View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Loughborough University Institutional Repository

B Loughborough
University

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence
conditions.

@creative
common

COMMONS E E D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the waorlk

Under the following conditions:

Attribution. ¥ou rmust attribute the wark in the manner specified by
the author or licensor,

MWoncommercial. vou may not use this work for commercial purposes,

Mo Derivative Works, vou may not alter, transform, or build upon
this work,

& For any reuse or distribution, vou must make clear to others the license terms of
this work,

» Any of these conditions can be waived if you get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This is a hurman-readable summary of the Legal Code (the full license).

Disclaimer BN

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

https://core.ac.uk/display/288388133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Genetic Algorithm for Computing the £-Error Linear
Complexity of Cryptographic Sequences

A. Alecu and A. M. Salagean

Abstract— Some cryptographical applications use pseudoran-
dom sequences and require that the sequences are secure in
the sense that they cannot be recovered by only knowing a
small amount of consecutive terms. Such sequences should
therefore have a large linear complexity and also a large k-error
linear complexity. Efficient algorithms for computing the k-
error linear complexity of a sequence over a finite field only exist
for sequences of period equal to a power of the characteristic
of the field. It is therefore useful to find a general and efficient
algorithm to compute a good approximation of the k-error
linear complexity. In this paper we investigate the design of a
genetic algorithm to approximate the k-error linear complexity
of a sequence. Our preliminary experiments show that the
genetic algorithm approach is suitable to the problem and that
a good scheme would use a medium sized population, an elitist
type of selection, a special design of the two point random
crossover and a standard random mutation. The algorithm
outputs an approximative value of the k-error linear complexity
which is on average only 19.5% higher than the exact value.
This paper intends to be a proof of concept that the genetic
algorithm technique is suitable for the problem in hand and
future research will further refine the choice of parameters.

I. INTRODUCTION

The k-error linear complexity of a sequence is a gen-
eralisation of the notion of linear complexity. While the
linear complexity of a sequence is defined as the length
of the smallest linear recurrence relation which generates
that sequence, the k-error linear complexity is the length
of the smallest linear recurrence relation which generates a
sequence which differs from the original sequence in at most
k positions.

When designing a stream cipher, the keystream sequence
has to have a large linear complexity. Using the Berlekamp-
Massey Algorithm, a sequence can be efficiently recovered
by knowing a number of consecutive terms equal to twice
its linear complexity. Sequences with low linear complexity
would therefore be vulnerable to known plaintext attacks.
Similarly, sequences with low k-error linear complexity for
small values of k could also be vulnerable if the correspond-
ing linear recurrence relation was found.

An exact algorithm to compute the k-error linear com-
plexity only exists for periodic sequences over a finite field
GF(p™) and with period a power of p, p being prime and
m > 1 (see Stamp and Martin [13], Lauder and Paterson [8]
for p = 2 and Kaida, Uehara and Imamura [7] for an arbitrary
p). These algorithms are based on the algorithms of Games
and Chan([4]) and Ding, Xiao, Shan [3] for computing the

A. Alecu and A. M. Sildgean are with the Department of Computer
Science, Loughborough University, LE11 3TU, Loughborough, UK (contact
email: {a.alecu, a.m.salagean} @Iboro.ac.uk).

1-4244-1340-0/07$25.00 ©2007 IEEE

linear complexity of such sequences, and they work only
when a full period of the sequence is known, i.e. the whole
sequence is known, which is not the case in cryptanalysis
applications.

We propose and investigate a genetic algorithm for com-
puting the k-error linear complexity focusing on the choice
of parameters (population size, number of generations, tech-
nique of selection, crossover or mutation, mutation probabil-
ity, crossover probability) some of them depending on the
size of the input sequence and the number of errors k and
also how to choose the evaluation function.

II. BACKGROUND

We will first introduce some of the background regard-
ing the linear complexity and k-error linear complexity of
cryptographical sequences and also about the evolutionary
techniques we used.

A. Linear complexity and k-error linear complexity

Stream ciphers are symmetric ciphers in which the plain
text bits are encrypted one at a time by XORing them with
a bit from the secret key stream. Often the key stream is
generated using a certain combination of Linear Feedback
Shift Registers (LFSRs) which expands a short key shared
by the sender and receiver into a longer pseudorandom
sequence. However, any recurrent sequence over a finite field
is linearly recurrent and can therefore be generated by one
single (usually much larger) LFSR.

A sequence generated by a LFSR can be defined by a
linear recurrence relation or, equivalently, by a characteristic
polynomial.

Definition 2.1: Given an infinite sequence s = sg, S1, . ..
(or a finite sequence s = sg, S1, ..., St—1) With elements in
a field K, we say that s is a linear recurrent sequence if it
satisfies a relation of the form

8]'+CL,1$]',1+...+018]‘,L+1+C[)8]',L =0 (1)

forall j =L, L+1,...(orforall j=L,L+1,...t—1,
respectively), where cg,c1,...,c—1 € K are constants.
The equation (1) is called a homogeneous linear recurrence
relation of order L and we associate to it a characteristic
polynomial C(X) = X*¥ +cp 1 XF 'V + .. 4+ X + c.
If L is minimal for the given sequence, we call L the
linear complexity of s, denoted L(s). A recurrence relation
of minimal order is called a minimal recurrence relation and
a characteristic polynomial of minimal degree is called a
minimal characteristic polynomial.

3569

More details about linear recurrent sequences and terminol-
ogy can be found for example in Lidl and Niederreiter [9].

If a sequence has linear complexity L, the minimal lin-
ear recurrence relation that generates the sequence can be
determined knowing 2L consecutive terms of the sequence.
This can be done by solving the system of linear equations
obtained by writing equation (1) for j = L, L+1,...,2L—1.
A more efficient method is given by the Berlekamp-Massey
Algorithm.

A sequence which is used as a key stream for a stream
cipher needs therefore to have a high linear complexity, in
order to make it hard for an intruder to be able to find
the whole sequence by only intercepting a short number of
consecutive terms.

The notion of linear complexity has been generalised
to k-error linear complexity, which is the minimal linear
complexity of the sequence in which at most &k positions are
changed. The concept was first outlined by Ding, Xiao, Shan
([3]) under the name of weight complexity, and defined under
the name of k-error linear complexity by Stamp and Martin
([13]). Note that the 0-error linear complexity coincides with
the linear complexity.

Definition 2.2: Given an infinite sequence s = sg, S1,...
of period IV, with elements in a field K and a fixed integer k,
0<k<wy((so,...,Sn-1)), the k-error linear complexity
of the sequence s is defined as

Li(s) = min{L(s + €)| e is a sequence of period N over K,
en—1)) <k}

wH((em €1,

For a given finite sequence s = sg, S1,...,S:—1 With ele-
ments in a field K and for a fixed integer k, 0 < k < wy(s),
the k-error linear complexity of the sequence s is defined as

Li(s) = min{L(s + e)le € K*,w(e) < k} 2)

The sequences e are called error sequences or error patterns.
The k-error linear complexity profile of the sequence is
defined as being the set of pairs (k, Li(s)), for all k£ with
0 < k < wpg(s). We denote k-error linear complexity
profile of order ko, the set of pairs (k, Lk(s)), for all k£ with
0 < k < max {ko,wr(s)}. (wg(s) denotes the Hamming
weight i.e. the number of non-zero entries of s.)

Property 2.1: Given a (finite or infinite) sequence s with
elements in a finite field GF(q), we have L;(s) > L;(s),
for all ¢ < j.

If the k-error linear complexity of a sequence is very
low for small values of k (e.g., k less than 10% of the
length of the sequence), then that sequence is likely to be
easily recovered when only knowing a short segment of the
sequence. This is why it would not be secure to use it as a
key stream for a stream cipher.

By extending the Games-Chan Algorithm ([4]), which
computes the linear complexity of a periodic binary sequence
with the period a power of 2, Stamp and Martin ([13]) have
devised an algorithm to efficiently (in linear time and space)
compute the k-error linear complexity of a periodic binary
sequence with the period a power of 2. The Stamp-Martin

3570

Algorithm was further extended to compute the whole k-
error linear complexity profile by Lauder and Paterson [8].
Algorithms for computing the linear complexity and the k-
error linear complexity of a sequence, for periodic sequences
which have as period a power of the characteristic of the field
have been given by Ding, Xiao, Shan [3], Kaida, Uehara,
Imamura [7], Kaida [6]. All these algorithms, unlike the
Berlekamp-Massey Algorithm, need a whole period as input,
which means that the whole sequence is already known,
which would not be the case in cryptanalysis applications.

There is no general algorithm to compute the k-error linear
complexity profile of an arbitrary sequence over an arbitrary
finite field, other than the exhaustive search.

B. Genetic Algorithms

Evolutionary computing techniques are inspired by the
natural evolution observable in species and the process which
allows them to survive by continuously adapting to the
changes in their environment. The main principles imple-
mented by evolutionary computing are natural selection, or
’survival of the fittest’, and inheritance ([5]).

Genetic algorithms have proven to be useful in solving a
big variety of problems. They have been successfully applied
on famous NP-complete problems like Travelling Salesman
Problem, Knapsack Problem, Prisoner’s Dilemma etc.

A genetic algorithm is a probabilistic algorithm which
maintains a population of potential solutions for the problem
in hand, by evolving it throughout a number of generations
using genetic operators like selection and combination. At
each iteration, the quality of each possible solution is mea-
sured using a fitness function and then a new population
is created by selecting the most fit individuals on that
basis (same individual can be duplicated in a population,
the order of duplication being usually direct proportional
to its fitness). Some members of the new population un-
dergo transformations in order to create new solutions. The
transformations can be unary (mutation), which create new
individuals by slightly changing single solutions or of higher
order (crossover), which combine a number of solutions to
create a new individual. After a number of generations the
algorithm converges and it is hoped that the best individual
which has been found represents a reasonable solution ([11]).

It is still a challange and much research is invested
into finding the optimum values for the parameters in-
volved (population size, number of generations, selection
and crossover technique, probability of crossover, mutation
technique, probability of mutation) so that the algorithm is
efficient (i.e. fast) and accurate (i.e. finds a good approxima-
tion of the exact solution).

C. Berlekamp-Massey Algorithm

The Berlekamp-Massey Algorithm ([1],[10]) computes the
characteristic polynomial and the linear complexity of a
sequence over a field. Besides being general in that it applies
to a sequence over an arbitrary field, the Berlekamp-Massey
Algorithm has another advantage: if the linear complexity
of the sequence is L, the algorithm will determine the

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

characteristic polynomial and the linear complexity after
processing 2L terms of the sequence. The algorithm runs
in quadratic time.

The algorithm is iteratively taking each term of a finite
sequence Sg, S1, - -.,S¢—1 and processes it one by one, ad-
justing the characteristic polynomial if necessary. At each
step of the algorithm the current characteristic polynomial
C(")(X) generates the n sequence terms Sg, Si, ..., Sp—1
processed so far. Therefore, after all the terms are processed,
the characteristic polynomial of the input sequence is ob-
tained. The linear complexity is the degree of the resulting
characteristic polynomial.

At each step, in addition to the current characteristic poly-
nomial C'")(X), the last characteristic polynomial C'") (X)
of degree strictly smaller than the degree of C'(™) (X) is
also stored. We denote L(9) = deg(C')). By calculating the
discrepancy d(™), where

L1
d™ =g, + Z cgn)si_,_n_un) 3)
i=0

which represents the difference between the term which is
expected using the current polynomial and the actual term s,,
which is currently processed, 3 possible cases are identified:

1. If d™ # 0 then s,, cannot be generated using C'™) (X)

a) If 2L(") > n then the new characteristic polyno-
mial is computed as C**D(X) «— CM(X) —
% - X (m=LO)=(n—L™) -C™)(X) and it has
the same degree as the previous one;

b) If 2L(™ < p then the new characteris-
tic polynomial is computed as C("t1(X) «
X (n=LED=(m=LE) o) (x) — &7 olm) (X))
and it has a higher degree than the previous one,
namely L("*1) =n 4+ 1 — L(; m is updated to
n.

2. If d™ = 0 then s,, can be generated using C")(X),
so the characteristic polynomial stays unchanged
C(7L+1)(X) - C(n)(X).

For initialisation, the first non-zero term in the sequence,
say s; is detected, the characteristic polynomials are set
to CO(X) « 1 fori = 0,...,5, CUtD(X) «— Xitl,
and m « j. At the end of the algorithm, L is the
linear complexity of the sequence and C(*) (X) is a minimal
characteristic polynomial (which is unique if 2L(%) < ¢,
otherwise it may not be unique).

ITI. A GENETIC ALGORITHM FOR COMPUTING THE
k-ERROR LINEAR COMPLEXITY OF A SEQUENCE

In this section we will describe our investigations and
findings in designing a genetic algorithm for computing the
k-error linear complexity of a sequence s of size ¢ with
elements in a finite field GF(q), where ¢ is a prime power.
Since this is an optimisation problem with a well defined
search space (see definition 2.2), a genetic algorithm is very
well suited.

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Algorithm 1 Genetic Algorithm for computing the k-error
linear complexity - A Schematic View

Input: A finite sequence s = sg, S1,...,5t—1; ko

Output: The approximate kg-error linear complexity

Initialise population POP(0) of size P.S

Evaluate POP(0)

gen «— 0

while gen < NOGEN do
Select new POP(gen + 1) from POP(gen)
Crossover in POP(gen + 1) with probability px
Mutate in POP(gen + 1) with probability pas
Report statistics for the current generation
Evaluate POP(gen + 1)
gen «— gen + 1

end while

The input of the algorithm is the sequence s and a value
ko, the order of the k-error linear complexity which is
to be computed. The output of the algorithm will be an
approximation of the kg-error linear complexity. See listing 1
for a schematic view on the algorithm.

The algorithm holds a global solution which is updated
whenever necessary (i.e. when an individual improves the
current global solution).

In the following, we will expand on the different types of
implementations and schemes that we considered.

A. Chromosomes

Since we are dealing with sequences over finite fields, it is
natural to use a haploid string encoding for the chromosomes.
We define a chromosome to be any possible error pattern
e € GF(q)t, e = (eg,e1,...,61—1) of weight at most kg
(i.e. wy(e) < ko).

The best chromosomes are the error patterns which inflict
smaller linear complexity on the input sequence s. The search
space size depends on the size of the sequence ¢, the order of
the finite field ¢ and the number of errors, ky. We denote the
set By, = {ele € GF(q)",wr(e) < k}, therefore the search
space size, S.9, is given by the formula

ss=xm) =3 (1) v @

=0

The initial population is randomly generated. The random
number generator used is the C rand () linear congurential
generator function. The algorithm 2 describes the method
used in generating the individuals, error patterns of size ¢
with elements in GF'(q) and weight less than k.

We denote the size of the population to be PS and we will
experiment in order to find the best choice of value. Some
papers show that a moderate population size is leading to
fitter populations faster (e.g. [12]). Since we desire to make
sure we adjust the population size and number of generations
depending on the size of the search space we will use a
population size of the following form and we will try to find

3571

Algorithm 2 Generate a random sequence e of size ¢ and
weight at most kg
for i =0,1,...,t—1 do
e; — 0
end for
k" «+ a random number less than or equal to kg
for i =0,1,...,k'— 1 do
pos «— a random position between 0 and ¢t — 1
val «— a random value in GF(q)
€pos — val
end for

the optimum choice for the coefficient ¢ (¢ > 0).

PS = cko[In(¢")] = cko[tInq] 5)

B. The fitness function

The quality of each individual is evaluated using the fitness
function. Our goal is to find the element e in Ej, which
minimizes the linear complexity of the sum! s + e.

Within our search space all possible error patterns, e, of
Hamming weigt up to ko are comparable using the linear
complexity of the sum s + e, so this is a natural choice
for the fitness function. However, since traditionally genetic
algorithms are maximizing and not minimizing the fitness
function we will choose the fitness function to be, for each
error pattern, the reverse of the linear complexity of the
sequence onto which we applied that error pattern.

We define the fitness function f by

f: Ex, — Z, where f(e) = —L(s +e)

We use the Berlekamp-Massey Algorithm (section II-C)
to compute the fitness function for each element of the
population. The computational complexity of the evaluation
is therefore at most O(PS - t2).

Experiments show that the search space is fragmented
and there are many local minima and maxima. This is a
challange for the genetic algorithm. Due to the discrete nature
of the linear complexity of the sequence when summed with
different error patterns from the search space we are not
able to directly pinpoint the elements in the domain Ej,
of function f which correspond to the minimum or the
maximum values.

Example 3.1: Figure 1 shows the shape of the distribution
of linear complexities for a given binary sequence s =
1011110011010110 of size 16 when taking all the possible
error patterns in the full space GF(2)1¢. The z and y axis
are corresponding to each possible weight from 0 to 16 and
each possible linear complexity from O to 16 respectively.
The third coordinate, z, in each point (z,y, z) represents the
number of error patterns e of weight x such that L(s+e) = y.
The figure presents a scaled version of the real distribution.

!We consider the term by term addition between sequences.

If a = (ao,...,at—1) and b = (bg,...,bs—1) then the sum sequence
(a+b) = (ao+bo,...,at—1+bs¢—1) with the additions in the field which
includes the terms of a and b.

3572

Full space configuation for a binary sequence of size 16

Number of sequences

1600

1400

"I’\,
éﬂi%’;"'l"
ity
i

1200

1000
800

600

2>
2SS

400
20

002020
TELLIQIRAL N
IO

Linear complexity

Fig. 1. Distribution of linear complexities of s = 0110111101110101
when combined with all poosible error sequences over GF'(2)16

C. Genetic operators

1) Selection: There are various schemes for the selection
of the best individuals for further recombination. However
the general idea is that each chromosome will be copied
zero, one or more times according to its fitness (more times
if it is more fit) making sure that the population remains
varied.

We will use three alternative schemes for selection:

« Elitist selection of level 25% - PS (ELSEL). A set
percentage of the population is chosen for survival in
the order of the fitness values. It has been found that
the higher the level of elitism the lower the efficiency as
the GA will deal and will have to evaluate individuals
which were previously processed ([2]). For this reason
and since intuitively the algorithm does not benefit from
the overduplication of fit individuals, but more from the
population diversity, the rest of the individuals up to
the population size are randomly generated using the
same generation method as for the initial population.
The complexity of this approach is O(PS In(PS)) since
it is necessary to order the individuals in the population
by their fitness value. ([11])

o Roulette wheel with slots sized according to fitness
(RWSEL). We first evaluate every single individual
in the population, e(®, for their fitness value, f(e(*)
(i=0,1,...,PS—1). We also compute the total fitness
of the population, 7T'F', which represents the sum of the
fitness of each individual

PS—1

TF=Y f(e)
1=0

This way we can compute the relative and the cumula-
tive probability of each individual, which is rprob and
cprob respectively

fe®)
TF

rprob(e(i)) =

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Z rprob(e(J

The selection process consists of spinning the roulette
wheel PS times and select each time an existing indi-
vidual such that the fitter the individual the bigger the
probabillity is for it to be selected.

Formally, the following two steps are repeated P.S
times:

cprob(e(’>

1) Generate a random value r, r € [0, 1].

2) If r < cprob(e(®) then select e(“), otherwise find
j such that cprob(e¥—1) < r < cprob(e¥)) and
select e,

o Tournament Selection (TRSEL). In a two order tour-
nament model, random pairs of individuals from the
current population are chosen and the best one out of
the two is selected to survive in the next population.
Intuitively, this method is particularly suitable as the fit-
ness values for this problem are very close which makes
the Roulette Wheel selection to give close probabilities
of selection to most of the individuals.

Formally, the following two steps are repeated PS
times:
1) Generate two random values pos; and poss, such
that 0 < posl < posy <t—1.
2) If f(eos)) < f(ePos2)) then select e(Pos2),
otherwise select e(Po51),

2) Crossover: For each chromosome e, when calculating
the linear complexity of s + e with the Berlekamp-Massey
Algorithm we hold all the intermediary linear complexities,
therefore we obtain the whole linear complexity profile.
That is, for each e, i = 0,1,...,PS — 1 we hold
lcp = (lepl,...,1epl”,), a vector of size t such that
lrp represents the linear complexity of the sequence s+e(?)
up to term j. We also hold the intermediary discrepancies in
an array dis(where di s is the intermediary discrepancy
calculated by the Berlekamp-Massey algorithm at step j
when being run on the sequence s + e(*)

During the Berlekamp-Massey algorithm, only the case
when the discrepancy d(™ # 0 and 2L(") < n (case (1b)
in Section II) yields an increase in the current complexity
of the sequence. We are interested in minimizing the linear
complexity. It seems therefore natural in this case to concen-
trate on error patterns which have that current term changed
in such a way as to make the discrepancy zero and therefore
make an increase in complexity unncessary.

Two of the crossover types that we consider are using
the previous remark and the information given by the linear
complexity profile as well as the intermediary discrepancies
held against each chromosome.

We define a parameter called probability of crossover, px,
px € [0, 1]. The crossover involves choosing two parents P.S
times, therefore repeating the following steps P.S times

1) Generate a random value r, r € [0, 1].

2) If r < px and no parent yet selected then choose first

parent p(®.

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

3) If » < px and first parent has been selected then
choose the second parent pU) such that p() # p@@),
crossover parents p(and pl) to obtain one or two
children and reset parents.

After each crossover the best two individuals out of the two
parents and the children, depending on their fitness value,
are kept for the new generation.

For readability, in the following, we will denote the parent
chromosomes p) and p® with the corresponding linear
complexity profiles, lep™) and lcp(® and the intermediary
discrepancies dis™") and dis(®.

Having chosen two parents p(*) and p(®),
crossover schemes are considered.

the following

« Single point crossover (SPX). Generate a random natu-

ral number pos, pos € 0,1,...,t — 1.

1) — =((1) (1) 1) (1 1))
p Po " P1 7"'7ppos 1 ppas?"'7pt 1
P =007 Dk DY)
The resulted offsprmgs are:

1) (1 1 2 2
e® = pM,) pSek . pi)

2 2 1)
0(2):(pé>7pg)7"'7p§)o)s 17ppo)sv"'7p§ 1)

This strategy provides some diversity without disrupting
any long building blocks. 2
« One point crossover using the linear complexity profile
(LCPSPX). Generate a random natural number pos,
pos € {0,1,...,t — 1}. Find in parent p") the first
position after pos where there is an increase in the
complexity of p) + s. Otherwise stated, find first
position 1n the first Jparent pl 1) such that pos < i,
lcp(l) < lcphLl and pzil z+1 That means that if
we apply the following recombination then it is likely
that in some of the cases the linear complexity of the
first child to be reduced

1) ININ¢! 1
p(l :((7p§ 77p(p%))577p£ 7p1,+)17"'7p§_)1)

2) (2 2) (2 2
p<2) (p(() 7[)()7"'7pPD)5‘a"'7pS p1(+)17ap§7>1)
The resulted offsprings are:

1 1 2) 2
e =@, pM, L e)

2) 1)

C(2>_(p(])7p1 a"'»pl()oﬁ"'ap; ap7<+17"'7pt)1)

This strategy provides good diversity without disrupting
any long building blocks. Experimentally we noticed
that especially on fields with a lower order (for example
binary field) we can take out the thlrd condmon when
finding the crossover point ¢ (})H_1 * pH_l) as this is
eliminating a considerable amount of possible crossover
positions without providing consistent advantages.

« Two point crossover (TPX). Generate two random nat-
ural numbers pos; and poss, such that 0 < pos; <
posg <t — 2.

p) = (pél)7 opD

'7ppobl"' . 7pp0527"‘

(L 7pt—>)

2Building blocks are short sequences of good genes which appear in the
chromosomes. It is desired not to disrupt them if possible in order to promote
them to the following generations.

3573

p? = (p(()Z)) (2) (2) (2))

5 ~~:pposu-~-7pposw~~ yPiq
The resulted offsprings are:
1) 2) 1)
C(l):(p(.- 1p170)317" p180527---7p§ 1)
(2) (2)
C(2):(])0 9. 7p;()£))517"'7p2)1152a"'7pt 1)

« Two point crossover using the linear complexity profile
(LCPTPX). One thing which can be improved on the
LCPSPX crossover presented above, is to use the linear
complexity information for the second parent as well.
Generate two random natural numbers pos; and posas,
such that 0 < pos; < posy < t — 2. Find the first
position ¢ in the first parent p(1 such that pos; < 1,

lcp<1) < lcpg1 and pL # pL Also find the first

position 7 in the second parent pZL2) such that posy < j,

lcp<2) < lcp(?) and p 75

Jj+1 7+1 7+1

That means that if we apply the following recombination
it is likely that in some of the cases the linear complexity
of one or both children to be reduced improving their
fitness. Note that we assume to have ¢ < j. If it does
not happen p") and p® as well as ¢ and j can be
interchanged to fulfill this requirement.

1 1) (1 1)
p<1):(p(g)77p7(,)7pg+)17-'-7-'-7"'7'-‘7p§ 1)

2 2) (2 2
p(2>:(pé),...,...,...,...,p§),pgll,...,pg >1)
The resulted offsprmgs are
1) — (,,(1) (1) (2)
cY=(py’,...,p,; ,pl+1,...,...,...,...,pt 1)

(2) (2 (1) (1)
c® = (p; Y 2 NS YTy Yidy

This strategy provides a higher diversity than LCPSPX.
It is likely for disruption of long building blocks to
appear but the ones at the beginning of the sequence
remain untouched.

o Uniform random crossover (URX). Recent studies show
that the use of the uniform random crossover operator
is superior in most cases, see [14]. This crossover
technique obtains one child only, ¢ from the two parents
pM and p@.
p® = (pg”pi", . pi)
p® = e
Generate t random real numbers, r; € [0,1], i =
0,1,...,t — 1. For each 1, if r; < 0.5

then ¢; = pgl),
otherwise ¢; = p§2)

3) Mutation: Whereas selection and crossover are the
evolutionary operators which are implementing the need to
promote good patterns from one generation to the next one,
the mutation is an operator which introduces variety and
implements the need to throw the individuals away from any
potential local optimum that they are converging to.

We consider two types of mutation, the standard one and
one which uses the linear complexity information similarly
with the crossover types LCPSPX and LCPTPX. We define
a parameter called probability of mutation, pys, pas € [0, 1].

« Simple random mutation (SRM). This type of mutation
loops through all PS individuals in the population and
for each of them through all ¢ terms, it generates a

3574

random value 7, r € [0,1] and if » < pj then it adds
a random value from the field to the current term.
Formally, for each i,7 = 0,1,..., PS—1 and for each j,
j=0,1,...,t—1, generate a random value r, r € [0, 1].
If » < pps then generate another random value wval,
val € GF(q) and e;Z) = elgw + val.

« Random mutation using the linear complexity profile
(RMLCP). This mutation process tries to obtain in-
dividuals with a higher fitness by using the linear
complexity similarly with the crossover types LCPSPX
and LCPTPX. Aditionally it uses the discrepancy infor-
mation for a better chance to enhance the fitness of the
new individual.

Formally, for each 4, i = 0,1,...,PS and each j =
0,...,t — 1 generate a random value rj, r; € [0,1].
If r; < pa then generate a random position pos €
{0,1,...,¢ — 1} and find the ﬁrst po%ltlon m in e®
such that pos < m and l(’p(<](’pm +1- Once m found

make e’)+1 =l >+1 dzsfn)+1 We remind that dzsgn)+
represents the discrepancy at step m + 1 in Berlekamp-

Massey algorithm applied to the sequence s + e(®).

The fitness value of the mutated individual is evaluated
and the global solution updated if necessary. For the sake of
diversity the initial individual is discarded and the mutated
one is kept for the next population disregarding the value of
its fitness.

For both crossover and mutation an additional postpro-
cessing is needed in order to check if the resulted offsprings
have a higher weight than k¢ and if so, randomly switch to
0 some of the non zero terms until the weight is at most
ko. The fitness values of the children are evaluated and the
global solution updated.

Since the genetic algorithm depends on the choice of quite
a few parameters we will refer to the genetic algorithm as:
kGA(t,k,s,PS,NOGEN,ST,XT,MT,px,pn) Where
t,k, s are the input values and

o PS is an integer representing the population size,

e NOGEN is an integer representing the number of
generations,

e ST is the selection scheme used, it can be ELSFEL,
RWSEL, TRSEL (see section III-C.1),

e XT is the crossover scheme used, it can be SPX,
LCPSPX, TPX, LCPTPX,URX (see section III-
C.2),

e MT is the mutation scheme used, which can be SRM
or LCPRM (see section III-C.3),

e px is a value in the range [0,1] representing the
probability of crossover,

e py is a value in the range [0,1] representing the
probability of mutation.

IV. TESTS AND RESULTS

In order to assess the accuracy of the algorithm and to
establish which is the best combination of parameters to
choose for the genetic algorithm we have set up a series
of tests as presented in the following.

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Best fitness values in each generation for different
population size / number of generations combinations
0 10 20 30 40 50 60 70 80 90 100

Best fitness
&
t
!
I
|
I
I
I
I
I
I
I
I
:
I
|
I
|
]
—
:
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I

=N

Generation number

‘— ==PS=110 NOGEN=100 PS=1100 NOGEN=10

Best fitness values in each generation for different
population size / number of generations combinations

0 100 200 300 400 500 600 700
0
R |
I T
e
& 8ft--———-d-—-——-——t-————A-—- - ——
@ 10 j 7777777777777777777777777777777
& [I
14
16 | | |

Generation number

[— = PS=11 NOGEN=1000

PS=110 NOGEN=100

(a) Speed of convergence for large population size and small number of (b) Speed of convergence for moderate population size and number of
generations (PS=1100 and NOGEN=10) opposed to moderate population size generations (PS=110 and NOGEN=100) opposed to small population size

and number of generations (PS=110 and NOGEN=100)

and large number of generations (PS=110 and NOGEN=1000)

Fig. 2. Best fitness value in each generation when the population size and number of generation vary

We considered 10 randomly chosen sequences of length
32 and ko = 5 (each bit of the sequences is generated
with the C rand () linear congruential generator function).
The algorithms have been ran with different combination of
parameters, but on the same input the same seeds were used
for each algorithm so that the initial population is the same.

The search space size in this case is SS = 3, (%) =
243.001 (see equation (4)). This is a relatively small search
space however we are only testing that the concept is fit for
the purpose. Also, another benefit is the fact that for this
length we can use the exhaustive search as a benchmarking
algorithm to evaluate the solutions of the genetic algorithm.

In the following tests, the evaluation of the best algorithm
is done by calculating the ratio between the kg-error linear
complexity value obtained by the genetic algorithm and the
exact ko-linear complexity value given by the exhaustive
search. We call this value the accuracy of the genetic
algorithm. We then average the accuracy over the same 10
sequences for each test.

1) Population size and number of generations: First
test decides the best choice for the population size P.S.
If we put ¢ = 2,¢t = 32 and kg = 5 in (5) we obtain
PS = 110c. We take ¢ = 0.1, ¢ = 1 and ¢ = 10,
therefore population sizes 11, 110 and 1100. In order to
have similar durations for the tests, we choose the number
of generations NOGEN to be inverse proportional with
the population size, namely 1000, 100 and 10, respectively.
We ran kGA(t,k,s,PS, NOGEN,ST,XT,MT,px,pm)
for each of these combinations using selection type ST =
ELSEL, crossover type X1 = URX with probability of
crossover px = 0.66 and mutation type MT = SRM
with probability of mutation py; = 0.33. We denote the
best choice for the population size, P.S*, and the number
of generations, NOGEN*. The average accuracies ob-
tained for each combination of parameters (PS, NOGEN),
(11,1000), (110,100) and (1100,10) are 1.29861,1.24682
and 1.27222, respectively. Therefore we chose the combina-
tion of parameters P.S* = 110 and NOGEN* = 100.

The figure 2 shows the convergence speed for

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

each of the (PS,NOGEN) combinations when the
genetic algorithm is applied to the binary sequence
11110110010011101000100101010100 to compute the 5-
error linear complexity. The exact value is 8, therefore the
fittest error sequence would have the fitness —8. When
using small or moderate population size ((PS, NOGEN) is
(11,1000) or (110, 100)) the result is 9, whereas when using
a large population size the result is 10. In the figure, the best
fitness value is shown against each of the generations.

The algorithm with large population size reaches its op-
timum, —10, in generation number 5, after processing 5500
individuals. However it does not manage to improve the
solution any further by the end of the 10 generations.

From a convergence point of view the other two configu-
rations are similar. When using a small population size and
large number of generations the optimum, —9, is reached
in generation number 659, after processing 7249 individuals.
The algorithm ran with moderate population size and number
of generations arrives at its optimum, —9, in generation
number 67, after processing 7370 individuals. We are there-
fore confident in choosing the moderate population size and
number of generation since the convergence to the solution is
smooth and the average accuracy over all the test sequences
is the best.

2) Selection: population size
PS* and number of generations NOGEN* we
compare the three types of selection ELSEL,
RWSEL and TRSEL by running the algorithm
kGA(t,k,s,PS*, NOGEN*,ST,XT, MT,px,pn)
for each of the three selection types S7T. Crossover type is
XT = URX with probability of crossover px = 0.66 and
mutation type is MT = SRM with probability of mutation
pv = 0.33. We denote the best selection scheme, ST™.
The average accuracies for the different types of selection
ELSEL, RWSEL and TRSEL are 1.24682,1.40579 and
1.38396. Therefore we choose the elitist selection type of
level 25% for further experiments, ST* = ELSEL.

Having the

3) Crossover: Having the population size PS*,
the number of generations NOGEN* and the
3575

selection type ST* we compare now the different
types of crossover (SPX, LCPSPX, TPX,
LCPTPX and URX). We ran the algorithm

kGA(t, k,s,PS*, NOGEN*,ST*, XT,MT,px,pn)

for each of the crossover types X7 with probability
of crossover py = 0.66 and for mutation type
MT = SRM and probability of mutation py; = 0.33.
The average accuracies for the different types of crossover
(SPX, LCPSPX, TPX, LCPTPX and URX) are
1.26250,1.19464,1.32043,1.19464 and 1.24682. The
difference between the accuracy of LCPSPX and
LCPTPX is of the order 10~'7. Therefore we can choose
either the one or the two point crossover which uses the
linear complexity profile information (X7* = LCPSPX
or XT* = LCPTPX) for further experiments.

4) Mutation: Having the population
the number of generations NOGEN®, the selection
type ST* and the crossover type XT* we finally
compare the two proposed types of mutation (SRM
and LCPRM). Since the accuracy is so close for
crossover LCPSPX and LCPTPX, we ran the algorithm
kGA(t, k,s,PS*, NOGEN*,ST*, XT,MT,px,pm) for
all four combinations of each of the two crossover types
with each of the two mutation types taking probability
of crossover px = 0.66 and probability of mutation
pap = 0.33. The average accuracies for the combinations of
crossover and mutation, LCPSPX with SRM, LCPSPX
with LCPRM, LCPTPX with SRM and LCPTPX
with LCPRM are 1.19464,1.25615,1.19646 and 1.27003
respectively. The test indicates that the best mutation scheme
is MT* = SRM.

Table I shows the approximate values of the 5-error linear
complexity found by the GA algorithm applied to each
of the test sequences s (i = 0,1,...,9) of length 32,
when population size is 110, number of generations is 100,
selection scheme is the elitist selection with a level of 25%,
crossover is two point crossover using the linear complexity
information with probability of crossover 66% and mutation
is standard random mutation with probability of mutation
33%. The table displays the exact values of the 5-error linear
complexity and the generation number when the GA has
found the solution.

Studying the details of each generation we noticed that
sometimes very fit solutions produced by crossover are
turned into unfit solutions through mutation (since mutation
keeps the mutated individual for the next population for
the sake of variety). This suggests that the percent that we
considered for our tests, 33%, is quite large. Whilst the
mutation process is needed in order to prevent convergence
to a potential local minimum, we consider future work to
experiment different mutation probability values as well as
different crossover probability values.

size PS*,

V. CONCLUSIONS

We proposed a genetic algorithm for computing the k-
error linear complexity of a sequence over a finite field. We
implemented various techniques for each of the evolutionary

3576

TABLE 1
THE RESULTS OF kGA(32, 5, s;, 110, 100, ELSEL(25%), LCPTPX,
SRM, 0.66, 0.33) COMPARED TO THE EXACT VALUES

s o @O @ 6 @ G ;6 (M B (9
Exact value 8 9 4 9 7 8 5 7 7 8
GA Value 8 9 8 9 9 10 5 7 9 9
Generation 42 9 73 86 13 10 61 1 69 4

operators and we investigated the best choice of parameters
for the problem. From our preliminary experiments we
conclude that the genetic algorithm approach is suitable to
the problem and that a good scheme would use a medium
sized population, an elitist type of selection with a level
of 25%, two point random crossover which uses the linear
complexity profile information with a probability of 0.66 and
a standard random mutation with a probability of 0.33. With
these choices, the algorithm outputs an approximative value
of the k-error linear complexity which is on average only
19.5% higher than the exact value.

As future work we intend to experiment more strategies
and more choices of parameters and also run experiments on
longer sequences.

ACKNOWLEDGMENT

The authors would like to thank Dr. Chris Hinde for the
useful discussions on the subject of this paper.

REFERENCES

[1] E.R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, NY, 1968.

[2] Jason Cooper. Improving Performance of Genetic Algorithms by Using
Novel Fitness Functions. PhD thesis, Loughborough University, 2004.

[3] C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream
Ciphers. Springer-Verlag, Heidelberg, 1992.

[4] R. A. Games and A. H. Chan. A Fast Algorithm for Determining

the Complexity of a Binary Sequence with Period 2". IEEE Trans.

Information Theory, 29(1):144-146, 1983.

David E. Goldberg. Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley, USA, 1989.

[6] T. Kaida. On the Generalized Lauder-Paterson Algorithm and Profiles

of the k-error linear complexity for Exponent Periodic Sequences.

In Proceedings of SETA 2004, volume LNCS 3486, pages 166-178,

Berlin, 2005. Spinger-Verlag.

T. Kaida, S. Uehara, and K. Imamura. An Algorithm for the k-error

linear complexity of Sequences over GF(p™) with Period p™, p a

Prime, volume 151 of Information and Computation, pages 134—147.

Academic Press, 1999.

[8] A. G. B. Lauder and K. G. Paterson. Computing the Error Linear

Complexity Spectrum of a Binary Sequence of Period 2". IEEE Trans.

Information Theory, 49(1):273-2803, 2003.

R. Lidl and H. Niederreiter. Introduction to finite fields and their

applications. Cambridge University Press, 1994.

J. L. Massey. Shift-Register Synthesis and BCH Decoding.

Trans. Information Theory, 15(1):122-127, 1969.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution

Programs. Springer-Verlag, Berlin, 1999.

Colin R. Reeves. Using genetic algorithms with small populations.

In Proceedings of the 5th International Conference on Genetic Al-

gorithms, pages 92-99, San Francisco, CA, USA, 1993. Morgan

Kaufmann Inc.

M. Stamp and C. F. Martin. An Algorithm for the k-Error Linear

Complexity of Binary Sequences with Period 2™. IEEE Trans.

Information Theory, 39(4):1398-1401, 1993.

Gilbert Sywerda. Uniform crossover in genetic algorithms. In Pro-

ceedings of the 3rd International Conference on Genetic Algorithms,

pages 2-9, San Francisco, CA, USA, 1989. Morgan Kaufmann Inc.

[5

[7

9

[10] IEEE

[11]

[12]

[13]

[14]

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

