

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288388147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Polynomial Time Match Test for Large Classes
of Extended Regular Expressions

Daniel Reidenbach and Markus L. Schmid ?

Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

{D.Reidenbach,M.Schmid}@lboro.ac.uk

Abstract. In the present paper, we study the match test for extended
regular expressions. We approach this NP-complete problem by intro-
ducing a novel variant of two-way multihead automata, which reveals
that the complexity of the match test is determined by a hidden com-
binatorial property of extended regular expressions, and it shows that
a restriction of the corresponding parameter leads to rich classes with
a polynomial time match test. For presentational reasons, we use the
concept of pattern languages in order to specify extended regular ex-
pressions. While this decision, formally, slightly narrows the scope of our
results, an extension of our concepts and results to more general notions
of extended regular expressions is straightforward.

1 Introduction

Regular expressions are compact and convenient devices that are widely used
to specify regular languages, e. g., when searching for a pattern in a string.
In order to overcome their limited expressive power while, at the same time,
preserving their desirable compactness, their definition has undergone various
modifications and extensions in the past decades. These amendments have led
to several competing definitions, which are collectively referred to as extended
regular expressions (or: REGEX for short). Hence, today’s text editors and pro-
gramming languages (such as Java and Perl) use individual notions of (extended)
regular expressions, and they all provide so-called REGEX engines to conduct
a match test, i. e., to compute the solution to the membership problem for any
language given by a REGEX and an arbitrary string. While the introduction of
new features of extended regular expressions have frequently not been guided by
theoretically sound analyses, recent studies have led to a deeper understanding
of their properties (see, e. g., Câmpeanu et al. [3]).

A common feature of extended regular expressions not to be found in the
original definition is the option to postulate that each word covered by a specific
REGEX must contain a variable substring at several recurrent positions (so-
called backreferences). Thus, they can be used to specify a variety of non-regular
languages (such as the language of all words w that satisfy w = xx for arbitrary

? Corresponding author.

words x), and this has severe consequences on the complexity of their basic
decision problems. In particular, their vital membership problem (i. e., in other
words, the match test) is NP-complete (see Aho [1]). REGEX engines commonly
use more or less sophisticated backtracking algorithms over extensions of NFA
in order to perform the match test (see Friedl [5]), often leading even for rather
small inputs to a practically unbearable runtime. Therefore, it is a worthwhile
task to investigate alternative approaches to this important problem and to
establish large classes of extended regular expressions with a polynomial-time
match test.

It is the purpose of this paper to propose and study such an alternative
method. In order to keep the technical details reasonably concise we do not
directly use a particular REGEX definition, but we consider a well-established
type of formal languages that, firstly, is defined in a similar yet simpler manner,
secondly, is a proper subclass of the languages generated by REGEX and, thirdly,
shows the same properties with regard to the membership problem: the pattern
languages as introduced by Angluin [2]; our results on pattern languages can then
directly be transferred to the corresponding class of REGEX. In this context, a
pattern α is a finite string that consists of variables and terminal symbols (taken
from a fixed alphabet Σ), and its language is the set of all words that can be
derived from α when substituting arbitrary words over Σ for the variables. For
example, the language L generated by the pattern α := x1ax2bx1 (with variables
x1, x2 and terminal symbols a, b) consists of all words with an arbitrary prefix
u, followed by the letter a, an arbitrary word v, the letter b and a suffix that
equals u. Thus, w1 := aaabbaa is contained in L, whereas w2 := baaba is not.

In the definition of pattern languages, the option of using several occurrences
of a variable exactly corresponds to the backreferences in extended regular ex-
pressions, and therefore the membership problem for pattern languages captures
the essence of what is computationally complex in the match test for REGEX.
Thus, it is not surprising that the membership problem for pattern languages
is also known to be NP-complete (see Angluin [2] and Jiang et al. [10]). Fur-
thermore, Ibarra et al. [9] point out that the membership problem for pattern
languages is closely related to the solvability problem for certain Diophantine
equations. More precisely, for any word w and for any pattern α with m termi-
nal symbols and n different variables, w can only be contained in the language
generated by α if there are numbers si (representing the lengths of the substitu-
tion words for the variables xi) such that |w| = m+

∑n
i=1 aisi (where ai is the

number of occurrences of xi in α and |w| stands for the length of w). Thus, the
membership test needs to implicitly solve this NP-complete problem, which is
related to Integer Linear Programming problems (see the references in [9]) and
the Money-Changing Problem (see Guy [6]). All these insights into the complex-
ity of the membership problem do not depend on the question of whether the
pattern contains any terminal symbols. Therefore, we can safely restrict our con-
siderations to so-called terminal-free pattern languages (generated by patterns
that consist of variables only); for this case, NP-completeness of the membership
problem has indirectly been established by Ehrenfeucht and Rozenberg [4]. This

restriction again improves the accessibility of our technical concepts, without
causing a loss of generality.

As stated above, these results on the complexity of the problem (and the fact
that probabilistic solutions might often be deemed inappropriate for it) motivate
the search for large subclasses with efficiently solvable membership problem and
for suitable concepts realising the respective algorithms. Rather few such classes
are known to date. They either restrict the number of different variables in the
patterns to a fixed number k (see Angluin [2], Ibarra et al. [9]), which is an
obvious option and leads to a time complexity of O(nk), or they restrict the
number of occurrences of each variable to 1 (see Shinohara [11]), which turns
the resulting pattern languages into regular languages.

In the present paper, motivated by Shinohara’s [12] non-cross pattern lan-
guages, we introduce major classes of pattern languages (and, hence, of extended
regular expressions) with a polynomial-time membership problem that do not
show any of the above limitations. Thus, the corresponding patterns can have
any number of variables with any number of occurrences; instead, we consider a
rather subtle parameter, namely the distance several occurrences of any variable
x may have in a pattern (i. e., the maximum number of different variables sepa-
rating any two consecutive occurrences of x). We call this parameter the variable
distance vd of a pattern, and we demonstrate that, for the class of all patterns
with vd ≤ k, the membership problem is solvable in time O(nk+4). Referring to
the proximity between the subject of our paper and the solvability problem of
the equation |w| = m+

∑n
i=1 aisi described above (which does not depend on the

order of variables in the patterns, but merely on their numbers of occurrences),
we consider this insight quite remarkable, and it is only possible since this solv-
ability problem is weakly NP-complete (i. e. there exist pseudo-polynomial time
algorithms). We also wish to point out that, in terms of our concept, Shinohara’s
non-cross patterns correspond to those patterns with vd = 0.

We prove our main result by introducing the concept of a Janus automaton,
which is a variant of a two-way two-head automaton (see Ibarra [7]), amended
by the addition of a number of counters. Janus automata are algorithmic de-
vices that are tailored to performing the match test for pattern languages, and
we present a systematic way of constructing them. While an intuitive use of a
Janus automaton assigns a distinct counter to each variable in the corresponding
pattern α, we show that in our advanced construction the number of different
counters can be limited by the variable distance of α. Since the number of coun-
ters is the main element determining the complexity of a Janus automaton, this
yields our main result. An additional effect of the strictness of our approach is
that we can easily discuss its quality in a formal manner, and we can show that,
based on a natural assumption on how Janus automata operate, our method
leads to an automaton with the smallest possible number of counters. Further-
more, it is straightforward to couple our Janus automata with ordinary finite
automata in order to expand our results to more general classes of extended
regular expressions, e. g., those containing terminal symbols or imposing regular
restrictions to the sets of words variables can be substituted with.

In order to validate our claim that the variable distance is a crucial parameter
contributing to the complexity of the match test, and to examine whether our
work – besides its theoretical value – might have any practical relevance, some
instructive tests have been performed.1 They compare a very basic Java imple-
mentation of our Janus automata with the original REGEX engine included in
Java. With regard to the former objective, the test results suggest that our novel
notion of a variable distance is indeed a crucial (and, as briefly mentioned above,
rather counter-intuitive) parameter affecting the complexity of the match test
for both our Janus-based algorithm and the established backtracking method.
Concerning the latter goal, we can observe that our non-optimised implementa-
tion, on average, considerably outperforms Java’s REGEX engine. We therefore
conclude that our approach might also be practically worthwhile.

2 Definitions

Let N := {0, 1, 2, 3, . . .}. For an arbitrary alphabet A, a string (over A) is a finite
sequence of symbols from A, and ε stands for the empty string. The symbol A+

denotes the set of all nonempty strings over A, and A∗ := A+ ∪ {ε}. For the
concatenation of two strings w1, w2 we write w1 · w2 or simply w1w2. We say
that a string v ∈ A∗ is a factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such
that w = u1 · v ·u2. The notation |K| stands for the size of a set K or the length
of a string K; the term |w|a refers to the number of occurrences of the symbol
a in the string w.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗. Let Σ be a (finite) alphabet of so-called
terminal symbols and X an infinite set of variables with Σ∩X = ∅. We normally
assume X := {x1, x2, x3, . . .}. A pattern is a nonempty string over Σ ∪ X, a
terminal-free pattern is a nonempty string over X and a word is a string over Σ.
For any pattern α, we refer to the set of variables in α as var(α). We shall often
consider a terminal-free pattern in its variable factorisation, i. e. α = y1 ·y2 ·. . .·yn
with yi ∈ {x1, x2, . . . , xm}, 1 ≤ i ≤ n and m = | var(α)|. A morphism σ :
(Σ ∪X)∗ → Σ∗ is called a substitution if σ(a) = a for every a ∈ Σ.

We define the pattern language of a terminal-free pattern α by LΣ(α) :=
{σ(α) | σ : X∗ → Σ∗ is a substitution}. Note, that these languages, technically,
are terminal-free E-pattern languages (see Jiang et al. [10]). We ignore the case
where a variable occurs just once, as then LΣ(α) = Σ∗.

The problem to decide for a given pattern α and a given word w ∈ Σ∗

whether w ∈ LΣ(α) is called the membership problem.

3 Janus Automata

In the present section we introduce a novel type of automata, the so-called Janus
automata, that are tailored to solving the membership problem for pattern lan-
1 Tests and source code are available at http://www-staff.lboro.ac.uk/~coms10/.

guages. To this end, we combine elements of two-way multihead finite automata
(see, e. g., Ibarra [7]) and counter machines (see, e. g., Ibarra [8]).

A Janus automaton (or JFA(k) for short) is a two-way 2-head automa-
ton with k restricted counters, k ∈ N. More precisely, it is a tuple M :=
(k,Q,Σ, δ, q0, F), where Σ is an input alphabet, δ is a transition function, Q
is a set of states, F ⊆ Q is a set of final states, and q0 ∈ Q is the initial state. In
each step of the computation the automaton M provides a distinct counter bound
for each counter. The counter values can only be incremented or left unchanged
and they count strictly modulo their counter bound, i. e. once a counter value has
reached its counter bound, a further incrementation forces the counter to start
at counter value 1 again. Depending on the current state, the currently scanned
input symbols and on whether the counters have reached their bounds, the tran-
sition function determines the next state, the input head movements and the
counter instructions. In addition to the counter instructions of incrementing and
leaving the counter unchanged it is also possible to reset a counter. In this case,
the counter value is set to 0 and a new counter bound is nondeterministically
guessed. Furthermore, we require the first input head to be always positioned to
the left of the second input head, so there are a well-defined left and right head.
Therefore, we call this automata model a “Janus” automaton. Any string &w$,
where w ∈ Σ∗ and the symbols &, $ (referred to as left and right endmarker,
respectively) are not in Σ, is an input to M . Initially, the input tape stores some
input, M is in state q0, all counter bounds and counter values are 0 and both
input heads scan &. The word w is accepted by M if and only if it is possible for
M to reach an accepting state by succesively applying the transition function.
For any Janus automaton M let L(M) denote the set of words accepted by M .

JFA(k) are nondeterministic automata, but their nondeterminism differs
from that of common nondeterministic finite automata. The only nondeterminis-
tic step a Janus automaton is able to perform consists in guessing a new counter
bound for some counter. Once a new counter bound is guessed, the previous
one is lost. Apart from that, each transition, i. e. entering a new state, moving
the input heads and giving instructions to the counters, is defined completely
deterministically by δ.

The vital point of a JFA(k) computation is then, of course, that the automa-
ton is only able to save exactly k (a constant number, not depending on the
input word) different numbers at a time. For a JFA(k) M , the number k shall
be the crucial number for the complexity of the acceptance problem (for M), i. e.
to decide, for a given word w, whether w ∈ L(M).

4 Janus Automata for Pattern Languages

In this chapter, we demonstrate how Janus automata can be used for recognising
pattern languages. More precisely, for an arbitrary terminal-free pattern α, we
construct a JFA(k) M satisfying L(M) = LΣ(α). Before we move on to a formal
analysis of this task, we discuss the problem of deciding whether w ∈ LΣ(α) for
given α and w, i. e. the membership problem, in an informal way.

Let α = y1 · y2 · . . . · yn be a terminal-free pattern with m := | var(α)|, and let
w ∈ Σ∗ be a word. The word w is an element of LΣ(α) if and only if there exists
a factorisation w = u1 ·u2 · . . . ·un such that uj = uj′ for all j, j′ ∈ {1, 2, . . . , |α|}
with yj = yj′ . Thus, a way to solve the membership problem is to initially guess
m numbers {l1, l2, . . . , lm}, then, if possible, to factorise w = u1 ·. . .·un such that
|uj | = li for all j with yj = xi and, finally, to check whether uj = uj′ is satisfied
for all j, j′ ∈ {1, 2, . . . , |α|} with yj = yj′ . A JFA(m) can perform this task by
initially guessing m counter bounds, which can be interpreted as the lengths of
the factors. The two input heads can be used to check if this factorisation has
the above described properties. However, the number of counters that are then
required directly depends on the number of variables, and the question arises if
this is always necessary. The next step is to formalise and generalise the way of
constructing a JFA(k) for arbitrary pattern languages.

Definition 1. Let α := y1 · y2 · . . . · yn be a terminal-free pattern, and let
ni := |α|xi

for each xi ∈ var(α). The set varposi(α) is the set of all positions
j satisfying yj = xi. Let furthermore Γi := ((l1, r1), (l2, r2), . . . , (lni−1, rni−1))
with (lj , rj) ∈ varposi(α)2 and lj < rj, 1 ≤ j ≤ ni − 1. The sequence Γi is a
matching order for xi in α if and only if the graph (varposi(α), Γ ′i) is connected,
where Γ ′i := {(l1, r1), (l2, r2), . . . , (lni−1, rni−1)}. The elements mj ∈ varposi(α)2

of a matching order (m1,m2, . . . ,mk) are called matching positions.

We illustrate Definition 1 by the example pattern β := x1 ·x2 ·x1 ·x2 ·x3 ·x2 ·x3.
Possible matching orders for x1, x2 and x3 in β are given by ((1, 3)), ((2, 4), (4, 6))
and ((5, 7)), respectively. To obtain a matching order for a pattern α we simply
combine matching orders for all x ∈ var(α):

Definition 2. Let α be a terminal-free pattern with m := | var(α)| and, for all i
with 1 ≤ i ≤ m, ni := |α|xi

and let (mi,1,mi,2, . . . ,mi,ni−1) be a matching order
for xi in α. The tuple (m1,m2, . . . ,mk) is a complete matching order for α if
and only if k =

∑m
i=1 ni − 1 and, for all i, ji, 1 ≤ i ≤ m, 1 ≤ ji ≤ ni − 1, there

is a j′, 1 ≤ j′ ≤ k, with mj′ = mi,ji .

With respect to our example pattern β this means that any sequence of the
matching positions in {(1, 3), (2, 4), (4, 6), (5, 7)} is a complete matching order for
β. As pointed out by the following lemma, the concept of a complete matching
order can be used to solve the membership problem.

Lemma 1. Let α = y1 ·y2 ·. . .·yn be a terminal-free pattern and ((l1, r1), (l2, r2),
. . . , (lk, rk)) a complete matching order for α. Let w be an arbitrary word in some
factorisation w = u1 · u2 · . . . · un. If ulj = urj

for each j with 1 ≤ j ≤ k, then
uj = uj′ for all j, j′ ∈ {1, 2, . . . , |α|} with yj = yj′ .

Let α = y1 · y2 · . . . · yn be a terminal-free pattern and let w be an arbitrary
word in some factorisation w = u1 ·u2 · . . . ·un. According to the previous lemma,
we may interpret a complete matching order as a list of instructions specifying
how the factors ui, 1 ≤ i ≤ n, can be compared in order to check if uj = uj′ for
all j, j′ ∈ {1, 2, . . . , |α|} with yj = yj′ , which is of course characteristic for w ∈

LΣ(α). With respect to the complete matching order ((4, 6), (1, 3), (2, 4), (5, 7))
for the example pattern β, we apply Lemma 1 in the following way. If a word
w ∈ Σ∗ can be factorised into w = u1 · u2 · . . . · u7 such that u4 = u6, u1 = u3,
u2 = u4 and u5 = u7 then w ∈ LΣ(β). These matching instructions given by
a complete matching order can be carried out by using two pointers, or input
heads, moving over the word w.

Let (l′, r′) and (l, r) be two consecutive matching positions. It is possible to
perform the comparison of factors ul′ and ur′ by positioning the left head on the
first symbol of ul′ , the right head on the first symbol of ur′ and then moving them
simultaneously over these factors from left to right, checking symbol by symbol
if these factors are identical. Now the left head, located at the first symbol of
factor ul′+1, has to be moved to the first symbol of factor ul. If l′ < l, then
it is sufficient to move it over all the factors ul′+1, ul′+2, . . . , ul−1. If, on the
other hand, l < l′, then the left head has to be moved to the left, thus over the
factors ul′ and ul as well. Furthermore, as we want to apply these ideas to Janus
automata, the heads must be moved in a way that the left head is always located
to the left of the right head. The following definition shall formalise these ideas.

Definition 3. Let ((l1, r1), (l2, r2), . . . , (lk, rk)) be a complete matching order
for a terminal-free pattern α and let l0 := r0 := 0. For all j, j′, 1 ≤ j <
j′ ≤ |α| we define g(j, j′) := (j + 1, j + 2, . . . , j′ − 1) and g(j′, j) := (j′, j′ −
1, . . . , j). For each i with 1 ≤ i ≤ k we define Dλ

i := ((p1, λ), (p2, λ), . . . , (pk1 , λ))
and Dρ

i := ((p′1, ρ), (p′2, ρ), . . . , (p′k2 , ρ)), where (p1, p2, . . . , pk1) := g(li−1, li),
(p′1, p

′
2, . . . , p

′
k2

) := g(ri−1, ri) and λ, ρ are constant markers. Now let D′i :=
((s1, µ1), (s2, µ2), . . . , (sk1+k2 , µk1+k2)), with sj ∈ {p1, . . . , pk1 , p

′
1, . . . , p

′
k2
}, µj ∈

{λ, ρ}, 1 ≤ j ≤ k1 + k2, be a tuple containing exactly the elements of Dλ
i and

Dρ
i such that the relative orders of the elements in Dλ

i and Dρ
i are preserved.

Furthermore, for each j, 1 ≤ j ≤ k1 + k2, qj ≤ q′j needs to be satisfied, where
qj := li−1 if µj′ = ρ, 1 ≤ j′ ≤ j, and qj := max{j′ | 1 ≤ j′ ≤ j, µj′ = λ}
else, analogously, q′j := ri−1 if µj′ = λ, 1 ≤ j′ ≤ j, and q′j := max{j′ | 1 ≤
j′ ≤ j, µj′ = ρ} else. Now we append the two elements (ri, ρ), (li, λ) in exactly
this order to the end of D′i and obtain Di. Finally, the tuple (D1, D2, . . . , Dk)
is called a Janus operating mode for α (derived from the complete matching
order ((l1, r1), (l2, r2), . . . , (lk, rk))). By Di, we denote the tuple Di without the
markers, i. e., if Di = ((p1, µ1), . . . , (pn, µn)) with µj ∈ {λ, ρ}, 1 ≤ j ≤ n, then
Di := (p1, p2, . . . , pn).

We recall once again the example β := x1 · x2 · x1 · x2 · x3 · x2 · x3. According
to Definition 3 we consider the tuples Dλ

i and Dρ
i with respect to the complete

matching order ((4, 6), (1, 3), (2, 4), (5, 7)) for β. We omit the markers λ and ρ for
a better presentation. The tuplesDλ

i are given byDλ
1 = (1, 2, 3),Dλ

2 = (4, 3, 2, 1),
Dλ

3 = () and Dλ
4 = (3, 4). The tuples Dρ

i are given by Dρ
1 = (1, 2, . . . , 5), Dρ

2 =
(6, 5, 4, 3), Dρ

3 = () and Dρ
4 = (5, 6). Therefore, ∆β := (D1, D2, D3, D4) is a

possible Janus operating mode for β derived from ((4, 6), (1, 3), (2, 4), (5, 7)),
where D1 = ((1, ρ), (1, λ), (2, ρ), (2, λ), (3, ρ), (3, λ), (4, ρ), (5, ρ), (6, ρ), (4, λ)),
D2 = ((4, λ), (3, λ), . . . , (1, λ), (6, ρ), (5, ρ), . . . , (3, ρ), (3, ρ), (1, λ)), D3 =
((4, ρ), (2, λ)), D4 = ((3, λ), (4, λ), (5, ρ), (6, ρ), (7, ρ), (5, λ)).

We shall see that it is possible to transform a Janus operating mode for any
pattern directly into a Janus automaton recognising the corresponding pattern
language. As we are particularly interested in the number of counters a Janus
automaton needs, we introduce an instrument to determine the quality of Janus
operating modes with respect to the number of counters that are required to
actually construct a Janus automaton.

Definition 4. Let (D1, D2, . . . , Dk) be a Janus operating mode for a terminal-
free pattern α := y1 · y2 · . . . · yn. Let D = (d′1, d

′
2, . . . , d

′
k′) with k′ =

∑k
i=1 |Di| be

the tuple obtained from concatenating all tuples Dj, 1 ≤ j ≤ k, in the order given
by the Janus operating mode. For each i, 1 ≤ i ≤ k′, let si := |{x | ∃ j, j′ with 1 ≤
j < i < j′ ≤ k′, yd′

j
= yd′

j′
= x 6= yd′

i
}|. Finally let the counter number of

(D1, D2, . . . , Dk) (denoted by cn(D1, D2, . . . , Dk)) be max{si | 1 ≤ i ≤ k′}.

With regard to our example β, it can be easily verified that cn(∆β) = 2. The
counter number of a Janus operating mode of a pattern α is an upper bound for
the number of counters needed by a Janus automaton recognising LΣ(α):

Theorem 1. Let α be a terminal-free pattern and (D1, D2, . . . , Dk) be an arbi-
trary Janus operating mode for α. There exists a JFA(cn(D1, . . . , Dk) + 1) M
satisfying L(M) = LΣ(α).

Hence, the task of finding an optimal Janus automaton for a pattern is equiv-
alent to finding an optimal Janus operating mode for this pattern. We shall
investigate this problem in the subsequent section.

5 Patterns with Restricted Variable Distance

We now introduce a certain combinatorial property of terminal-free patterns,
the so-called variable distance. The variable distance of a terminal-free pattern
is the maximum number of different variables separating any two consecutive
occurrences of a variable:

Definition 5. The variable distance of a terminal-free pattern α is the smallest
number k ≥ 0 such that, for each x ∈ var(α), every factorisation α = β ·x ·γ ·x ·δ
with β, γ, δ ∈ X∗ and |γ|x = 0 satisfies | var(γ)| ≤ k. We denote the variable
distance of a terminal-free pattern α by vd(α).

Obviously, vd(α) ≤ var(α) − 1 for all terminal-free patterns α. To illustrate
the concept of the variable distance, we consider the slightly more involved pat-
tern α := x1 · x2 · x1 · x3 · x2 · x2 · x2 · x4 · x4 · x5 · x5 · x3. In α, there are no
variables between occurrences of variables x4 or x5 and one occurrence of x2

between the two occurrences of x1. Furthermore, the variables x1 and x3 occur
between occurrences of x2 and the variables x2, x4 and x5 occur between the
two occurrences of x3. Thus, the variable distance of this pattern is 3.

The following vital result demonstrates the relevance of the variable distance,
which is a lower bound for the counter number of Janus operating modes.

Theorem 2. Let (D1, D2, . . . , Dk) be an arbitrary Janus operating mode for a
terminal-free pattern α. Then cn(D1, . . . , Dk) ≥ vd(α).

In order to define a Janus operating mode satisfying cn(D1, . . . , Dk) = vd(α),
we now consider a particular matching order:

Definition 6. Let α := y1 · y2 · . . . · yn be a terminal-free pattern with p :=
| var(α)|. For each xi ∈ var(α), let varposi(α) := {ji,1, ji,2, . . . , ji,ni

} with ni :=
|α|xi , ji,l < ji,l+1, 1 ≤ l ≤ ni − 1. Let (m1,m2, . . . ,mk), k =

∑p
i=1 ni − 1, be

an enumeration of the set {(ji,l, ji,l+1) | 1 ≤ i ≤ p, 1 ≤ l ≤ ni − 1} such that,
for every i′, 1 ≤ i′ < k, the left element of the pair mi′ is smaller than the left
element of mi′+1. We call (m1,m2, . . . ,mk) the canonical matching order for α.

Proposition 1. Let α be a terminal-free pattern. The canonical matching order
for α is a complete matching order.

For instance, the canonical matching order for the example pattern β intro-
duced in Section 4 is ((1, 3), (2, 4), (4, 6), (5, 7)). We proceed with the definition
of a Janus operating mode that is derived from the canonical matching order.
It is vital for the correctness of our results, that we first move the left head
and then the right head. This is easily possible if for two consecutive matching
positions (l′, r′), (l, r), l < r′. If this condition is not satisfied, then the left head
may pass the right one, which conflicts with the definition of Janus operating
modes. Therefore, in this case, we move the left head and right head alternately.

Definition 7. Let (m1,m2, . . . ,mk) be the canonical matching order for a ter-
minal-free pattern α. For any mi := (j1, j2) and mi−1 := (j′1, j

′
2), 2 ≤ i ≤ k,

let (p1, p2, . . . , pk1) := g(j′1, j1) and (p′1, p
′
2, . . . , p

′
k2

) := g(j′2, j2), where g is the
function introduced in Definition 3. If j1 ≤ j′2, then we define

Di := ((p1, λ), (p2, λ), . . . , (pk1 , λ), (p′1, ρ), (p′2, ρ), . . . , (p′k2 , ρ), (j2, ρ), (j1, λ)) .

If, on the other hand, j′2 < j1, we define Di in three parts

Di := ((p1, λ), (p2, λ), . . . , (j′2, λ),
(j′2 + 1, ρ), (j′2 + 1, λ), (j′2 + 2, ρ), (j′2 + 2, λ), . . . , (j1 − 1, ρ), (j1 − 1, λ),
(j1, ρ), (j1 + 1, ρ), . . . , (j2 − 1, ρ), (j2, ρ), (j1, λ)) .

Finally, D1 := ((1, ρ), (2, ρ), . . . , (j − 1, ρ), (j, ρ), (1, λ)), where m1 = (1, j). The
tuple (D1, D2, . . . , Dk) is called the canonical Janus operating mode.

If we derive a Janus operating mode from the canonical matching order for
β as described in Definition 7 we obtain the canonical Janus operating mode
(((1, ρ), (2, ρ), (3, ρ), (1, λ)), ((4, ρ), (2, λ)), ((3, λ), (5, ρ), (6, ρ), (4, λ)), ((7, ρ),
(5, λ))). This canonical Janus operating mode has a counter number of 1, so
its counter number is smaller than the counter number of the example Janus
operating mode ∆β given in Section 4 and, furthermore, equals the variable
distance of β. With Theorem 2 we conclude that the canonical Janus operating
mode for β is optimal. The next lemma shows that this holds for every pattern
and, together with Theorem 1, we deduce our first main result, namely that for
arbitrary patterns α, there exists a JFA(vd(α) + 1) exactly accepting LΣ(α).

Lemma 2. Let α be a terminal-free pattern and let (D1, D2, . . . , Dk) be the
canonical Janus operating mode for α. Then cn(D1, . . . , Dk) = vd(α).

Theorem 3. Let α be a terminal-free pattern. There exists a JFA(vd(α) + 1)
M such that L(M) = LΣ(α).

The Janus automaton obtained from the canonical Janus operating mode
for a pattern α is called the canonical Janus automaton. Theorem 3 shows the
optimality of the canonical automaton. However, this optimality is subject to a
vital assumption: we assume that the automaton needs to know the length of a
factor in order to move an input head over this factor.

As stated above, the variable distance is the crucial parameter when con-
structing canonical Janus automata for pattern languages. We obtain a polyno-
mial time match test for any class of patterns with a restricted variable distance:

Theorem 4. There is a computable function that, given any terminal-free pat-
tern α and w ∈ Σ∗, decides on whether w ∈ LΣ(α) in time O(|α|3 |w|(vd(α)+4)).

As mentioned in the introduction, this main result also holds for more general
classes of extended regular expressions. We anticipate, though, that the necessary
amendments to our definitions involve some technical hassle.

References

[1] A. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A: Algorithms and Complex-
ity, pages 255–300. MIT Press, 1990.

[2] D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46–62, 1980.

[3] C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical regular expres-
sions. International Journal of Foundations of Computer Science, 14:1007–1018,
2003.

[4] A. Ehrenfeucht and G. Rozenberg. Finding a homomorphism between two words
is NP-complete. Information Processing Letters, 9:86–88, 1979.

[5] J. E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA, third
edition, 2006.

[6] R. K. Guy. The money changing problem. In Unsolved Problems in Number
Theory, chapter C7, pages 171–173. Springer, New York, third edition, 2004.

[7] O. Ibarra. On two-way multihead automata. Journal of Computer and System
Sciences, 7:28–36, 1973.

[8] O. Ibarra. Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM, 25:116–133, 1978.

[9] O. Ibarra, T.-C. Pong, and S. Sohn. A note on parsing pattern languages. Pattern
Recognition Letters, 16:179–182, 1995.

[10] T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with
and without erasing. International Journal of Computer Mathematics, 50:147–
163, 1994.

[11] T. Shinohara. Polynomial time inference of extended regular pattern languages.
In Proc. RIMS Symposia, Kyoto, volume 147 of LNCS, pages 115–127, 1982.

[12] T. Shinohara. Polynomial time inference of pattern languages and its application.
In Proc. 7th IBM MFCS, pages 191–209, 1982.

