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Self-Adaptive Fitness Formulation for
Constrained Optimization

Raziyeh Farmani and Jonathan A. Wright

Abstract—A self-adaptive fitness formulation is presented for timization problems has been addressed by many researchers
solvin_g cor)strained optimization problems. In this met_hod, the di- ([1], [5], [6], [9], [13], [21], [23]). Penalty function methods are
mensionality of the problem is reduced by representing the con- among the most common methods used to solve constrained op-

straint violations by a single infeasibility measure. The infeasibility .. . % .
measure is used to form a two-stage penalty that is applied to the timization problems. In these methods, a penalty term is added

infeasible solutions. The performance of the method has been ex-{0 the objective function, the penalty increasing with the degree
amined by its application to a set of eleven test cases from the spe-Of constraint violation (static penalty) or the degree of constraint
cialized literature. The results have been compared with previously violation and generation number (dynamic penalty) ([11], [12]).
published results from the literature. It is shown that the method In genera| the Weakness of pena]ty methods is that they often re-
is able to find the optimum solutions. The proposed method re- ,,ire several parameters (to adjust the relative weights of each

quires no parameter tuning and can be used as a fitness evaluator o . -
with any evolutionary algorithm. The approach is also robust in constraint in the penalty, and the weight of the penalty against

its handling of both linear and nonlinear equality and inequality ~the objective function). However, due to their simplicity and
constraint functions. Furthermore, the method does notrequire an  €ase of implementation they are the most common methods used

initial feasible solution. in solving real world problems.
Index Terms—Constraint handling, dynamic, fitness, genetical- ~ Michalewicz and Janikow [17] presented the GENOCOP
gorithm, penalty, self-adaptive. method which is based on designing specialized operators

that incorporate knowledge of the constraints. This method
uses projection operators that map feasible points back to

NOMENCLATURE feasible boundaries. The approach is only applicable to linear
¢(X)  Constraint violation value. constraints and an objective function with a feasible starting
cmax,; Scaling factor for violation of constraint point. To overcome this limitation Michalewicz and Attia
F(X) Fitness. [15] introduced a hybrid optimization system for general
J(X)  Objective function. nonlinear programming problems (GENOCOP Il). Later,
f(X) Penalized objective function value after the secoridichalewiczet al. [18] developed the GENOCOP IIl method

penalty. which is based on the idea of repairing infeasible solutions and
f(X) Penalized objective function value after the firsalso incorporating some concepts of coevolution. Schoenauer

penalty. and Michalewicz [25], constructed further operators that
9(X)  Inequality constraint. maintain solutions on nonlinear analytical constraint surfaces.
h(X)  Equality constraint. In order to avoid generating and rejecting a large number of
1(X)  Solution’s infeasibility. infeasible solutions, specialized operators can be used. In the
X Vector of decision variables. Greedy decoder method, the chromosome does not directly en-
X “Best” individual. code a solution in the feasible region but rather a set of param-
X “Worst” infeasible individual. eters that is used by the decoder to generate a feasible solution.
X Individual with the highest objective function value. Because the decoder must be guaranteed to never produce infea-
§ A small tolerance. sible solutions, it is often extremely difficult to design. Hajela
v Scaling factor. and Yoo [10] overcame this problem in an alternative approach

thatis able to handle both nonlinear, equality and inequality con-
I. INTRODUCTION straints. The strategy is based on a preconditioning of the infea-

) _ . sible solutions prior to the genetic transformation. The approach
NTHE LAST two decades, genetic algorithms have received conceptually analogous to the theory of emulation of the im-

much attention regarding their potential as global optimizeyne system and is effective in evolving feasible solutions. In

tion techniques. More recently, the solution of constrained ofis approach both feasible and infeasible solutions should be

present in the population at any generation of the search. The
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and Xanthakis [26] presented a behavioral memory methedolutionary programming method based on a hybrid method.
which considers all constraints in a sequence; when sufficiddtiring the first phase, an evolutionary algorithm is used to
number of feasible individuals satisfy one constraint from thaptimize the function. In the second phase of the optimization,
sequence the next constraint from the sequence is considetegyrange multipliers are used to place emphasis on the violated
The success of the whole process is highly dependent on tomstraints whenever the best solution does not fulfill the
genetic diversity maintained during the initial steps, thuspnstraints. By updating the Lagrange multipliers, the trial
ensuring a uniform sampling of the feasible region. Powedblutions are driven to the optimal point, where all constraints
and Skolnick [21] presented a method that would make alte satisfied.
infeasible solutions have fitness values less than the worstAdaptive constraint handling methods have also been devel-
feasible solution. Deb [6] suggested a modification of Powedlped. These are appealing due to their ability to adjust their
and Skolnick [21] method which does not require any penaloywn parameters and make use of information in the popula-
parameters. This method uses a tournament selection operdion,. Coitet al. [5] and Coit and Smith [4] introduced an adap-
where two solutions are compared at a time. In this methddje penalty technique which makes use of feed back obtained
any feasible solution is preferred to any infeasible solutioduring the search along with a dynamic distance metric for ge-
among two feasible solutions, the one having a better objectivetic optimization of constrained combinatorial problems. The
function value is preferred and among two infeasible solutiorspproach uses a near-feasibility threshold (NFT) for each con-
the one having smaller constraint violation is preferred. straint or set of constraints. The penalty function encourages
Multiobjective algorithms have been used in the solutiothe genetic algorithm to explore within the feasible region and
of constrained single objective optimization problems, bghe NFT neighborhood of the feasible region. Ben Hamida and
treating the constraints as one or more of the objectives. SuBghoenauer [1] presented an adaptive segregational algorithm
and Radcliffe [28] introduced the constrained optimization bipr constrained optimization that operates in three stages. First,
multiobjective genetic algorithm (COMOGA) method in whiclthe global information of the population is used to adjust the
all members of the population are ranked on the basis of thenalty coefficient, then a recombination strategy is used to
constraint violations. Such a rank, together with the value ofate feasible individuals with infeasible individuals, and fi-
the objective function, lead to a two-objective optimizatiomally, segregational selection is used to favor a given number
problem. Cheng and Li [2] presented an alternative constrainefdfeasible individuals.
multiobjective optimization method. The approach integratesKoziel and Michalewicz [13] presented the homomorphous
a Pareto genetic algorithm and fuzzy penalty function. In thimapping approach for solving constrained optimization prob-
method, the rank of a solution is determined by knowing tHems. The method incorporates a homomorphous mapping be-
solution’s status (feasible or infeasible), the distance frotweenam-dimensional cube and the feasible search space. This
the Pareto optimal set, and position in infeasible regioapproach introduces an additional problem-dependent param-
The fuzzy-logic penalty function method, having a discreteter to partition the interval [0, 1] into subintervals of equal
membership function, can express the rank order of solutidlesgth such that the equation of each constraint has, at most, one
in a Pareto optimization and transform a multiobjective corsolution in every subinterval. The method loses the locality fea-
strained optimization into an unconstrained problem. Parmege of the mapping for nonconvex feasible search spaces and a
and Purchase [20] and Coello [3] used the vector evaluatemall change in the coded solution may result in a large change
genetic algorithm (VEGA) (Schaffer [24]) to handle each af the solution itself. This process requires additional compu-
the constraints as an objective. In this approach, the populattational effort for finding all the intersection points for a line
is divided into subpopulations, each representing one of thegment with the boundaries of the feasible region. The disad-
constraints, which will be guided during the search. Coello [3antages of the homomorphous method are that it requires an
eliminated some of the drawbacks of the Parmee and Purchemsial feasible solution and that all infeasible solutions are re-
[20]. However, one of the drawbacks of Coello’s [3] method iected. Another limitation is the need for problem-dependent pa-
the selection of the most appropriate number and size of eaemeters in the method.
subpopulation. Also, care needs to be given to the way thatRunarsson and Yao [23] introduced a stochastic ranking
subpopulations are guided so certain subpopulations do nmthod in which the objective function values are used for
dominate the search. ranking the solutions in the infeasible region of the search
Although interest in treating constrained optimization protspace. A probability parameter is used to determine the likeli-
lems as a multiobjective optimization problem is growing ([7]hood of two individuals in the infeasible space being compared
[8], [29]), the approach appears less robust than for constraineith each other. Although the method proved to be effective in
single objective algorithms. The difficulty arises from the factolving a wide range of constrained optimization problems, it
that for highly constrained problems, simply considering comvas also sensitive to the choice of probability parameter.
straints as objectives or assigning the infeasible individuals aMost of these constraint handling methods are problem de-
lower fitness than the feasible individuals might not introduggendent. They often require user supplied parameters to be ad-
enough pressure to direct the search toward the region of jhsted in order to obtain good performance from the method.
optimum. Some of the methods are also able to handle only specific con-
Hybrid methods combine evolutionary techniques withktraint types and, therefore, lack generality. Some of the ap-
deterministic optimization procedures for numerical optimizgroaches limit the search to the feasible search space. How-
tion problems. Myung and Kim [19] presented a two-phasaver, a good search should approach the optimum solution from
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both sides of the feasible/infeasible border [22]. Smith and Caitcreases the first penalized objective function values such that
[27] pointed out that there is need for development of conthe second penalized objective function value of the “worst” in-
pletely adaptive penalty functions that require no user specifidividual is twice that of the best. In this paper, the fithess for-
constants and development of improved adaptive operatorgnuolation has been modified so that after applying the second
exploit characteristics of the search as they are found. penalty, the penalized objective function value of the “worst” in-

Wright and Farmani [30] presented a fitness formulatio@iividual is equal to that of the individual with maximum objec-
which addresses the limitations of some of the existing cofive function value in the current population. This modification
straint handling methods. In particular, it does not requif®akes the method more dynamic (not only does the “best” vary
parameter tuning and can be used without an initial feasifr each population but the individual with maximum objective
solution being given. This paper describes the further develdphction value also varies from one population to another). This
ment of this algorithm as a self-adaptive penalty method. Thelps spread fitness for populations that are clustered in a small
paper also describes the evaluation of the algorithm’s perfd¥art of the search space, but without violating the basic princi-
mance in solving eleven standard test functions taken from tRl€s behind the fitness formulation.

literature; the performance of the algorithm is compared with
a number of previous studies. [ll. SELF-ADAPTIVE FITNESS FORMULATION

The dynamic fitness formulation described here has the ad-
Il. FITNESS FORMULATION vantage of being a self-adaptive method. The approach does not
quire parameter tuning and can be used without any initial fea-
le solution being given (this being an advantage in real world
plications having many optimization variables). The approach
also robustinits handling of both linear and nonlinear equality
d inequality constraint functions. The methodology described
re applies to the minimization of an objective functitiiX)

The fitness formulation described here is based on th
method for constraint minimization that was proposed b
Wright and Farmani [30]. The method has been formulated .
ensure that slightly infeasible solutions with a low objectivg
function value remain fit. This is seen as a benefit to solvir‘%1
highly constrained problems that have solutions on one ¥

more of the constraint bounds. In contrast, solutions farthest FX) = f(ar,.... o) )
from the constraint bounds are seen as containing little genetic ' e
information that is of use and are, therefore, penalized. Subject to inequality constraints
The infeasibility values are represented by the sum of the
normalized constraint violation values. The infeasibility mea- g;(X)<0, (j=1,....,q) 2)

sure has the properties that it increases in value with both the

number of active constraints and the magnitude of each cemd equality constraints

straint violation. The infeasibility measure is used to form a

two-stage penalty applied to the infeasible solutions. The first- hi(X)=0, (j=qg+1,....,m). 3
penalty stage ensures that the worst of the infeasible solutions

has a penalized objective function value that is higher or equalThe algorithm has three stages. First, each individual is as-
to that of the best solution in the population (all other solutiorgigned an infeasibility, second, the bounding solutions of the
in the population are also penalized but by a lesser amount, gearch space are identified, and finally, the infeasible solutions
pending on their feasibility). The second penalty increases thee penalized.

penalized objective function value of the worst of the infeasible

solutions to twice the objective value of the best solution. THe Chromosome Infeasibility

remaining infeasible individuals are penalized exponentially in The infeasibility of an individual should represent both the
proportion to their infeasibility. The approach is implemented ifjumber of active constraints and the extent to which each con-
three stages. First, an infeasibility is assigned to each individugtkaint is violated. A measure of infeasibility that has these prop-
second, the “best” and “worst” individuals in the population argrties is the sum of the normalized constraint values for all vio-
identified, and finally, the two-part penalty function is appliegated constraints. This can be evaluated in two stages. First, the
to the infeasible solutions. There are two main advantagesfésible constraint values are reset as zero and infeasible values
this approach. First, it does not require any parameter tuning, positive [(4)]; in this research, a small toleraideas also

and second, it is able to find the global optimum starting Witheen applied to the equality constraints to aid the finding of a
a completely infeasible population of solutions. The method igasible solution. Second, the solution’s infeasibiligX)), is

also able to solve a range of constrained optimization problemigen as the sum of the normalized constraint violation values
having both nonlinear equality and inequality constraints. It w

shown, that this approach gives results that are better or compa-

rable to those of existing methods. The use of a fixed weight max (0, g;(X)), if1<j<gq

for the second penalty also proved to be effective, although fof i (X) = { max (0, (|h;(X)| = 06)), ifg+1<j<m “)
test problem G4, improved results were obtained by reducing

the weight of the second penalty [30].

The aim of this work is to eliminate the fixed weight for i": i (X)
the second penalty which could cause problems if solutions are jZ O
clustered in a small part of the search space. The second penalty UX) =———. )
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The constraint violation values are normalized since large d ivicual
ferences in the magnitude of the constraint values can leac % 0 on with il
dominance of the infeasibility by constraints having the highe ggg:f,f,e
values. The scaling factor for each constraifty ;, is taken 60 3;7520" .
as the maximum value of the constraint violation in the curre "
population. Resetting the scaling factor for each population pl§55' 1
vides a further dynamic element to the infeasibility calculatior g
This has been found to give better algorithm performance th&%f Feasible 1
for a static scaling factor, (for instance, by basingy ; on the region
constraint violations in the first population).

o First penalized objective values

l¢ Infeasible

45r region

Penalized

B. ldentification of the Bounding Solutions ha - + 3

The penalty functions are applied in relation to thre | best worst T
bounding solutions: )

X “best” individual; . . ‘ R . . o+

):( “WOI’S.t" of j[he infegsible sollutio-ns; . . oroee 0s e ,nfe:s"}bimﬁ'_z) oo oM

X solution with the highest objective function value in the

current population. Fig. 1. Application of the first penalty.

For a population containing at least one or more feasible solu-
tions, the “best” individuaK, is the feasible solution having thethe highest objective function value in the current population
lowest objective function value. However, if all individuals ar€f(X)). Note that if a feasible solution exists, then the “best” so-
infeasible then the best solution is taken as the solution havigjon is feasible and will have a zero infeasibilityX) = 0.0).
the lowest infeasibility value (regardless of the objective func- The penalty is applied in two stages. The first stage only ap-
tion value of the individuals). plies if one or more infeasible solutions have a lower and, there-

The “worst” of the infeasible solutiorX, is selected by com- fore potentially better objective function value than the “best”
paring all infeasible individuals against the best individd&).( solution BX|(f(X) < f(X)) A (2(X) > 0.0)). If this rela-
Two potential population distributions exist in relation to thisionship holds, then the penalty is applied to all of the infeasible
comparison. solutions. If the relationship does not hold, then the first penalty

« The first population distribution occurs whene or more is not applied to any solution. The goal of the first penalty is to

of the infeasible solutions have an objective function valugcrease the objective function value of the infeasible solutions
that is lower than the “best” solution. In this case, thesuch that the “worst” of the infeasible solutions has an objec-

“worst” of the infeasible solutions is taken as the infedive function value that is equal to that of the “best” solution.
sible solution having the highest infeasibility value and ahhis has been implemented using a simple linear relationship
objective function value that is lower than the “best” sobetween the objective function values and the infeasibility of
lution’s. If more than one individual exists with the saméhe “best” and “worst” infeasible solutions [(6) and (7)]

highest infeasibility values, then tB¢ is taken as the so-

lution with maximum infeasibility value and the lower of i(X) :Z(X) - uX) (6)
the objective function values. z(X) — (X
« The second population distribution occurs wiadirof the f(X) =f(X) +i(X) (f(X) _ f(X)). @)

infeasible solutions have an objective function value thatis
greater than the “best” solution. Here, the “worst” of the
infeasible solutions is identified as being the solution wit
the highest infeasibility value. If more than one individu
exists with the same highest infeasibility value, thers
taken as the solution with the maximum infeasibility valu
and the higher of the objective function values.

Note that if the penalty is not applied théiiX) = f(X).
he application of the first penalty is illustrated by Fig. 1 in
Rvhich the original solutions are indicated by-a™and the pe-
nalized solutions by a “0.” The “best” and “worst” of the in-
feasible solutions are connected by a line (with the infeasibility
of the “best” solution being reset to zero). Note that in this and
subsequent figures, a negative infeasibility indicates a feasible
solution (the negative infeasibilities only being assigned for the
Since we are concerned with the minimization of the objepurposes of illustrating the distribution of solutions in the cur-
tive function, the infeasible solutions are penalized prior to thhent population).
conversion of the objective function values to fitness form. The The second penalty increases the objective function values
conversion to fitness{(X)) is by the simple subtraction of thesuch that the penalized objective function value of the “worst”
penalized objective function valueg((X)), from the maximum infeasible individual is equal to that of the “worst” objective in-
penalized value in the current population. The objective fundividual [(8) and (9)]. Making the method more dynamic and
tion values of the infeasible solutions are penalized accordisglf-adaptive has been found to give good performance in com-
to the solution’s infeasibility in relation to that of the “worst” of parison with the previous fithess formulation [30] that used a
the infeasible solutions((X)), the “best” solution (X)) and fixed weight for the second penalty.

C. Chromosome Fitness
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Infeasibility (-) Infeasibility (-)
Fig. 2. Application of the second penalty. Fig. 3. Solution fitness.

It is important to note that the exponential weighting paranfer reproduction. Note also that in this case, the fittest indi-
eter of 2.0 in (8), is a constant and does not require tuningdual (with the lowest penalized objective function value), is
The exponential function gives a slight reduction in the rate offeasible.
penalty applied to solutions of low infeasibility, thus, helping to It is evident that the approach is dynamic in the allocation of
maintain the fitness of the slightly violated solutions. A studthe penalty in that the absolute value of the penalty depends on
of the effect of the weighting parameter indicated that the algthie objective values of the “best,” the “worst” infeasible, and the
rithm was insensitive to the parameter provided that the parahighest objective individuals. The penalty also accounts for the
eter values had the effect of only slightly reducing the penaltgnge of infeasibility in the current population and the distribu-
weight. However, it was concluded that the slight reduction iion of the infeasible solutions in relation to the “best” individual
penalty weight resulting from a penalty value of 2.0, gave goad the population.
algorithm performance over a range of test problems Fig. 4 illustrates the general procedure for self-adaptive fit-

ness formulation method.

Fx) =) + 0] (SED L)

exp(2.0) — 1.0 IV. TESTCASES
f()?(;{)(x) ,if (f(X) < (X)) The performance of the proposed constraint handling method
v={ 00, A if (f X) _ f(X)) . 9) thast been e\(all:a;ed using afset of 11f te;lt cafses f([13]t,. [16]|)'. These
FR)-FK) (F(X) > F(X) est cases include various forms of objective function (linear,
fx) quadratic, cubic, polynomial, nonlinear), and each test case has

a different number of variableg). The test problems also pose

The scaling factoty, simply ensures that the penalized valua range of constraint types and number of constraints [linear
of “worst” infeasible solution is equivalent to the highest objednequalities (LI); nonlinear equalities (NE); and nonlinear in-
tive function value in the current population. The second caequalities (NI)]. The general form of each test case is given in
in (9) (v = 0.0), applies when the “worst” infeasible individualTable I, which also indicates the number of constraints active at
has an objective function value equal to the highest in the pophe optimum solutiond).
lation. Here, no penalty is applied since the infeasible solutionsThe self-adaptive fithess formulation described here has been
would naturally have a low fithess and should not be penalizedplemented and evaluated using simple genetic algorithm
further. The use of absolute values of the objective function with Gray encoding of the variables (25 bits used to represent
(8) is necessary to allow the minimization of objective functionsach variable). The implementation uses proportional (“roulette
having negative values. wheel”) selection strategy, single point crossover, random bit

The application of the second penalty is illustrated in Fig. utation, and finally an elitist replacement strategy.
(the first penalized objective values being indicated by “0” and The performance of any evolutionary algorithm for con-
the second penalized objective values lxy'). strained optimization is determined by the constraint handling

Fig. 3, shows the penalized objective function values cotechnique used as well as the evolutionary search algorithm
verted to fitness form. Note that the fittest individuals lie in botfincluding parameters) [23]. The performance of the algorithm
the infeasible and feasible regions. This allows the slightly intescribed here has been compared with the results reported for
feasible, low objective function value solutions to be selectéde homomorphous mapping method [13], and therefore, where
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Start

Randomly generate initial
solutions

v

Evaluate solutions infeasibility
Eq. (5)
1(X)
Identification of the bounding solutions
best (feasible individual with
Generate lowest objective value)
new best (individual with lowest infeasibility)
uti T N N o . .
soluttons 'nd'wdftilc‘a’g: \r/'r;:la:lemum objective 4 YES F}Z‘;i:z::g;zﬂ;?gs NO® individual with maximum objective function value
’ worst (individual with maximum infeasibility)
v
X
X
nfeasible solution with X-
objective function value YES
ower than best exists? l
worst (infeasible individual with maximum infeasibility and Apply first penalty
objective function value lower than best) Egs. (6), (7)
NO .
. J(X)
worst (infeasible f(X)=f(X)
individual with maximum - -
__infeasibility)
Apply second penalty | V4 Evaluate scaling factor
Eq. (8) Eq. (9)
J(X)
Convert penalized
objective function values
to Fitness
< NO Termination criteria

met?

Fig. 4. The optimization procedure.

possible, the same genetic algorithm (GA) parameter valuesother methods ([6], [9], [21], [30]) that reported results for
have been adopted (a population size of 70; 90% probabilitysfme of these test functions is given. For each test case, the
crossover; and a probability of mutation between 0.3%—0.5%o types of experiment have been performed as described by
The small tolerance of = 0.0001 is applied to the equality Koziel and Michalewicz [13].

constraints. Acomparison of the algorithm performance is also « Experiment 1: 20 runs each starting from a different
made to the results obtained by Runarsson and Yao [23] and randomly generated population; the maximum number of
Ben Hamida and Schoenauer [1] for the same test problems generations was set to 5000.

although it is understood that both methods used an evolution s Experiment 2: the same as Experiment 1, except that the
strategy algorithm and performed different experiments to  maximum number of generations was increased to 20 000.
those given in this paper. Also, a comparison of the algorithm The result of Experiments 1 and 2 are given in Table II.
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TABLE | G8, G9, G11) the algorithm described here found a feasible
SUMMARY OF TEST CASES solution for all 20 independent runs (and in many cases, the
search also found the optimum solution). Furthermore, on av-
Function | n | Form of f(X) | LI | NE | NI | a erage the first feasible solution for this group of problems was
found within 26 generations (a maximum of 1820 function eval-
uations). However, problem G10 required a higher number of
G2 k | nonlinear | 0| 0 | 6 |1 generations (517 generations) in order to find a feasible solu-
tion. Furthermore, feasible solutions for G10 were only found
for 17 out of the 20 runs. For problem G10, all six constraints

Gl 13 quadratic 91 0 |06

G3 k | polynomial 0| 101

G4 5| quadratic | 0] 0 | 6|2 are active at the solution, which makes it particularly difficult to
solve. Feasible solutions for G5 were only found for 9 out of the

G5 4 cubic 213103 20 runs, the difficulty in solving this problem being associated

a6 ) cabic ol olals with the equality constraints.

G7 10 | quadratic 3|1 0]|5|6 C. Comparison to Benchmark Algorithms Performance

as 9| nonlinear |01 0 | 2|0 The results for the algorithm described here are compared in
detail to those for two previously published algorithms. The first

G9 7 | polynomial | 0 | 0 | 4 |2 is the homomorphous mapping method [13] and the second is

G10 8 linear slolsle the stochastic ranking algorithm [23]. Although the results for

the homomorphous mapping have been surpassed by several al-
G11 2 quadratic 0| 1|01 gorithms, they can still be considered representative of bench-
mark performance. The results for the stochastic ranking are
perhaps the best published to date.

Table Il gives the results for the homomorphous mapping
A. General Performance of the Algorithm [13]. A comparison of these results to those in Table Il indi-

Table Il indicates that the algorithm described here fourfdites that the method described here can find more optimal so-
good, if not optimum solutions for all eleven test cases. This ditions. These solutions are shown bold” in Table II. Further,
gorithm is a development of that described in [30]. The resuffde results reported by Koziel and Michalewicz [13] (Table Iif)
for the best and mean solutions for the current and the earfigfuire an initial feasible solution, whereas the approach de-
version of the algorithm are given in Tables V and VI. A compasctibed here can solve the problems starting from a randomly
ison of the results for the two versions of the algorithm indicagenerated and completely infeasible population. The ability to
that adding a further adaptive element to the fitness formulatiRd & feasible solution, as well as the optimum solution repre-
has resulted in an improvement in best and average results$8fts an improvement in the algorithm’s performance (although
all test functions. this characteristic has also recently been reported by Runarsson

It should also be noted that the standard deviations for the tagg Yao [23]).
results (Table I1) are very small. This is an important character- The algorithm matched most of the solutions reported by
istic for the application of the algorithm to the solution of “reaRunarsson and Yao [23] (see Tables Il and IV). The stochastic
world” problems, where cost and time constraints prohibit réanking method has the advantage thatit is simple to implement,
peated runs of the algorithm. The small standard deviations 4t it can be sensitive to the value of its single control param-
the algorithm described here indicate that it is robust in findirRfer- Further, it was less robust in finding a feasible solution for
a near optimum solution without the need for repeated runst6ge highly constrained G10 problem (with only 6 feasible so-
the optimization. lutions from 30, in comparison to 17 from 20 for the algorithm

As well as the two experiments conducted here, Koziel afigscribed here). The improved performance of the algorithm de-
Michalewicz [13] presented a third experiment in which the inscribed here may be due to the deterministic handling of con-
tial population was seeded with the best solution from expeﬁtraint violations and suggests that it has better performance in
ment 1 (thus, testing the algorithm’s sensitivity to a good initi@0!ving highly constrained problems.
guess of the solution). This experiment was not conducted here
as results for the earlier version of this algorithm [30] made cleBx Comparison With Other Published Results

that its ability to find the optimum solution was not sensitive to Taple Vv summarizes the best results for the 11 test cases re-
an initial guess of the solution. ported by different researchers ([1], [6], [13], [23], [30]) and
those obtained by the self-adaptive fithess formulation.
The mean values for 11 test cases reported by different re-
The ability to find a feasible solution was examined in Expesearchers are given in Table VI. Note that the results for Powell
iment 1 (random initialization, and a maximum of 5000 geneand Skolnick [21] and Hadj—Alouane and Bean [9] have been re-
ations). For 9 of the 11 test cases (G1, G2, G3, G4, G6, Gigrted by Makinert al.[14]. Deb [6] did not reported any mean

B. Performance in Finding a Feasible Solution
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RESULTS FROM EXPERIMENTS 1 ANEAEI(_SEELIISI ADAPTIVE FITNESS FORMULATION)
Function | Optimum Experiment #1 Experiment #2
value worst best average standard worst best average standard
deviation deviation
Gl -15 -14.9980 -15.0000 -14.9993 4.99E-4 -15.0000 -15.0000 -15.0000 0
G2 0.803553 0.74398 0.79989 0.77512 1.53E-2 0.76043 0.80297 0.79010 1.2E-2
G3 1.0 0.99830 0.99978 0.99930 3.89E-4 0.99970 1.00000 0.99990 7.5E-5
G4 -30665.5 | -30628.93 | -30665.45 | -30659.41 | 9.88E+0 | -30663.30 | -30665.50 | -30665.20 4.85E-1
G5 5126.4981 5828.6181 6089.4300 | 5126.9890 | 5432.0800 | 3.887E+3
G6 -6961.8 -6961.699 | -6961.796 | -6961.769 | 2.35E-2 -6961.800 | -6961.800 | -6961.800 0
G7 24.306 32.69 24.59 27.83 2.09E+4-0 28.40 24.48 26.58 1.14E+0
G8 0.095825 0.029159 0.095825 0.092539 1.45E-2 0.095825 0.095825 0.095825 0
G9 680.63 681.53 680.69 680.97 2.5E-1 680.87 680.64 680.72 5.92E-2
G10 7049.33 8568.81 7070.23 7760.54 4.79E4-2 8288.79 7061.34 7627.89 3.73E+2
G11 0.75 0.7772 0.7500 0.7546 7.27E-3 0.7500 0.7500 0.7500 0
TABLE 1lI
RESULTS FROM EXPERIMENTS 1 AND 2 [13]
Function | Optimum Experiment #1 Experiment #2
value worst . best average worst best average
G1 -15 -14.0566 -14.7207 -14.4609 -14.6154 -14.7864 -14.7082
G2 0.803553 0.78427 0.79506 0.79176 0.79119 0.79953 0.79671
G3 1.0 0.9917 0.9983 0.9965 0.9978 0.9997 0.9989
G4 -30665.5 -30617.0 | -30662.5 | -30643.8 -30643.8 | -30645.9 | -30655.3
G5 5126.4981
G6 -6961.8 -4236.7 -6901.5 -6191.2 -5473.9 -6952.1 -6342.6
G7 24.306 38.682 25.132 26.619 25.069 24.620 24.826
G8 0.095825 | 0.0291434 | 0.095825 | 0.0871551 | 0.0291438 | 0.095825 | 0.0891568
G9 680.63 682.88 681.43 682.18 683.18 680.91 681.16
G10 7049.33 11894.5 7215.8 9141.7 9659.3 7147.9 8163.6
G11 0.75 0.75 0.75 0.75 0.75 0.75 0.75

values for the test results. Among different constraint handlidigw infeasible individuals at each population. Contrary to this,
methods reported here only [1], [13], [23], [30], and self-adagproblem G5 is a highly infeasible problem having three equality
tive fitness formulation methods have reported results for all titenstraints.

11 test cases. Some of these methods [6], [9], and [21] havdn general, the algorithm described here, performs as well
not reported results for problems G2 and G5. These two pras, and in some cases better than the alternative algorithms.
lems pose a challenge for constraint handling methods and afhés is the case for both the best and average values found; in
good measure of testing their ability in handling problems thaarticular, the average solutions indicate that the approach de-
do not have similar proportion of feasible and infeasible regiorscribed here is among the most robust in finding the optimum
The problem G2 is a highly feasible problem with none or onlgolution.
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TABLE IV
RESULTS OFSTOCHASTIC RANKING [23]
Function | Optimum Stochastic Ranking
value worst best average Standard deviation
G1 -15 -15.0 -15.0 -15.0 0.0E+0
G2 0.803553 0.726288 0.803515 0.781975 2.0E-02
G3 1.0 1.0 1.0 1.0 1.9E-04
G4 -30665.5 -30665.539 | -30665.539 | -30665.539 2.0E-05
G5 5126.4981 5142.472 5126.497 5128.881 3.5E+00
G6 -6961.8 -6350.262 -6961.814 -6875.94 1.6E+02
G7 24.306 24.642 24.307 24.374 6.6E-02
G8 0.095825 0.095825 0.095825 0.095825 2.6E-17
G9 680.63 680.763 680.63 680.656 3.4E-02
G10 7049.33 8835.655 7054.316 7559.192 5.3E402
G11 0.75 0.75 0.75 0.75 8.0E-05
TABLE V
RESULTS FORBEST VALUES
Function | Optimum Koziel and Ben Hamida and | Runarsson and Deb Wright and | Self Adaptive
value Michalewicz Schoenauer Yao 2000 Farmani Fitness
1999 2000 2000 2001 Formulation
G1 -15 -14.7864 -15.0000 -15.0000 -15.0000 -14.9996 -15.0000
G2 0.803553 0.799530 0.800781 0.803515 0.796640 0.802970
G3 1.0 0.9997 1.0000 1.0000 0.9994 1.0000
G4 -30665.5 -30664.900 -30665.500 -30665.539 -30665.537 | -30661.100 -30665.500
G5 5126.4981 4707.5200 5126.4970 5126.6398 5126.9890
G6 -6961.8 -6952.100 -6961.810 -6961.814 -6961.370 -6961.800
G7 24.306 24.620 24.360 24.307 24.373 24.671 24.480
G8 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
G9 680.63 680.91 680.63 680.63 680.63 681.20 680.64
G10 7049.33 7147.90 7095.15 7054.32 7060.22 7152.83 7061.34
G11 0.75 0.75 0.75 0.75 0.75 0.75
E. Algorithm Performance in a Discontinuous Search Spacewhere
The problem below has been formulated to test the perfor- 0<z; <10 (¢=1,2,3) p,qr=12,...,

mance of the algorithm in solving problems with a discontin-
uous search space

The feasible region of the search space consis®® afis-
jointed spheres. A point(, 22, z3) is feasible if, and only if,

Maximize there exisp, ¢, r such tha(z; — p)% + (22 — q)? + (23 —7)% <
f(X):(IOO—(a:I —5)?— (22— 5)* — (x5 — 5)%) 0.0625. The optimum value for this function is 1 at point
- 100 (5,5,5).
subject to Two experiments were conducted for this test case. These

(1= p)* + (22 — ¢)® + (w3 — 7)? < 0.0625 experiments were the same as those used in the 11 test cases
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TABLE VI
RESULTS FORMEAN VALUES
Function | Optimum Koziel Reported by Makinen et al. 1999 | Ben Hamida | Runarsson | Wright and | Self Adaptive
value Michalewicz Powell Hadj-Alouane Schoenauer Yao Farmani Fitness
1999 Skolnick 2000 2000 2001 Formulation
G1 -15 -14.708 -13.534 -13.975 -14.682 -15.000 -14.988 -15.000
Gé 0.803553 0.796710 0.546200 0.781975 0.784650 0.790100
G3 1.0 0.9989 0.9998 1.0000 0.9990 0.9999
G4 -30665.5 -30655.3 -30650.8 -30665.5 -30591.8 -30665.2
G5 5126.4981 4323.73 5128.88 5131.04 5432.08
G6 -6961.8 -6342.6 -4125.5 -5436.2 -6961.8 -6875.9 -6657.8 -6961.8
G7 24.306 24.826 33.547 30.884 24.611 24.374 30.927 26.580
G8 0.095825 0.089157 0.095825 0.095825 0.092460 0.095825
G9 680.63 681.16 685.22 685.40 680.65 680.66 684.41 680.72
G10 7049.33 8163.60 8858.64 7559.19 8255.85 7627.89
G11 0.75 0.75 0.75 0.75 0.81 0.75
and with the same parameters. The method performed very well REFERENCES
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