., 
`ý- CPU 

NA 

Case 

A s, fs 

AP as- 

FIS 

cc 

Case 2 

Asfs 

Ap as 

Fig. 5.7 Mode -R-: Section strains, stresses, and dimensions. 
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As the concrete will not be totally crushed, similar to the two previously discussed 

modes of failure, there are two possible cases for the maximum concrete strain-stress 

distribution to be studied. In both cases, the equilibrium equations already derived for 

the -RP mode may still be used with the provision that one should also consider the 

changes in tensile forces in the external plate, F., which will, then, be limited by the 

values of minimum or maximum axial plate peeling stress, o-i. e. 

FP = Apc3 

This leads to the equilibrium equation for Case 1 to be 

As"fy(D-Y)2+AP. Qs(D-y)2=AsEsEp(Y-d')(D-Y)+ 
3 EPY3+ 

2 
EP(D - Y)Y2 

(5.14) 

Relating the above equation to the axial strains in the embedded bars, C, it may, then, 

be written as 

AS fy (d - y)2 + ApQs(d - y)2 = AS Es sf ( y-dý)(d - y) +2 es (d - Y) y2 + 

bK162y3 
_ 

(5.15) 

Following the same procedure as that for Case 2, the equilibrium equation will be 

i 
AS fyEP +Ap QsEP = AsEsEp 2 _Yy+0.67f, ub[yEp -, ß(D- y)]+ 

2 p2 (D - y) + b3'ß3(D 
- y) 

(5.16) 

and, relating the above equation to the axial strains in the embedded bars, E, one gets 

As. fyes +Ap. c3 = A, E5 y-d +0.67ff�b[yes -ß(d - y)] + 
d-y (5.17) 

b2cß2(d-y)+ 3 ß3(d-y) 
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5.3.8 Failure Mode --- 

In this mode of brittle failure due to the concrete cover ripping off (i. e. plate peeling), 

where fP =a,, the bars have not yielded (i. e. e <, 6y and fs < fr ), and the 

magnitude of maximum concrete strain is not large enough to make the concrete in 

compression undergo crushing (e < 0.0035) - see Figure 5.8. 

The failure will happen suddenly, with the concrete cover and plate peeling, as a unit, 

from the tensile side of the beam. According to the stabilised crack formation theory, 

the critical plate peeling stress, a,, can vary by a factor of two. In this mode, the load 

bearing capacity of the beam is classified as partial bond capacity. 

As the concrete will not be totally crushed, similar to the two previously discussed 

modes of failure, there exists two possible cases for the distributions of maximum 

concrete strains (or stresses) to be studied. 

ý--- b --H e, m. 0035 fý=0.67fýu 
r-i rý 

F 

cc 

F 

cc 

Case 2 

A s. fs 
Apas 

Fig. 5.8 Mode --- : Section strains, stresses, and dimensions. 
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For both cases, the equilibrium equations derived for the -RP mode may still be used 

with the provision that changes in the axial force of the external plate, F,,, will be 

limited by the minimum or the maximum values of axial plate peeling stress, a,, and 

the tensile force in the embedded steel bars, fs, will not reach the yield point - i. e. 

Fp =Ap Qs and Fs =As Es ss or Fs =As . Es ep(dy 
D-y 

which leads to the equilibrium equation for Case 1 

AS. ESEp(d - y)(D- y)+Ap"QS(D- y)2 = ASEsEp(y-d')(D- y)+ 
ýEp(D- 

y)y2 +ýEpy3 
(5.18) 

If one relates the above equation to the axial strains in the embedded bars, r, it may 

be re-written as 

A, E, s, (d - y)2 +Ap 05(d- y)2 = AsEes(y-d')(d- y)+ 
2 

ý, (d- y)y2 + 
bK, 62 y3 35 

(5.19) 

Applying the same procedure as that for the Case 2, then, the equilibrium equation 

will be 

+ ASEsEpI 
rny 

+AP QSEP = ASE, EP n" +0.67f, ubI yep -ß(D-Y)] 

2 ß`(D-y)+ýß3(D-y) 

or, once it is expressed in terms of the embedded steel bar strains: 

_/ 
ASEsEs + AP Qs Es = As Es Eý 

dy+0.67 f, 
ub[YEs - 

ß(d - y)] + 
2 ßZ(d - Y) + K83 (d' y) 

- vS- ýaSUi- P D-y PPP D_y 
(5.20) 

(5.21) 
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5.4 CONCLUSIONS 

The equilibrium and compatibility equations for all the eight possible modes of failure 

associated with steel/FRP plated beams have been developed. These will be used in 

the next chapter for formulating solutions for the theoretical predictions of the various 

characteristics of all the possible modes of failure as a function of changes in the 

magnitude of the modulus of elasticity for FRP plates (within current manufacturing 

limits). 
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Chapter 6 

EFFECT OF THE MODULUS OF ELASTICITY FOR THE FRP 

PLATE ON THE PLATED BEAM FLEXURAL LOAD 

CAPACITIES AND MODES OF FAILURE 

6.1 GENERAL 

The purpose of this chapter is to present a study which explains the effect of variations 

in the magnitude of the modulus of elasticity, E., for the external FRP plate bonded to 

reinforced concrete beams, on the modes of failure for the composite beam with a 

detailed account of section stress and strain distributions, plus the resulting beam 

flexural load capacities. 

Only the two types of failure modes (i. e. CRP and C-P- as described in Chapter 

5) which are only relevant to cases when steel plates are used, will not be considered 

here. The reason being that, unlike the FRP materials which are currently available 

with a wide range of moduli of elasticity, the steel materials used for plating generally 

possess a very narrow range of elastic moduli: this suggests that there is no need to 

extend the study to those modes of failure which exclusively occur in connection with 

steel as the plating material. 

In what follows, it is assumed that the unplated beams are all under-reinforced. The 

failure mode for such unplated beams is, therefore, assumed to be ductile, and that the 

ratio of the area of embedded steel bars to the effective concrete area allows the bars 

to reach yield, prior to the final failure occurring by crushing of concrete. 
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6.2 EFFECT OF THE PLATE MODULUS OF ELASTICITY ON 

THE BEHAVIOUR OF PLATED BEAM 

In the following sections, the influence of variations in the plate modulus of elasticity 

on the plated beam behaviour will be discussed individually for each of the related six 

modes of failure. 

For the sake of simplification, with no significant loss of accuracy, the derivations in 

this chapter ignore the resistance of concrete in tension. The practical implications of 

this simplifying assumption will, however, be discussed at the ehd of this chapter 

(section 6.2.5), and it will be shown that this is a practically reasonable assumption. 

6.2.1 Failure Mode CR- 

In this full bond and ductile mode of failure, the equilibrium equation for section 

forces (Equation (5.3)), as derived in Chapter 5, will be used to investigate the effect 

of varying the magnitude of plate modulus of elasticity, where 

Asfy+APEPEo 
DY 

=ASEseo 
Y-d +0.67fuYbafry (6.1) 

YY 

and 

alcu- 1+Co 
xÖ 

Q 

ýu 3, 

It should be noted that, by definition, af. is a fraction of the depth of the neutral axis 

and, hence, 0< afu <I (i. e. a positive value). 

Multiplying byy one gets 
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Asfyy+ApEEE0(D-y)=AsEseo(y-d')+0.67f, 
wy2baf 

by differentiating with respect to E., then, 

Aj fy 
dE 

+ Aoeo(D y) - APEoEp 
dE = As Es ýo dE + 2x0.67 f 

cW ybat. 
d 

(6.2) 
PPPP 

d (As E,, co+2x0.67fcuybaf +APE0EP-Asfr)=APso(D-y) 
P 

but from Equation (6.1), one gets 

/ 

Asfy = ASEsEo Y_d +0.67fýuYbafa -APEPso , y) 

Equation (6.3) will, then, be 

y_y 

/ dy 
AsE: Eo 

Y 
+0.67fCuYbafry +ApeoEp 

ý 
-APEo(D' y) dEp 

which may be rearranged in the following form 

dy 
_ 

Ape. (D-y) 
_ 

+ve 

(6.3) 

-- ! 6_dl 
d' dEP 

As Eý+ Ap EoEp 
D+ ve 

The above equation shows that positive (i. e. increasing) changes in the magnitude of 

plate modulus of elasticity, E,, are accompanied by corresponding positive changes 

(i. e. increases) in the depth of neutral axis, y. 

It has already been proven in Appendix B that, for a beam section with concrete in the 

crushing state, the total compression force will increase in magnitude by increases in 

the depth of neutral axis. This, in turn, leads to the total tension force on the beam 

section to be increased, to balance the compression force for equilibrium. Bearing in 

mind that the reinforcing steel bars in this mode of failure are in a state of yield and 

can not carry any more axial loads, one expects that such increases in the total tension 
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force will be carried by the externally bonded plate and, hence, the axial stresses in the 

FRP plate will be increased. 

Since the maximum concrete strain in 

this mode (i. e. CR -) corresponds to the 

concrete crushing strain (i. e. it remains 

unchanged with any changes in the 

depth of neutral axis), it is, therefore, 

expected that increasing the depth of 

neutral axis fromyl to y2 will reduce the 

plate tensile strain from e1 to e, 2 - see 

Figure 6.1. 

Fig. 6.1 Effect of increasing E. on the 
section strains for the failure 
mode CR -. 

From the above argument, it is clear that, despite the reductions in the plate tensile 

strain (with associated increases in the depth of neutral axis); the magnitude of tensile 

stress in the FRP plate will increase. 

From Equation (6.5), which relates the plate axial stresses and strains to the modulus 

of elasticity, it may be concluded that the reason for increases in the plate tensile stress 

is due to the increases in the value of plate modulus of elasticity, which seems to have 

a greater influence than the corresponding effect due to reductions in the plate tensile 

strain: 

QP = EPEP (6.5) 
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Provided that the unplated section is under-reinforced, this mode of failure is the 

initial (i. e. primary) one, and is expected to happen at very low values of the plate 

modulus of elasticity. To prove this, let us assume an unplated section that fails by 

crushing of concrete after the internal reinforcing bars have yielded (i. e. CR mode). If 

the externally bonded FRP plate has a modulus of elasticity with an extremely low 

value (i. e. Epp), then, the plate tensile stress, up, and force, Fp, will be negligible in 

magnitude no matter what the value of the axial plate strain is (Equation (6.5)). In 

such cases, the changes in the magnitude of the total forces acting on the original 

unplated section will be minor, and the mode of failure will be the CR - one as the 

plate is not experiencing its ultimate stress and the concrete is in a crushing state with 

the embedded bars experiencing yielding. 

From Appendix B (Equation (B. 48)), the moment (due to the compression forces) 

about the neutral axis is 

Y 
d' 

2y 
0.67fýu Q2E, ß0.67fcu 

y2 by Mý=AEsEo 1-- +2+ 
eo 12 4 

and the beam's total flexural capacity, M, will, then, be 

(d'z 
M=AsEsE° y-2dý+` 

ý+ 0.67f, 
u+ ß2 ý0.67fcu 

byz+ 
y2 

z 
ASfy(d - y) + ApEP. 6°(D-y) 

y 

Differentiate the above equation with respect to Ep to determine the effect of 

increasing the plate modulus of elasticity on the beam's flexural load capacity 
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dM 
_ 

öM r7y 
dEp öy aEp 

where, 

äy Apeo(D - y) +ve 
UGOr, 

P 

and 

+ve 
AsESEo 

Y') 
+0.67f, � ybafry +APEoEP 

(2y)] 

_ 
0.67 f 

ýu 2by - 
dm 

= AS Es Eo - 
d/ 2+ 0.67 f 

cu +ß2 Eß 
9y y2 Co 12 4 

2y(D - y) + (D - y)2 AS fy - ApEPEa 
y2 

For simplicity, use the recommended values by the BS8110 (1985) and BS5400 

(1990) for ß and E. to get 

ý2 ý= 
ASEsEo 1- 

d 
1+ 

d 
+0.67f, ubY 

1- 
6 

Eo - ý' YY 

Asfy - APEPso 
DY 

1+D 
YY 

but Equation (6.1) may be rewritten as 

Asfy+ApEpeo 
D-Y 

=0.67f. yb 1+I 
6_O6ß -3 + 

Y ea cu 
dý 

AsEseo 
Y 

F+FP =F+0.67fcuyb+0.67f, uybý -J 
E4ý 

-30.67fcuy 
`J 

=FS+0.67fuyb+y«J 6ý -30.67fcuyýý 

Fs+FP-Fs=0.67fcuyb+ 
&Y 
ý) 

6 -30.67f1u 

0.67f 
cu yb + 

(L)( 0.67fcu 2x0.67fcu 
=- £o 3 3 

=0.67fcuy 1Q 

6l E. 
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then 

ý ýl2 äM=F. 
s 1+d +0.67fýuby 1-6 

EaJ -Fs-Fp 1+D 
aY YY 

(ýl2 ' 

=-ýFs+FP-F's) +0.67f, uby 
1-6I 

ýoJ 
+ F'sd -FP 

D 

`yY 

( lx ý 
=-0.67fcuybl 1- 

ßl 
+0.67fcby 1-6ý) + F: 

a 
_Fe `JlY 

(l/ 
= 0.67f 

ýu yb 
ý 

11- 
ýI+ 

F's 
dy 

- pP 
yD 3s0 ̀ 2ý0/ 

li 
0.67fýýYb 

ßC1-ý 
I+ F'sa -FpD Apso(D-Y) 

dM YY 
d' dEp 

AsEseod +0.67f, uYbaf +ApeoEp 
YY 

D 

Y 

If one considers the values recommended by BS5400 (1990) for ß and C', the 

magnitude of the term (i - ß/2e0) 
, in the above equation, is positive as long as the 

compressive strength of concrete is less than 820 kN/mm2, which is an extremely high 

concrete strength for general (practical) cases. The above equation may be re-written 

as follows 

[ý. 
6'7icuYb -2ý-C1- 'l +AsEsEý 

Y-dl dl )()-ApEpcO(. 2-y) D 
3ý0 2E0/ dM yYY Y 

ý dEp 
AiEýOd +0.67f, uybaf +ApeOEp 

2] 

YY 

I"aEo(D-y) 

(6.6) 

Noting that this mode must be the primary mode associated with relatively low values 

of the plate modulus of elasticity, it is clear from the above Equation (6.6) that its 

outcome will be positive (as Ep . 0), meaning that the beam's flexural load capacity 

increases with increasing values of the plate modulus of elasticity. The remaining 
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point to clarify, then, is to find out as to what would happen if the value of E. is not 

very small. To answer this question, re-write Equation (6.6) in the following form 

d' [O. 
o7f, 

u yb 
ß (1- ß 

+AsEsCo Y d' 
- -Q Aaeo(D - Y) dM 3e,, 26, 

) (Y) 

dEP 
As Es 6,, 

Y/ 
+ 0.67 f 

ýu yba f+ ApBoEP D 

where 

Q=APEPEo 
D-y D 

yy 

(6.7) 

By carefully checking all the parameters in the above equation, with increasing values 

of E. (and, hence, with increasing associated values of y), the rate of change in M is 

found to be positive with positive changes in E., provided only that the term Q is 

reduced with such positive changes (i. e. increases) in E,,. By differentiating the term Q 

with respect to E., one arrives at the following: 

dQdQ r7y 
dEP dy dEP 

APEPeoD-y2-2y4(D-y) 
/ 

APeo(D-y) 

y 
AsEseo 

y 
+0.67fýýybaf +APeoEP 

D 

EP Apeo(D-yXy-2D)D -ve 

y' As E, ea 
d+ 

0.67 f 
,. yb a fn + AP eo EP D+ ve 

yy 

From the above, it is clear that the term Q in Equation (6.7) is reduced with increasing 

values of Ep, which suggests that the final result for the Equation (6.7) will always be 

positive: although the rate of increase may be reduced with increasing values of Ep, it 

will never become negative. 
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The preceding arguments suggest that the beam's flexural load capacity increases with 

any increases in the magnitude of plate modulus of elasticity as long as the failure 

mode remains to be CR -. 

Unfortunately, in view of the complicated nature of the problem, the general trend for 

the flexural load capacity of a plated beam associated with the other modes of failure 

may not be determined in a formal mathematical way. In these circumstances, 

therefore, the effect of increases in the plate modulus of elasticity on changes in the 

flexural load capacity of plated beams, will be investigated through'numerical studies 

on a wide range of beam configurations. Such studies will be presented at the end of 

the present chapter (section 6.4). Following such an approach for CR - mode, for 

example, (though it has already been proven mathematically), it has been found that 

for all the cases studied, the beam's flexural load capacity increases with increasing 

values of the plate modulus of elasticity as long as this mode of failure is operative, 

hence, confirming the validity of the above mathematical derivations - see section 6.4 

for the numerical results. 

By increasing the value of E., the depth of neutral axis (NA), and the tensile stress in 

the plate both increase, while the tensile strains in the plate and the embedded bars 

decrease. Theoretically, the successor to this mode will either be the brittle mode 

C-- (if the reduction of the tensile strains in the embedded bars is sufficient to 

result for the bars to become unyielded), or the ductile modes -RP or -R - will 

take over (if the plate tensile stress is sufficiently increased in magnitude to first reach 

the ultimate strength or the peeling stress): there are many factors which may 

influence the behaviour of the section and determine as to which mode will be the one 
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to follow the primary mode CR -. Chapter 7 presents the appropriate methods, for 

determining the critical values of E. at which the primary mode CR - is changed to 

the successor mode, by calculating the critical values of E. for initiating the successor 

modes (i. e. modes C--, -RP & -R - ), with the minimum of them corresponding 

to the maximum possible values of E. for the primary mode CR - to remain 

operative. 

The increases in both the total compression and tension forces will increase the 

overall flexural moment of the beam about the neutral axis and, hence, the flexural 

load capacity of the beam will be increased: this is applicable to both the predicted 

values of absolute maximum moment, Mme, and also the plated moment, Mpud. (Mme 

and Mpud are defined in Appendix A). 

It may, thus, be concluded that by increasing the modulus of elasticity for the plate, 

relating to a beam that fails in the ductile mode CR -, the following will apply: 

1- an increase in the depth of neutral axis, 

2- an increase in the compression forces in the concrete and the embedded 

compression bars, 

3- an increase in the plate tensile stress and axial force with reductions in the 

plate tensile strain, without any changes occurring in the magnitude of axial 

forces in the yielded bars though their associated tensile strains will be 

reduced, and 

4- an increase in flexural load capacities (i. e. Mme. & Mpitd) of the composite 

beam. 
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This mode is the preferred one in practice, because it is ductile in nature with the 

material strengths for both the concrete and the internal steel bars in tension being 

fully utilised, although the FRP plate will not be fully stressed (i. e. to its ultimate 

strength). As mentioned in Chapter 5, both the FRP plate and the concrete may not be 

fully stressed at the same time (i. e. the mode CRP is highly unlikely to happen in 

practice when FRP plates are used) as both the concrete and the plate material are 

brittle, and the one (i. e. either concrete or FRP plate) which reaches the failure point 

first, will be the controlling factor for the occurrence of failure. 

6.2.2 Failure Mode C- - 

For this full bond brittle mode of failure, the equilibrium Equation (5.1), as derived in 

Chapter 5, will be used to investigate the effect of changing the plate modulus of 

elasticity: 

/ 

AsEsCo 
d_y y+ ApEpBo 

Dyy= 
As ES E,, 

(2-: 

Y: 
+ 0.67f 

u ybata 

multiply the above equation by y to get 

AsEsE(ad- y)+APEPEa(D- y) = AsEsEo(y-d')+0.67fcu yZbafn 

differentiating with respect to E. 

-ASEseo dE 
+Aps°(D y)-APeoEP dE -AfESeo 

E+2x0.67fýuyba 
E pPP dP 

(6.8) 

then 

dE 
(A'Eseo+2x0.67fcuybaf+As&0Es+APe0EP) APeo(D-y) 

P 

which may be re-arranged as 

Y 
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dy APE,, (D - y) +ve 
dEP (A!, E, E, +2xO. 67f,, ybaf+ As Eo Es + AP Eo EP ) +ve 

The above equation shows that, for this brittle mode of failure, increasing the plate 

modulus of elasticity, Ep, will lead to increases in the depth of neutral axis y. As 

shown in Figure 6.2, increasing the depth of neutral axis, y, will reduce both the 

tensile strains in the embedded bars and the plate. 

Fig. 6.2 Effect of increasing Ep on the section strains for the failure mode C--. 

Since the embedded steel bars are assumed not to have yielded, then, any reductions in 

the tensile strains in the embedded bars lead to associated reductions in the 

magnitudes of axial stresses in the bars aid, hence, the magnitudes of axial forces 

carried by them. 

As previously proven in Appendix B (for a section with concrete in the crushing 

state), the total magnitude of compression force will increase as a result of increases in 

the depth of neutral axis. This, then, leads to the total tension force to be increased, in 

order to balance the forces acting on the section. 
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Considering the above, the tensile forces in the embedded bars will be reduced with 

the associated increases in the value of plate modulus of elasticity, and one expects 

that the resultant increase in the total tension force will, then, be carried only by the 

externally bonded plate: the tensile stress in the plate is, therefore, expected to be 

increased. 

The increases in the magnitude of the plate tensile stress is accompanied with 

reductions in the magnitudes of plate tensile strains as increases in the values of plate 

modulus of elasticity take place - see Equation (6.5) % 

As demonstrated by the results of numerical studies on beam N, in Figure 6.69, (to be 

presented at the end of the present chapter in section 6.4), the simultaneous increases 

in both the total tension and compression forces lead to increases in the flexural load 

capacity of the composite beam. 

It may, therefore, be concluded that by increasing the magnitudes of plate modulus of 

elasticity for a composite beam that fails in the brittle mode C--, the following hold 

true: 

1- an increase in the depth of neutral axis, 

2- an increase in the magnitudes of compression forces in the concrete and the 

embedded bars, 

3- an increase in the plate tensile stress and, hence, its axial force, with an 

associated reduction in the plate's axial strain, and tensile strains and stresses 

in the embedded bars, and 
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4- an increase in flexural moment capacities (i. e. M, n & Mpftd) of the composite 

beam. 

It should be noted that, despite the increases in the load bearing capacity of the 

composite beam associated with increasing values of E., this mode of failure is a 

brittle one as the concrete is suddenly crushed in the absence of yielding of the 

embedded bars. In view of its brittle nature, this mode is not a preferred one in 

practice, despite the fact that its associated flexural load capacity increases with 

increases in the value of the modulus of elasticity for the plate, Ep. 

As mentioned before, the predecessor to this mode is the CR - mode of failure. Since 

the tensile stresses in the plate increase by increasing the magnitude of plate modulus 

of elasticity, then, there are two possibilities for the type of the successor mode to the 

C-- mode of failure. In the first case, the plate peeling stresses may be lower in 

magnitude than the plate ultimate strength and, hence, the successor mode will be the 

brittle one ---, leading to a partial bond flexural load capacity. In the second case, 

the magnitude of plate ultimate strength may be lower than the magnitude of plate 

peeling stresses and, then, the successor mode will be the brittle one --P, leading to 

the associated full bond flexural capacity. 

The next chapter (Chapter 7) introduces the method for calculating the minimum 

value of E. required for this (i. e. --P) mode to be initiated, and the, maximum 

values of E. which can lead to the composite beam failing in such a mode. 
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6.2.3 Failure Modes - RP and -R- 

In these ductile modes of failure, crushing of concrete in compression will not be the 

direct cause of beam failure, but the total failure will be due to either the plate rupture 

(failure mode -RP ), or the plate peeling (failure mode -R - ), following (in both 

modes) yielding of the internal tensile bars. 

The plate rupture (mode -RP) occurs when the tensile stresses in the plate reach the 

plate ultimate strength, while the maximum strain in concrete is not large enough to 

cause its crushing but the tensile strains in the embedded bars are sufficiently large to 

cause yielding of the bars and, hence, large beam overall deformations take place 

(mode -RP with full bond capacity). 

The plate peeling mode of failure (mode -R - with partial bond capacity) takes place 

due to the failure of concrete in the beam's cover in tension, when the concrete tensile 

stresses within the cover reach the tensile strength of concrete, while the strains in 

both the concrete in compression and the plate at the maximum moment section are 

not large enough to cause the beam's overall failure but the tensile strains in the 

embedded steel bars are larger than the initial yield strain. 

From a mathematical point of view, and unlike the previous CR - and C-- modes 

of failure, determination of the changes of the depth of the neutral axis (for modes 

-RP and -R -) due to increases in the plate modulus of elasticity E. is a very 

difficult task. A comprehensive discussion for the effect of increasing the values of E. 

will, hence, follow, which neglects the changes in the concrete tension to simplify the 

matters. At the end of this chapter (section 6.2.5), it will be argued that neglecting the 
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changes in the concrete tensile force does not influence the final conclusions in any 

practically significant way. 

iI !/I 
'Fpo Fpo 

CPO CPO 

Pos. (0) Pos. (1) 

£p f 

ep; - - eö `- Fpö 

Pos. (2) Pos. (3) Pos. (4) 

Fig. 6.3 Possible locations of the neutral axis for failure modes -RP and -R - 
as the value of E. is increased. 

In the modes -RP and -R -, the tensile stresses in the plate are restricted in 

magnitude, and their values will not be changed by increasing the magnitude of EP, 

because it is either the plate ultimate strength, fp,,, in mode -RP , or the plate peeling 

stress, o (either its minimum or maximum) in mode -R -, which govern the beam's 

failure, and the axial force in the plate, Fpo, will not in any way be affected by changes 

in the magnitude of Ep. The values of total force in the embedded tensile bars, Fso, 

will also not be changed, because the bars are in a state of yield. Increasing the values 

of Ep in these two modes of failure will not change the value of total tension forces 

and, hence, the values of total compression forces must also remain unchanged - i. e. 

Fr = Fpo + Fso = AP f 
Pu + AS fy= constant, mode -RP 

FT = Fpo + Fso = Apos + AS fy= constant, mode -R - 

and 
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(6.9) 

or 

F= 
a 

s 
_ po E 

po 

(6.10) 

From Equations (6.9) and (6.10), increasing the value of Epo by 8Ep will result in a 

reduction in the value of tensile strain in the plate from epo to Cpl. Figure 6.3 shows 

the only four possible locations for the neutral axis if the magnitude of E. is increased 

by SEp. 

JPu 
as 

Ep t= EPo + SEP or ýp ̀= Epo + SEP 

These possible four locations within the beam section for the neutral axis, NA, are as 

follows: Figure 6.3: 

1- the NA depth, yl, is not being changed by reducing the axial strain in the plate 

(Pos. 1): this reduces the strains in concrete in compression and the embedded 

compression bars with the area of concrete in compression being unchanged. 

The reduction in the compression strains will reduce the compression stresses 

and, hence, forces (i. e. F,, < Fro ), which will not be in balance with the 

constant tension forces (which are to remain unchanged). This position will 

not lead to the equilibrium conditions for the section forces to be satisfied. 

2- the NA depth, y29 will be reduced (Pos. 2): this reduces the strains in the 

compressed portion of beam section, and the values of stresses and forces will 

also be reduced. As in the previous case (i. e. case 1), the equilibrium 

conditions for forces will not be satisfied. 
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3- the NA depth, y3, will be increased by just enough (Pos. 3) to enlarge the 

compressed area with the maximum concrete strain remaining less than the 

original strain 4 so that the enlargement in the compressed area with the 

associated reduction in compression strains will result in no changes in the 

compression force: this, then, will be in balance with the constant tension 

forces, and lead to the force equilibrium condition being satisfied. 

4- the NA depth, P. will be increased to the value which results in increases in 

the maximum concrete strain (Pos. 4) to be more than the r, o (or even lower 

than but with the result that the increases in the compressed area with the 

corresponding strains result in the compression force to be more than the 

tensile forces with the latter to remain unchanged. This situation does not 

satisfy the force equilibrium condition. 

Out of the above four possibilities, it is clear that the depth of neutral axis should be 

increased with sufficient associated reductions in the maximum concrete strain, 

resulting in the total compression force to remain unchanged. Under such conditions, 

there will be a reduction of the section strains including those in the tension and 

compression steel bars and the concrete in tension. It will be proven later in this 

chapter, that the reduction in the tensile strains in concrete leads to increases in the 

concrete tensile forces and, hence, rules out the possibility of the first and second 

cases to occur. 

Since the total tensile and compressive forces acting on the beam section in these 

modes of failure are almost constant, it is expected that the flexural load capacity of 

the composite beam will not be significantly affected by increasing the values of E. as 
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far as these modes of failure (i. e. -RP and -R -) are concerned. This has been 

confirmed by the final results based on the numerical studies on a large number of 

beam designs, as described later in the present chapter in section (6.4). 

It may be concluded that increasing the plate modulus of elasticity will (for the failure 

modes -RP and -R -): 

1- increase the depth of neutral axis, 

2- not change the magnitudes of total compression and tension forces, 

3- reduce the axial strains in the embedded steel bars without changing their 

tensile stresses because the bars are yielded and the strains are already larger in 

magnitude, than the initiated yield strain, 

4- reduce the plate tensile strains without changing its tensile stresses, and 

5- not change the flexural load capacity of the beam. 

The modes -RP and -R - are the preferred ones in practice, as they are of a ductile 

nature and the material strengths of the plate and the bars are fully utilised. Due to the 

higher moduli of elasticity for the plate and the larger areas of the concrete in 

compression and also in tension, the modes -RP and -R - are practically more 

desirable than the ductile mode CR -, in view of their higher stiffness while they 

have the same flexural load capacity as the CR - mode. 

As mentioned previously, the predecessor to modes -RP and -R - is the CR - 

mode of failure. The continuous reduction in the magnitudes of tensile strains in the 

embedded bars and the plate with the increasing values of Ep lead to the tensile strains 

in the embedded bars (at a certain stage) to become lower than their initial yield value, 
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which suggests that the successor to mode -RP will be the brittle mode --P (full 

bond capacity), while the successor one to the mode -R - will be the brittle mode 

--- (partial bond capacity). 

A method for calculating the minimum values of E. that is required for the modes 

-RP and -R - to be initiated is presented in the next chapter (Chapter 7). 

6.2.4 Failure Modes - -P and --- 

In these brittle modes of failure, crushing of the concrete in compression will not be 

the direct cause of beam's failure (as it will not happen), but the failure will be due to 

either plate rupture or plate peeling: these will happen suddenly, in the absence of 

much noticeable overall beam deformations. 

The plate rupture happens when the tensile stresses in the plate reach the plate 

ultimate strength, while neither the maximum concrete strain nor the tensile strains in 

the embedded bars are large enough to cause crushing of concrete or yielding of the 

bars, and give deformation warnings (mode --P with full bond capacity). The plate 

peeling mode of failure (mode --- with partial bond capacity), on the other hand, 

happens as a result of the concrete failure in tension within the concrete cover when 

the tensile stresses, which are induced at the point of fixity to the teeth, reach the 

concrete tensile strength, while the axial strains in both the concrete in compression 

and the plate in tension, are not large enough to cause failure of any of them, and the 

tensile strains in the steel bars are less in value than the initial yield strain: a sudden 

brittle failure will, then, result. 
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To simplify the analysis, the tensile forces in concrete will be ignored, because the 

magnitude of such forces is very small and, hence, their effect is of insignificant 

practical implications: the implications of this assumption will be discussed in some 

detail later in this chapter in section 6.2.5. 

In the failure modes --P and ---, the value of plate tensile stress is restricted to 

limited variations, and will not be changed by increasing the value of E,, because it is 

equal to either the plate ultimate strength, fp,,, in the mode --P, or the plate peeling 

stresses, Qs, in the mode --- (either the minimum (lower bound) or the maximum 

(upper bound) values). As the value of plate tensile stress remains unchanged, the 

axial strain in the plate is expected to be reduced in magnitude as a result of increasing 

the plate modulus of elasticity. 

In these modes, the concrete in compression is not crushed and, hence, the value of 

maximum concrete strain is less than the crushing concrete strain (=0.0035). With the 

associated compression stress distribution over the beam section depending on the 

level of the maximum strain in concrete (as discussed in detail in Chapter 5), there 

are, therefore, only two cases to be studied. 

The first case relates to when the magnitude of maximum concrete stress is less than 

0.67ff,,, and the compression stress distribution is of only a parabolic type (i. e. e0 5 J6) 

as detailed in Chapter 5, where the following equilibrium Equation (6.11) applies - see 

its derivation in section 5.10: 
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AsEs(d - y)(D - y)eP + FP(D 

- y)2 =AS E: SP ( y-d')(D - y) + 
b2`eP(D-y)y2+ 3 EPy3 

(6.11) 

If one assumes that the modulus of elasticity for the plate is to be increased to a very 

high value (i. e. Ep -+ oo ), then, according to Equation (6.5), the axial strain in the 

plate will become very small (i. e. a -->0) in order for the plate tensile stress to 

remain unchanged. This assumption must obviously be verified to ensure that such 

assumed large increases in the value of modulus of elasticity will not cause modes 

--P and --- to change to any other (different) ones. In fact, a later study of the 

changes in the modes of failure as included at the end of this chapter (plus discussions 

at the end of this section) show that each of the modes --P and --- will not be 

followed by any other (alternative) mode, regardless of further increases in the value 

of plate modulus of elasticity. 

Applying the above assumption to Equation (6.11), leads to FF(D- y)2 -*0, and since 

Fp-O, then, (D - y) -* 0: it may, then, be concluded that increasing the value of EP 

will lead to increases in the depth of neutral axis, approaching D. 

The second case to be studied relates to when the maximum compression stress in 

concrete, f,, is equal to 0.67fc,,, but the maximum strain in concrete is less than its 

crushing value (i. e. ,ß _e0 <0.0035) with the concrete compression stress distribution 

being composed of parabolic and linear portions (i. e. distributions) as detailed in 

Chapter 5: the following equilibrium Equation (6.12) for section forces may, then, be 

written: 
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AsEs 
Dd-y 

EZp+APFpEp=AsEsEp Y-d/ [J+O. 
67fcub[Y6p -ß(D- y)]+ y D-y 

b2ý, ß2(D-y)+ 3 /33(D-y) 

where 

V. - 
0.67fc�-Ecß 

a11 n2 

(6.12) 

In the above , if one assumes Ep --* °°, then, ep --> 0, and Equation (6.12) leads to 

-0.67f�, bß(D - y) +ýß2(D-y) +3 ý33(D-y) =0 

(y - D)(0.67f�ubß- bEc ß2 - 
bKt ß3) =0 23 

2 
-bEc2 ( y- D) 3 0.67fýub/3 6ß=0 

(y-D 2x0.67f, 
u-E2ß 

bß =0 

Assuming ßl3 = 244 x 10"4 f. and E, =5500j-., as recommended by BS5400 

(1990), then: 

(y-D)0.67f, 
u 

b3 
=0 

However, since 0.67f,, 
bß 

# 0, then D=y: in other words, increasing the plate 

modulus of elasticity to very high values increases the depth of neutral, axis, y, with 

the upper (limiting) value of D, which is the depth to the centre of gravity of the 

externally bonded plate. 
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Following the discussions relating to the two above cases, it is clear that increasing 

the value of Ep for the plate (i. e. reducing the tensile strain in the plate) will always 

lead to increases in the depth of NA, and. accordingly, the total area of concrete in 

compression will be increased for those beams which fail with --P or --- modes 

of failure, regardless of the level of the maximum concrete strain (which, for modes 

--P and ---, is always less than the limiting crushing strain). 

FP 

Fig. 6.4 Section strains, stresses for modes of failure --P and ---. 

As shown in Figure 6.4, both the reduction in plate tensile strain and the increase in 

the depth of NA cause reductions in the magnitudes of tensile strains in the steel bars 

and, hence, cause a reduction in the value of total tension force on the beam section 

(note that the force in the plate is supposed to remain unchanged). 

If the magnitude of tension force is reduced with increasing the value of Ep, while the 

concrete compression area is getting larger (as proved in the above, as a result of 

increases in the depth of neutral axis), then, the compression stresses and strains must 

be reduced in magnitude so that the total compression force acting on the beam 
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section is also reduced: the maximum strain in concrete 4 must, therefore, also be 

reduced. 

The reduction in both the tension and compression forces acting on the beam section 

lead to a reduction in the overall flexural load capacity of the beam. This conclusion is 

supported by the numerical results obtained using different beam designs as reported 

at the end of the present chapter. 

It may, therefore, be concluded that increasing the plate modulus of elasticity for 

modes --P and --- will result in 

1- increases in the depth of neutral axis, 

2- reductions in the maximum strains and stresses in concrete and the tensile 

strains in the internal steel bars plus the tensile strain in the plate - the axial 

stress in the plate will not be changed, and 

3- reductions in the overall flexural load bearing capacity of the beam. 

These mode (i. e. --P and -- -) are not desirable ones in practice because of both 

their brittle nature and their associated reductions in the flexural load bearing capacity 

of the beam as a result of increases in the magnitude of the modulus of elasticity of the 

FRP material for the plates. 

Because of the reductions in the compression strains in concrete and in the tensile 

strains in the embedded bars with increasing values of plate modulus of elasticity, 
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these failure modes will not be followed by any other (i. e. alternative) failure modes 

(with further increases in the plate modulus of elasticity). 

For the full bond brittle mode --P, the predecessor modes of failure are either the 

brittle mode C-- (full bond flexural capacity), or the ductile mode -RP (full bond 

flexural capacity). 

For the partial bond brittle mode ---, the predecessor modes of failure are either the 

brittle mode C-- (full bond flexural capacity), or the ductile mode -R - (partial 

bond flexural capacity). 

In general, therefore, increasing the value of Ep will, for all the six possible modes of 

failure, result in increases in the depth of neutral axis. 

6.2.5 Implications of Neglecting the Concrete in Tension 

Concrete resistance in the presence of tensile stresses is very low in magnitude. The 

concrete can resist the tensile stresses for only very low values of concrete strains. The 

concrete tensile stress-strain relationship as recommended by BS5400 (1990) is 

presented in Figure 6.5. 

If the strain in concrete is higher than a certain value, the concrete will be cracked and 

will not carry any stresses across the cracks. 
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Let us start with the analysis for the modes associated with which crushing of concrete 

takes place (i. e. modes CR - and C- -). In the preceding analyses (with concrete in 

tension neglected), it was argued that increasing the plate modulus of elasticity will 

increase the depth of neutral axis for both of these modes, and that the magnitude of 

compression force tends to be increased in order to balance the increased tension 

force. There are only two possibilities to be considered regarding the influence of 

concrete in tension as the plate modulus of elasticity increases (i. e. as the axial strain 

in the plate is reduced). These possibilities relate to cases when the force due to the 

concrete in tension is either reduced or increased in magnitude. If the concrete tension 

force is reduced with increasing values of the plate modulus of elasticity (i. e. with 

reductions in the tensile strain in the plate), then, ignoring it must adversely affect the 

above derivations in cases when this reduction is large enough to be more than the 

previously discussed (and proven) increases in the plate axial force. If this is the case, 

the reduction in the overall tension force would result in a reduction in the 

compression force and, hence, the depth of neutral axis will be reduced: however, this 

contradicts the conclusion based on the above derivations as later on this chapter 

supported by the numerical results on a large number of beam designs which have 

taken the influence of concrete in tension into account. 

In contrast, if the tension force in concrete is increased with increasing values of the 

plate modulus of elasticity, then, ignoring it will not affect the conclusions based on 

the preceding derivation, as including it will increase the total tension force on the 

beam section and, hence, will increase the magnitude of compression force to 

maintain force equilibrium, leading to increasing values of the depth of neutral axis. In 

other words, including the influence of concrete tension will lead to increases in the 
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depth of neutral axis, and support the conclusions based on the above derivations. It is 

also compatible with the results of numerical studies. 

Fig. 6.5 Stress-strain relationship for concrete in compression and/or tension 
after BS5400 (1990). 

The question now is as to whether the concrete tension force is increased or decreased 

with increasing values of the plate modulus of elasticity. To answer this question, let 

us consider Figure 6.6, where the plate modulus of elasticity is increased from E., to 

E. 2 and, according to the arguments in the above, the depth of neutral axis will as a 

result increase from y1 to y2. 

4 =0.0035 
r--77 

e17 

/ 30s 
3(J F. 

r--- 
ý-"--. fPl ý--ý-J 

f, =0.67fcu 
I 

Epl C Ep2 

e, =0.0035 fý=0.67fcu 

Fig. 6.6 Distribution of concrete tension stresses. 
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Since, in these two modes (i. e. CR - and C--), the largest concrete strain is at its 

maximum possible values, then, the slope of the strain distribution plane within the 

beam cross-section will be reduced from e1 to e2 - see Figure 6.6. The tension 

concrete forces corresponding to Ep1 and Ep2 are Fft1 and Fct2, respectively, and may 

be calculated as: 

Fý1 = 
f`2b 

(30s1) and F�2 =f `2 b 
(30s2 ) (6.13) 

where, f/ is the concrete tensile strength with the assumed value of fr' = 0.36 fý. 

(according to the BS8110 (1985)) and 

. 
f' 

sl = 
nr 

and s2 = 
£' 

where E, _ 
tan 91 tan e2 E, 

But 02 <0 so that s2 > sl and, hence, Ft2 > Fcr1 

The above suggests that neglecting the concrete tension is not compatible with the 

outcome of the previously discussed derivations - i. e. the final conclusion for the two 

modes of failure CR - and C--, whereby the increases in the depth of neutral axis 

are accompanied with increases in the total magnitudes of tension and compression 

forces. 

Let us now study the totally opposite cases, whereby increases in the depth of neutral 

axis are accompanied with reductions in the total values of concrete compression and 

tension forces (i. e. modes --P and ---). If one considers the concrete force in 

tension in terms of the axial strain in the plate, and guided by Equation (6.13) with the 

concrete tensile strength given as fýý = 0.36 feu , then 
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30f, 'b D-Y fý 15(fl) z b(D - y) 
F,, _ 2 Ec £PEc 

1944 f, 
ub(D - y) 

_ 
5.832 f, 

u(D - y) bý3 
- EPE, _ CPEfl 3 

where 

£" 
- 

En 
and er 

ft' 

s D-y E, 

Moreover, consider the concrete tension force in the equilibrium equation for these 

modes (i. e. Equation (6.12)), to get 

AEdY E2 +AFE+5.832 
f 
fu(D - y) bß"l 

_z As sPPPPE3 J- AsEsEP 
D- 

+ 
Eß Y 

0.67ffub[yEP -ß(D- y)]+kß2(D- y) +3 ß3(D- y) 
with the plate axial strain approaching zero, 

(6.14) 

-0.67 f, ubß( 
) b2 cß2( y) 

3 ß3( )- 5.832f 
E,. 

D- bý3 
= D- y+ D- y+ D- y 

cß 3 
0(6.15) 

( y- D) 0.67 f, ubß -2 ß2 -3 ß3 + s. Eý ,ý( bQ) 
-o 

,3] 
(6.16) 

(y - D) 
3(0.67 f, 

ubß) -+ß2 + 
5. ý2 fýu b, 6) 

=0 ßJ 
(6.17) 

(y-D 2x0.67ffu -E2ß+5.2f,,, 
bß) 

=p (6.18) 
ßlJ 

and, assuming ß=2.44 x 10-4 fu with E, = 5500 j-, as recommended by 

BS5400 (1990), then 

(y - D)(0.67 f,,, +435)=O (6.19) 

but since (0-67f,,, + 435) bß /3#0, then D=y: in other words, increasing the plate 

modulus of elasticity to a very high value increases the depth of neutral axis towards 
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the limiting value equal to the depth to the centre of gravity of the plate which is in 

line with the previous conclusion. 

At this point, it is demonstrated that for the two opposite cases (i. e. the case when 

section forces are increased or reduced with increases in the values of plate modulus 

of elasticity), neglecting the tension force in concrete does not significantly affect the 

conclusions from previous analyses. It is expected that the same argument holds true 

for those cases whereby increases in the values of plate modulus of elasticity neither 

increases nor decreases the total forces in tension and compression (i. e. modes -RP 

and -R - ). 

6.3 PROGRESS OF THE FAILURE MODES WITH 

INCREASING VALUES OF MODULUS OF ELASTICITY 

FOR THE PLATE 

In this section (guided by the previous derivations), the progress in the variations of 

the modes of failure regarding plated beams, as influenced by increases in the FRP 

plate modulus of elasticity, will be discussed in a qualitative fashion, with further 

quantitative discussions presented in the next chapter. 

Amongst other conclusions, it has been shown in. the previous section (section 6.2) 

that for all the six FRP related modes of failure, increasing the plate modulus of 

elasticity will reduce the magnitudes of tensile strains in the plate and the embedded 

tensile bars, while it will increase the depth of neutral axis and the tensile stress in the 

plate (as long as the axial stress in the plate are less than the plate ultimate strength for 
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the full bond behaviour or less than the plate peeling stresses for the partial bond 

behaviour). 

Moreover, it has been concluded that the flexural capacity of the plated beam will 

increase (with increases in the modulus of elasticity of the plate) if the failure mode is 

either CR -or C-- and will decrease if the failure mode is -- P while there will 

be insignificant changes in the magnitude of the flexural capacity if the failure mode is 

-RP (full bond behaviour). In addition, it has been concluded that the flexural 

capacity of the plated beam associated with the plate peeling behaviour will be 

reduced, with increases in the modulus of elasticity of the plate, if the mode of failure 

is --- while there will be insignificant changes associated with the mode -R-. 

It is assumed that the unplated beam section is under-reinforced - i. e. the unplated 

section fails in a ductile manner due to crushing of concrete after the internal bars 

reach yield (mode CR ). 

Assuming that such an unplated beam has been strengthened by an externally bonded 

FRP plate with a very low modulus of elasticity (i. e. Ep - 0.0), the magnitude of both 

the axial stresses in the plate and the force carried by it will be negligible. This mode 

of failure will be CR -, as the axial stresses in the plate are extremely low in 

magnitude (and certainly lower than the plate peeling stresses and/or the plate ultimate 

strength), and the embedded bars have yielded, while the maximum concrete strain is 

equal to 0.0035 because the unplated beam is assumed to be an under-reinforced one. 
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Increasing the value of E. for the FRP plate in the primary ductile mode CR -, will 

increase the axial stresses in the plate with such stresses being lower in magnitude 

than the plate ultimate strength, while the tensile strains in the embedded bars, which 

are higher in magnitude than the initial yield strain, will be reduced with the concrete 

crushing being the critical factor, causing failure at the maximum moment section 

where the maximum concrete strain continues to remain at the crushing strain equal to 

0.0035 (according to the BS8110 (1985)). 

This ductile mode of failure (i. e. CR -) will be changed to another failure mode, if 

one of the non-critical (till, then) elements (i. e. the tensile strains in the embedded 

bars, or the tensile stresses in the plate) become the controlling factors as regards 

beam's failure. Under such conditions, either the tensile strains in the embedded bars 

may become lower than the initial yield strain and the failure mode will, then, be the 

brittle mode C-- (with the concrete crushing controlling the failure), or the axial 

stresses in the plate may become the controlling factors for failure, in which case, the 

failure will not be due to the crushing of concrete and will instead be of a ductile 

nature - i. e. the failure mode -RP will be initiated. 

The axial stresses in the plate will become critical, if they reach the ultimate strength 

of the material for the FRP plate for the full bond behaviour, or if they become equal 

in magnitude to the minimum/maximum values of plate peeling stresses for the partial 

bond behaviour. For certain beam configurations, one and/or either of the plate 

peeling stresses may not be the critical factors, and such bounding values of plate 

stresses may be higher in magnitude than the plate ultimate strength. In such cases, the 

beam will not be in the partially bonded regime, and the full bond regime prevails. 
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Theoretically, by increasing the values of E., either ductile or brittle failure (i. e. the 

-RP or C-- modes, respectively) take place, following the primary mode of failure 

CR -. These two types of general behaviour may be classified as either under- 

reinforced (ductile behaviour) or over-reinforced (brittle behaviour): the underlying 

reason for using such over- or under-reinforced classifications will be clarified in the 

next chapter (i. e. Chapter 7) where it is argued that the more the area of the externally 

bonded plate is, the higher will be the possibility for the brittle (i. e. over-reinforced) 

mode C-- to occur. 

In view of the fact that so many design parameters influence the behaviour of a plated 

section, the following discussion will only present a qualitative description of the 

possible changes in the failure modes as the magnitude of the modulus of elasticity for 

the plate, Ep, is increased, with a quantitative treatment as regards the critical values 

of Ep associated with the mode transitions being addressed in some detail in Chapter 

7. 

6.3.1 Behaviour of Under-Reinforced Plated Beams 

As regards the primary mode CR -, it is operative when (as Ep increases) the growing 

axial stress in the plate will eventually reach one of the critical values of plate stresses 

prior to the tensile strains in the embedded bars falling below the yielding strain: in 

this mode, the failure will continue to be ductile, and the sudden crushing of concrete 

does not happen. 
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Figure 6.7 presents the general pattern of behaviour for an under-reinforced plated 

beam as the magnitude of plate modulus of elasticity increases. At virtually a zero 

value for the plate modulus of elasticity (point 0), the plate has no influence on the 

flexural capacity of the composite (i. e. plated) beam, and the flexural capacity will be 

the same as that of an unplated beam. Increasing the plate modulus of elasticity will 

increase the axial stresses in the plate and, hence, the flexural load capacity of the 

plated beam increases with the plate remaining fully bonded to concrete. 

If the magnitude of axial stresses in the plate reach the minimum or maximum values 

of plate peeling stresses, then, the failure mode will be controlled by the ripping off of 

the cover, rather than the crushing of concrete, with the embedded bars experiencing 

yielding (ductile failure): under such conditions, the failure mode will be -R -, being 

initiated at the critical E(a) value (point a). 

Full bond behaviour 
----Plate peeling behaviour 

-RP 

I 

E(A) E(b) 
I 

E(B) FRP Plate modulus of elasticity 

Fig. 6.7 Changes in the modes of failure associated with variations in the plate 
modulus of elasticity for under-reinforced plated beams. 
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Following the initiation of mode -R -, using externally bonded FRP plates with 

gradually higher moduli of elasticity causes a reduction in the tensile strains in the 

plate and the embedded bars, but does not significantly change the peeling flexural 

capacity of the beam. If the strains in the embedded bars are sufficiently reduced to be 

less than the initial yield strain, then, the failure mode will become the brittle mode 

--- at the critical E(b) value (point b), and this (i. e. ---) failure mode will 

continue to be due to peeling of the plate - it is not ductile in nature. Any further 

increases in the values of Ep will further reduce the flexural capacity of the composite 

beam, with no further associated changes in the failure mode. 

If the plated beam does not fail due to plate peeling (because either the magnitudes of 

plate peeling stresses are higher than the plate ultimate strength, or due to certain 

design arrangements such as mechanical anchoring to the end of the plate, which 

prevent the plate peeling to occur), then, the beam will continue to behave as a fully 

bonded one. In such cases, when (with increasing values of Ep) the tensile stresses in 

the plate reach the plate ultimate strength, the failure will be a ductile one due to the 

plate rupture at the maximum moment section (rather than it being caused by crushing 

of concrete) with the embedded bars experiencing yielding with the change in failure 

mode occurring at the critical value of E(A) (at point A) - the subsequent failure mode 

will be -RP . 

Using plates with higher moduli of elasticity associated with the -RP mode causes 

reductions in the magnitudes of tensile strains in the plate and the embedded bars, but 

does not significantly change the flexural load capacity of the plated beam. If the 

tensile strains in the embedded bars are sufficiently reduced to be less than the initial 
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yield strain, then, the beam failure mode will finally become the brittle one --P at 

the critical value of E(B) (at point B) with the mode of failure continuing to be due to 

plate rupture. Any further increases in the values of Ep will reduce the flexural 

capacity of the beam but will not cause any further changes in the mode of failure. 

6.3.2 Behaviour of Over-Reinforced Plated Beams 

Figure 6.8 presents the general pattern of behaviour (in terms of changes in the failure 

modes) for an over-reinforced plated beam, as the values of plate moduli of elasticity 

are increased. 

I 

CR- 

i 
i 
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b'N 
ý\ 

ý\ 

! CR 

Full bond behaviour 

----Plate peeling behaviour 

\ 
V 
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f 
ýf- -- 

f 
f 

f 
f 

ý 

ý 
ý,, unplated cat 1_ _ 

i ,ý 
I 

II i 
EýQý E(c) E(b) E(d) 

'Sý \ . acity ý. 
ý_ 

I 

E(D) FRP Plate modulus of elasticity 

Fig. 6.8 Changes in the modes of failure associated with variations in the plate 
modulus of elasticity for over-reinforced plated beams. 

For the primary mode CR -, with increasing values of modulus of elasticity for the 

plate, there will be gradual reductions in the magnitudes of tensile strains in the 

embedded bars, and when these strains become sufficiently small to be lower than the 

steel initial yield strain, prior to the simultaneously growing axial stress in the plate 
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reaching one of the critical plate stresses, then, the failure mode will be changed to the 

brittle one C-- due to the crushing of concrete at the maximum moment section, 

which occurs in the absence of large embedded bar deformations. This mode (i. e. 

C- -) is similar to that of the over-reinforced unplated sections, and is initiated at 

the critical value of E(c) at point C in Figure 6.8. 

Using plates with higher moduli of elasticity for the beams, which fail in the mode 

C--, leads to increasing values of tensile stresses in the plates and the flexural load 

capacity of the beam, and the composite beam will continue to behave as a full 

bonded element. With increasing values of Ep, if the axial stresses in the plate are 

sufficiently increased to reach that of plate peeling stress(es), then, the failure mode 

for the beam will be a brittle one --- at the critical value of E(d) (point d in Figure 

6.8), with the failure being due to the end plate peeling rather than crushing of 

concrete. Any further increases in the value of Ep will further reduce the flexural load 

bearing capacity of the beam, with the mode of failure continuing to remain as ---. 

If with increasing values of Ep within the mode C--, the beam does not fail due to 

plate peeling because the plate peeling stresses are higher in magnitude than the plate 

ultimate strength or due to certain constructional arrangements (e. g. using bolts at the 

end of the plate as a mean of mechanical anchoring) which prevent the plate peeling to 

occur, then, the beam will continue to behave as a fully bonded element until the 

tensile stresses in the plate are sufficiently high to reach the plate ultimate strength 

and, then, the failure will be due to plate rupture at the maximum moment section 

rather than the crushing of concrete, with the failure mode being --P: this mode 
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will be initiated at the critical value of E(D) (point D). Any further increases in the 

magnitude of E. will, then, lead to further reductions in the beam's flexural load 

capacity, with the mode --P remaining unchanged for increasing values of E. 

beyond E(D). 

If the magnitudes of plate peeling stresses for an over-reinforced plated beam are 

relatively low, then, the partial bond behaviour might follow the alternative path 

0-a-b in Figure 6.8, with the mode characteristics of the path 0-a-b in Figure 

6.8 being similar to those of the partial bond 0-a-b path in Figure 6.7, which have 

already been fully discussed in the previous section and there is little point in 

repeating the story again. 

6.4 NUMERICAL STUDIES 

This section presents numerical studies to support the above arguments regarding the 

effect of variations in the modulus of elasticity for the externally bonded plate on 

various parameters of plated beams which were studied within the scope of the above 

analysis. Twenty-one beams were carefully selected to represent almost the whole set 

of the 58 reinforced concrete beams strengthened with external FRP plates (which 

were identified in the literature review with their details shown in Table 2.1). The 

range of values for the moduli of elasticity for the FRP plates chosen in this study, lies 

between 1 and 200 GPa. 

Figures 6.9 to 6.30 show the effect of increases in the plate modulus of elasticity on 

the calculated values for the depth of neutral axis. From these figures, it is obvious 

235 



that (as previously discussed) increasing the plate modulus of elasticity increases the 

neutral axis depth for the plated section for all modes of failure (it will later be 

demonstrated in Figures 6.53 to 6.74 that the modes of failure associated with 

presently chosen FRP plated beams as influenced by the chosen range of moduli of 

elasticity cover the full range of possibilities). 

Figures 6.31 to 6.52, on the other hand, show the effect of increasing the plate 

modulus of elasticity on the axial strains of the externally bonded FRP plates: for all 

the possible modes of failure, it is clear that increasing the plate modulus of elasticity 

reduces (by varying degrees) the values of axial strain in the FRP plate. This has also 

been one of the underlying assumptions for the previous derivations for all the 

possible modes of failure. 

Finally, Figures 6.53 to 6.74 present the effect of increasing the plate modulus of 

elasticity, Ep, on the magnitudes of different flexural capacities for all the presently 

chosen FRP plated beams. These figures also present all the different possible modes 

of failure associated with each level of flexural load capacity over the full range of 

values for plate modulus of elasticity. 

Careful examination of this set of figures (i. e. Figures 6.53 to 6.74) substantiates the 

underlying assumptions in the preceding sections: 

1- At trivial values of Ep, all the plated section flexural capacities are equal to 

that for the corresponding unplated section. 

2- The initial mode of failure for all the plated beams (i. e. at sufficiently low 

values of Ep) is the primary mode CR - as shown in all these figures (though 
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this mode would either be followed by the successor mode at relatively small 

values of Ep, or would continue to be the cause of failure for still larger values 

of Ep). 

3- With increases in Ep, the flexural capacity (full bond behaviour) of the plated 

beam increases if the failure mode is either the CR - mode (as shown in all 

the figures) or the C-- mode (as shown in Figure 6.69 for beam N). For all 

those beams which experience the --P and/or --- modes of failure, on the 

other hand, the flexural capacity of the plated beam is found to decrease with 

increases in Ep. 

4- As previously suggested, there is insignificant changes in the flexural capacity 

(associated with variations in Ep) if the mode of failure is -RP or -R- (as 

demonstrated in almost all the plots). 

5- In most cases, the sequence of changes in the modes of failure (with increases 

in Ep) is typical of that predicted for the under-reinforced sections as in Figure 

6.7 - see, for example, Figures 6.60 to 6.63. 

6- Moreover, the sequence of changes in the modes of failure for over-reinforced 

sections as shown in Figure 6.69 is similar to that presented in Figure 6.8. It 

should, however, be noted that the whole pattern is not shown for the full bond 

behaviour (i. e. M pull) due to the restricted upper limit for the Ep-value in this 

study (i. e. 200 GPa) and the very large value (about 5047 GPa) of Ep which 

is needed for the initiation of the -- P mode which is expected to follow the 

C-- mode. 

7- In certain cases, the peeling capacity for the plated beam may be less than the 

corresponding flexural capacity for even the associated unplated section (as 
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shown in many figures). This observation has also been previously reported in 

the literature although no explanations had previously been offered for such 

reductions in the beam capacity following the external plating. Moreover, in 

certain cases, the --P capacity may, indeed, be less than that for the 

corresponding unplated section: beam F-P1 is an example for such a case - 

Ref. Figure 6.70. 

6.5 CONCLUSIONS 

All the possible changes in the modes of failure, as a result of increases in the FRP 

modulus of elasticity for plated reinforced concrete beams have been addressed in 

some detail. A quantitative treatment of the critical values of the FRP modulus of 

elasticity causing various failure mode transitions (i. e. changes) will be presented in 

the next chapter. 
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Chapter 7 

CRITICAL MODULI OF ELASTICITY FOR THE FRP PLATE 

7.1 INTRODUCTION 

The purpose of this chapter is to develop the appropriate procedures for predicting the 

critical values of moduli of elasticity for externally bonded FRP plates which control 

the changes in the mode(s) of failure for a plated beam, hence, influencing its flexural 

load bearing capacity. 

Details of the formulations for determining the key values of the plate moduli of 

elasticity, Ep, which distinguish between the full bond and the plate peeling 

behaviour, will be presented. Simple means of determining the underlying types of 

failure (i. e. as to whether brittle or ductile), will also be addressed. 

7.2 GENERAL 

Structural designers face largely limited choices as regards specifying various 

characteristics of reinforced concrete beams which are in need of strengthening. The, 

beam dimensions, configurations, the area of embedded bars and their arrangements, 

plus the characteristics of concrete and steel (such as their strengths) are already fixed 

in practical strengthening occasions and may not be altered. It, then, follows that the 

only parameters which are under the control of the designer are related to various 

external plate characteristics such as 

1- the position, length, width, and thickness of the externally bonded plate, 
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2- the type of material (such as steel, carbon fiber reinforced plastics (CFRP), or 

glass fiber reinforced plastics (GFRP)) to be used for the plate, 

3- the ultimate strength and modulus of elasticity for the plate material, and 

4- the tensile and shear strength, shear modulus, and the thickness of the adhesive 

material (i. e. the epoxy glue). 

7.3 CRITICAL MODULI OF ELASTICITY 

In the previous chapter, it was shown that the magnitude of modulus of elasticity for 

the external FRP plate has a very significant influence as regards the determination of 

various modes of failure and associated flexural load bearing capacities relating to 

plated beams. Moreover, the behaviour of the composite beam was classified in terms 

of two types: (1) ductile (under-reinforced), or (2) brittle (over-reinforced), according 

to the key values of the plate moduli of elasticity, Ep, at points A (E(A)) (in Figure 7.1) 

and C (E(CM) as shown in Figure 7.6. 

The minimum value of these two key Ep-values is believed to determine the beam 

classification following which all the other critical points relating to changes in the 

mode of failure may, then, be determined. If E(A) at point A is lower than the 

corresponding value of E(c) at point C, then, the behaviour of plated beam will be of 

an under-reinforced type, otherwise the plated beam may be classified as an over- 

reinforced element. The underlying reason for this type of classification is based on 

the finding (to be discussed later) that the more the area of the externally bonded plate 

is, the less will be the magnitude of E(c), while the higher would be the associated 
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value of E(A) and, hence, the greater the possibility for the occurrence of the brittle 

mode C- - (which is a typical one for an over-reinforced unplated section). 

I 
Full bond behaviour 

----Plate peeling behaviour 

ý 
oý ý ý ý 0 ti 

ý 
Q 0 

CR- A 
-RP 

-R- b 
r----- ý 

-P ýý--- 
ý 

CR unplatqd capacity 
-ý-"-"-"- -t-'-'-' ý_. -. -. -. . . -. 

1 
' `\ý 

E(Q) E(A) E(b) E(B) FRP Plate modulus of elasticity 
Fig. 7.1 Various modes of failure for an under-reinforced plated beam 

In the following sections, such critical values of the plate moduli of elasticity will be 

formulated in a closed-form, hence, enabling one to have a simple means of predicting 

variations in the modes of failure associated with changes in the magnitude of 

modulus of elasticity for the externally bonded FRP plate. 

7.3.1 Moduli of Elasticity for Under-Reinforced Plated Beams 

Figure 7.1 presents the influence of variations in the magnitude of the FRP plate 

modulus of elasticity on the corresponding values of flexural load bearing capacity for 

typical under-reinforced plated beam designs as discussed in Chapter 6. This figure 

shows changes in the modes of failure for plated beams for those cases when the 

externally bonded plate acts as fully bonded to the concrete beam (path O-A-B), and 

also for cases when the composite beam fails prematurely, due to the plate peeling 

phenomenon (path O-a-b). 
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The plot for the flexural load bearing capacity of unplated beam is also shown for 

comparison, and it is not surprising that for diminishing values of the plate modulus of 

elasticity (approaching zero), the flexural load bearing capacity of the plated beam 

approaches the corresponding one for an unplated section. 

7.3.1.1 Minimum Value of Ef for the Mode -RP (Point A) 

For the initial mode of failure CR-, when the axial plate stress first reaches the 

corresponding plate ultimate strength, fpu, while the axial strain in the embedded bars, 

is still larger than the corresponding yield strain for steel, CSy, then, the mode of 

failure CR- will be followed by the -RP mode: this will happen for those values of 

plate modulus of elasticity E(A) (point A, Figure 7.1) in connection with under- 

reinforced plated beams. 

For the critical values of E(A), both the embedded bars and the plate are fully stressed, 

and the maximum concrete compressive strain, 4, is very nearly equal to the crushing 

value (i. e. 0.0035) - see Figure 7.2. 

Equation (7.1) expresses the equilibrium condition for the forces, corresponding to the 

plate modulus of elasticity E(A), making use of the relationship defining the value of 

concrete compression force (i. e. Equation (B. 50) derived in Appendix B). 

d' 
A, fy + AP fPu = AsEsco (1- 

y)+ 
YAb( Co )C E6ý + 0.67 f 

cu 
(7- 3 )] (7.1) 

A 

which may be re-written as 

-3)ý+Ya(AsEsýo-A, f, - Apfpu) - AsEssod' =0 (7.2) YÄb(ý)E 6 ý"0.67fcu(ý 2 
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0.0035 
ý ffl 
-eo - 

d' es 

F. yy. 

D 

// 
1/ I 
/ --; t 

LýEpu 

Esy<Es 

E(A)p 
, 
fpu 

0.67fcu 0.67feu 

As fy 

Apfpu 

NA 

Mode -RP, E(A) 

Epo 
, 

fp < fpu 
--- -Mode CR-, Epo 

Fig. 7.2 Transition from the Mode CR- to the Mode -RP 

The depth of neutral axis, yA, may be determined from the above equation, while from 

the assumed strain distribution, as shown in Figure 7.2, one may arrive at the 

following: 

Epu 

D -yA 

with 

0.0035 
YA 

COP u_-0.0035(D_Yaý 
Ya 

It follows that, the critical value of plate modulus of elasticity at point A, E(A), is 

f 
pu 

_f 
pu yA 

E(A) 
-6 

pu 
- 0.0035 (D - yA ) 

(7.3) 
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If the influence of the embedded steel bars in the compression side is ignored, and the 

simplified stress block for concrete as that recommended by BS8110 (1985) is 

assumed (Figure 7.2), Equation (7.1) may be written as 

A, fy +APfpu =0.9yAb x0.67f 

so that 

v. = 
Asfy+Apfp� 

,"0.67fcu0.9b 

The critical value of the plate modulus of elasticity, E(A), may, then, be determined by 

a very simple closed-form relationship: 

- 
fpu 

- 

fpu(Asfy + Apfpu) 
E(A) 

6 
pu 

0.0035(0.9x0.67 f, ubD - AS f 
y- Ap f pu) 

(7.4) 

7 . 3.1.2 Minimum Value of Ep for the Mode - -P (Point B, Under-Reinforced) 

In Chapter 6, it was shown that in the ductile mode -RP, the axial strains in the plate 

and the embedded steel bars are reduced with the associated increasing values of Ep. 

At a certain value of Ep (E(B) in Figure 7.1), the axial strain in the embedded bars will 

be reduced to that equal to yield strain (i. e. c, -Ey) and, then, the failure of the beam 

will be due to plate rupture in the absence of associated large deformations (i. e. the 

brittle - -P mode takes place). 

The conditions corresponding to the critical value of E(B) are that the embedded bars 

experience yield (i. e. their axial stresses are equal to fy) and that the axial plate stress 

is at its maximum possible level (fp�), while the associated values of concrete 
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stresses and strains are not critical - see Figure 7.3: the following relationships may, 

therefore, be derived 

Esy Epu Es 

/ 
d-yB D-yB yB-d 

0.67fcu 

Mode - -P, E(B), Case 1 

Mode - -P, E(B), Case 

--- Mode -RP, Epo 

Fig. 7.3 Transition from the Mode -RP to the Mode - -P 

Since the concrete is not in the crushing state, there will be two cases to be considered 

as regards the total value of concrete compression force - see the discussion in 

Appendix B. The first case corresponds to those instances when the maximum 

concrete stress is less than 0.67fcu, in which case the total compression force may be 

expressed by the following equation - see Appendix B, Equation (B. 53) 

Fc=A., Ese5d-Yd/y ý'b2, 
(d-y)Y2+ 3 (d y)2Y3 (7.5) 

where 

Ti'. - 
0.67fcu-EcP 

III -p 2 
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In the second case, on the other hand, the maximum concrete stress becomes equal to 

0.67fu, but the corresponding maximum concrete compressive strain will be less than 

0.0035 although greater than , B: the total concrete compression force, FF, may, then, be 

expressed by the following Equation - see Appendix B, Equation (B. 40) . 

F, =AsEsesd-d +0.67f, u Y+ß y-1d +ýý(d-y)+ýý(d-y) (7.6) 
Y es es 

For both cases (1) and (2), the equilibrium equation of section forces may be used to 

determine the depth of neutral axis yB (as explained in the following sections), with 

the total tension force, FT, given by 

Fr=Asfy+Apfp� 

7.3.1.2.1 Case 1 

The equilibrium equation for section forces corresponding to case 1 is 

ý fy+Ap fp4 
=A1EScsYBt-d1+bE, ( E, )Yei+ý ES 23 

'd -YB, 2 d-YB, 3 ýd-Ye, ) YBI 

Multiply the above equation by (d - YBI )2, to get 

(A5ff+APfP. )(d-YBl)2 =AsEsEs(YB1-d')(d-YBi)+ 

b EA (d - YBI) Ya1 +bs yB, 3 

Yet [K2 - KE]+Yal[KEd - K'- KT]+ yst[Kl(d +d')+2KTd]- 
(K'dd' + KTd2) =0 

where 

Wie 2 
K2 =3 _ 

0.67f 
cu 

2 
E, Q, 

KE =b 
2`ýS 

ß 
Ký = As ES es and 

(7.7) 
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KT=(Asfy+Apfpu) 

By solving Equation (7.7) (using a trial and error method), the neutral axis depth, yBl, 

may be determined. The associated maximum value of concrete compressive strain, 

4, is given by 

F,. = F.... 
YBI (7.8) 

"' d- YBl 

If the maximum concrete strain 4 is less than ß (where, ß=2.44xip f, 
y 

), then, 

the initially assumed stress distribution over the section is valid, and the so-calculated 

neutral axis depth is the correct one. However, if e, turns out to be more than ß, the 

depth of neutral axis should be calculated according to the following procedure for 

case 2. 

7.3.1.2.2 Case 2 

The equilibrium equation for section forces in the case 2, is 

AS, fy +Apfpu = AsEsEs Yee -d +0.67f�b(ye2 +1 Ye2 - 
IB d)+ 

d- Y62 es es 
i ßs2(d-YB2)+b3Lýs3(d-YB2) 

(A, sfy + Apfpu)(d - YB2) = As Es, gs(Ys2 - dl )(d - Ys2)+0.67 f, uby(d - YB2) + 
23 

[2 
ßs 

+3 
Qs 

-0.67f, �b 
ß](d-Ya2)2 
£s 

KT(d - YB2) = Kl(YB2 -dl)(d - Y82)+ KfY(d --YB2)+ K3(d - YB2)2 

where 

K3 =[ 
2 ßs 

+3 
Qs3 

- 0.67 f�ub 
ýl 

and Kf = 0.67 f, 
ubY 

s 
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which may be written as; 

y82[K3 - K' - Kf]+ yB2[d(K' + Kf -2K3)+ 
K'd'+KT]+d[K3d-K'd'-KT]=0 

By solving the above equation, the depth of neutral axis, yB2, may be determined and, 

then, the maximum compressive strain in concrete may be calculated as in Case 1 

(Equation (7.8)) to ensure that it is more than d 

Using the appropriate value of YB (either from Case 1 or Case 2), the minimum value 

of E(B) for the mode - -P to be initiated may, then, be calculated as follows: 

Epu E Sy 

D-y3 d-yB 

and 
fy (D- ye ) 

Eo Es (d - yB ) 

with 

E= 
f°° 

= 
id - Ye )f pu Eý (B> E pu 
(D - YB ) fy 

(7.9) 

7.3.1.3 Minimum Value of E� for the Mode -R- (Point a) 

For the failure mode CR-, if the plate axial stress first reaches the plate peeling stress, 

and if there are no arrangements to prevent occurrence of such premature peeling 

(such as implementation of plate end anchorages), while the axial strain in the 

embedded bars, r, is still larger than the yield strain for steel, c5y, then, the mode of 

failure will change from CR- to the -R- mode, and this will happen at the critical value 

of the plate modulus of elasticity E(a) - see point a in Figure 7.1, or Figure 7.6. 
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The conditions associated with the critical value of plate modulus of elasticity, E(a), 

are that the embedded bars are fully stressed, that the plate axial stress is equal to the 

peeling value, o-,, and that the maximum concrete compressive strain is very nearly 

equal to the crushing value (i. e. 4 -0.0035): under these conditions, the mode of 

failure will be changed from concrete crushing to that of plate peeling - see Figure 

7.4. 

Following the same procedures as those used for the determination of the value of 

E(A), the depth of neutral axis, yQ, may be determined from the follo*ing 

2 
Yab(- )CE6, 

g +0.67fýu( - 3)]+Y0(ASE5e0-A, ff -APo )- As Es60d' =0 

and, based on the strain distribution in Figure 7.4 

Spel 

D-Ya 

0.0035 

ya 

The magnitude of critical axial plate strain, Evel, which causes the transfer from the 

CR- mode to the -R- mode, will be 

Epel = 
0.0035 (D _ ya ) 

Ya 

while, the minimum plate modulus of elasticity, E(a), for the mode -R- at the critical 

point a, in Figure 7.1, may be determined from 

as as Ya 
Eý°ý 

E pel 0.0035 (D - ya ) 
(7.10) 

Ignoring the influence of the steel bars in the compression side, and using a simplified 

stress block for concrete as that recommended by BS8110 (1985) (Figure 7.4) 
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y° = 0.67f Cu 0.9b 

I 
d' 

0.67fcu 

0.9YA 

0.67feu 

NA 

/) 
' 

4 

0.0035 
1: 

ro .7 
es 

74y 4y <4 

1ý 
Fpel 

If ý1o 

E(a), fp= Qs 
Epo, fp<Qs 

A: fr 

Mode -R-, E(a) 

--- -Mode CR-, Epo 

Fig. 7.4 Transition from the Mode CR- to the Mode -R- 

Under such conditions, therefore, the critical plate modulus of elasticity, E(a), may be 

determined by the following simple formula 

ý Q.. Qs(Afy +ApQ, ) 
C.,., =-= l°/ 

Af fy + ApUs 

6 pel 
0.0035(0.9x0.67 fýubD - A: fy - Ap U, ) 

(7.11) 

7 . 3.1.4 Minimum Value of E� for the Mode ... (Point b. Under-Reinforced) 

In Chapter 6, it was shown that in the ductile mode -R-, increasing the magnitude of 

Ep reduces the axial strains in the plate and the embedded steel bars. At a certain value 

of Ep (corresponding to E(b) in Figure 7.1), the strain in the embedded bars will be 

sufficiently reduced to be equal to the yield value (i. e. e5=ey) and, then, the failure 
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may be attributed to the plate peeling, occurring in the absence of associated large 

deformations (i. e. the brittle --- mode). 

e0<0.0035 0.67fcu 

46 

Mode ---, E(b), Case 1 

Mode ---, E(b), Case 2 

--- Mode -R-, Epo 

Fig. 7.5 Transition from the Mode -R- to the Mode --- 

Under these conditions, for the critical value of E(b), the axial strains in the embedded 

bars are just equal to that of yield for steel, ry, and the corresponding plate axial stress 

will be equal to the critical plate peeling stress, as, while the values of stresses and 

strains in concrete will not be the critical ones - see Figure 7.5: in such cases, the 

following hold 

sy 
E 

pet s 
_/ 

d-yb D-yb yb -d 
(7.12) 

Since the concrete is not in the crushing state, two distinctly different cases should be 

considered for the determination of total concrete compression force - see the 

discussions in section (7.3.1.2), leading to Equations (7.5) and (7.6). 
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For both cases, the equilibrium equation for section forces should be used in order to 

determine the depth of neutral axis, Yb (to be discussed in the following sections), with 

the total tension force given by 

Fr=A3fy +APa's (7.13) 

7.3.1.4.1 Case 1 

The equilibrium equation relating to section forces for Case 1 is 

/ 
Cý 

AS fy + ApQs = AS ES ES 
Yb1 - d+ 2( `S ) Yä1 + 3( 

dý. 
e )2 Ybl d- Yb1 d-Ybl Ybt 

Multiply the above equation by (d - Yb1)2 , to get 

(Asfy + APQS )(d - Yb1)2 = As ES ES ( Yb1 - dl )(d - Yb1) + 

b 2`ýS (d - Yb1) Yb1 + 
bý- 

Yb13 

yb1 [K2 - KE]+ yb1[KEd - Kl - KT]+ Yb1[K/(d + d/ )+ 2KTd]- 

(K/dd/ +KTd2)=0 

where 

bKie 2 '. 67f cu - Ec ß 
K2= 3, Ki= ß2 

KT = (Asfy + Apas) 

9 KE =b 2`fs , K' = Aä Es Es and 

(7.14) 

By solving equation (7.14), using a method of trial and error, the depth of neutral axis, 

ybl, may be determined. The corresponding maximum value of concrete compressive 

strain, E,, may be calculated from the following 

Eo = Ery 
d- Yai 

ybl 
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If the so-obtained value of maximum concrete strain, e0, is found to be less than ß 

(where, ß=2.44 x low f7. ), then, the assumed stress distribution is considered to be 

a valid one, and the predicted depth of neutral axis is assumed to be correct. However, 

if e0 is found to be more than ß, the correct value of the depth of neutral axis should 

be calculated following the procedure presented in the next section (Case 2). 

7.3.1.4.2 Case 2 

The equilibrium equation of section forces for this case is 

` Yb2 -d As fy+ AP Qs = AS Es Es ? 
., 

ý + 0.67 f, 
ub(Ynz + Yb2 -ýd)+ d-yb2 -ý» -_ E 

RR 

5 
_- 6 

S 

2 ýSZ(d-Yb2)+ 3 ýs3(d-Yai) 

After multiplying by (d - yb2) and rearranging, one gets 

11 

(Asf y+ 
Apo's)(d - Yb2) = AýEsEs(Yna - d')(d - Ybz)+ 0.67f, 

ubY(d - Yna)+ 

[ý ý 2+ bK1 ß 3- 
0.67 f, ub 

ß 
](d - Y62 )2 2 Es 3 Es es 

or 

Kr(d - Yb2 )= K'(Yb2 - d')(d - Ybz )+ KfY(d - Yb2 )+ K3(d - Yb2 )2 

where 

= [ý 
ß 

s2 +ýß S3 - 0.67 f, ub ßl 
and Kf=0.67 f, 

uby K' = AS Es Es K3 
s 

and, KT = (ASfy +APQS) 

One, finally, arrives at the following 

yb2[K3 - K' - Kf]+ yb2[d(K' + Kf -2K3)+ K'd' + KT]+ 

d[K3d-K'd'-KT]=0 
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By solving the above equation, the depth of neutral axis, yb2, may be determined and, 

then, the corresponding value of maximum compressive strain in concrete may be 

calculated as in the first case, using equation (7.15), to ensure that it is more than. 9 

Using the appropriate value of yb (as determined from either Case 1 or Case 2), the 

minimum critical value of E(b), for initiation of the mode - -P, may be estimated as 

follows 

E pel 
E sy 

, 

D-yb d-Yb 

and 

, 
r--f ý 

fy(D-yb) 
.. vc. Es (d - Yb) 

with 

al (d - yb ) aý, E(b) _ý 
ýi 

_ (D - yb ) fy ES (7.16) 

7.3.2 Critical Values of the Moduli of Elasticity for Over-Reinforced 

Plated Beams 

Figure 7.6 presents the influence of variations in the magnitude of modulus of 

elasticity for the FRP plate on the corresponding modes of failure for over-reinforced 

plated beams (as discussed in Chapter 6). 

The figure presents the variations in the flexural modes of failure for the plated beam 

if the external bonded plate acts as fully bonded to concrete up to beam's failure (path 

O-C-D), and also covers those cases when the beam experiences premature failure due 
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to plate peeling (path O-C-d). If there are no provisions made to prevent the 

occurrence of plate peeling, and if the plate peeling stress is relatively low (i. e. lower 

than that for the mode C- -, at point C), then, the composite beam would follow the 

path O-a-b as an under-reinforced member - as fully discussed earlier in this chapter. 

I Full bond behaviour 

----Plate peeling behaviour 

CR- 

-ý- 

Ol 
i 

bi\ý 
--- iý 

iý 
i` 
L CR 

\. 

.i 
i 

I iI 

ý 
ý 
f 
ý 
ýý -- 

f 
f 

f 
f 

f 

, unplated cat ., acity ý\ý_ 

I 

I 

Eýaý E(C) E(b) E(d) E(D) FRP Plate modulus of elasticity 

Fig. 7.6 Various failure modes for an over-reinforced plated beam 

7.3.2.1 Minimum Value of E� for the Mode C- - (Point C) 

Starting with the primary mode CR-, in connection with which the axial strain in the 

embedded bars is reduced, and the axial stress in the plate is increased as the plate 

modulus of elasticity increases, with the strain in the embedded bars reducing in 

magnitude to that of yield for steel first (i. e. C=ry) with the stress in the plate not 

reaching the ultimate strength for FRP material (i. e. fp < fpu), then, the failure mode 

will change to the brittle mode C- -: this will happen at the critical value of plate 

modulus of elasticity E(c), with the beam being referred as an over-reinforced element. 
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Associated with the critical parameter E(c), is the maximum concrete compressive 

strain equal to the crushing value (C. =0.0035), and the embedded bars are assumed to 

just experience yielding (i. e. f, fsy), with the plate axial stress being lower than the 

ultimate value - see Figure 7.7. 

=0.0035 'j U. 67, rcu 0.67fcu 

0.9 
C 

d 

As fsy 

Ap, fP 
Mode C- -, E(c) 

--- -Mode CR-, Epo 

Fig. 7.7 Transition from the Mode CR- to the Mode C- - 

From Figure 7.7, the following relations hold: 

ý SY =y where, ESY = 
fy 

D -Yc Yc E: 

and, the neutral axis depth, yc, is given by 

E od Yc 
(ýo+ 

Ey) 

Es 

Considering the equilibrium condition for section forces, with Equation (B. 50) 

(derived in Appendix B) giving the total concrete compression force in the crushed 

state, then 
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Asfy +APEýc> 
D_Yc 

Eo =AsE, Eo(1-Y/c )+ycb(ý)[ 6ý--0.67f«(ý-32 )] 
Yc 

or 

E(c) - 

i 
AfE, c(1- +Ycb(ý)[E6ý +0.67fýu(ý - 3)A, fy 

a Yc 

Ap (D -1)Eo 
Yc 

(7.17) 

Adopting the concept of simplified compression stress block for concrete (Figure 7.7) 

E(c) = 

0.0035ASEr (1- +0.9yc 0.67fcub-Asfy 
Yc 

0.0035 AP (D -1) 
Yc 

(7.18) 

7.3.2.2 Minimum Value of E,, for the Mode - -P (Point D, Over-Reinforced) 

In Chapter 6, it has been shown that for the brittle mode C- -, as the plate modulus of 

elasticity E. is increased, the axial stress in the plate is increased while the axial 

strains in the plate and the embedded bars are reduced. At a certain value of Ep (E(D) 

in Figure 7.6), the plate axial stress reaches the ultimate value and, then, the brittle 

FRP plate will be the critical element causing failure, with the failure not being 

controlled by the crushing of concrete. 

At the critical value of E(D), the maximum concrete compressive strain will just be at 

the crushing level (i. e. &, -=0.0035), and the plate axial stress reaches the rupture stress 

fpu, while the stresses in the embedded steel bars will be lower than the yield value (or 

they may even be in compression if yn>d) - see Figure 7.8. 

i. e. 
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Fig. 7.8 Transition from the Mode C- - to the Mode - -P 

Using the equilibrium condition for section forces as given by Equation (B. 50) for the 

concrete compression force (see Appendix B), if d> yD (i. e. with the main embedded 

bars in tension) 

AsEs Ea(d_ YD)+APfPu =Als Es ýoýYD-d )+ 
YD YD 

YDbc ß)CE+o. 67fýu(, 8 - 3)ý 

and, if d <YD (i. e. with the main embedded bars in compression) 

276 



YD-d )+ YD-d)+ E, Eo(Y° APfPu =A, E, eo(Y° 

YDb(ß)[ +0.67f, u(. -3)] 

which gives the same equation. Multiply the above equation by YD, to get 

Yöb([ +0.67fcu(ý-3)]+A3 E3 Eo(YD-d)-APfpuY° 
0 

+AsE3 Eo(YD-d')=0 

which may be written as 

yDý 
6 

-I--0.67f'u(ß-3)]b(ý)+yoCE, CO(A, +ý)-ApfpuJ 

-E, Eo(Aý d' +A, d)_0 

where, e0=0.0035 and 8=2.44x10 f 

Solving this equation foryD, then 

E pu 

D -YD 

and 

0.0035 

YD 

�pu °pu 
YD 

E(D) 

6 pu 0.0035 (D - YD) 
(7.19) 

7.3.2.3 Minimum Value of EEe for the Mode ... (Point d, Over-Reinforced) 

With no provisions made to prevent the occurrence of plate peeling (such as plate end 

anchoring) and when (with corresponding increases in the plate modulus of elasticity 

in the mode C- -) the axial stress in the plate reaches the plate peeling stress, the 

failure will be controlled by the plate peeling rather than the crushing of concrete. 
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This will happen at the critical value of E(d) at point d in Figure 7.6, provided that the 

corresponding plate peeling stress remains less than the ultimate strength for FRP. 

At this critical value of E(d), the maximum concrete compressive strain is just less 

than the crushing value (i. e. e, =0.0035), and the plate axial stress reaches the plate 

peeling stress, ßs, while the stresses in the embedded bars will be lower than the yield 

strength for steel (or they may even be in compression if yd >d) - see Figure 7.9. Under 

such conditions, one gets 

£' 
o £pe! 

- 

£s es 
lfd >, yd 

Yd D-Yd Yd-d' d -Yd 

or 
E°- Gsd 

ifd<yd 
YD yv 

Using the equilibrium condition for section forces, and using Equation (B. 50) in 

Appendix B for estimating the magnitude of the concrete compression force, if d> yd 

(i. e. with the main bars in tension), then 

/ 

AsEs Co( 
d_ Yd)+ApQs 

=AsEs Eo(yd _d )+ 
Yd Yd 

Ydb(ý)ý 
6 

--0.67f, u(W - 3)ý 

And, if d< yd (i. e. with the main bars in compression) 

i 
AýQ, =ASEs Eo(Yd -d)+AiEs Eo(Yd _d )+ 

r--- Yd Yd 

bQEß '+" 0.67 £° 2 

Ya (Co)[-ý-- f 
`"ýQ -3)ý 

which gives the same equation. Multiply the above equation by yd, to get 
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AsEs loo(Yd -d)+ASEs Eo(Ya-d')-Apa: Yd+ 

22 b(ý)6+0.67fu(ý - 3)] =0 Yä 

YdL 
6 

-F-0.67fou(ý - 3)]b(ß)+Yd[Es ý 
o(As +As)-APQsý 

-Es eo(A; d'+A, d)=0 

where, &, =0.0035 and ß=2.44x10 f 
ýu . 

1 
a' 
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Yd 
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0.0035 
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Fig. 7.9 Transition from the Mode C- - to the Mode --- 

Solving this equation for yd, then 

Epel 0.0035 
D -Yd 

and 

Yd 

Us as Yd 
E(J) -Ppel _0.0035(D-Yd) (7.20) 
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7.3.3 Determining the General Behaviour 

In order to determine the maximum value of E. for the primary mode CR- associated 

with over- and/or under-reinforced beams with externally bonded FRP plates, the two 

values of moduli of elasticity E(A) and E(c) for the plate as given by Equations (7.4) 

and (7.18), respectively, need to be calculated, with the minimum of them determining 

the type of behaviour at the critical points of mode transition to the successor mode of 

failure. If E(A) is found to be less than E(c), then, the successor mode of failure (after 

the primary mode CR-) will be the ductile mode -RP, and the upgraded beam will be 

under-reinforced (Figure 7.1). On the other hand, if the predicted value of E(C) is 

found to be less than the corresponding value of E(A), then, the next failure mode will 

be the brittle one C- -, and the beam will, then, be classified as an over-reinforced one 

- Figure 7.6. 

The underlying reason for these over- and/or under-reinforced classification for the 

plated beams, may be explained by studying the two simplified (but accurate) methods 

for calculating the values of both E(A) and E(c) (as predicted by Equations (7.3), (7.4), 

(7.17) and (7.18)), bearing in mind that the unplated beam is always assumed to be 

under-reinforced. 

A careful examination of these equations, suggests that all the section parameters 

(such as the beam configuration and material characteristics) affect the behaviour of 

the beam, and determine as to which mode of failure will be the dominant one at a 

certain critical value of E, : these parameters are as follows: 

1- the total area of steel bars, their depth, yield stress, and modulus of elasticity, 

2- the plate cross-section area, and ultimate strength, and 
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3- the concrete cross-section dimensions, compressive strength, and modulus of 

elasticity. 

As regards the area of externally bonded plate, the larger the area of the plate is in the 

simplified equations, the higher will be the value of E(A) and the lower is the 

magnitude of E(c): in other words, the higher will be the possibility of occurrence for 

the brittle mode of failure C- -. In the failure mode C- -, the failure is due to crushing 

of concrete in a sudden fashion prior to the yielding of the embedded steel bars, and it 

happens without associated noticeable deformations - i. e. it is an over-reinforced type 

of failure. 

On the other hand, the lower the area of the plate is, the lower will be the value of E(A) 

with a higher associated critical modulus of elasticity E(c) being predicted, leading to 

the occurrence of the ductile mode -RP as the successor mode. The failure in this 

mode (i. e. -RP) will be initiated in the plate (i. e. by plate rupture) associated with 

large deformations and curvatures - i. e. the failure mode will be of an under- 

reinforced type, with the corresponding unplated beams failing due to crushing of 

concrete. 

7.4 VERIFICATION OF THE DERIVED FORMULAE FOR THE 

CRITICAL VALUES OF Ep FOR THE FRP PLATE 

In this section, the proposed closed-form formulae for determining the critical values 

of the plate moduli of elasticity associated with various failure modes, will be checked 

against results based on numerical (i. e. theoretical) parametric studies, using the same 
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group of twenty one beams designs which were previously used in the theoretical 

parametric studies as discussed in Chapter 6. 

In Table (7.1), the numerical results relating to the predicted critical values of E(A), 

E(B), E(c) and E(D) associated with the full bond behaviour are compared with the 

critical values based on the numerical parametric studies (Ref. Chapter 6), where the 

changes in the failure modes with increasing values of the plate moduli of elasticity 

were fully reported. Tables (7.2) and (7.3) show similar comparisons for the lower and 

upper bound peeling moments, respectively, for the corresponding partially bonded 

behaviour, and present a comparison of the critical values of E(a), E(b) and E(d) based 

on the closed-form formulae (as derived in the previous sections) with the 

corresponding critical values as obtained from the numerical parametric studies. 

In these tables, the predicted 2°d mode of failure (as the successor to the primary mode 

CR-) is shown in column (3), and is determined according to the lower value of E(A) 

(column (1)) and E(C) (column (2)) in Table (7.1), or the lower value of E(a) (column 

(1)) and E(c) (column (2)) in Tables (7.2) and (7.3). If E(C) is the lower value, then, the 

predicted 2nd mode of failure will be the C- - mode, corresponding to the value of E(B) 

in column (4) (or E(b) if partial bond behaviour, as in Tables (7.2) and (7.3), is not 

applicable as the section is classified as an over-reinforced one - see Fig. 7.6). On the 

other hand, if E(c) is the higher value, then, the predicted 2nd mode of failure in 

column (4) is either the -RP mode (if compared with E(A) for full bond behaviour in 

Table (7.1)) or the -R- mode (if compared with E(a) for partial bond behaviour in 

Tables (7.2) and (7.3)). In this case, the critical value E(D) or E(d) in column (5) is not 

applicable as the section is classified as an under-reinforced one - see Fig. 7.1. The 
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predicted 2nd mode of failure in column (3) should be compared with that resulting 

from the numerical parametric studies and shown in column (7). The critical value of 

the plate modulus of elasticity E(A) or E(c), where the mode of failure is changed from 

the primary mode CR- to the successor mode, is either the -RP mode (if under- 

reinforced section) or the C- - mode (if over-reinforced section), respectively, as 

suggested by the numerical parametric studies (shown in column (6)), and should be 

compared with the corresponding lower value of those given in columns (1) and (2). 

Because the numerical parametric studies were carried out with an interval of 10 GPa 

for the plate modulus of elasticity, the exact critical value is not available, and only 

the range over which the mode change-over happens (e. g. 140-150 GPa) is shown. 

Similar results, for the partial bond behaviour, are shown in Tables (7.2) and (7.3). 

Finally, the lower value (as predicted by the proposed closed-form formulae) 

presented in columns (4) and (5) should be compared with the corresponding value in 

column (8). 

A careful examination of such results strongly suggest that the proposed closed-form 

formulae successfully predict such critical values for the moduli of elasticity and the 

corresponding modes of failure although (in some cases) certain results may not be 

compared because the numerical parametric studies were carried out covering a 

limited (but practical) range of moduli of elasticity for FRP 10 < Ep < 200 GPa which 

do not cover the whole range of values for this parameter as is predictable using 

closed-form solutions. For certain cases, such closed-form solutions predict values of 

the critical moduli of elasticity as high as 5047 GPa: such values are outside the 

current manufacturing limits for FRP materials and are of not much practical concern. 

283 



In other words, such extreme changes of failure modes for certain beam designs 

(although theoretically possible) do not happen in practice. 

Based on the results presented in Tables (7.1), (7.2) and (7.3), it is concluded that the 

proposed closed-form formulae relating to the critical values of the plate moduli of 

elasticity are, indeed, correct, and these formulae may be considered as being 

generally reliable. In the following section, certain design parameters will be studied, 

using the presently proposed closed-form formulae, and the effect of each individual 

parameter on the critical values of the plate modulus of elasticity and, hence, the 

modes of failure, will be examined. 

7.5 MAIN PARAMETERS AFFECTING THE BEHAVIOUR OF A 

FRP PLATED BEAM 

Studying the changes in the mode(s) of failure due to variations in other parameters 

such as the total area of embedded steel bars, concrete compressive strength, etc., as 

one changes the value of Young's modulus for the FRP plate, E., is very complicated 

and, for the present purposes, the subsequent brief discussion will be limited to the 

most important (i. e. first order) factors. As the variations in the Young's modulus for 

steel bars are very limited in practice, changes in this parameter will not be considered 

in what follows. 
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Predicted 
(based on the e uations derived in chapter 7) 

Numerical parametric study 
(10 GPa intervals for E,, ) 

Beam E(A) 
GPa 
(1) 

E(c) 
GPa 
(2) 

2nd mode 
of failure 

(3) 

E(B) 
GPa 
(4) 

E(D) 
GPa 
(5) 

E(A) or E(c) 
GPa 
(6)* 

2nd mode 
of failure 

(7) 

E(B) or E(D) 
GPa 
(8)* 

H-Alb 149 594 -RP 368 URS 150-160 -RP 200+ 
H-A2g 262 382 -RP 342 URS 200+ NA 200+ 
H-B6 161 478 -RP 335 URS 170-180 -RP 200+ 
H-B9 161 478 -RP 335 URS 170-180 -RP 200+ 
H-2Cu 119 1082 -RP 448 URS 120-130 -RP 200+ 
H-2Ca 119 1082 -RP 448 URS 120-130 -RP 200+ 
CC 26 427 -RP 143 URS 20-30 -RP 140-150 

77 234 -RP 135 URS 80-90 -RP 130-140 
BB 51 312 -RP 138 URS 50-60 -RP 130-140 
DD 51 312 -RP 138 URS 50-60 -RP 130-140 
C 10 210 -RP 56 URS 10-20 -RP 50-60 
F 18 104 -RP 54 URS 10-20 -RP 50-60 
H 36 117 -RP 79 URS 30-40 -RP 70-80 
J 83 313 -RP 196 URS 80-90 -RP 190-200 
L 41 785 -RP 217 URS 40-50 -RP 200+ 
N -7,840 156 C- - ORS 5047 140-150 C- - 200+ 
F-P1 10 506 -RP 50 URS 10-20 -RP 40-50 
F-P2 12 252 -RP 49 URS 10-20 -RP 40-50 
F-P2B 12 252 -RP 49 URS 10-20 -RP 40-50 
F-P2BW 12 252 -RP 49 URS 10-20 -RP 40-50 
F-P3J 14 167 -RP 48 URS 10-20 -RP 40-50 

Table 7.1 Critical values of E. and modes of failure (full bond behaviour) 

Notes 
URS = Under- Reinforced Section: E(D) is not applicable (Figure 7.1). 
ORS = Over-Reinforced Section: E(B) is not applicable (Figure 7.6). 
200+ = Value higher than the maximum of the studied range (i. e. higher than 

200 GPa). 
NA = Not Available. 
* :n- (n+10) = Value of Ep (where the mode is changed) lies between n and (n+10) 

GPa. 
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Predicted 
(based on the e uations derived in cha ter 7) 

Numerical parametric study 
(10 GPa intervals for E) 

Beam E(0) 
GPa 
(1) 

E(c) 
GPa 
(2) 

2nd mode 
of failure 

(3) 

E(b) 
GPa 
(4) 

E(d) 
GPa 
(5) 

E(a) or E(c) 
GPa 
(6)* 

2nd mode 
of failure 

(7) 

E(b) or E(d) 
GPa 
(8)* 

H-Alb 62 594 -R- 235 URS 60-70 -R- 200+ 
H-A2g 22 382 -R- 121 URS 20-30 -R- 100-110 
H-B6 60 478 -R- 203 URS 60-70 -R- 200+ 
H-B9 60 478 -R- 203 URS 60-70 -R- 200+ 
H-2Cu 85 1082 -R- 364 URS 80-90 -R- 200+ 
H-2Ca 85 1082 -R- 364 URS 80-90 -R- 200+ 
CC 10 427 -R- 81 URS 10-20 -R- 80-90 

11 234 -R- 33 URS 10-20 -R- 30-37.2 
BB 12 312 -R- 51 URS 10-20 -R- 50-60 
DD 12 312 -R- 51 URS 10-20 -R- 50-60 
C 7 210 -R- 46 URS 0-10 -R- 40-50 
F 4 104 -R- 22 URS 0-10 -R- 20-30 
H 4 117 -R- 23 URS 0-10 -R- 20.7-30 
J 11 313 -R- 65 URS 10-20 -R- 60-70 
L 28 785 -R- 169 URS 20-30 -R- 160-170 
N 5 156 -R- 25 URS 0-10 -R- 30-40 
F-P1 12 506 -RP % 50 URS 10-20 "RP T 40-50 
F-P2 12 252 -RP % 49 URS 10-20 -RP T 40-50 
F-P2B 12 252 -RP % 49 URS 10-20 -RP T 40-50 
F-P2BW 12 252 -RP % 49 URS 10-20 -RP T 40-50 
F-P3J 14 167 -RP T 48 URS 10-20 -RP T 40-50 

Table 7.2 Critical values of Ep and modes of failure (partial bond behaviour, 
ßs(ß)) 

Notes 
URS = Under- Reinforced Section: E(d) is not applicable (Figure 7.1). 
200+ = Value higher than the maximum of the studied range (i. e. higher than 

200 GPa). 
is higher than the ultimate strength of the plate (full bond 

behaviour). 
* :n- (n+10) = Value of E. (where the mode is changed) lies between n and (n+10) 

GPa. 
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Predicted 
(based on the e uations derived in cha ter 7) 

Numerical parametric study 
(10 GPa intervals for E) 

Beam E(a) 
GPa 
(1) 

E(c) 
GPa 
(2) 

2ad mode 
of failure 

(3) 

E(b) 
GPa 
(4) 

E(d) 
GPa 
(5) 

E(a) or E(c) 
GPa 
(6)* 

2°d mode 
of failure 

(7) 

E(b) or E(d) 
GPa 
(8)* 

H-Alb 21 594 -R- 117 URS 20-30 -R- 120-130 
H-A2g 9 382 -R- 60 URS 0-10 -R- 50-60 
H-B6 20 478 -R- 101 URS 20-30 -R- 100-110 
H-B9 20 478 -R- 101 URS 20-30 -R- 100-110 
H-2Cu 31 1082 -R- 182 URS 30-40 -R- 180-190 
H-2Ca 31 1082 -R- 182 URS 30-40 -R- 180-190 
CC 4 427 -R- 41 URS 0-10 -R- 40-50 

5 234 -R- 16 URS 0-10 "R- 10-20 
BB 5 312 -R- 26 URS 0-10 -R- 20-30 
DD 5 312 -R- 26 URS 0-10 -R- 20-30 
C 3 210 -R- 23 URS 0-10 -R- 20-30 
F 1 104 -R- 11 URS 0-10 -R- 0-11.7 
H 1 117 -R- 11 URS 0-10 -R- 10-20 
J 4 313 -R- 32 URS 0-10 -R- 30.3-40 
L 10 785 -R- 85 URS 10-20 -R- 80-90 
N 2 156 -R- 12 URS 0-10 -R- 10-20 
F-P1 10 506 -RP % 50 URS 10-20 -RP T 40-50 
F-P2 12 252 -RP T 49 URS 10-20 -RP T 40-50 
F-P2B 12 252 -RP % 49 URS 10-20 -RP T 40-50 

F-P2BW 12 252 -RP T 49 URS 10-20 -RP T 40-50 

F-P3J 14 167 -RP % 48 URS 10-20 -RP % 40-50 

Table 7.3 Critical values of E. and modes of failure (partial bond behaviour, 
Qs(min)) 

Notes 
URS = Under- Reinforced Section: E(d) is not applicable (Figure 7.1). 
200+ = Value higher than the maximum of the studied range (i. e. higher than 

200 GPa). 
as(min) is higher than the ultimate strength of the plate (full bond 
behaviour). 

* :n- (n+10) = Value of Ep (where the mode is changed) lies between n and (n+10) 
GPa. 
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7.5.1 Concrete Compressive Strength 

From Equations (7.4) and (7.18), it is clear that the higher the concrete compressive 

strength, the lower will be the predicted values of E(A) and E(a) (assuming that all the 

other parameters remain unchanged), and the higher will be the value of E(c). It, then, 

follows that high values of concrete compressive strength reduce the magnitudes of 

E(A) (and E(a)) with E(c) increasing: this, then, increases the possibility for the 

successor mode to be -RP. Under such conditions, increases in the concrete 

compressive strength will cause the successor mode to be initiated at relatively low 

values of plate modulus of elasticity. 

It is also, perhaps, worth mentioning that the effect of changes in the width of the 

concrete beam on the behaviour of the plated member is similar to that of the concrete 

compressive strength. 

7.5.2 Plate Ultimate Strength and Yield Strength for the Embedded 

Bars 

Based on the proposed closed-form formulations, it may be deduced that increasing 

either the plate ultimate strength or the yield strength of the embedded bars leads to 

the critical value of the plate modulus of elasticity E(A) (for the initiation of the ductile 

mode -RP) to be of a relatively higher value, while the corresponding critical value of 

plate modulus of elasticity E(c) (for the initiation of the brittle mode C- -) will be 

lower in magnitude, as the yield strength of embedded bars increases, although it will 

not be affected by changes in the ultimate strength of the plate. 
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This observation, therefore, suggests that occurrence of the brittle mode C- - is the 

most probable one associated with relatively large values for the yield strength of the 

reinforcing steel bars and/or relatively large values of the ultimate strength for the 

externally bonded FRP plate. 

7.5.3 Total Area of Reinforcing Bars 

It is also obvious that, using main embedded bars with large total cross section areas 

will increase the possibility of occurrence for the brittle mode of failure C- -, and 

reduce the possibility of the ductile mode -RP to be initiated. 

The influence of changes in the total area of reinforcing bars on the behaviour of 

plated beams is, generally, similar to that for the corresponding unplated beams. 

7.6 SUMMARY AND CONCLUSIONS 

Closed-form formulae have been developed for determining the variations in the 

modes of failure for a FRP plated beam associated with changes in the magnitude of 

Young's modulus for the FRP material. The critical values of moduli of elasticity for 

FRP plates, at which changes in the failure modes are initiated, are also critically 

addressed: the following steps should, ' therefore, be followed (in conjunction with 

Figures 7.1 and 7.6), for determining these critical values of plate moduli of elasticity: 

A- If the plate peeling stress is higher than the ultimate strength of the plate, or if 

there are certain design arrangements which ensure that the plate peeling will not 

happen (such as presence of plate end anchorages), then: 
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1- Calculate yA and E(A) from the following: 

Yäb(ý)CE6 -I-0.67fcu(0-23)]+Ya(AsEEo-AfY-APfp�)-A; E: Ead'=0 

and 

_ 

fpu 

_ 

fpu 

YA E(A) 

6 
p� 0.0035 (D - yA ) 

2- Calculate yc and E(c) from the following: 

Yc = 
E od 

(Eo+y) 
Es 

ASEJ Eo(1- 
d' )+Ycb(ý)[E68 +o. 67fýu(ß - 3)]-A. fy 
Yc Ecc> = 

AP(D-1)E Yc 

3- If E(c) < E(A), then, the plated beam is an over-reinforced type, and the next 

mode of failure, following the primary mode CR-, will be the brittle one C- -; 

being initiated at the critical plate modulus of elasticity E(c). 

4- If E(c) > E(A), then the plated beam is of an under-reinforced type, and the 

subsequent mode of failure, following the primary mode CR-, will be the 

ductile one -RP; being initiated at the critical value of plate modulus of 

elasticity E(A). 

5- For an over-reinforced plated beam (i. e. the beam with E(C) < E(A)), calculate 

YD and E(D) from the following: 

yo[ 6 -i-0.67f(ý-3)]b(ý)+Yo[Es eo(AS+ý)-Ap. fpu.! - 

ES eo(Asd'+Asd)=0 

- 

fpu 

-- 
fpu 

YD E(D) -6 
pu 0.0035 (D - YD) 
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6- For an under-reinforced plated beam (i. e. the beam with E(C) > E(A)), on the 

other hand, calculate YB and a from the following: 

ye [K3 - K' - K1]+ yB[d(K' + Kj -2K3)+ K'd' + KT]+ 

d[K3d - K'd' - Kr] =0 

and 

Co Esy d- Ya 

where 

0.67f 
cu - Ec ß bKýý s 

= 
bE, Es Ki =ß2 K2 3 KE 2 

K' =A; E, e, and KT =(Afy+ApfpW) 

7- If 4<ß, then, yB should be recalculated by 

Y3[K2-KE]+ye[KEd-K'-Kr]+yB[K'(d+d')+2KTd]- 
(K'dd'+KTd2)=0 

where 

K3 =[ 
2ß 

s2 
+ b3 iý 

S3 - 
0.67 f, 

ub Q] and K f= 0.67 f, 
uby 

S 

8- Finally, E(B) is given by: 

E (B) 
fPu 

= 
(d - Ye) fPu 

E cBý 6 pu 
(D_YB) fy : 

B- If the plate peeling stress is found to be lower than the plate ultimate strength, and 

the beam experiences premature peeling, the type of behaviour (i. e. the 

corresponding changes in the failure modes) and the critical values of moduli of 

elasticity for the plate may be determined as follows: 

1- Calculate ya and E(a), using 

YB 
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Yab(ý)CE6ß--0.67fýý(ý - 
3)1+Ya(ASE: 

eo-Asfy 

as 
_- 

as ya 
Ecaý -E 

Per 0.0035 (D - ya ) 

2- Calculate Yd and E(d) from: 

-Apus)-AiE, eod1 =0 

yd[ 
6 

-I-0.67f(ý-3)]b(ý)+YdIEs Eo(As+As)-ApQsI- 

Es Eo(Asd'+A, d)=0 

E(d) __ Öl, _ 
Q, Yd 

c 
pel 0.0035 (D - Yd ) 

3- If E(d) > E(a), then, the plated beam is categorised as an as under-reinforced 

one, and the subsequent mode of failure following the primary mode CR- will 

be the ductile mode -R-; being initiated at the critical value of plate modulus of 

elasticity E(a). For such a beam, the brittle failure mode ---, then, initiates at 

the critical value of plate modulus of elasticity E(b), which may be predicted as 

follows 

yb[K3 - K'- KfI+ yb[d(K' +Kf -2K3)+K'd' +KT]+ 

d[K3d-K'd'-KT]=0 

where K' = As E, Es ,Kf=0.67 
f, 

uby , KT = (A fy+ ApQs ), 

K3 -[ 
bE, is 

2 

+ý Es 
3-0.67 

fýub ß1 
and K1= 

0.67f 
u2E, 

ß 

sß 

with 

Jr- = R-. Yb 
.ý J'd - Yb 

If Co < 
ß, 

Yb should be recalculated by 

y6[K2 - KE]+ yb[KEd - K' - KTI+ Yb[K'(d +d')+2KTd]- 

(K'dd'+KTd2)=0 

where 
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K- 
bKis s 

and K bE, ýs 
23 3 K. --2 

Finally, E(b) is predicted from 

as = 
(d - yb) as E Ecb>6pel(D-yb) 

fys 
4- If E(d) < E(a), then, the plated beam will behave as an over-reinforced one, and 

the brittle mode --- will follow, initiated at the critical value of plate modulus 

of elasticity E(d). 
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Chapter 8 

SIMPLE PROCEDURE(S) FOR PREDICTING THE PEELING 

LOAD OF STEEL AND/OR FRP PLATED BEAMS 

8.1 INTRODUCTION 

In this chapter, simple procedure(s) will be developed for predicting the premature 

plate peeling load of steel and/or FRP plated beams. The results based on the 

proposed straightforward formulations will be checked against a large number of 

experimental results for large and/or small scale beams strengthened with steel and/or 

FRP plates, covering a wide range of beam design parameters: using numerical 

examples, it will be demonstrated that the simple proposed formulations (which are 

amenable to hand calculations, using a pocket calculator) lead to results which 

reasonably enjoy the same level of accuracy as those based on the more involved 

iterative method. 

8.2 SIMPLE PROCEDURE(S) FOR PREDICTING THE PLATE 

PEELING LOAD CAPACITY 

Unlike the ultimate limit state design for under-reinforced sections, premature plate 

peeling failure usually takes place with the embedded steel bars experiencing elastic 

deformations and/or when the maximum strain in concrete is below the crushing 

value. Under such conditions, no closed-form formulae for determining the depth of 

neutral axis (by resorting to equilibrium conditions) exist: estimating the upper and/or 

lower bound plate peeling loads is, therefore, not a straightforward procedure, and 

calculating the depth of neutral axis involves the use of iterative procedures. 

Establishing simple design procedures (which enjoy an acceptable level of accuracy), 
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however, is highly desirable for use in practice. In the presently proposed plate 

peeling theory, the load bearing capacity of the plated member is controlled by the 

axial stress in the plate. Once the depth of neutral axis plus the corresponding plate 

axial strain are known, the bending strains and stresses across the beam section may 

be determined, using which the overall flexural load capacity may be predicted. 

In what follows, a simple procedure will be proposed for obtaining reasonable 

estimates of the depth of neutral axis, following which the prediction of the plate 

peeling moment will be rather straightforward, being obtained by summing up the 

moments, due to tensile and compressive forces, about the neutral axis. To this end, 

two alternative methods for calculating the concrete compressive force and, hence, the 

resulting moment will be adopted. Both of these methods will be based on closed- 

form formulations, with one representing the stress-strain relationship for concrete as 

that recommended by BS8110 (1985) (i. e. the same mathematical model as previously 

used in the iterative method), while the second method approximates the distribution 

of compressive stresses in concrete as being uniform. 

To check the accuracy of the final numerical results based on the simple closed-form 

formulations, such results will be compared with the corresponding data based on the 

iterative procedure, and also extensive associated experimental data reported by 

others. The specimen details used in these comparisons will be those for beams 1-58 

with FRP plates, and also the design details for beams 59-169 with steel plates, as 

fully discussed in Chapter 3. In what follows, the term "accurate" results refers to 

those results based on the iterative analysis (as described in appendix A) with the 

concrete stress-strain relationship as that recommended by BS8110 (1985). 
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8.2.1 Predicting the depth of neutral axis 

Unlike an unplated beam in which failure happens due to over-stressing of steel 

and/or over-straining of concrete, premature plate peeling failure usually takes place 

at rather low levels of external loads and axial stresses (and, hence, strains) in the 

plate. Under such low levels of tension in the plate and the embedded bars, it is 

reasonable to assume that low levels of concrete compression force with associated 

low levels of concrete stresses (and strains) exist. For the premature plate peeling 

modes of failure, therefore, due to low levels of plate axial strains, the bending strains 

throughout the entire critical beam section (directly under the point load nearest to the 

support) would be relatively small. It is, then, appropriate to assume (for simplicity) a 

linear stress (and strain) distribution for concrete in compression. Based on this 

assumption, a reasonable value for the depth of neutral axis may be determined. The 

final distribution of stresses in concrete may, then, be calculated, according to the 

stress-strain relationships as recommended by BS8110 (1985). Figure 8.1 presents the 

assumed linear stress (and strain) distributions throughout the entire plated (and 

cracked) section. 

From Figure 8.1, the following relations for bending strains may be derived: 

Ep- Ea 
- 

Es 
= 

EI 

D-y d-y y-d' y 

, _e-Y 
ýandEp D-y 

E, =Ec ý Es cY-d 

yyy 

while, for the corresponding stresses 

f, = E, s,, 

ý` 
=EE =EE 

d -y 
Js ssscý 

Y 
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f) _ .] i 
fs=E, E: =EC/ and 

y 

.. _T_D-Y .lp= 
CPEp = CPt, 

Y 

Fr 

NA 
D 

a sfs 

Ap Qp 

--' lL... 
- B I, 

Fig. 8.1 Linear strain and stress distributions in concrete. 

From the equilibrium condition, F, =F, , where 

F =A, E, E, 
d y+ApEpEc D-y 

yy 

and 

byE, 6,1 A/]ý" y-d/ Lý=T tfrý t"c 2 

so that 
y 

byE, 
Eý + As ESE, = AEE, 

d- y+ APEPE, 
D- y 

2yyy 

multiplying the above equation by 
2y , and assuming as, = 

Ewith 
ap, = bd&Ec 

' 
Ep 

then 

y 1-y +APa 
D 

+ bd a" d- d bd as` d bd P` dd 2d 

(- 
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Assuming: X=Y, p, = 
A, 

, ps = 
As 

and p the above equation may be 
d bd bd r bd y 

rewritten as 

' 

2Xz+Pras, x-d =Psasý(1-X) +PPa, c d -X 

+P, a. +PpaPý 
D 

=0 
2 

XZ+Xýpsasc+Pýasc+PpaPc)- Psasc 
d-1 

which leads to 

r lýsasc+pjasc+ppapc Y+jp/ 
sasc+P, asý+ Ppapc)+, asý 

di +Psasc +PoaaDl I 
u ai 

with the depth of neutral axis, y, given by the following closed-form formula 

i 
y=d -(asý(Pt+P, )+Ppapý)+ (asc(P; 

+P, )+PPapcy+ asc P, 
d+P 

+Ppaa 
d 

(8.1) 

In order to check the accuracy of the above derivations, and to assess the implications 

of assuming a linear stress distribution for concrete in compression, the depth of 

neutral axis for the previously discussed 111 steel plated beam designs (i. e. beams 59- 

169) have been calculated (according to the above simple formula). Such estimated 

depths of neutral axis were, then, compared with the corresponding ones obtained via 

the more involved iterative technique in which a rather sophisticated form of stress- 

strain relationship (as recommended by BS8110 (1985)) was adopted. Figure 8.2 

presents the encouraging correlations between the simplified and the more accurate 

methods for estimating the depth of neutral axis of the 111 steel plated beams, where 

the correlation factor is found to be 0.985. It should be noted that the iterative 

procedure included (unlike the simplified version) the effect of concrete in tension, 
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with the simplified procedure being developed for a cracked section, with the 

presence of concrete tension below the neutral axis ignored. 

wN 
\ 

ý 

200 
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50 

0 
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90 

�4 

do 
go 

do 
10 

90 

0 

Correlation factor = 0.985 

50 100 ISO 200 

Approximate neutral axis depth, ycp, (mm) 

Fig. 8.2 Correlations between the results based on the approximate and the 
iterative procedures for calculating the depth of neutral axis for beams 
59-169, which were strengthened with steel plates. 

An examination of the results in Figure 8.2 suggests that, for all the data points, the 

results based on the more accurate iterative procedure are located slightly over the 45° 

line: neglecting tension in concrete in the simplified procedure is believed to have 

reduced the total tension and, hence, the total concrete compression force, with this 

being instrumental in reducing the area (i. e. the depth) of the concrete compression 

zone. Indeed, the rather small disagreements between the results based on these 

alternative approaches, may be primarily attributed to the neglect of concrete tension 

in the simplified approach, rather than it being as a result of the assumed linear stress 

distribution for concrete in compression. 

AC 
1 90 0 

299 



The situation for FRP plates is, however, not exactly the same as that when steel 

plates are used; the underlying reason being that (unlike steel for which the modulus 

of elasticity remains fairly the same) FRP plates are currently manufactured with 

widely varying moduli of elasticity with their Young's modulus being generally lower 

than that of steel. It, then, follows that, for the same plate peeling stress, larger 

(compared to steel) axial strains are to be induced in the FRP plates. As shown in 

Chapter 6, however, for premature modes of failure, reducing the axial strains in the 

plate (e. g. by using plates with higher moduli of elasticity) leads to reductions in the 

bending strains across the entire beam section. For relatively larger beam strains, there 

would be more deviations from the assumed linear concrete stress distribution in 

compression with this being the underlying assumption for the proposed simplified 

approach. Such deviations from the linear stress distribution are expected to lead to 

significant deviations from the exact solution, in the estimates of depth of neutral axis 

associated with the simplified approach. Figure 8.3 shows the correlations between 

the results based on the simplified and the iterative approaches for calculating the 

depth of neutral axis, for 58 reinforced concrete beams strengthened with external 

FRP plates, covering a wide range of values for the modulus of elasticity (from 10.3 

to 118.5 GPa ). Similar to steel plated beams, a high correlation factor of 0.989 is still 

obtained, although, the results in Figure 8.3 give a relatively larger scatter (compared 

to steel plated beams). 

It is interesting to note that, although the so-obtained values for the depth of neutral 

axis based on the simplified method are (unlike the iterative procedure) not dependant 

on the magnitude of the axial stress in the plate, O5, mjn> , the reasonable correlations 
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between the results based on these two approaches, as shown in Figures 8.2 and 8.3, 

are still encouraging. 
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Fig. 8.3 Correlations between the approximate and the accurate values for the 
neutral axis depth for beams strengthened with FRP plates. 

8.2.2 Calculating the plate peeling moment 

In what follows, two alternative simplified methods will be developed for calculating 

the plate peeling moments. In both methods, the tension force in concrete will be 

neglected for simplicity. In the first method, the stress-strain relationship for concrete 

as recommended by BS8110 (1985) will be adopted, and the bending moment will be 

estimated using a parabolic stress distribution for concrete in compression. In the 

second method, the concrete stress distribution will be assumed to be given by a 

uniform stress block. In both methods, the maximum concrete strain will be 

Correlation factor = 0.989 
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, cc =6 Dyy 
<0.0035 

- 

where 

_a 
s(min) 

aEp 

and, the tensile stresses in the embedded steel bars will be 

fd-y 
EJ 

< 
s=QpD-yEP -y 

while, the stresses in the steel bars in compression are 

I =Q 
Y-d' 

E 

< f fs PD-YEP y 

t 

(8.2) 

8.2.2.1 Parabolic stress distribution for concrete 

Here, there are two cases to be considered (Figure 8.4), depending on the magnitude 

of the maximum strain in concrete as given by Equation (8.2). If the maximum 

concrete strain is lower than 8 (case 1), then, the moment resulting from the concrete 

compressive stresses may be derived as follows: 

y 
Mc =bj fc, zdz 

0 

r 0.67f, 
u-E, 

ß 
2 zdz Mc=bf EcE_ +z EZ P o 

M =Y2ýEE, 
0.67fcu-E, ßE2 

c ., 
+I n2 c 

\1 
3 4ý 

where ß=2.44 x 10-4 J7. 

With oP = QS(,,,; n) , then, the simplified lower bound plate peeling moment, 

will be 

Al peel-p 
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2ý-j EcE, +0.67f, u-EeßEcl+Asfý( ý+ (d- + ýD- M 
peel-p =YA 

D2 s Y- d)A f, Y)Av as(min) Y) 

d' 
ý 

y 

1) 

' ýp 1 

r-> -1 
0 Af " 

------------ 

0 A: " 

0 

AP Qp 

Ep 

Beams strengthened with STEEL plates 

case 2 case 1 
P.: 5 e, SO. 0035 4Sß 

Fig. 8.4 Section strains, stresses, and dimensions after BS8110 (1985). 
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Fig. 8.5 Correlations between the proposed simple (parabolic) and the accurate 
values for the plate peeling moment for beams strengthened with steel 
plates. 
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Alternatively, if the maximum concrete strain is found to be larger than ß (case 2), 

then, the moment resulting from the concrete compressive stresses may be derived as 

Mc=0.67fcub(Y-Yl Yl+ 2 
+b 

y, Jf, zdz 

Mc = 0.335 fcu b(Y2 - Yý 
) 
+y2ý 

/ 
E, cc +0.67f, u-Ec 

34 
\ 

With up = Q5(min) the simplified lower bound plate peeling moment, M 
peel-p, will be 

2_ 2+Y2 
ýEEý 0.67fC4-Eýßl 

,ý 'MPeet-v=0.335 fýub(Y YI) 3+4 I+Asf: 
ýy-d ý+ 

A,. fs(d'Y) +AP 

160 

140 
`yw 

120 

100 
.,, 

80 
ý. ý %a ... 

w 

60 

Beams strengthened with FRP plates 

ý 

40 

20 

0 

**ý 
xi0, 

1x 
e 

0 

0 

I. 

0 
i 

X 

op 
0 

0 
0 

x 

0 
0 

ý 

op 
op 

X 

0 

op 

op 

, 
Correlation factor = 0.998 

0 
ý 

x 

20 40 60 80 100 120 140 160 

Simplified (predicted) plate peeling moment, M peel p, (kN-m) 

Fig. 8.6 Correlations between the proposed simple (parabolic) and the accurate 
values for the plate peeling moment for beams strengthened with FRP 
plates. 

To check the validity of the above-simplified method, plate peeling moments for the 

previously mentioned 111 steel and 58 FRP plated beams were calculated, using both 
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the so-called accurate iterative method and also the above simplified procedure. 

Figures 8.5 and 8.6 show the encouraging correlations between the simplified and the 

iterative plate peeling moments for beams strengthened with steel and FRP plates, 

respectively. 

Simplified (predicted) plate peeling moment, Mpee! p, (kN-m) 

Fig. 8.7 Comparisons between the proposed simplified plate peeling moment 
(parabolic) and the corresponding experimental results for beams 
strengthened with steel plates. 

Finally, Figures 8.7 and 8.8 compare the theoretical and experimental ultimate peeling 

moments for the 111 beams (i. e. beams 59-169) strengthened with steel plates, and the 

58 FRP plated beams (i. e. beams 1-58), respectively. In both Figures 8.7 and 8.8, the 

simplified theoretical approach is found to predict conservative values for the lower 

bound plate peeling moment with almost all of the data points lying above the 45° 

lines. It should be noted that unlike Oehlers (1992) who has quoted both the initial 

and also the ultimate experimental peeling moments, all the other references have 
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only quoted a single value for the failure peeling moment in their tests which, for the 

present purposes, have been assumed to relate to ultimate (as opposed to initial) 

moments. 
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Fig. 8.8 Comparisons between the proposed simplified plate peeling moment 
(parabolic) and the corresponding experimental results for beams 
strengthened with FRP plates. 

Moreover, comparison of Figures 8.7 and 8.9, on the one hand, and Figures 8.8, and 

8.10, on the other (where, the results in Figures 8.9 and 8.10 are produced with the 

external plate peeling moments predicted using the more accurate iterative method) 

suggest that the predictions of lower bound plate peeling moment, based on both the 

iterative and the simplified procedures are, for all practical purposes, similar, with 

both of them leading to largely similar correlations with experimental data. 
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Fig. 8.9 Comparisons between the iterative plate peeling moments and the 
corresponding experimental results, for beams strengthened with 
steel plates. 
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8.2.2.2 Uniform stress block approximation 

The above straightforward method may be simplified further, as follows. 

Here, the concrete parabolic compressive stress curve may be replaced by a uniform 

stress distribution block with the assumed uniform concrete stresses equal to the 

maximum one corresponding to the ultimate concrete strain in compression, Figure 

8.11. The depth of neutral axis, y, may, then, be calculated as suggested in section 

8.2.1 (Equation (8.1)). The parameter, a, in Figure 8.11 represents the depth of 

equivalent stress block, the resultant force of which is in balance with the other forces 

acting on the beam section (for equilibrium). The plate peeling moment may, then, be 

determined as follows: 
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Fig. 8.11 Section strains, stresses, and dimensions (concrete uniform stress 
block). 
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1- Calculate the total compression force in concrete, as the difference between the 

total tension force (in the plate and the embedded bars) and the force in the 

compressed bars - i. e. F-A + 

2- Calculate the maximum concrete stress, f,, where 

0.67f cu 
, ß<e, < 0.0035 

fc- 0.67fcu-E, ß 
E2 

cEc 
+ 

ßz 
CC , Cc <ß 

3- Calculate the depth of concrete compressive stress block, a, as 

rI Asfs+APQýýýo>-ASfJ 
fc 

4- The plate peeling moment is 

M=A, f, (d -al2)+A. a, ( 
(D-a12)+ f, (a/2-d'ý 
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Fig. 8.12 Correlations between the simplified (uniform stress block) and the 
iterative values for the plate peeling moment for beams strengthened 
with steel plates. 
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Figure 8.12 presents the encouraging correlations between the results based on both 

the iterative and the above-simplified technique (i. e. uniform stress block 

approximation) for the 111 beams strengthened with steel plates: the correlation factor 

is 0.994. The similarity between the results in Figure 8.12 and Figure 8.5 is 

particularly noteworthy, with the uniform stress-block approach resulting in 

predictions which are, indeed, very similar to those based on a parabolic concrete 

stress distribution as adopted in the other (alternative) straightforward approach. 
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Fig. 8.13 Correlations between the simplified (uniform stress block) and the 
iterative values for the plate peeling moment for beams strengthened 
with FRP plates. 

The presently proposed method is also applicable to beams strengthened with FRP 

plates. Figure 8.13 shows the encouraging correlations (for the 58 beams with external 

FRP plates) between results based on the proposed simplified uniform stress block 

and the iterative methods, where the correlation factor is 0.999. A comparison of the 
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results presented in Figure 8.13 and Figure 8.6 is also instructive: the results based on 

the concrete uniform stress block approach are (as a whole) similar to those based on 

the alternative simplified method which adopts a concrete parabolic stress 

distribution. 
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Fig. 8.14 Comparisons between the proposed simplified theoretical method 
(uniform stress block) and the corresponding experimental results for 
beams strengthened with steel plates. 

Figures 8.14 and 8.15 present comparisons between the test data and the simplified 

theoretical predictions (based on the concrete uniform stress block) for the 111 steel 

plated and the 58 FRP plated beams, respectively: it is obvious that the presently 

proposed simple method successfully predicts safe values for the plate peeling 

moment with almost all of the data points lying above the 45° lines. It is also worth 

comparing Figures 8.14 and 8.15 with Figures 8.9 and 8.10, respectively, with the last 

two figures relating to cases where the plate peeling moment has been predicted using 
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the iterative method. It is clear that the predictions based on both the iterative and the 

simplified approaches are very similar. 

In conclusion, both of the presently proposed simplified approaches are found to 

predict reasonable values for the lower bound plate peeling moments for both cases of 

steel- and/or FRP-plated beams, with the one adopting the concrete uniform stress 

block in compression involving less effort for arriving at the final solution. 
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Fig. 8.15 Comparisons between the proposed simplified theoretical method 
(uniform stress block) and the corresponding experimental results for 
beams strengthened with FRP plates. 

8.3 SUMMARY AND CONCLUSIONS 

In this chapter, simplified (but reasonably accurate) methods for predicting the lower 

bound plate peeling moment of reinforced concrete beams strengthened with external 

steel and/or FRP plates have been developed. The proposed methods are 
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straightforward, being amenable to hand calculations, using a pocket calculator, 

hence, suitable for use in practice. With the depth of neutral axis predicted (assuming 

a linear stress distribution for concrete in compression), the final results for lower 

bound plate peeling moment have been found to be supported by those based on the 

more involved iterative procedure and also by extensive test data as reported by 

others, covering a wide range of beam design parameters. It is, perhaps, worth noting 

the very encouraging correlations achieved in terms of the neutral axis depth by both 

the iterative method (which is dependant on the magnitude of the plate axial stress) 

and the corresponding values based on the simplified method, with the results of the 

latter being independent of the plate axial stress. 

With the depth of neutral axis determined, it has been demonstrated that the 

subsequent approximation of the concrete stress distribution in compression to a 

uniformly distributed type, leads to final predictions of plate peeling moment which 

are, indeed, reasonable, and good enough for practical applications. The following 

simple steps, should, then, be followed for predicting the lower bound plate peeling 

moment of reinforced concrete beams strengthened in flexure with external steel 

and/or FRP plates: 

1- Calculate the depth of neutral axis for the plated beam, using 

ýz 1 
y=d - 

(asc(P, + P, )+ Pv aý)+ 
(asc(Ps+P, )+PPaacl + asc Ps 

d+ 
Ps + P, as d 

where 

Ps - bd ' 
Ps bd ' 

pp bd , asý - Eý 
and aP, = 

EP 
Ec 

2- Calculate the minimum axial plate peeling stress, a, ( ), as follows: 
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- 0.154 
Lp hl b2 f 

"u (for beams loaded prior to strengthening), or Qsc, jo> - h b1tZOnas 

Qsc,,; ýý = 0.154 
L,, hi b2 f 

ýu (for beams strengthened before being loaded) 
h 'bi t(ZOb. +b1) 

The plate axial strain, EP, is, then, given as 

sP = EP 

3- Calculate the stresses in the steel bars and concrete as follows: 

the maximum concrete strain, e' = ep 
DY Y _-< 0.0035, 

the maximum concrete compressive stress 

0.67f tu ,ß <sc< 0.0035 

c 0.67f cu-Ecß 
EcEc + 

ß2 
Ec + 8c <_ N 

th 

and, the tensile stresses in the embedded steel bars are given by 

f: =Q 
d -y ES 

<f 
°D-yEp Y 

while, the axial stresses in the steel bars in compression, will be 

fl =a 
Es fs=ý ýf °D-yEp r 

4- Calculate the depth of the concrete uniform stress block, a, as 

ý_ 
Asf+AaQscýýý-Asfs 

l4 - 

QJ(mio) 

fc 

5- The lower bound plate peeling moment is, finally, given by 

M peel-R = A, f, (d - a/2) + Ap Q, cýo> 
(D 

- a/2) + Aý f, (a/2 
- d') 
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Chapter 9 

SUMMARY AND CONCLUSIONS 

9.1 INTRODUCTION 

One of the main objectives of this thesis was to develop a practical procedure, which 

is sufficiently reliable; to be used for designing externally plated beams against 

premature plate peeling failures. In addition, a key aim was to develop a model which 

is capable of predicting the load bearing capacity of either pre-cracked or uncracked 

(as cast) reinforced concrete beams (prior to external plating) which were 

subsequently strengthened with steel or FRP plates. Theoretical parametric studies 

were also to be carried out in order to quantify the influence of various first order 

plated beam design parameters on the plate peeling load. In particular, the effect of 

variations of the axial Young's modulus of the plate on various modes of failure and 

associated failure loads of the FRP plated beams, in the absence or presence of plate 

peeling failures, was to be examined in detail. 

9.2 RESEARCH OVERVIEW 

The research work carried out in this thesis may be divided into three main tasks, as 

follows: 

1- Extensive literature review for gathering the necessary detailed and extensive 

experimental data plus a critical examination of the previously available methods 

for predicting the premature steel or FRP plate peeling failure load. To this end, 

various features of the previously available theories have been examined in some 

detail, with their shortcomings identified. Indeed, non (apart from one) of the 
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previous theoretical and/or semi-empirical models were found to be generally 

applicable and in almost all cases studied, major shortcomings were found: this 

was largely done by a comparison of their predictions with experimental data 

reported by others. 

2- The teeth model of Zhang and Raoof, however, was found to be a promising one, 

and has, indeed, been extended to cases when external FRP (as opposed to steel) 

plates are used for upgrading R. C. beams. 

3- Simple but, at the same time, reliable practical design procedures (based on an 

extended version of Raoof and Zhang's model in conjunction with the results of 

theoretical parametric studies) have been developed for predicting the flexural 

load bearing capacity of reinforced concrete beams strengthened with externally 

bonded FRP or steel plates, with the final numerical results supported by mainly 

large scale and extensive test data for both steel and FRP plated beams, covering 

a wide range of beam design parameters and external plating techniques. 

9.2.1 Experimental Review and Critical Examination 

The review of experimental studies relating to reinforced concrete beams strengthened 

with externally bonded steel and/or FRP plates has been extensive and very fruitful. 

The gathered experimental data included a wide range of beam designs relating to 58 

FRP and 111 steel plated R. C. beams. In general, experimental works of others 

suggested that external plating increases the flexural stiffness, although some plated 

beams were found to have failed at loads lower than the flexural load bearing capacity 

of the corresponding unplated beams with the mode of failure being brittle. There did 

not, however, appear to be any conclusive explanation for this alarming experimental 

finding, considering that the external plate bonding technique has already been used 
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in practice for upgrading a large number of buildings and bridges, in a number of 

countries. A critical examination of the previously reported analytical methods 

suggested that they are relatively few in number, with most of them being based on a 

curve fitting exercise, involving a limited number of experimental data. The practical 

implications of various assumptions used in different approaches were critically 

examined, and the most promising approach for further research, was identified. The 

purely empirical approach for avoiding occurrence of plate peeling which involves 

restricting the ratio of plate width/thickness was examined: although promising for 

steel-plated beams, it was found not to be applicable to FRP plated R. C. beams. 

In general, there appeared to be three distinctly different approaches to the plate- 

peeling problem. A semi-analytical model has been proposed by the group at King 

Fahd University: in this approach, using experimental results on steel plated R. C. 

beams, the normal and shear stresses in the adhesive layer at the end of the plate are 

predicted with these stresses being assumed to control the occurrence of premature 

plate peeling failures. In one case, by adjusting the capacity of the shear 

reinforcement according to a semi-empirical factor, it has been claimed that one can 

predict the peeling failure. In another case, it has been assumed that the plate peeling 

occurs due to excessive shear stresses in the adhesive layer at the end of the plate. 

However, a critical examination of both these methods revealed major numerical 

inconsistencies in the reported results. 

In another approach (by Oehlers and his associates), it has been assumed that the 

plate-peeling failure occurs when the peeling stress in the adhesive layer due to the 

beam curvature reaches the maximum tensile strength of concrete. This assumption 
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and the subsequently proposed design formulations were also found to suffer from 

major shortcomings. The so-proposed design formulations were shown to give poor 

results as, in this approach, the predicted load bearing capacity for the plated beam 

was found to be too conservative (indeed, in most cases, even lower than the flexural 

capacity of the corresponding unplated R. C. beam). In other words, ironically, by 

using the external plating technique in order to strengthen a beam in flexure, this 

method was found to predict the failure load of the plated beam to be even lower than 

that the corresponding unplated R. C. beam! 

The third approach (by Raoof & Zhang) has been based on assuming that the plate 

peeling failure occurs when the tensile stresses in the concrete cover at the point of 

fixity (just underneath the main reinforcing bars) to the cantilever (tooth) formed 

between two adjacent stabilised cracks, become equal to the concrete tensile strength. 

Based on this assumed mechanism of failure, and in view of variations in the spacings 

of stabilised cracks (by a factor of, say, 2), Raoof and Zhang have argued that a 

unique solution for the plate peeling load does not exist and an upper/lower bound 

approach must be adopted, with the lower bound solution being the safe one for 

design purposes. The predictions based on this method for steel plated beams have 

been shown by Raoof and Zhang to provide encouraging upper/lower bounds to an 

extensive set of large-scale experimental data reported by others, hence, confirming 

its general validity for steel-plated R. C. beams. 

9.2.2 Model Development and Parametric Studies 

Based on a critical examination of the previously available methods of analysis, 

Raoof and Zhang's approach was found to be the most promising one, and was, 
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therefore, adopted for further development. This approach was used to predict the 

load bearing capacity of FRP plated beams, addressing the cracking conditions (i. e. 

those cases involving cracked or uncracked R. C. beams prior to plating). A computer 

programme was written to deal with the problem, using an iterative technique with the 

capability to handle different cracking patterns. The final numerical results for 111 

steel-plated and also 58 FRP plated R. C. beams were verified against mainly large 

scale experimental data. In all cases, the theoretical predictions were found to give 

encouraging upper/lower bound solutions to test data for R. C. beams with external 

FRP or steel plates which were either as cast or pre-cracked prior to plating. The 

effect of preloading prior to strengthening (which is more relevant to practical 

conditions, where structures are already cracked under service conditions) was also 

studied. Theoretical parametric studies (supported with experimental results) were 

also carried out, covering the influence of various parameters such as the plate width, 

thickness, and area. Extensive numerical results suggested that the previous practice 

by various researchers of testing as cast (i. e. uncracked) plated beams to predict the 

peeling behaviour of cracked beams (prior to plating) in actual structures does, 

indeed, provide conservative results for use in practice. 

Guided by the outcome of the literature review, the need to carefully define the 

variations in the modes of failure for FRP plated beams with changes in the axial 

Young's modulus of the FRP plate was identified. Subsequent work suggested that, in 

general, there are two modes of failure which are exclusive to R. C. beams 

strengthened with FRP plates while another two different failure modes are 

exclusively associated with beams strengthened with steel plates, with four alternative 

modes of failure being common to both types (steel or FRP) of plated beams. In total, 

319 



therefore, eight different possible modes of failure for plated beams were identified as 

opposed to only two types of failure modes associated with unplated reinforced 

concrete beams. It was also possible to identify which of these different modes of 

failure is of the undesirable brittle type, with others being of a ductile nature. By 

resorting to equilibrium conditions for forces over the critical plated beam sections, it 

was possible to identify the range of FRP Young's moduli over which each mode of 

failure is operative and, indeed, a method was proposed for identifying the critical 

values of Young's modulus associated with which mode transitions take place. Very 

briefly, the effect of increasing the FRP modulus of elasticity on the flexural load 

bearing capacity, the strain distribution(s) across the plated section, and the depth of 

the neutral axis, were studied within each of the six possible modes of failure, for FRP 

plated beams, on an individual basis. Furthermore, the possible mode(s) of failure 

which are to follow each mode (as a result of increasing the value of FRP modulus of 

elasticity) were identified. It should be noted that the corresponding unplated R. C. 

beams were, in general, assumed to be under-reinforced in all cases of external 

plating. As mentioned previously, formulations were developed for determining the 

types of expected modes of failure. These studies identified two general types of 

behaviour for plated beams: either over- or under-reinforced. Based on the so- 

developed formulations for the critical values of moduli of elasticity for the FRP 

plate, brief theoretical parametric studies were also carried out in order to investigate 

the influence of other parameters (such as the area of the externally bonded plate, the 

concrete compressive strength, and the yield strength of the embedded bars and the 

external plate) on the failure load. 
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9.2.3 Design Procedure(s) 

Simplified (but reasonably accurate) methods for predicting the lower bound plate 

peeling moment of reinforced concrete beams strengthened with external steel and/or 

FRP plates have been developed. The proposed methods are straightforward, being 

amenable to hand calculations, using a pocket calculator, hence, suitable for use in 

practice. With the depth of neutral axis predicted (assuming a linear stress distribution 

for concrete in compression), the final results for lower bound plate peeling moment 

have been found to be supported by those based on the more involved iterative 

procedure and also by extensive test data as reported by others, covering a wide range 

of beam design parameters. It is, perhaps, worth noting the very encouraging 

correlations achieved in terms of the neutral axis depth by both the iterative method 

(which is dependant on the magnitude of the plate axial stress) and the corresponding 

values based on the simplified method, with the results of the latter being independent 

of the plate axial stress. 

With the depth of neutral axis determined, it has been demonstrated that the 

subsequent approximation of the concrete stress distribution in compression to a 

uniformly distributed type, leads to final predictions of plate peeling moment which 

are, indeed, reasonable, and good enough for most practical applications. 

To verify the design approach, two methods of validation were adopted. The first 

method involved a comparison of the independent results (such as the depth of neutral 

axis and the plate peeling moment) of the proposed simplified procedures with the 

corresponding ones based on the more involved iterative method. In the second 

method, test data for 169 different plated R. C. beam designs (i. e. 58 and 111 beams 
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strengthened with external FRP and steel plates, respectively) were used for further 

verifications. This involved a comparison of the final numerical results based on the 

proposed simplified procedure(s) with the corresponding experimental data for all the 

aforementioned 169 beam designs, where, in all cases, the proposed design 

calculations were found to predict safe solutions, suitable for use in practice. It should 

be noted that the results based on the proposed design procedures are independent of 

the experimental and/or the numerical (i. e. the iterative) data. It is, however, 

encouraging that the results of both the simplified and the iterative methods were 

found to be largely in agreement 

This design approach may be summarised as in the following five simple steps: 

1- Calculate the depth of neutral axis, using a closed-form formula that is based 

on assuming a linear distribution of concrete stresses across the critical plated 

beam section. 

2- Calculate the minimum peeling stress (and strain) of the externally bonded 

plate. 

3- Calculate the strains (and hence stresses) across the beam critical section, 

using the above calculated depth of neutral axis in conjunction with the 

predicted minimum plate peeling axial strain. In doing so, use the more 

accurate non-linear formulae for calculating the concrete stresses 

corresponding to the maximum concrete strain in compression. 

4- Calculate the depth of the stress block, which satisfies force equilibrium, by 

approximating the non-linear compressive stress distribution in concrete to a 

uniform stress block with the constant concrete stress assumed to be given by 

value as calculated in step 3 
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5- Calculate the plate peeling moment, as the sum of the moments associated 

with all the elemental forces about the neutral axis. 

9.3 CONCLUSIONS 

The following are the main conclusions: 

1- Strengthening reinforced concrete beams using externally bonded plates may 

have an adverse effect on the load bearing capacity of the plated beams if one 

does not guard against the occurrence of plate peeling failure. 

2- The well known and purely empirical approach of keeping the plate 

width/thickness ratio above 60 to avoid plate peeling failure is a reasonable 

one for preliminary design of steel plated beams. However, it is not generally 

valid when FRP plates are used. 

3- The previously' reported semi-empirical methods of analysis as proposed by 

various researchers, which are based on calibrating certain parameters by 

using experimental results are not, generally, reliable and would lead to unsafe 

design in certain circumstances, while, in others, these lead to overly 

conservative estimations of the beam load bearing capacity. Indeed, in certain 

circumstances, the so-estimated load bearing capacities would be lower than 

that even that of the corresponding unplated R. C. beam. 

4- The previously available semi-empirical approaches provide no means of 

predicting the stresses or strains across the critical beam sections at failure 

neither are they capable of predicting the type of failure (i. e. as to whether 

brittle or ductile). 

5- The presently proposed model enables one to identify the first order plated 

beam design parameters which control the final failure load. Once validated 
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against mainly large scale test data as reported by others, the present model 

has been used for theoretical parametric studies in order to study the influence 

of varying the magnitude of the modulus of elasticity for externally bonded 

FRP plates on the variations in the final modes of failure. Based on this study, 

the effects of other important beam design parameters have also been 

investigated. 

6- The area of the plate, not the plate width/thickness ratio, has been identified to 

be the main factor (amongst others, such as the FRP modulus of elasticity) 

affecting the behaviour of FRP plated R. C. beams. 

7- The common practice among various researchers of carrying out experimental 

studies on as cast (i. e. uncracked) R. C. beams in connection with which, the 

original (unpiated) beams have not been preloaded prior to external plating, 

has been shown to be a conservative approach, resulting in a reduction in the 

failure load (c. f. pre-cracked plated R. C. beams). 

8- As discussed in Chapter 5, eight different possible flexural modes of failure 

have been identified in connection with externally plated R. C. beams. 

Currently, there is a lack of accurate description (or identification) regarding 

the whole range of possible modes of failure, with the previous experimental 

studies on FRP plated R. C. beams suffering from a lack of systematic 

approach, covering all the possibilities. In the present work, therefore, an 

accurate classification of all the possible modes of failure has been proposed 

with a detailed quantitative treatment of the mode transitions as a function of 

changes in the FRP Young's modulus. 

324 



9- Purely experimental parametric studies (i. e. experimental comparisons) are 

suggested to be potentially misleading because of a general lack of a unique 

solution for the steel and/or FRP plate peeling phenomenon. 

10- The proposed design procedure(s) are believed to be sufficiently accurate yet 

fairly simple (c. f. the lengthy iterative method) for use in practice. 

9.4 RECOMMENDATIONS FOR FURTHER RESEARCH 

The work reported in this thesis has gone some way to clarify certain critical areas of 

practical interest. Both, further experimental and theoretical research is, however, still 

needed in order to clarify the following issues: 

1- Studying the effect of partial slippage between the externally bonded plate and 

the concrete beam on the failure mechanism and load: this factor will be of 

significance in relation to the predicted axial stresses in the plate in those cases 

when a thicker adhesive layer with lower values of shear modulus of rigidity is 

used. Ignoring the partial slippage between the plate and the R. C. beam is, 

however, likely to result in conservative predictions of failure load. 

2- Further studies of providing plate end fixities, for avoiding occurrence of FRP 

or steel plate peeling failures, are needed. In this context, different types of 

end anchorages will have to be dealt with, resorting to largely experimental 

techniques. Although fairly effective in the case of steel plates, bolts can not 

be used for fixing the ends of FRP plates, and other options should be 

explored. 

3- Detailed experimental investigation regarding the distribution of stresses 

within the adhesive layer along the length of the plate, located within the shear 
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span, in order to improve the presently proposed expressions for determining 

the effective length of the plate, is another issue which needs further work. 

4- Analytical studies (to be supported with test data) similar to those presented in 

this thesis in relation to the variations in the modulus of elasticity for the FRP 

plate should be carried out, addressing the influence of variations of other 

main parameters affecting the behaviour of the plated beam (e. g. the plate area 

and ultimate strength, the area of embedded bars, and ultimate strength plus 

other characteristics of the adhesive material). 
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Appendix A 

COMPUTER PROGRAMME 

A. 1 GENERAL 

This appendix explains the assumptions and methods of calculating various flexural 

load bearing capacities of externally plated and/or unplated R. C. beams. It also 

presents the listing for the source file of the FORTRAN-77 (release 9.0 for HP-UX 

system) computer programme developed for analysing the stresses and strains in the 

critical sections of plated and unplated R. C. beams. 

A. 2 TYPES OF FLEXURAL LOAD BEARING CAPACITIES 

All the flexural load bearing capacities refer to the predicted or experimental bending 

moments at the critical beam section under the external point load nearest to the 

support with the beam subject to symmetrical four-point loading. There are two main 

types of predicted beam flexural capacities as calculated by the computer programme: 

1. Beam capacities based on the assumption of full bond between the plate and 

concrete up to total failure: the plated and unplated beam capacities, M p,,, ' and 

MRC , respectively, are based on this assumption. 

2. Beam capacities controlled by the occurrence of premature peeling initiated at the 

end of the plate: the lower and upper bound plate peeling capacities, Mp, e,. and 

M peel, u , respectively. Obviously, in such cases, a full bond behaviour is assumed 

up to the sudden occurrence of fully brittle premature plate peeling. 
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In addition, two separate cases relating to the cracking conditions at the time of 

strengthening by external plating are considered when estimating the lower and upper 

bound peeling moments: 

1. The lower and upper bound peeling moments for uncracked plated beams, 

m peer-t. 1 and m pee, -,, u , respectively, and 

2. The lower and upper bound peeling moments for cracked (prior to plating) R. C. 

beams, M peel-2,1 and M Peet-2, u , respectively. 
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Fig. A. 1 Assumed stress-strain relationships: (a) for concrete after BS8110 
(1985), (b) for FRP material, (c) bi-linear for steel after BS8110 (1985), 
and (d) tri-linear for steel after BS5400 (1990). 
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The following are the main assumptions for calculating the flexural load bearing 

capacities of plated and unplated beams: 

" Plane sections remain plane after bending. 

" For all the flexural load capacities, the stress-strain relationships shown in Figure 

A. 1 are assumed, whenever applicable. 

" The material partial safety factors, y., as recommended by BS8110 (1985) are 

used for calculating only the unplated beam flexural capacity M Rc (i. e. y, =1.5 

for concrete, y, =1.15 for steel, and yP =1.15 for FRP). 
IA 

" The material partial safety factors, ym , are considered to be equal to 1.0 for all the 

other flexural load capacities. 

A. 3 ESTIMATING THE EFFECTIVE LENGTH OF THE 

BONDED PLATE 

For the sake of flexibility and to enable further research, the computer programme 

offers various options for determining the plate peeling stresses and moments, as 

regards the choice for the portion of the length of the plate within the critical shear 

span: 

1- The plate length may be equal to the actual one, 

2- The plate length may be equal to the effective one, 

3- The plate length may be equal to the minimum of the actual and the effective 

ones, and 

4- The plate length may be equal to the minimum (or the maximum) spacing 

between two adjacent stabilised cracks with the critical beam section located 

at a distance equal to this crack spacing as measured from the end of the plate. 
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The critical beam section for options 1-3 is located immediately under the external 

point load nearest to the support. All the numerical results presented in this thesis, are, 

indeed, based on option 3. 

The stabilised crack spacing is a critical parameter for calculating the plate peeling 

stresses. One of the parameters that influence the magnitude of the stabilised crack 

spacing is the bond strength between the plate and concrete. Different values for the 

bond strength may be assumed in the computer programme, with the subsequent 

estimates of effective plate length depending on the so-obtained values of stabilised 

crack spacing(s). 

A. 4 GENERAL REMARKS 

" The computer programme is based on an iteration technique to determine the 

depth of neutral axis in order to satisfy the equilibrium condition. The iterations 

start with a reasonable initial value for the depth of neutral axis and a constant 

value for the plate axial strain(s) (for calculating the plate peeling moments) or a 

constant value of 0.0035 for the maximum concrete compressive strain (for 

calculating the full bond capacity of plated and unplated sections). 

" The position of the neutral axis is updated, depending on the results for 

equilibrium. The strains (and stresses) across the section are calculated. The 

section forces may, then, be recalculated and the equilibrium condition is checked 

again, with the whole process repeated until equilibrium is satisfied. 
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" For the plate peeling, if equilibrium can not be achieved with the maximum 

concrete compressive strain being less than the crushing value (i. e. 0.0035), then, 

the initially assumed constant value for the plate axial tensile strain should be 

slightly reduced until equilibrium is satisfied, with the maximum concrete 

compressive strain being less than the crushing value. 

" For the full bond capacity of FRP plated beams, if equilibrium can not be 

achieved while assuming the plate axial tensile strain to be less than the ultimate 

value, then, the failure is assumed to be due to plate rupture, and the maximum 

concrete compressive strain should, then, be sufficiently reduced (from the 

crushing value) until the equilibrium condition is satisfied. 

A. 5 LIST OF THE PROGRAMME 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C THIS PROGRAM IS WRITTEN BY MAHMOUD A. H. HASSANEN C 
C CIVIL & BUILDING ENGINEERING DEPARTMENT C 
C LOUGHBOROUGH UNIVERSITY C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

DOUBLE PRECISION O, HSC, HST, HH, H1, FCU, EC, FY, ES, BP, TP, FP, EP, 
* PEXP, EXPM, AC, PI, FT, U, S, AE, AP, AT, PSL, PSU, PSX, PRNL, PRNU, PRNX, 
* LP, LO, LPA, LPMIN, D, DRFT, XX, BML, BMU, BMX, DT, NAXL, NAXU, NAXX, RSL, 
* RSU, RSX, RRNL, RRNU, RRNX, CSL, CSU, CSX, CRNL, CRNU, CRNX, TA, BOND, 
* PRNM, PRNP, PRNN, BMM, BMP, BMN, PSM, PSP, PSN, RSM, RSP, RSN, RRNM, 
* RRNP, RRNN, CSM, CSP, CSN, CRNM, CRNP, CRNN, NAXM, NAXP, NAXN 

INTEGER B, T, NBC, NBT, I, NCR, DC, II, JJ 
CHARACTER *5 RFT, FPMX, FPMU, FPML, FPMM, FPMP, FPMN 
CHARACTER *6 SCNM, TYPE 
CHARACTER *7 STATUS, CRACKS, BARCURV, LPEFORACT, 

* CONCRETE, PLTCURV 
CHARACTER *12 OUTFILE, DATAFILE, START 
CHARACTER *1 CASE 
CHARACTER *133 TITL 
CHARACTER *485 HEAD 
CHARACTER *5 RUNCASE, FRPBOND 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C NEXT ARE THE ACCEPTABLE PARAMETERS FOR THE INPUT VARIABLES C 
C CASE = PLATE LENGTH= EFFECT, Ac=AL, CRACK, DÜBLE-CRACK C 
C CRACKS = UNCRAKD/PRECRKD : CRACKED/UN-C. PRIOR TO PLATING C 
C BARCURV = BILINER/TRILNER : Bi/Tri-LINEAR, BAR MATERIAL C 
C PLTCURV = BILINER/TRILNER : Bi/Tri-LINEAR, PLATE MATERIAL C 
C LPEFORACT= LPEFORA/LPEONLY : Min of Effect. /Act. or Eff. C 
C CONCRETE = CONCTOK/NOCONCT : Use/Ignore Conc. in Tension C 
C FRPBOND = RTFCU/UO. 8N/U3. ON/U6. ON : Bond bet. Plt & Conc. C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C START IS A FILE THAT INCLUDES NAMES OF INPUT/OUTPUT DATA C 

343 



C FILES AND THE ABOVE CONTROLLING PARAMETERS FOR REFERENCES C 
READ (*, *) START 
OPEN (UNIT=11, FILE=START , STATUS='UNKNOWN') 
READ(11, *) DATAFILE 
READ(11, *) OUTFILE 
READ(11, *) CASE 
READ(11, *) CRACKS 
READ(11, *) BARCURV 
READ(11, *) PLTCURV 
READ(11, *) LPEFORACT 
READ(11, *) CONCRETE 
READ(11, *) FRPBOND 
CLOSE (11) 

111 IF (((CASE. EQ. 'C'). OR. (CASE. EQ. 'D')). OR. ((CASE. EQ. 'E'). OR. 
* (CASE. EQ. 'A'))) THEN 

IF (CASE. EQ. 'E') WRITE (*, *) START 
ELSE 

GO TO 10001 
END IF 

C HEARDER IS A FILE THAT CONTAINS CERTAIN TWO LINES HEADING C 
OPEN (UNIT=66, FILE='HEADER' , STATUS='UNKNOWN') 
OPEN (UNIT=77, FILE=DATAFILE , STATUS='UNKNOWN') 
OPEN (UNIT=88, FILE= OUTFILE , STATUS='UNKNOWN') 
READ (66,19)HEAD 
WRITE(88,19)HEAD 
WRITE (88,20) START, DATAFILE, OUTFILE, CASE, CRACKS, BARCURV, 

* PLTCURV, CONCRETE, FRPBOND 
READ (66,19)HEAD 
WRITE(88,19)HEAD 
CLOSE (66) 
CLOSE (88) 
II=3 
DO 4 I= 1,5 

READ(77,17)TITL 
4 CONTINUE 
100 READ(77,1996)SCNM, B, T, NBC, DC, HSC, NBT, DT, HST, HH, H1, FCU, EC, 

* FY, ES, BP, TP, LO, LPA, FP, EP, PEXP, TYPE, TA 
IF (SCNM. EQ. "ENDOFF") GO TO 9999 
IF (BP. EQ. 0.0) BP=0.0000001 
IF (FP. EQ. 0.0) FP=0.0000001 
IF (FCU. EQ. 0.0) FCU=0.0001 
PI=3.141592654 
FT=0.36*SQRT(FCU) 
O=NBT*DT*PI 
IF (FRPBOND. EQ. 'RTFCU') BOND=0.28*SQRT(FCU) 
IF (FRPBOND. EQ. 'U0.8N') BOND=0.8 
IF (FRPBOND. EQ. 'U3. ON') BOND=3.0 
IF (FRPBOND. EQ. 'U6. ON') BOND=6.0 
IF (TYPE. EQ. ' STEEL') THEN 

IF (CRACKS. EQ. 'UNCRAKD') U=0.28*SQRT(FCU)*(O + BP 
IF (CRACKS. EQ. 'PRECRKD') U=0.28*SQRT(FCU)* 0 

ELSE 
IF (CRACKS. EQ. 'UNCRAKD') U=0.28*SQRT(FCU)*O + BOND*BP 
IF (CRACKS. EQ. 'PRECRKD') U=0.28*SQRT(FCU)*O 

END IF 
D=T+TA+TP/2.0 
S=D/2.0 
AE=2.0*H1*B 
AP=BP*TP 
AT=NBT*DT*DT*PI/4.0 
AC=NBC*DC*DC*PI/4.0 
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EC=EC*1000.0 
ES=ES*1000.0 
EP=EP*1000.0 
HST=HST+TP/2.0+TA 
EXPM=PEXP*LO/1000.0 
IF ((LO. EQ. 9999). AND. (LPA. EQ. 8888)) EXPM=PEXP 
DRFT=T-H1 
XX=1 
WRITE (*, *) 'OUTPUT FOR SEC. ', SCNM 
CALL PSTRN (FP, EP, AE, FT, U, BP, LPA, B, HH, TP, PSL, PSU, PRNL, PRNU 

* , CASE, LP, L0, NCR, TYPE, FY, ES, EC, FCU, AT, AP, SCNM, LPEFORACT, 
* PLTCURV, FRPBOND, LPMIN) 

RUNCASE='LOWER' 
CALL FORCS (FY, ES, FCU, EC, FT, FP, EP, PRNL, S, B, HST, HSC, D, AC, 

* AT, AP, BML, PSL, LO, LPA, LP, XX, STATUS, CASE, RUNCASE, RSL, RRNL, 
* CSL, CRNL, TYPE, RFT, TP, TA, CONCRETE, BARCURV, PLTCURV) 

FPML=RFT 
NAXL=D-S 
IF (STATUS. EQ. 'FAILURE') THEN 

WRITE(88, *)SCNM........... STATUS, '.. IN LOWER LIMIT' 
GO TO 9999 

END IF 
XX=0.001 
LP=2.0*LP 
RUNCASE='UPPER' 
CALL FORCS FY, ES, FCU, EC, FT, FP, EP, PRNU, S, B, HST, HSC, D, AC, AT, AP, 

* BMU, PSU, LO, LPA, LP, XX, STATUS, CASE, RUNCASE, RSU, RRNU, 
* CSU, CRNU, TYPE, RFT, TP, TA, CONCRETE, BARCURV, PLTCURV) 

LP=LP/2.0 
FPMU=RFT 
NAXU=D-S 
IF (STATUS. EQ. 'FAILURE') THEN 

WRITE(88, *)SCNM............. STATUS, '.. IN UPPER LIMIT' 
GO TO 9999 

END IF 
RUNCASE='MXMUM' 
XX=1 
CALL FORCS FY, ES, FCU, EC, FT, FP, EP, PRNX, S, B, HST, HSC, D, AC, AT, AP, 

* BMX, PSX, LO, LPA, LP, XX, STATUS, CASE, RUNCASE, RSX, RRNX, 
* CSX, CRNX, TYPE, RFT, TP, TA, CONCRETE, BARCURV, PLTCURV) 

FPMX=RFT 
NAXX=D-S 
IF (STATUS. EQ. 'FAILURE') THEN 

WRITE(88, *)SCNM............. STATUS, '.. IN MXMUM LIMIT' 
GO TO 9999 

END IF 
RUNCASE='MINUM' 
XX=1 
CALL FORCS(FY, ES, FCU, EC, FT, FP, EP, PRNM, S, B, HST, HSC, D, AC, AT, AP, 

* BMM, PSM, LO, LPA, LP, XX, STATUS, CASE, RUNCASE, RSM, RRNM, 
* CSM, CRNM, TYPE, RFT, TP, TA, CONCRETE, BARCURV, PLTCURV) 

FPMM=RFT 
NAXM=D-S 
IF (STATUS. EQ. 'FAILURE') THEN 

WRITE(88, *)SCNM............. STATUS, '.. IN MXMUM LIMIT' 
GO TO 9999 

END IF 
RUNCASE='BSUNP' 
XX=1 
CALL FORCS FY, ES, FCU, EC, FT, FP, EP, PRNN, S, B, HST, HSC, D, AC, AT, AP, 

* BMN, PSN, LO, LPA, LP, XX, STATUS, CASE, RUNCASE, RSN, RRNN, 
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* CSN, CRNN, TYPE, RFT, TP, TA, CONCRETE, BARCURV, PLTCURV) 
FPMN=RFT 
NAXN=D-S 
IF (STATUS. EQ. 'FAILURE') THEN 

WRITE(88, *)SCNM............. STATUS, '.. IN MXMUM LIMIT' 
GO TO 9999 

END IF 
RUNCASE='BSPTD' 
XX=1 
CALL FORCS FY, ES, FCU, EC, FT, FP, EP, PRNP, S, B, HST, HSC, D, AC, AT, AP, 

* BMP, PSP, LO, LPA, LP, XX, STATUS, CASE, RUNCASE, RSP, RRNP, 
* CSP, CRNP, TYPE, RFT, TP, TA, CONCRETE, BARCURV, PLTCURV) 

FPMP=RFT 
NAXP=D-S 
IF (STATUS. EQ. 'FAILURE') THEN 

WRITE(88, *)SCNM............. STATUS, '.. IN MXMUM LIMIT' 
GO TO 9999 

END IF 
IF (BMU. GT. BMX) BMU=BMX 
OPEN (UNIT=88, FILE= OUTFILE , STATUS='UNKNOWN') 
DO 620 JJ =1, II 
READ (88,19) HEAD 

620 CONTINUE 
WRITE (88,2996)SCNM, BMX, EXPM, BMU, BML, FPMX, FPMU, FPML, D, DRFT, 

* NAXX, NAXU, NAXL, PSX, PSU, PSL, PRNX, PRNU, PRNL, RSX, RSU, RSL, RRNX, 
* RRNU, RRNL, CSX, CSU, CSL, CRNX, CRNU, CRNL, LPMIN, LP, 
* SCNM, BMM, EXPM, BMP, BMN, FPMM, FPMP, FPMN, D, DRFT, 
* NAXM, NAXP, NAXN, PSM, PSP, PSN, PRNM, PRNP, PRNN, RSM, RSP, RSN, RRNM, 
* RRNP, RRNN, CSM, CSP, CSN, CRNM, CRNP, CRNN 

II=II+1 
CLOSE (88) 
GO TO 100 

17 FORMAT(A133) 
18 FORMAT(A47) 
19 FORMAT(A485) 
20 FORMAT(A10,2A14, A5,5A10) 
1996 FORMAT(A6,4I6, F6.1, I6,1OF6.1,2I6,3F6.1, A6, F6.1) 
2996 FORMAT(A6,4F8.2,3A4,8F8.2,3F8.5,3F8.2,3F8.5,3F8.2,3F8.5, 

* 2F8.1, ' ', A6,4F8.2,3A4,8F8.2,3F8.5,3F8.2,3F8.5,3F8.2,3F8.5) 
9999 CLOSE (77) 
10001 END 
CCCC END OF THE MAIN PROGRAMME 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE PSTRN (F, E, AE, FT, U, BP, LPA, B, HH, TP, PSL, PSU, PRNL, 
* PRNU, CASE, LP, LO, NCR, TYPE, FY, ES, EC, FCU, AT, AP, SCNM, LPEFORACT, 
* PLTCURV, FRPBOND, LPMIN) 

CHARACTER *7 STATUS, PLTCURV, LPEFORACT 
CHARACTER *1 CASE 
CHARACTER *5 FRPBOND 
CHARACTER *6 SCNM, TYPE 
DOUBLE PRECISION F, E, AE, FT, U, BP, LPA, HH, TP, PSL, PSU, PRNL, 

* PRNU, LPMIN, LPAA, LP, FY, ES, EC, FCU, AT, AP, LO 
REAL AA, BB, CC, DD 
INTEGER B, NCR, SF 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C NEXT VALUES ARE FOR THE EQUATION 
C LPAA=(AA-BB*LPMIN)LPMIN IF LPMIN =< DD 
C LPAA=CC*LPMIN IF LPMIN > DD 
C WHERE AA, BB, CC, DD FOR MATERIAL AND BOND STRESS 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

LPMIN=AE*FT/(U) 
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IF (TYPE. EQ. ' FRP ') THEN 
IF (FRPBOND. EQ. 'RTFCU') THEN 

AA=24.0 
BB=0.5 
CC=4.0 
DD=40.0 

END IF 
IF (FRPBOND. EQ. 'UO. 8N') THEN 

AA=11.6 
BB=0.17 
CC=2.0 
DD=56.5 

END IF 
IF (FRPBOND. EQ. 'U3. ON') THEN 

AA=34.6 
BB=0.87 
CC=5.0 
DD=34.0 

END IF 
IF (FRPBOND. EQ. 'U6. ON') THEN 

AA=89.0 
BB=3.5 
CC=8.5 
DD=23.0 

END IF 
ELSE 

C CASES OF STEEL PLATES ONLY 
AA=21.0 
BB=0.25 
CC=3.0 
DD=72 

END IF 
IF (LPMIN. LE. DD) THEN 

LPAA=(AA-BB*LPMIN)*LPMIN 
ELSE 

LPAA=CC*LPMIN 
END IF 
IF (CASE. EQ. 'A') THEN 

IF (LPA. EQ. 8888) THEN 
LP=LPAA 

ELSE 
LP=LPA 

END IF 
SF=2.0 

END IF 
IF (CASE. EQ. 'E') THEN 

SF=2.0 
IF (LPEFORACT. EQ. 'LPEONLY') THEN 

LP=LPAA 
ELSE 

IF (LPA. GT. LPAA) THEN 
LP=LPAA 

ELSE 
LP=LPA 

END IF 
END IF 
IF (LPA. EQ. 8888) LP=LPAA 

END IF 
IF (CASE. EQ. 'C') THEN 

LP=LPMIN 
SF=4.0 
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END IF 
IF (CASE. EQ. 'D') THEN 

LP=2.0*LPMIN 
SF=4.0 

END IF 
NCR=LP/LPMIN 
PSL=LPMIN*FT*LP*B/(6.0*HH*TP*BP) 
PSU=SF*PSL 
IF (PSL. GT. F) THEN 

PSL=F 
END IF 
IF (PSU. GT. F) THEN 

PSU=F 
END IF 
STATUS='TENSION' 
CALL STLSTRN (F, E, PSL, PRNL, STATUS, TYPE, PLTCURV) 
CALL STLSTRN (F, E, PSU, PRNU, STATUS, TYPE, PLTCURV) 
RETURN 
END 

C END OF SUBROTUINE PSTRN 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE FORCS FY, ES, FCU, EC, FT, FP, EP, PLTSTRN, S, B, HST, HSC, D, 
* AC, AT, AP, BM, PLTSTRS, LO, LPA, LP, XX, STATUS, CASE, 
* RUNCASE, TSSTRS, TSSTRN, CONCSTRS, CNSTRN, TYPE, RFT, TP, TA, 
* CONCRETE, BARCURV, PLTCURV) 

DOUBLE PRECISION S, HST, PLTSTRN, D, HSC, CSSTRN, CNSTRN, FCC, MCC, 
* FTC, MTC, FY, ES, FT, CSSTRS, AC, FCS, MCS, TSSTRS, AT, FTS, MTS, FP, EP, 
* PLTSTRS, AP, FCU, EC, BM, TSSTRN, FPT, MPT, CC, TT, W, STRNCC, CONCSTRS, 
* STRNTC, XX, NET, PREV, LO, LPA, LP, LMTSTRN, TP, TA 

INTEGER I, N, B, MM 
CHARACTER *5 RFT 
CHARACTER *1 CASE 
CHARACTER *7 STATUS, CONCRETE, BARCURV, PLTCURV 
CHARACTER *5 RUNCASE 
CHARACTER *6 TYPE 
IF ((RUNCASE. EQ. 'BSUNP'). OR. (RUNCASE. EQ. 'BSPTD')) THEN 

LMTSTRN=FP/EP/1.15 
ELSE 

LMTSTRN=FP/EP 
END IF 
PREV=0.0 
MM=1 

222 IF ((RUNCASE. NE. 'LOWER'). AND. (RUNCASE. NE. 'UPPER')) THEN 
CNSTRN=0.0035 
PLTSTRN=CNSTRN*S/(D-S) 
IF (TYPE. EQ. ' FRP ') THEN 

IF ((RUNCASE. EQ. 'MINUM'). OR. (RUNCASE. EQ. 'BSUNP')) GO TO 7 
IF (PLTSTRN. GT. LMTSTRN) THEN 

PLTSTRN=LMTSTRN 
IF (MM. EQ. 1) S=D*PLTSTRN/(PLTSTRN+CNSTRN) 
CNSTRN=PLTSTRN*(D-S)/S 

END IF 
END IF 

ELSE 
CNSTRN=PLTSTRN*(D-S)/S 
IF (CNSTRN. GT. 0.0035) THEN 

CNSTRN=0.0035 
IF (MM. EQ. 1) S=D*PLTSTRN/(PLTSTRN+CNSTRN) 

END IF 
PLTSTRN=CNSTRN*S/(D-S) 

END IF 
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7 CSSTRN=PLTSTRN*(D-S-HSC)/S 
TSSTRN=PLTSTRN*(S-HST)/S 
IF ((RUNCASE. EQ. 'BSPTD'). OR. (RUNCASE. EQ. 'BSUNP')) THEN 

IF (CNSTRN. GE. 0.00349999) THEN 
IF (TSSTRS. GE. (FY/1.15) THEN 

IF (PLTSTRS. LT. FP/1.15) RFT=' CR- 
IF (PLTSTRS. GE. (FP/1.15)) RFT=' CRP 

ELSE 
IF (PLTSTRS. LT. FP/1.15) RFT=' C-- 
IF (PLTSTRS. GE. (FP/1.15)) RFT=' C-P 

END IF 
ELSE 

IF (TSSTRS. GE. (FY/1.15) THEN 
IF (PLTSTRS. LT. FP/1.15) RFT=' -R- 
IF (PLTSTRS. GE. (FP/1.15)) RFT=' -RP 

ELSE 
IF (PLTSTRS. LT. FP/1.15) RFT=' --- 
IF (PLTSTRS. GE. (FP/1.15)) RFT=' --P 

END IF 
END IF 

ELSE 
IF (CNSTRN. GE. 0.00349999) THEN 

IF (TSSTRS. GE. (FY)) THEN 
IF (PLTSTRS. LT. FP) RFT=' CR- 
IF (PLTSTRS. GE. (FP)) RFT=' CRP 

ELSE 
IF (PLTSTRS. LT. FP) RFT=' C-- 
IF (PLTSTRS. GE. (FP)) RFT=' C-P 

END IF 
ELSE 

IF (TSSTRS. GE. (FY)) THEN 
IF (PLTSTRS. LT. FP) RFT=' -R- 
IF (PLTSTRS. GE. (FP)) RFT=' -RP 

ELSE 
IF (PLTSTRS. LT. FP) RFT=' --- 
IF (PLTSTRS. GE. (FP)) RFT=' --P 

END IF 
END IF 

END IF 
FCC=0.0 
MCC=0.0 
FTC=0.0 
MTC=0.0 
STATUS='COMPRES' 
CALL STLSTRS (FY, ES, CSSTRN, CSSTRS, STATUS, TYPE, BARCURV, 

* RUNCASE) 
FCS=CSSTRS*AC 
MCS=FCS*(D -S- HSC) 
STATUS='TENSION' 
CALL STLSTRS (FY, ES, TSSTRN, TSSTRS, STATUS, TYPE, BARCURV, 

* RUNCASE) 
FTS=TSSTRS*AT 
MTS=FTS*(S - HST) 
STATUS='TENSION' 
CALL STLSTRS (FP, EP, PLTSTRN, PLTSTRS, STATUS, TYPE, PLTCURV, 

* RUNCASE) 
IF ((RUNCASE. EQ. 'MINUM'). OR. (RUNCASE. EQ. 'BSUNP')) PLTSTRS=0.0 
FPT=PLTSTRS*AP 
MPT=FPT*S 
N=100 
DO 10 I=1 ,N 
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STRNCC=(I-0.5)*CNSTRN/N 
STATUS="COMPRESS" 
CALL CNCSTRS (FCU, EC, FT, STRNCC, CONCSTRS, STATUS, 

* RUNCASE) 
IF (STATUS. EQ. 'FAILURE') THEN 

WRITE(*, *)STATUS, I 
GO TO 666 

END IF 
FCC=FCC+CONCSTRS*B*(D-S)/N 
MCC=MCC+CONCSTRS*B*(((D-S)/N)**2)*(I-0.5) 
STRNTC=(I-0.5)*PLTSTRN*((S-TA-TP/2)/S)/N 
STATUS="TENSION" 
CALL CNCSTRS (FCU, EC, FT, STRNTC, CONCSTRS, STATUS, 

* RUNCASE) 
IF (CONCRETE. EQ. 'NOCONCT') CONCSTRS=0.0 
FTC=FTC+CONCSTRS*B*(S-TA-TP/2)/N 
MTC=MTC+CONCSTRS*B*(((S-TA-TP/2)/N)**2)*(I-0.5) 

10 CONTINUE 
CC=FCC+FCS 
TT=FTC+FTS+FPT 
NET=CC-TT 
VV=SQRT((NET/TT)**2) 
IF (VV. LT. 0.00001) THEN 

GO TO 555 
ELSE 

IF (CC. GT. TT) THEN 
IF (PREV. LT. 0.0) THEN 

S=S-1.1*XX 
XX=XX/10.0 

END IF 
S=S+XX 

ELSE 
IF (PREV. GT. 0.0) THEN 

S=S+1.1*XX 
XX=XX/10.0 

END IF 
S=S-XX 

END IF 
PREV=NET 
MM=MM+1 
GO TO 222 
END IF 

555 BM=(MCC+MCS+MTC+MTS+MPT)/1000000.0 
STATUS='COMPRES' 
CALL CNCSTRS (FCU, EC, FT, CNSTRN, CONCSTRS, STATUS, 

* RUNCASE) 
IF (RUNCASE. NE. 'MXMUM') THEN 

IF (LPA. NE. 8888) THEN 
IF ((CASE. EQ. 'C'). OR. (CASE. EQ. 'D')) THEN 

BM=BM*LO/(LO-LPA+LP) 
END IF 

END IF 
END IF 

666 RETURN 
END 

C END OF SUBROTUINE FORCES 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE STLSTRN (F, E, STRS, STRN, STATUS, TYPE, CURV) 
DOUBLE PRECISION F, E, STRS, STRN, YLD, COM, DIF, E2, TNSNSTRN 
CHARACTER *7 STATUS, CURV 
CHARACTER *6 TYPE 
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YLD=0.8*F 
COM=F/(1.0+F/2000.0) 
DIF=0.002 - YLD/E 
E2=(COM - YLD)/DIF 
TNSNSTRN=YLD/E+(F-YLD)/E2 
IF (TYPE. EQ. ' FRP ') THEN 

STRN=STRS/E 
ELSE 

IF (CURV. EQ. 'BILINER') THEN 
STRN=STRS/E 

ELSE 
IF (STRS. LT. YLD) THEN 

STRN=STRS/E 
ELSE 

IF (STRS. LT. COM) THEN 
STRN=YLD/E+(STRS - YLD)/E2 

ELSE 
IF (STATUS. EQ. 'COMPRES') THEN 

STRN=0.002 
ELSE 

IF (STRS. LT. F) THEN 
STRN=YLD/E+(STRS - YLD)/E2 

ELSE 
STRN=TNSNSTRN 

END IF 
END IF 

END IF 
END IF 

END IF 
END IF 
RETURN 
END 

C END OF SUBROYUINE STLSTRN 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE STLSTRS (F, E, STRN, STRS, STATUS, TYPE, CURV, 
* RUNCASE) 

DOUBLE PRECISION F, E, STRN, STRS, YLD, COM, E2, YLDSTRN, TNSNSTRN, 
* DIF, FOS 

CHARACTER *7 STATUS, CURV 
CHARACTER *6 TYPE 
CHARACTER *5 RUNCASE 
FOS=1.0 
IF ((RUNCASE. EQ. 'BSUNP'). OR. (RUNCASE. EQ. 'BSPTD')) FOS=1.15 
YLD=0.8*F/1.15 
COM=(F/FOS)/(1.0+(F/FOS)/2000.0) 
DIF=0.002 - YLD/E 
E2=(COM - YLD)/DIF 
YLDSTRN=YLD/E 
TNSNSTRN=YLD/E+(F/FOS-YLD)/E2 
IF (TYPE. EQ. ' FRP ') THEN 

STRS=STRN*E 
IF (STRS. GT. F/FOS) STRS=F/FOS 

ELSE 
IF (CURV. EQ. 'BILINER')THEN 

STRS=STRN*E 
IF (STRS. GT. F/FOS) STRS=F/FOS 

ELSE 
IF (STRN. LT. YLDSTRN) THEN 

STRS=STRN*E 
ELSE 

IF (STRN. LT. 0.002) THEN 
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STRS=YLD+(STRN - YLDSTRN)*E2 
ELSE 

IF (STATUS. EQ. 'COMPRES') THEN 
STRS=COM 

ELSE 
IF (STRN. LT. TNSNSTRN) THEN 

STRS=YLD+(STRN - YLDSTRN)*E2 
ELSE 

STRS=F/FOS 
END IF 

END IF 
END IF 

END IF 
END IF 

END IF 
RETURN 
END 

C END OF SUBROUTINE STLSTRS 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE CNCSTRS (F, E, FT, STRN, STRS, STATUS, RUNCASE) 
DOUBLE PRECISION F, E, FT, STRN, STRS, CRUSH, TNSTRN, BISTRN, 

* BITA, LMTSTRN 
CHARACTER *7 STATUS 
CHARACTER *5 RUNCASE 

C STRESS = EC X STRAIN + BITA X STRAIN^2 (PARABOLIC EQN. ) 
IF ((RUNCASE. EQ. 'BSUNP'). OR. (RUNCASE. EQ. 'BSPTD')) THEN 

CRUSH=0.67*F/1.5 
IF (E. EQ. 0.0) E=5.5*1000.0*SQRT(F/1.5) 
BISTRN=2.4/10000.0*SQRT(F/1.5) 
BITA=(CRUSH - E*BISTRN)/(BISTRN**2.0) 
IF (STATUS. EQ. "TENSION") THEN 

STRS=0.0 
ELSE 

IF (STRN. LT. BISTRN) THEN 
STRS=E*STRN+BITA*STRN**2.0 

ELSE 
IF (STRN. LE. 0.0035) THEN 

STRS=CRUSH 
ELSE 

STATUS="FAILURE" 
END IF 

END IF 
END IF 

ELSE 
CRUSH=0.67*F 
TNSTRN=FT/E 
BISTRN=2.44/10000.0*SQRT(F) 
LMTSTRN=30.0*TNSTRN 
BITA=(CRUSH - E*BISTRN)/(BISTRN**2.0) 
IF (STATUS. EQ. "TENSION") THEN 

IF (STRN. LT. TNSTRN) THEN 
STRS=E*STRN 

ELSE 
IF (STRN. LT. LMTSTRN) THEN 

STRS=FT*(LMTSTRN - STRN)/(29*TNSTRN) 
ELSE 

STRS=0.0 
END IF 

END IF 
ELSE 

IF (STRN. LT. BISTRN) THEN 
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STRS=E*STRN+BITA*STRN**2.0 
ELSE 

IF (STRN. LE. 0.0035) THEN 
STRS=CRUSH 

ELSE 
STATUS="FAILURE" 

END IF 
END IF 

END IF 
END IF 
RETURN 
END 

C END OF SUBROUTINE CNCSTRS 
C END OF PROGRAMME 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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Appendix B 

COMPRESSION FORCES IN CRUSHED AND UNCRUSHED 

CONCRETE SECTIONS 

B. 1 GENERAL 

The flexural failure for an unplated beam either happens due to the crushing of 

concrete after the internal reinforcing steel bars have yielded (ductile failure for 

under-reinforced sections), or before yielding of the embedded steel bars (brittle 

failure for over-reinforced sections). 

The plated beam, on the other hand, exhibits certain other flexural modes of failure 

associated with which the strains and/or stresses in the concrete in compression are 

not the determining (critical) factors. For a certain number of such modes of failure 

(when the failure is due to plate peeling), the plated beam may have either steel or 

FRP plates, while some of the other modes of failures (due to plate rupture) are 

associated with composite beams upgraded with only FRP plates: a full explanation 

for this classification is given in Chapter 5. 

0.67fcu 

_Ccz ß F�i 

Fig. B. 1 Stress-strain relationship for concrete in compression after BS5400 
(1990). 
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In this appendix, formulations will be presented for calculating the magnitude of total 

compressive force and moment for both those cases of beam failures due to either the 

crushing of concrete or when no concrete crushing takes place as in those instances in 

which failure is due to plate rupture and/or end plate peeling. 

The stress-strain relationship for concrete in compression, as used here, is based on 

the one recommended by BS5400 (1990) as shown in Figure B. 1, with /. 3 =b feu 

and em = 0.0035, where 7ln = 2,44x10 

The formula adopted for calculating the concrete compressive stress, f', 

corresponding to a certain level of concrete strain, E, in Equation (B. 1) (given below), is 

based on the relationship presented in Fig. B. 1, which is defined by the following 

at s=0 1- fý anddf`=Eý ,ý dec 

2- fc=0.67 f 
cu at s, = ß= 2.44 x 10-4f cu 

with the final relations expressed as 

0.67f cu ,ß <Ec < 0.0035 

f, _ (B. 1) 
0.67fýu-Ecß 

2 
Ecec + 

ß2 
cc ' Sc <ß 

where, EE is the modulus of elasticity for concrete, and if E, is not experimentally 

obtained, it may be estimated using BS8110 (1985) recommended formula 

Ec = 5.5 f 
cu/y,,, , where fc� = concrete cube strength in MPa, and the units of Ec 

are in kN/mm2. y. is the material partial safety factor, and it will be assumed to be 
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equal to 1.0 when calculating the absolute maximum moment capacity, M 
pu, t , the 

absolute minimum moment capacity, Mmi, , and the upper and lower bound peeling 

moment capacities, M 
pter., and M 

pee,, u , respectively, while it will be assumed to be 

equal to 1.5 (as recommended by BS8110 (1985)), when calculating the plated and 

unplated section design capacities in flexure, MPI, d and MRC , respectively. 

In the absence of any experimental data, most of the national and/or international 

codes of practice relate the concrete modulus of elasticity to the square root of the 

concrete compressive strength, as in the following equation, where the factor r/, 

differs from one code to another. 

Ec '% "f c. 
(B. 2) 

B. 2 COMPRESSION FORCES ASSOCIATED WITH CRUSHED 

CONCRETE 

Figure B. 2 shows the stresses and strains in the portion of concrete in compression, 

with steel bars in compression present, when the section fails due to the concrete 

crushing with the maximum concrete strain at the top fibre, Ev , equal to the crushing 

value, E,,,. 

The total compression force acting on the section, F, consists of the compression 

force in the steel bars, F',, and the compression forces in the concrete, F, and F«2 : 

using Figure B. 2, the following relations may be derived 
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Fig. B. 2 Section compression stresses, strains and dimensions. 

ýo 
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£s 
__ 

ýcz 
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ßy 
y2 = y-y, =G- ) 

to 

with 
Q 

172 
0.0035 Eo 

(B. 3) 

(B. 4) 

(B. 5) 

(B. 6) 

If one assumes the recommended values of Eo = E,,, = 0.0035, and 

ß=2.44x10 f, 
u 

(after BS8110 (1985)), then 

_ 
2.44x10` f 

Cu 
0.0035 _0.0697 f 

`. 

and 

q2 =(1-0.0697 f, 
u) 

From Figure B. 2 

Fc = F, + Fca + Fcc2 3 

(B. 7) 

(B. 8) 
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F', =, 4; f, - AsEsEs 

d' 
= A'Esýo yy= AºEsEo ý1- d'ý yý 

Fccz = 0.67fý� bY2=0.67fcu br7zY 

rý rI 0.67f,. -E, ß 
Fýýi = bj f 

�, 
dz = bj E, s, + �z 

0 OL p 
2 

cZ Idi 

yý so 0.67 f 
cu - Ecß 2 

=bJ Ec -y Z+ Yi 2 
0 ß2 yz 

=Yl 

I. dz 

E, Z (0.67f,,, 
-EP yl 0z 2 

(Y) 

3ß2 y30 

3 = yb se ýl . i.. 
0.67f,,, E, ß 

filE0 3ý3 2 

- yb171 
E,, 6 

+ 
0.67fc�-E, j6 

[-2 3 

= ybi71 6ý 

0.6%fcu 

+3 

The total compression force, p., then, is 

/ 

F`=AsE: co 1--! 
L 

+0.67fcu bn2Y +ybi7, E6ß+0.63fcu1 

or 

Fc=AsEseo 1- 
Y 

+0.67f, u 
bl 1-Eo)Y +Ytf FE 6,, 

8+0.67f 

which, may be expressed as 

d' Eß_2 Fc=ASEsEo 1- y +YE, 6 30.67fcu 
+ 0.67fcuYb 

i 

= AJEco 1- 
dy+Y 

d' , l3 
= AsEfEo 1-- + ybý Eo Y 

6) 
-30.67f+0.67f, u 

6a+0.67fýu 
ß-3 

(B. 9) 

(B. 10) 

(B. 11) 

(B. 12) 

(B. 13) 

(B. 14) 
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The above equation may now be used, if the modulus of elasticity for concrete is 

obtained experimentally. If the modulus of elasticity is not experimentally 

determined, then, it may be related to the concrete compressive strength using 

Equation (B. 2), and 

/(1 

Fc = Aý Es ý0 1- 
d+ 

ylý 
ýI E6ß 

-I - 0.67f 
ýw 

E" 
3 

YlJ 

=A 
r 

1-dl +0.67f, uyb 
1+QI ý-3 /sEsco 

` Y 
/ 

=A; E: Eo 1-d +0.67fýuYb 1+ý1b ? tý7b 
y Eo 43 

/ 

=AsESSo 1-dY+0.67fýyYbafa 

where 

a f° = 1+ 
ýIn fr� 7lbqe 

60 43 

(B. 15) 

(11.16) 

It is clear that am depends only on the concrete compressive strength. Following 

BS5400 (1990) and BS8110 (1985), i=5.5, %b = 2.44x10, and Eo = Ero = 0.0035; 

and the above equation may be re-written as 

2.44 x 10-4 f 
ýw SSOO x 2.44 x 10-4 

-0.667) af cu =1+0.0035 
(4 

2.44X10-4 f 
cu 

=1+0.0035 (-03311667) 

= 1- 
J-1.1, 

43.1 

(B. 17) 

From Equations (B. 15) and (B. 17), the concrete parabolic stress distribution located 

above the neutral axis may be represented by an equivalent rectangular stress block as 

2.44 x 10-4 
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shown in Figure B. 3, with the same maximum value of stress equal to 0.671 
cu , 

but 

with a reduced height of yafCU . 

As the factor of cu only depends on the 

concrete compressive strength (or even, 

generally, on c. ,ß, f 
cu and Ec ), from 

Equation (B. 15) it is clear that the total 

compression force acting on the section 

will increase by increasing the neutral axis 

depth, y, if the section is to fail in any of 

the modes of failure associated with which 

crushing of concrete takes place. 

A =0.67 fý� f, =0.67 fýu 

F's 
ýý 

F' t 

y y, ýrý 
ýEj F'Ccr+ Fcc2 I 

NA 

Fig. B. 3 Equivalent stress block. 

F, cs 

Fýý j 

This increase in the compression force leads to similar increases in the magnitude of 

total tensile force in order to maintain equilibrium of forces over the whole section. 

B. 3 COMPRESSION FORCES ASSOCIATED WITH 

UNCRUSHED CONCRETE 

For the section which does not experience concrete crushing, there are two possible 

cases to be considered. The first case relates to those sections with maximum concrete 

stress being less than 0.67 f 
,� and subjected only to a parabolic stress distribution 

(i. e. the maximum strain &, is less than ß ). The second case, on the other hand, 

relates to sections subjected to a maximum concrete compressive stress 0.67 f 
,y 
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associated with which there is a maximum concrete strain, eo , less than the crushing 

value, Cm, but higher than ß (see Figure B. 1). 

B. 3.1 Maximum Concrete Compressive Strain Less Than P 

In this case, the concrete stress distribution is parabolic throughout the entire region in 

compression, and may be expressed by the following 

f 
Cz = E, Ecz + ,ý2 -cct 

N 
(B. 18) 

f 
cZ = Eý 6, ý+ 

kl E C2 
(B. 19) 

where 

I,, - -. 
0.67fcu - E, fl 

n1- n2 
(B. 20) 

Figure B. 4 shows the compressive stresses and strains of concrete and the associated 

steel bars, when the section fails due to plate rupture or plate peeling associated with 

which the maximum concrete strain is less than the crushing value. 

From Figure B. 4, the following relations may be derived 

Ep 

- 
Es 

- 
Es 

- 
E, 

D-ya-yy-a' -z 
(B. 21) 

The total compressive force, F,, acting on the section, consists of the compression 

force in the steel bars, F',, and the compression force in the concrete, F,,: 

Fc =Fs+ Fc, (B. 22) 

0.67. f cu - Ec 
/' 
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Fig. B. 4 Section strains, stresses and dimensions (Case 1). 

The total force in the embedded steel bars in compression, is 

F', =Asfs=AsE5E, 
d' 

= ASE, EPD 
_ Y 

and, if expressed in terms of the axial strains in the embedded bars, then 

d' 
Fs=As Es ead_ 

Y 

The compression force in concrete is 

vY 
Fcc= ba fýdz =b f(E, EýZ + Kl E týZ 

0 

=bfl 

22 

E, D_°y 
z+ K, D°y 

z2 dz 

(B. 23) 

(B. 24) 

(B. 25) 

= 
bE, Er Ev 3 

2 D-y 
)y2+bKl( 

3 D-y y 

If the above equation is expressed in terms of the axial strains in the embedded steel 

bars 
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(B. 26) 

The total compression force, F,, then, is 

= A; Ee eP 
y2 + bKi ep 2 

y3 (B. 27) 
D_y2 D-y 3 D-y 

If the above equation is expressed in terms of the axial strains in the embedded steel 

bars, one gets 

Fý = As Eý E 
(I: 

ýý)+bf, ( Es z bKt es Zs 

d_y2 d-yy+3 d-y y 

with Kl as defined by Equation (B. 20). 

(B. 28) 

B. 3.2 Maximum Concrete Compressive Strain More Than P 

In this case, the concrete stress distribution consists of a combination of parabolic and 

uniform distribution parts, and may be expressed by the following 

0.67f 9ß <cc < 0.0035 

fc- 0.67fcu-E, ß 
--n EcE,, + 

ß2 
CC EC ý /j 

or f 
cZ = E, ecZ+k, Ez cz 

where 

Y. - 
0.67f cu - Ec P 

11.1 p 2 

+ ecz :5 f8 
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Fig. B. 5 Section strains, stresses and dimensions (Case 2). 

From Figure B. 5, the following relations may be derived 

£p Ea 
4 Elz 

D- y d- y y-d' z 

y, = 
ý(D-y) 

P 

ß(d-y) 

3 

y2=y-Yl 

=y- 
ß(D-y) 

t P 

=y-ý(d-y) 

3 

(B. 29) 

(B. 30) 

(B. 31) 

The total compression force, F,, acting on the section, consists of the compression 

force in the steel bars, Fs, and the compression forces in the concrete, F,,, and Fcc2 

where 

Fc = FS + Fcci + Fcc2 (B. 32) 
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The compression force in the embedded steel bars, Fl., will be 

F'S= As. fs= AsE: t, ' = AsEsEa 
D- Y 

(B. 33) 

If the above equation is expressed in terms of the axial strains in the embedded steel 

bars 

_, _ .,,. _ y-d 
i 

L's=As CsEs 
d-y 

and, the concrete compression force, Fcc2, is 

Fcc2 =0.67F, 
�bY2 =0.67fýu Y+ 

ßy-Qd 
c3 Es 

=0.67f, u y+ 
ß 

y- 
ßD 

sP 8P 

(B. 34) 

(B. 35) 

If the above equation is expressed in terms of the axial strains in the embedded steel 

bars, one arrives at the following 

Fcc2=o. 67fu y+ 
ß 

y- 
ßa 

es es 

while, the force, F ,a, 
is 

F,,,, =bif Zdz = by, J (E, 
E, Z + K, E 

zýz 

0 
Yý l2 

=bj EýDyz+KlrýPy l z2 z 

_ 
bE, EP 2+ bKt EP Z3 
2 D-y Y1 3 D_y Yl 

bEf 
=2 ßP 

(D-y)+ýP(D-y) 

(B. 36) 

(B. 37) 

Again, if the above equation is expressed in terms of the axial strains in the embedded 

steel bars, one gets 
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Fýa =ýý(d-y)+eý(d-Y) 

The total compression force, F,, is, then, given by 

F, =fýsEsep ý- d'+0.67fý, 
uý YI 

i 

(B. 38) 

2 

Y+ 
ßP 

y-'PýD +b2'Q (D-y)+ 3ß3 (D - y) 
(B. 39) 

and, if the above equation is expressed in terms of the axial strains in the embedded 

steel bars: 

F, = A; E, es 
d-d + 0.67f,,, y+Qy- 

ld 
+2 

ßs 
(d - y)+ 

3ý (d - y)(B. 40) 
ys, 

If one assumes the BS8110 (1985) recommendations for estimating the values of EE 

and j6, one arrives at the following 

i 
=AsE3EP ýY 

+0.67fý. b Y_3Q (D-Y) 
P 

(B. 41) 

and, if the above equation is expressed in terms of the axial strains in the embedded 

steel bars 

d' 
F, = As Et ss 

d- + 0.67 f,. b y -ý (d 
- y) Y, 

(B. 42) 

B. 4 THE COMPRESSION MOMENT 

The total moment of the compression forces about the neutral axis, associated with the 

crushed concrete type of failure, may now be calculated as in the following; 

Mc = Ms + Mccl + Mcc2 ; (B. 43) 
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M s= ASf s(Y-d')= ASEsý(y-d'ý 

= A; EsEo y-dI (y - d') = AsEsEo 
yy 

1- dY, z 

Mcc2=0.67f. by2 y- 
22 

=0.67fc� b _ß0y y- 
2 1- 

ý 

0 
222 

=0.67fcuby 1-C =0.67f, uby 
1- 

c 2ý2 Ep 

Yý Y. (0.67f 
cu - 

Ec N 2 
Mcc, =bjfczdz =bj Ec EcZz+ P 6C, 

00 

r' 0.67fE, ý3 2 
=bJ E, y z2+ ß2 

Y Jz3 z 

y2 
Er Eo Y, 

3 0.67 f ,u2 
Ec ß 

=42 3 y+ ß 

1.1 

Eo 

= yz 
ErEo +(0.67f ru Z Eý ßß 14 

Eö 3 E, 4ß E, J 

=ysß2 
Erß+0.67fru-E, ß 

so L34 

_2ß 
)2(ECB 0.67f ru 

_y Eo 12 +4 

The total compression moment, M, is, then, given as 

(B. 44) 

(B. 45) 

(B. 46) 

Mý=As Es C. 1- 
d/ 2y+ 0.67 f 

ýu 
by2 [1-( ß 2+ ß2 Ecß +. -67f cu bye (B. 47) 

y2 Eo E0 12 4 

which may be expressed as 

.irý 

M, =ArEýEol 1-d/lýy+l 
0.67fcu+(ßlý(E, ß_0.67fýu1 Iby2 

I i- -- ,- fl 

y)r I2 ýEoJli2 4 
(B. 48) 

If one assumes the recommended values of ýo = Em = 0.0035, ß=2.44x 10-4 f 
C4 

and E, = 5500 f 
,u 

(after BS8110 (1985)) 

YI Yi 

-"_ý-1 14 -1 

0 
Ee¢ Z Idz 
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/2 

Mý=AýEseo I_ 
d+0.67frub 

1- 
f2 

yy2 1234 y (B. 49) 

B. 5 CONCLUSIONS 

1- If the plated section is to fail in any of the failure modes which are due to the 

concrete crushing, then: 

a- The total compression force in the concrete crushed section is 

r 
Fc = AsEsE, � 1- 

y+yQ 
6ß + 0.67f 

P3 
(B. 50) 

ý 

or 

FC= ASE: Em 1- di 
+ 0.67 f 

. Yb ar. 
Y 

where 

af`  = 1+ ýlb .f ýu ib 71, _I , Eý andý3 = i7b f ýu Em 43ý 

and, based on the BS5400 (1990) and BS8110 (1985) values of 

%b =2.44x10-4,1e =5.5ande, � =0.0035 

then 

fcu 

af cu 
1 43.1 

(13.51) 

b- The total compression and tension forces will increase, if the neutral axis 

depth is increased. 

2- When the failure mode is not due to the concrete crushing, there would be two 

possible cases of compression stress distribution for concrete to be considered. 

The first case corresponds to when the maximum concrete stress is less than 
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0.67 f and the stress distribution will be parabolic all along the portion of 

concrete in compression - (see Figure B. 4). In this case, the maximum concrete 

strain, Ea , will be less than ß. 

The second case occurs when the maximum concrete stress is equal to 0.67 f 
,u, 

but the maximum strain in concrete is less than the crushing value, em = 0.0035. 

In this case, a portion of the stress distribution will be of a parabolic form, while 

the other portion will be equivalent to a uniform compression stress block - see 

Figure (B. 5). In this case, the maximum concrete strain, eo , will be less than the 

crushing value (i. e. F. < 0.0035 ), but more than fl. 

a- The total compression force, F, for the Case 1 (e0 <_, ß ), is 

Fc=AsE3E y-d' +bE, En 2+bK 
2 

D- y2 
(D- 

y)y 
3Dp Y3 (B. 52) 

JY C J 

If the above equation is expressed in terms of the axial strains in the 

embedded steel bars, then 

Fý = As ES e: 
Y-d bEc E, bK, 2 

d-y+2 d-y)Y2 +3 d-Y Y 

0.67fcu-E, ß 
where, Ki =82 

b- The total compression force, F, for Case 2 (ß 
_< e0 < 0.0035 ), is 

(B. 53) 

z 

y- 
QD +ý (D-y)+ F, =AJESEP D- 

+0.67f, ý y+ 
I 

yP EP (B. 54) 
3 

3 
(D 

- y) 
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and, if the above equation is expressed in terms of the axial strains in the 

embedded steel bars, the following holds 

2 
F, =AsEsCs d-y 

+0.67f�� y+iy-ld +ýQ (d-y)+ 

,' (B. 55) 
3 

ßs 
(d - Y) 

If one assumes the recommendations by BS8110 (1985) for E, and 8, the 

following holds 

A, EsEp ý_ d' 
+3 

Y 
(B. 56) 

and, if the above equation is expressed in terms of the axial strains in the 

embedded steel bars, one arrives at the following 

i 
F=AsEs es d-2 

d 
+0.67f,. b Y- 3e s 

(d-y) 1 (B. 57) 

370 


