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Self-Adaptive Fitness Formulation for
Constrained Optimization

Raziyeh Farmani and Jonathan A. Wright

Abstract—A self-adaptive fitness formulation is presented for
solving constrained optimization problems. In this method, the di-
mensionality of the problem is reduced by representing the con-
straint violations by a single infeasibility measure. The infeasibility
measure is used to form a two-stage penalty that is applied to the
infeasible solutions. The performance of the method has been ex-
amined by its application to a set of eleven test cases from the spe-
cialized literature. The results have been compared with previously
published results from the literature. It is shown that the method
is able to find the optimum solutions. The proposed method re-
quires no parameter tuning and can be used as a fitness evaluator
with any evolutionary algorithm. The approach is also robust in
its handling of both linear and nonlinear equality and inequality
constraint functions. Furthermore, the method does not require an
initial feasible solution.

Index Terms—Constraint handling, dynamic, fitness, genetic al-
gorithm, penalty, self-adaptive.

NOMENCLATURE

Constraint violation value.
Scaling factor for violation of constraint.
Fitness.
Objective function.
Penalized objective function value after the second
penalty.
Penalized objective function value after the first
penalty.
Inequality constraint.
Equality constraint.
Solution’s infeasibility.
Vector of decision variables.
“Best” individual.
“Worst” infeasible individual.
Individual with the highest objective function value.
A small tolerance.
Scaling factor.

I. INTRODUCTION

I N THE LAST two decades, genetic algorithms have received
much attention regarding their potential as global optimiza-

tion techniques. More recently, the solution of constrained op-

Manuscript received January 24, 2003; revised May 29, 2003. This work
was supported in part by the U.K. Engineering and Physical Science Research
Council under Platform Grant GR/R14712/01 and Grant GR/M23601/01.

R. Farmani is with the School of Engineering and Computer Science, Univer-
sity of Exeter, Exeter, Devon EX4 4QF, U.K. (e-mail: R.Farmani@exeter.ac.uk).

J. A. Wright is with the Department of Civil and Building Engineering,
Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K.
(e-mail: J.A.Wright@lboro.ac.uk).

Digital Object Identifier 10.1109/TEVC.2003.817236

timization problems has been addressed by many researchers
([1], [5], [6], [9], [13], [21], [23]). Penalty function methods are
among the most common methods used to solve constrained op-
timization problems. In these methods, a penalty term is added
to the objective function, the penalty increasing with the degree
of constraint violation (static penalty) or the degree of constraint
violation and generation number (dynamic penalty) ([11], [12]).
In general the weakness of penalty methods is that they often re-
quire several parameters (to adjust the relative weights of each
constraint in the penalty, and the weight of the penalty against
the objective function). However, due to their simplicity and
ease of implementation they are the most common methods used
in solving real world problems.

Michalewicz and Janikow [17] presented the GENOCOP
method which is based on designing specialized operators
that incorporate knowledge of the constraints. This method
uses projection operators that map feasible points back to
feasible boundaries. The approach is only applicable to linear
constraints and an objective function with a feasible starting
point. To overcome this limitation Michalewicz and Attia
[15] introduced a hybrid optimization system for general
nonlinear programming problems (GENOCOP II). Later,
Michalewiczet al. [18] developed the GENOCOP III method
which is based on the idea of repairing infeasible solutions and
also incorporating some concepts of coevolution. Schoenauer
and Michalewicz [25], constructed further operators that
maintain solutions on nonlinear analytical constraint surfaces.

In order to avoid generating and rejecting a large number of
infeasible solutions, specialized operators can be used. In the
Greedy decoder method, the chromosome does not directly en-
code a solution in the feasible region but rather a set of param-
eters that is used by the decoder to generate a feasible solution.
Because the decoder must be guaranteed to never produce infea-
sible solutions, it is often extremely difficult to design. Hajela
and Yoo [10] overcame this problem in an alternative approach
that is able to handle both nonlinear, equality and inequality con-
straints. The strategy is based on a preconditioning of the infea-
sible solutions prior to the genetic transformation. The approach
is conceptually analogous to the theory of emulation of the im-
mune system and is effective in evolving feasible solutions. In
this approach both feasible and infeasible solutions should be
present in the population at any generation of the search. The
basis for this scheme is that those segments of the binary chro-
mosome, that contribute to calculating the objective function are
minimally altered, while those segments of the chromosome that
contribute to constraint violations are replaced by corresponding
segments from feasible chromosomes.

Another class of constraint handling methods involves
the biasing feasible over infeasible solutions. Schoenauer
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and Xanthakis [26] presented a behavioral memory method
which considers all constraints in a sequence; when sufficient
number of feasible individuals satisfy one constraint from the
sequence the next constraint from the sequence is considered.
The success of the whole process is highly dependent on the
genetic diversity maintained during the initial steps, thus,
ensuring a uniform sampling of the feasible region. Powell
and Skolnick [21] presented a method that would make all
infeasible solutions have fitness values less than the worst
feasible solution. Deb [6] suggested a modification of Powell
and Skolnick [21] method which does not require any penalty
parameters. This method uses a tournament selection operator,
where two solutions are compared at a time. In this method,
any feasible solution is preferred to any infeasible solution;
among two feasible solutions, the one having a better objective
function value is preferred and among two infeasible solutions,
the one having smaller constraint violation is preferred.

Multiobjective algorithms have been used in the solution
of constrained single objective optimization problems, by
treating the constraints as one or more of the objectives. Surry
and Radcliffe [28] introduced the constrained optimization by
multiobjective genetic algorithm (COMOGA) method in which
all members of the population are ranked on the basis of the
constraint violations. Such a rank, together with the value of
the objective function, lead to a two-objective optimization
problem. Cheng and Li [2] presented an alternative constrained
multiobjective optimization method. The approach integrates
a Pareto genetic algorithm and fuzzy penalty function. In this
method, the rank of a solution is determined by knowing the
solution’s status (feasible or infeasible), the distance from
the Pareto optimal set, and position in infeasible region.
The fuzzy-logic penalty function method, having a discrete
membership function, can express the rank order of solutions
in a Pareto optimization and transform a multiobjective con-
strained optimization into an unconstrained problem. Parmee
and Purchase [20] and Coello [3] used the vector evaluated
genetic algorithm (VEGA) (Schaffer [24]) to handle each of
the constraints as an objective. In this approach, the population
is divided into subpopulations, each representing one of the
constraints, which will be guided during the search. Coello [3]
eliminated some of the drawbacks of the Parmee and Purchase
[20]. However, one of the drawbacks of Coello’s [3] method is
the selection of the most appropriate number and size of each
subpopulation. Also, care needs to be given to the way that
subpopulations are guided so certain subpopulations do not
dominate the search.

Although interest in treating constrained optimization prob-
lems as a multiobjective optimization problem is growing ([7],
[8], [29]), the approach appears less robust than for constrained
single objective algorithms. The difficulty arises from the fact
that for highly constrained problems, simply considering con-
straints as objectives or assigning the infeasible individuals a
lower fitness than the feasible individuals might not introduce
enough pressure to direct the search toward the region of the
optimum.

Hybrid methods combine evolutionary techniques with
deterministic optimization procedures for numerical optimiza-
tion problems. Myung and Kim [19] presented a two-phase

evolutionary programming method based on a hybrid method.
During the first phase, an evolutionary algorithm is used to
optimize the function. In the second phase of the optimization,
Lagrange multipliers are used to place emphasis on the violated
constraints whenever the best solution does not fulfill the
constraints. By updating the Lagrange multipliers, the trial
solutions are driven to the optimal point, where all constraints
are satisfied.

Adaptive constraint handling methods have also been devel-
oped. These are appealing due to their ability to adjust their
own parameters and make use of information in the popula-
tion. Coitet al. [5] and Coit and Smith [4] introduced an adap-
tive penalty technique which makes use of feed back obtained
during the search along with a dynamic distance metric for ge-
netic optimization of constrained combinatorial problems. The
approach uses a near-feasibility threshold (NFT) for each con-
straint or set of constraints. The penalty function encourages
the genetic algorithm to explore within the feasible region and
the NFT neighborhood of the feasible region. Ben Hamida and
Schoenauer [1] presented an adaptive segregational algorithm
for constrained optimization that operates in three stages. First,
the global information of the population is used to adjust the
penalty coefficient, then a recombination strategy is used to
mate feasible individuals with infeasible individuals, and fi-
nally, segregational selection is used to favor a given number
of feasible individuals.

Koziel and Michalewicz [13] presented the homomorphous
mapping approach for solving constrained optimization prob-
lems. The method incorporates a homomorphous mapping be-
tween an -dimensional cube and the feasible search space. This
approach introduces an additional problem-dependent param-
eter to partition the interval [0, 1] into subintervals of equal
length such that the equation of each constraint has, at most, one
solution in every subinterval. The method loses the locality fea-
ture of the mapping for nonconvex feasible search spaces and a
small change in the coded solution may result in a large change
in the solution itself. This process requires additional compu-
tational effort for finding all the intersection points for a line
segment with the boundaries of the feasible region. The disad-
vantages of the homomorphous method are that it requires an
initial feasible solution and that all infeasible solutions are re-
jected. Another limitation is the need for problem-dependent pa-
rameters in the method.

Runarsson and Yao [23] introduced a stochastic ranking
method in which the objective function values are used for
ranking the solutions in the infeasible region of the search
space. A probability parameter is used to determine the likeli-
hood of two individuals in the infeasible space being compared
with each other. Although the method proved to be effective in
solving a wide range of constrained optimization problems, it
was also sensitive to the choice of probability parameter.

Most of these constraint handling methods are problem de-
pendent. They often require user supplied parameters to be ad-
justed in order to obtain good performance from the method.
Some of the methods are also able to handle only specific con-
straint types and, therefore, lack generality. Some of the ap-
proaches limit the search to the feasible search space. How-
ever, a good search should approach the optimum solution from

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 10:01 from IEEE Xplore.  Restrictions apply.



FARMANI AND WRIGHT: SELF-ADAPTIVE FITNESS FORMULATION FOR CONSTRAINED OPTIMIZATION 447

both sides of the feasible/infeasible border [22]. Smith and Coit
[27] pointed out that there is need for development of com-
pletely adaptive penalty functions that require no user specified
constants and development of improved adaptive operators to
exploit characteristics of the search as they are found.

Wright and Farmani [30] presented a fitness formulation
which addresses the limitations of some of the existing con-
straint handling methods. In particular, it does not require
parameter tuning and can be used without an initial feasible
solution being given. This paper describes the further develop-
ment of this algorithm as a self-adaptive penalty method. The
paper also describes the evaluation of the algorithm’s perfor-
mance in solving eleven standard test functions taken from the
literature; the performance of the algorithm is compared with
a number of previous studies.

II. FITNESSFORMULATION

The fitness formulation described here is based on the
method for constraint minimization that was proposed by
Wright and Farmani [30]. The method has been formulated to
ensure that slightly infeasible solutions with a low objective
function value remain fit. This is seen as a benefit to solving
highly constrained problems that have solutions on one or
more of the constraint bounds. In contrast, solutions farthest
from the constraint bounds are seen as containing little genetic
information that is of use and are, therefore, penalized.

The infeasibility values are represented by the sum of the
normalized constraint violation values. The infeasibility mea-
sure has the properties that it increases in value with both the
number of active constraints and the magnitude of each con-
straint violation. The infeasibility measure is used to form a
two-stage penalty applied to the infeasible solutions. The first-
penalty stage ensures that the worst of the infeasible solutions
has a penalized objective function value that is higher or equal
to that of the best solution in the population (all other solutions
in the population are also penalized but by a lesser amount, de-
pending on their feasibility). The second penalty increases the
penalized objective function value of the worst of the infeasible
solutions to twice the objective value of the best solution. The
remaining infeasible individuals are penalized exponentially in
proportion to their infeasibility. The approach is implemented in
three stages. First, an infeasibility is assigned to each individual,
second, the “best” and “worst” individuals in the population are
identified, and finally, the two-part penalty function is applied
to the infeasible solutions. There are two main advantages to
this approach. First, it does not require any parameter tuning,
and second, it is able to find the global optimum starting with
a completely infeasible population of solutions. The method is
also able to solve a range of constrained optimization problems,
having both nonlinear equality and inequality constraints. It was
shown, that this approach gives results that are better or compa-
rable to those of existing methods. The use of a fixed weight
for the second penalty also proved to be effective, although for
test problem G4, improved results were obtained by reducing
the weight of the second penalty [30].

The aim of this work is to eliminate the fixed weight for
the second penalty which could cause problems if solutions are
clustered in a small part of the search space. The second penalty

increases the first penalized objective function values such that
the second penalized objective function value of the “worst” in-
dividual is twice that of the best. In this paper, the fitness for-
mulation has been modified so that after applying the second
penalty, the penalized objective function value of the “worst” in-
dividual is equal to that of the individual with maximum objec-
tive function value in the current population. This modification
makes the method more dynamic (not only does the “best” vary
for each population but the individual with maximum objective
function value also varies from one population to another). This
helps spread fitness for populations that are clustered in a small
part of the search space, but without violating the basic princi-
ples behind the fitness formulation.

III. SELF-ADAPTIVE FITNESSFORMULATION

The dynamic fitness formulation described here has the ad-
vantage of being a self-adaptive method. The approach does not
require parameter tuning and can be used without any initial fea-
sible solution being given (this being an advantage in real world
applications having many optimization variables). The approach
is also robust in its handling of both linear and nonlinear equality
and inequality constraint functions. The methodology described
here applies to the minimization of an objective function

(1)

Subject to inequality constraints

(2)

and equality constraints

(3)

The algorithm has three stages. First, each individual is as-
signed an infeasibility, second, the bounding solutions of the
search space are identified, and finally, the infeasible solutions
are penalized.

A. Chromosome Infeasibility

The infeasibility of an individual should represent both the
number of active constraints and the extent to which each con-
straint is violated. A measure of infeasibility that has these prop-
erties is the sum of the normalized constraint values for all vio-
lated constraints. This can be evaluated in two stages. First, the
feasible constraint values are reset as zero and infeasible values
as positive [(4)]; in this research, a small tolerancehas also
been applied to the equality constraints to aid the finding of a
feasible solution. Second, the solution’s infeasibility ( ), is
taken as the sum of the normalized constraint violation values
[(5)]

if
if

(4)

(5)
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The constraint violation values are normalized since large dif-
ferences in the magnitude of the constraint values can lead to
dominance of the infeasibility by constraints having the highest
values. The scaling factor for each constraint , is taken
as the maximum value of the constraint violation in the current
population. Resetting the scaling factor for each population pro-
vides a further dynamic element to the infeasibility calculation.
This has been found to give better algorithm performance than
for a static scaling factor, (for instance, by basing on the
constraint violations in the first population).

B. Identification of the Bounding Solutions

The penalty functions are applied in relation to three
bounding solutions:

“best” individual;
“worst” of the infeasible solutions;
solution with the highest objective function value in the
current population.

For a population containing at least one or more feasible solu-
tions, the “best” individual , is the feasible solution having the
lowest objective function value. However, if all individuals are
infeasible then the best solution is taken as the solution having
the lowest infeasibility value (regardless of the objective func-
tion value of the individuals).

The “worst” of the infeasible solutions , is selected by com-
paring all infeasible individuals against the best individual ().
Two potential population distributions exist in relation to this
comparison.

• The first population distribution occurs whenone or more
of the infeasible solutions have an objective function value
that is lower than the “best” solution. In this case, the
“worst” of the infeasible solutions is taken as the infea-
sible solution having the highest infeasibility value and an
objective function value that is lower than the “best” so-
lution’s. If more than one individual exists with the same
highest infeasibility values, then the is taken as the so-
lution with maximum infeasibility value and the lower of
the objective function values.

• The second population distribution occurs whenall of the
infeasible solutions have an objective function value that is
greater than the “best” solution. Here, the “worst” of the
infeasible solutions is identified as being the solution with
the highest infeasibility value. If more than one individual
exists with the same highest infeasibility value, thenis
taken as the solution with the maximum infeasibility value
and the higher of the objective function values.

C. Chromosome Fitness

Since we are concerned with the minimization of the objec-
tive function, the infeasible solutions are penalized prior to the
conversion of the objective function values to fitness form. The
conversion to fitness ( ) is by the simple subtraction of the
penalized objective function values ( ), from the maximum
penalized value in the current population. The objective func-
tion values of the infeasible solutions are penalized according
to the solution’s infeasibility in relation to that of the “worst” of
the infeasible solutions ( ), the “best” solution ( ) and

Fig. 1. Application of the first penalty.

the highest objective function value in the current population
( ). Note that if a feasible solution exists, then the “best” so-
lution is feasible and will have a zero infeasibility ( ).

The penalty is applied in two stages. The first stage only ap-
plies if one or more infeasible solutions have a lower and, there-
fore potentially better objective function value than the “best”
solution ( ). If this rela-
tionship holds, then the penalty is applied to all of the infeasible
solutions. If the relationship does not hold, then the first penalty
is not applied to any solution. The goal of the first penalty is to
increase the objective function value of the infeasible solutions
such that the “worst” of the infeasible solutions has an objec-
tive function value that is equal to that of the “best” solution.
This has been implemented using a simple linear relationship
between the objective function values and the infeasibility of
the “best” and “worst” infeasible solutions [(6) and (7)]

(6)

(7)

Note that if the penalty is not applied then .
The application of the first penalty is illustrated by Fig. 1 in
which the original solutions are indicated by a “” and the pe-
nalized solutions by a “o.” The “best” and “worst” of the in-
feasible solutions are connected by a line (with the infeasibility
of the “best” solution being reset to zero). Note that in this and
subsequent figures, a negative infeasibility indicates a feasible
solution (the negative infeasibilities only being assigned for the
purposes of illustrating the distribution of solutions in the cur-
rent population).

The second penalty increases the objective function values
such that the penalized objective function value of the “worst”
infeasible individual is equal to that of the “worst” objective in-
dividual [(8) and (9)]. Making the method more dynamic and
self-adaptive has been found to give good performance in com-
parison with the previous fitness formulation [30] that used a
fixed weight for the second penalty.
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Fig. 2. Application of the second penalty.

It is important to note that the exponential weighting param-
eter of 2.0 in (8), is a constant and does not require tuning.
The exponential function gives a slight reduction in the rate of
penalty applied to solutions of low infeasibility, thus, helping to
maintain the fitness of the slightly violated solutions. A study
of the effect of the weighting parameter indicated that the algo-
rithm was insensitive to the parameter provided that the param-
eter values had the effect of only slightly reducing the penalty
weight. However, it was concluded that the slight reduction in
penalty weight resulting from a penalty value of 2.0, gave good
algorithm performance over a range of test problems

(8)

if

if

if

(9)

The scaling factor , simply ensures that the penalized value
of “worst” infeasible solution is equivalent to the highest objec-
tive function value in the current population. The second case
in (9) ( ), applies when the “worst” infeasible individual
has an objective function value equal to the highest in the popu-
lation. Here, no penalty is applied since the infeasible solutions
would naturally have a low fitness and should not be penalized
further. The use of absolute values of the objective function in
(8) is necessary to allow the minimization of objective functions
having negative values.

The application of the second penalty is illustrated in Fig. 2
(the first penalized objective values being indicated by “o” and
the second penalized objective values by “”).

Fig. 3, shows the penalized objective function values con-
verted to fitness form. Note that the fittest individuals lie in both
the infeasible and feasible regions. This allows the slightly in-
feasible, low objective function value solutions to be selected

Fig. 3. Solution fitness.

for reproduction. Note also that in this case, the fittest indi-
vidual (with the lowest penalized objective function value), is
infeasible.

It is evident that the approach is dynamic in the allocation of
the penalty in that the absolute value of the penalty depends on
the objective values of the “best,” the “worst” infeasible, and the
highest objective individuals. The penalty also accounts for the
range of infeasibility in the current population and the distribu-
tion of the infeasible solutions in relation to the “best” individual
in the population.

Fig. 4 illustrates the general procedure for self-adaptive fit-
ness formulation method.

IV. TEST CASES

The performance of the proposed constraint handling method
has been evaluated using a set of 11 test cases ([13], [16]). These
test cases include various forms of objective function (linear,
quadratic, cubic, polynomial, nonlinear), and each test case has
a different number of variables (). The test problems also pose
a range of constraint types and number of constraints [linear
inequalities (LI); nonlinear equalities (NE); and nonlinear in-
equalities (NI)]. The general form of each test case is given in
Table I, which also indicates the number of constraints active at
the optimum solution ().

The self-adaptive fitness formulation described here has been
implemented and evaluated using simple genetic algorithm
with Gray encoding of the variables (25 bits used to represent
each variable). The implementation uses proportional (“roulette
wheel”) selection strategy, single point crossover, random bit
mutation, and finally an elitist replacement strategy.

The performance of any evolutionary algorithm for con-
strained optimization is determined by the constraint handling
technique used as well as the evolutionary search algorithm
(including parameters) [23]. The performance of the algorithm
described here has been compared with the results reported for
the homomorphous mapping method [13], and therefore, where

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 10:01 from IEEE Xplore.  Restrictions apply.



450 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 5, OCTOBER 2003

Fig. 4. The optimization procedure.

possible, the same genetic algorithm (GA) parameter values
have been adopted (a population size of 70; 90% probability of
crossover; and a probability of mutation between 0.3%–0.5%).
The small tolerance of is applied to the equality
constraints. A comparison of the algorithm performance is also
made to the results obtained by Runarsson and Yao [23] and
Ben Hamida and Schoenauer [1] for the same test problems
although it is understood that both methods used an evolution
strategy algorithm and performed different experiments to
those given in this paper. Also, a comparison of the algorithm

to other methods ([6], [9], [21], [30]) that reported results for
some of these test functions is given. For each test case, the
two types of experiment have been performed as described by
Koziel and Michalewicz [13].

• Experiment 1: 20 runs each starting from a different
randomly generated population; the maximum number of
generations was set to 5000.

• Experiment 2: the same as Experiment 1, except that the
maximum number of generations was increased to 20 000.

The result of Experiments 1 and 2 are given in Table II.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 10:01 from IEEE Xplore.  Restrictions apply.



FARMANI AND WRIGHT: SELF-ADAPTIVE FITNESS FORMULATION FOR CONSTRAINED OPTIMIZATION 451

TABLE I
SUMMARY OF TEST CASES

A. General Performance of the Algorithm

Table II indicates that the algorithm described here found
good, if not optimum solutions for all eleven test cases. This al-
gorithm is a development of that described in [30]. The results
for the best and mean solutions for the current and the earlier
version of the algorithm are given in Tables V and VI. A compar-
ison of the results for the two versions of the algorithm indicate
that adding a further adaptive element to the fitness formulation
has resulted in an improvement in best and average results for
all test functions.

It should also be noted that the standard deviations for the test
results (Table II) are very small. This is an important character-
istic for the application of the algorithm to the solution of “real
world” problems, where cost and time constraints prohibit re-
peated runs of the algorithm. The small standard deviations for
the algorithm described here indicate that it is robust in finding
a near optimum solution without the need for repeated runs of
the optimization.

As well as the two experiments conducted here, Koziel and
Michalewicz [13] presented a third experiment in which the ini-
tial population was seeded with the best solution from experi-
ment 1 (thus, testing the algorithm’s sensitivity to a good initial
guess of the solution). This experiment was not conducted here
as results for the earlier version of this algorithm [30] made clear
that its ability to find the optimum solution was not sensitive to
an initial guess of the solution.

B. Performance in Finding a Feasible Solution

The ability to find a feasible solution was examined in Exper-
iment 1 (random initialization, and a maximum of 5000 gener-
ations). For 9 of the 11 test cases (G1, G2, G3, G4, G6, G7,

G8, G9, G11) the algorithm described here found a feasible
solution for all 20 independent runs (and in many cases, the
search also found the optimum solution). Furthermore, on av-
erage the first feasible solution for this group of problems was
found within 26 generations (a maximum of 1820 function eval-
uations). However, problem G10 required a higher number of
generations (517 generations) in order to find a feasible solu-
tion. Furthermore, feasible solutions for G10 were only found
for 17 out of the 20 runs. For problem G10, all six constraints
are active at the solution, which makes it particularly difficult to
solve. Feasible solutions for G5 were only found for 9 out of the
20 runs, the difficulty in solving this problem being associated
with the equality constraints.

C. Comparison to Benchmark Algorithms Performance

The results for the algorithm described here are compared in
detail to those for two previously published algorithms. The first
is the homomorphous mapping method [13] and the second is
the stochastic ranking algorithm [23]. Although the results for
the homomorphous mapping have been surpassed by several al-
gorithms, they can still be considered representative of bench-
mark performance. The results for the stochastic ranking are
perhaps the best published to date.

Table III gives the results for the homomorphous mapping
[13]. A comparison of these results to those in Table II indi-
cates that the method described here can find more optimal so-
lutions. These solutions are shown in “bold” in Table II. Further,
the results reported by Koziel and Michalewicz [13] (Table III)
require an initial feasible solution, whereas the approach de-
scribed here can solve the problems starting from a randomly
generated and completely infeasible population. The ability to
find a feasible solution, as well as the optimum solution repre-
sents an improvement in the algorithm’s performance (although
this characteristic has also recently been reported by Runarsson
and Yao [23]).

The algorithm matched most of the solutions reported by
Runarsson and Yao [23] (see Tables II and IV). The stochastic
ranking method has the advantage that it is simple to implement,
but it can be sensitive to the value of its single control param-
eter. Further, it was less robust in finding a feasible solution for
the highly constrained G10 problem (with only 6 feasible so-
lutions from 30, in comparison to 17 from 20 for the algorithm
described here). The improved performance of the algorithm de-
scribed here may be due to the deterministic handling of con-
straint violations and suggests that it has better performance in
solving highly constrained problems.

D. Comparison With Other Published Results

Table V summarizes the best results for the 11 test cases re-
ported by different researchers ([1], [6], [13], [23], [30]) and
those obtained by the self-adaptive fitness formulation.

The mean values for 11 test cases reported by different re-
searchers are given in Table VI. Note that the results for Powell
and Skolnick [21] and Hadj–Alouane and Bean [9] have been re-
ported by Makinenet al.[14]. Deb [6] did not reported any mean
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TABLE II
RESULTSFROM EXPERIMENTS1 AND 2 (SELF ADAPTIVE FITNESSFORMULATION)

TABLE III
RESULTSFROM EXPERIMENTS1 AND 2 [13]

values for the test results. Among different constraint handling
methods reported here only [1], [13], [23], [30], and self-adap-
tive fitness formulation methods have reported results for all the
11 test cases. Some of these methods [6], [9], and [21] have
not reported results for problems G2 and G5. These two prob-
lems pose a challenge for constraint handling methods and are a
good measure of testing their ability in handling problems that
do not have similar proportion of feasible and infeasible regions.
The problem G2 is a highly feasible problem with none or only

few infeasible individuals at each population. Contrary to this,
problem G5 is a highly infeasible problem having three equality
constraints.

In general, the algorithm described here, performs as well
as, and in some cases better than the alternative algorithms.
This is the case for both the best and average values found; in
particular, the average solutions indicate that the approach de-
scribed here is among the most robust in finding the optimum
solution.
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TABLE IV
RESULTS OFSTOCHASTIC RANKING [23]

TABLE V
RESULTS FORBEST VALUES

E. Algorithm Performance in a Discontinuous Search Space

The problem below has been formulated to test the perfor-
mance of the algorithm in solving problems with a discontin-
uous search space

Maximize

subject to

where

The feasible region of the search space consists ofdis-
jointed spheres. A point ( ) is feasible if, and only if,
there exist , , such that

. The optimum value for this function is 1 at point
(5,5,5).

Two experiments were conducted for this test case. These
experiments were the same as those used in the 11 test cases
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TABLE VI
RESULTS FORMEAN VALUES

and with the same parameters. The method performed very well
with the best, average, worst, and standard deviation equal to 1,
0.994 375, 0.999 718 75, and 5.34E-04, respectively, for the first
experiment and 1, 1, 1, 0 for the second experiment. This shows
that the self-adaptive fitness formulation can be applied to prob-
lems having a discontinuous search space as well as continuous
search space.

V. CONCLUSION

This paper introduces a self-adaptive fitness formulation for
constraint optimization. The infeasibility values are represented
by the sum of the normalized constraint violation values. The
infeasibility measure has the properties that it increases in value
with both the number of active constraints and the magnitude
of each constraint violation. The infeasibility measure is used
to form a two-stage dynamic “penalty” which is applied to the
infeasible solutions. The penalty is applied such that slightly
infeasible solutions having a low objective function value are
allowed to remain fit. It is shown that this approach gives im-
proved or comparable results to those of existing methods. The
main advantages of the approach are first, that it is able to find
the optimum or near optimum solution starting with a com-
pletely infeasible population of solutions. Second, the standard
deviation in results over a number of trial runs is very low, which
indicates that it is among the most robust in finding an optimum
solution in a single run of the algorithm. Third, it is able to solve
a range of constrained optimization problems, having both non-
linear equality and inequality constraints. The method is also ap-
plicable to test cases with discontinuous and continuous search
spaces. Further work is required to investigate the application of
the method to other types of constrained problem, such as con-
strained combinatorial problems.

REFERENCES

[1] S. Ben Hamida and M. Schoenauer, “An adaptive algorithm for con-
strained optimization problems,” inProc. Parallel Problem Solving from
Nature, vol. VI, 2000, pp. 529–538.

[2] F. Y. Cheng and D. Li, “Multiobjective optimization design with Pareto
genetic algorithm,”J. Struct. Eng., vol. 123, no. 9, pp. 1252–1261, 1997.

[3] C. A. C. Coello, “Treating constraints as objectives for single-objective
evolutionary optimization,”Eng. Opt., vol. 32, no. 3, pp. 275–308, 2000.

[4] D. W. Coit and A. E. Smith, “Penalty guided genetic search for reliability
design optimization,”Comput. Ind. Eng., Special Issue on Genetic Al-
gorithm, vol. 30, pp. 895–904, 1996.

[5] D. W. Coit, A. E. Smith, and D. M. Tate, “Adaptive penalty methods
for genetic optimization of constrained combinatorial problems,”IN-
FORMS J. Comput., vol. 8, pp. 173–182, 1996.

[6] K. Deb, “An efficient constraint handling method for genetic algo-
rithms,” Comput. Meth. Appl. Mech. Eng., vol. 186, pp. 311–338, 2000.

[7] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A Fast and Elitist
Multi-Objective Genetic Algorithm: NSGA-II,” Kanpur Genetic Algo-
rithms Laboratory (KanGAL), Tech. Rep. 200 001, 2001.

[8] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and mul-
tiple constraint handling with evolutionary algorithms-Part I: A unified
formulation,” IEEE Trans. Syst., Man, Cybern. A, vol. 28, pp. 26–37,
Jan. 1998.

[9] A. B. Hadj-Alouane and J. C. Bean, “A genetic algorithm for multiple-
choice integer program,”Oper. Res., vol. 45, no. 1, pp. 92–101, 1997.

[10] P. Hajela and J. Yoo, “Constraint handling in genetic search – A compar-
ative study,”AIAA/ASME/ASCE/AHS Structures, Structural Dynamics
and Materials Conference—Collection of Technical Papers, vol. 4, pp.
2176–2186, 1995.

[11] A. Homaifar, C. X. Qi, and S. H. Lai, “Constrained optimization via
genetic algorithms,”Simulation, vol. 62, no. 4, pp. 242–254, 1994.

[12] J. A. Joines and C. R. Houck, “On the use of nonstationary penalty
functions to solve nonlinear constrained optimization problems with
GA’s,” in Proc. IEEE Conf. Evolutionary Computation, vol. 2, 1994,
pp. 579–584.

[13] S. Koziel and Z. Michalewicz, “Evolutionary algorithms, homomor-
phous mappings, and constrained parameter optimization,”Evol.
Comput., vol. 7, no. 1, pp. 19–44, 1999.

[14] J. Makinen, K. Miettinen, and M. M. Makela, “Some penalty methods
with genetic algorithms,” inProc. EUROGEN’99, Short Course on Evo-
lutionary Algorithms in Engineering and Computer Science, vol. A2, K.
Miettinen, M. M. Makela, and J. Toivanen, Eds., 1999, pp. 105–112.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 10:01 from IEEE Xplore.  Restrictions apply.



FARMANI AND WRIGHT: SELF-ADAPTIVE FITNESS FORMULATION FOR CONSTRAINED OPTIMIZATION 455

[15] Z. Michalewicz and N. F. Attia, “Evolutionary optimization of
constrained problems,” inProc. 3rd Annu. Conf. Evolutionary Pro-
gramming, A. V. Sebald and L. J. Fogel, Eds., River Edge, NJ, 1994,
pp. 98–108.

[16] Z. Michalewicz and D. B. Fogel,How to Solve It: Modern Heuris-
tics. Berlin, Germany: Springer-Verlag, 2000.

[17] Z. Michalewicz and C. Z. Janikow, “Handling constraints in genetic
algorithms,” inProc. Int. Conf. Genetic Algorithms, vol. 4, 1991, pp.
151–157.

[18] Z. Michalewicz, G. Nazhiyath, and M. Michalewicz, “A note on use-
fulness of geometrical crossover for numerical optimization problems,”
in Proc. 5th Annual Conf. Evolutionary Programming, San Diego, CA,
1996, pp. 305–312.

[19] H. Myung and J. H. Kim, “Constrained optimization using two-phase
evolutionary programming,”Proc. IEEE Int. Conf. Evolutionary Com-
putation, pp. 262–267, 1996.

[20] I. C. Parmee and G. Purchase, “The development of a directed genetic
search technique for heavily constrained design spaces,” inAdaptive
Computing in Engineering Design and Control-94, I. C. Parmee,
Ed. Plymouth, U.K.: Univ. Plymouth, 1994, pp. 97–102.

[21] D. Powell and M. M. Skolnick, “Using genetic algorithms in engineering
design optimization with nonlinear constraints,” inProc. 5th Int. Conf.
Genetic Algorithms, vol. 5, S. Forrest, Ed., 1993, pp. 424–431.

[22] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard, “Some
guidelines for genetic algorithms with penalty functions,” inProc. Int.
Conf. Genetic Algorithms, vol. 3, 1989, pp. 191–197.

[23] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolu-
tionary optimization,”IEEE Trans. Evol. Comput., vol. 4, pp. 284–294,
Sept. 2000.

[24] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” inProc. 1st Int. Conf. Genetic Algorithms and
their Applications, vol. 1, J. J. Grefenstette, Ed., Hillsdale, NJ, 1985,
pp. 93–100.

[25] M. Schoenauer and Z. Michalewicz, “Evolutionary computation at the
edge of feasibility,” inProc. 4th Conf. Parallel Problem Solving from
Nature, vol. 4, Berlin, Germany, Sept. 1996, pp. 245–254.

[26] M. Schoenauer and S. Xanthakis, “Constrained GA optimization,” in
Proc. Int. Conf. Genetic Algorithms, vol. 5, 1993, pp. 573–580.

[27] A. E. Smith and D. W. Coit, “Constraint handling techniques-Penalty
functions,” in Handbook of Evolutionary Computation, T. Baeck, D.
Fogel, and Z. Michalewicz, Eds. London, U.K.: Oxford Univ. Press,
1997.

[28] P. D. Surry and N. J. Radcliffe, “The COMOGA method: Constrained
optimization by multi-objective genetic algorithms,”Control Cybern.,
vol. 26, no. 3, pp. 391–412, 1997.

[29] J. Wu and S. Azarm, “On a new constraint handling technique for multi-
objective algorithms,” inProc. Genetic and Evolutionary Computation
Conf., San Francisco, CA, July 7–11, 2001, pp. 741–748.

[30] J. A. Wright and R. Farmani, “Genetic algorithm: A fitness formulation
for constrained minimization,” inProc. Genetic and Evolutionary Com-
putation Conf., San Francisco, CA, July 7–11, 2001, pp. 725–732.

Raziyeh Farmani received the Ph.D. degree in optimization of water distribu-
tion networks from Bradford University, Bradford, U.K., in 1999.

She is a Senior Research Fellow in the School of Engineering and Computer
Science, Exeter University, Devon, U.K. She is a Member of the Centre for
Water Systems (CWS), Exeter University. Her research interests are concerned
with the application of numerical optimization techniques to the planning and
operation of engineering systems. She has been involved in optimal design of
different engineering applications including water systems, building services,
and renewable energy systems. Her current research focuses on evolutionary
based single and multiobjective optimization, hybrid and adaptive techniques,
handling constraints in evolutionary algorithms and their engineering applica-
tions.

Jonathan A. Wright received the Ph.D. degree in
building optimization from Loughborough Univer-
sity, Loughborough, Leicestershire, U.K., in 1986.

He is currently a Senior Lecturer in the De-
partment of Civil and Building Engineering,
Loughborough University. His early research fo-
cused on the application of direct search methods to
the design of building thermal systems. His current
research interests are focused on the development
and application of evolutionary algorithms for
solving highly constrained single and multicriterion

mixed-integer problems, with particular focus on the solution of problems
relating to the design and control of buildings.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 10:01 from IEEE Xplore.  Restrictions apply.


