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Abstract: This paper presents an adaptable genetic evolutionary system, which includes an innovative approach to 

mapping genotypes to phenotypes through XML rules. The evolutionary system was originally created to 

evolve Regular Expressions (REs) to automate the extraction of web information. However, the system has 

been adapted to work with a completely different domain – Complete Software Programs – to demonstrate 

the flexibility of this approach. Specifically, the paper concentrates on the evolution of „Sorting‟ programs . 

Experiments show that our evolutionary system is successful and can be adapted to work for challenging 

domains with minimum effort. 

1 INTRODUCTION 

Genetic Programming (GP) can be defined as “a 
systematic, domain-independent method for getting 
computers to automatically solve problems starting 
from a high-level statement of what needs to be 
done” (Langdon et al., 2008). GP research has 
attracted attention in various fields such as: game 
strategies (Keaveney & O‟Riordan, 2009), military 
defence (Jackson, 2005), plant biology (Dyer & 
Bentley, 2002), electronics (O‟Neill et al., 2001), 
railway platform allocation (Clarke et al., 2009), 
spam filtering (Conrad, 2007), feature extraction 
from media files (Hsu, 2007; Klank et al., 2008) etc.  

An area that has also managed to secure the 
attention of GP is the automation of Web 
Information Extraction (WIE) (Atkinson-Abutridy et 
al., 2004; Barrero et al., 2009; Xhemali et al., 2010-
b). The research presented in this paper was 
originally set up to evolve Regular Expressions 
(REs) to automate the extraction of web information, 
specifically training course information such as: 
course names, dates, locations and prices. The 
details of this part of the research, including 
experimental results, were covered previously 
(Xhemali et al., 2010-b), thus they will not be 
covered again in this paper.  

This paper focuses on a specific part of GP – the 
genotype to phenotype mapping. Previous work 
(Xhemali et al., 2010-a) gave details of our 
innovative approach in relation to its application to 
REs and to Complete Software Statements (Withall 

et al., 2008) such as FOR loops, IF statements etc. 
This paper concentrates on the genotype to 
phenotype mapping process in relation to Complete 
Software Programs. Specifically, experiments are 
carried out to test the complete GP process for the 
evolution of „Sorting‟ programs. „Sorting‟ programs 
were chosen in order to demonstrate the flexibility 
of this approach, as such programs represent an 
entirely different domain to REs and a challenging 
problem for GP systems. 

2 RELATED RESEARCH 

The genotype-phenotype mapping relates to the 
way individuals in a population are represented, as 
this can have a significant effect on the performance 
of GP. A genotype represents each individual in the 
search space, whereas its phenotype represents the 
individual in the solution space (Banzhaf, 1994). 
Some research, particularly earlier GP research, does 
not make a distinction between genotypes and 
phenotypes (Koza, 1992; Whigham, 1995; Conrad, 
2007, Snajder et al., 2008 etc.). Individuals in each 
genetic population remain the same throughout the 
evolution process. In these works the search space 
and the solution space are identical.  

In 1994, Banzhaf suggested the separation of the 
two spaces and introduced his work on the 
genotype-phenotype mapping. The separation 
involves the encoding of the individuals to a form 



 

known as the genotype, which is later on decoded 
back to the corresponding program, referred to as the 
phenotype. Since then, many other researchers have 
embraced the separation into genotypes and 
phenotypes (Keller & Banzhaf, 1996; Withall et al., 
2008; Clarke et al., 2009 etc.). This separation 
simplifies and increases the efficiency of certain 
genetic operations such as: reproduction and 
mutation, because these would no longer be 
constrained by the parameters used in the program 
being evolved. In genotype-phenotype based GP, 
genetic operators such as Crossover and Mutation 
would be performed on the genotype, whereas other 
processes, such as the Fitness scoring, would be 
performed on the phenotype. Sections 3.2 and 3.3 
explain this concept further through examples. 

On the downside, however, this adds an 
additional step to the genetic evolution process – the 
translation or mapping of the genotypes to their 
corresponding phenotypes. This step occurs after the 
genetic reproduction stage (i.e. the crossover and 
mutation) and before the Fitness test can take place. 

There are researchers who criticise the 
separation into genotypes and phenotypes (Moore, 
2000). The main concern expressed is that the 
conversion process of a mutated genotype into the 
phenotype may result in anomalies that could 
potentially lead to invalid solutions. A direct 
mapping between the encoded program (genotype) 
and the actual program (phenotype) is therefore vital 
to ensure the validity of the solutions (Rothlauf, 
2006; Withall et al., 2008). 

The following discusses different methods that 
have been used to achieve the mapping process.  

Banzhaf (1994; 2006) represented his genotypes 
as linear binary strings. The mapping stage then 
processed these genotypes from left to right in 5-bit 
sections, where each 5-bit code mapped to a pre-
specified symbol. For example: 00000 mapped to 
PLUS, 00100 mapped to POW, 11000 mapped to 
variable X etc. The first bit indicated whether the 
code represented a function (PLUS, POW etc.) or a 
terminal (X, Y etc.). The research also discussed 
their concern about generating constant numbers. 
Koza (1992) had solved this problem by defining 
“random ephemeral constants” where constants are 
only generated once for a particular program and 
then reused wherever they are needed within that 
program. 

Keller (1996) continued in the footsteps of 
Banzhaf, concentrating on providing experimental 
evidence for choosing the genotype-phenotype 
approach instead of the normal GP approach. Keller 
used the LALR (Look Ahead LR) parser for the 
repairing stage of the genotype-phenotype mapping 
process. LALR parsers scan the input from left to 

right and construct a rightmost derivation in reverse 
(Aho and Ullman, 1979). 

There was a certain amount of redundancy in the 
genetic coding in both Banzhaf‟s and Keller‟s 
works. They both admitted that, in their works, 
different binary strings could correspond to the same 
symbol, which could lead to inconsistencies e.g. 000 
and 100 both mapping to „a‟.  

A slightly different genotype representation is 
seen in the work of Withall et al. (2008). In here 
genotypes are represented as linear blocks of 
integers. Each block consists of exactly four 
integers, each integer representing a different gene. 
Although both research works used fixed-length 
genomes, in the work of Banzhaf (1994; 2006) the 
resulting phenotypes could vary in length, whereas 
in (Withall et al., 2008) they remained fixed. 
However, Withall allowed for variable-length 
genomes through padding, whereby shorter program 
structures or statements ignored outstanding genes. 
The first integer in Withall‟s genotype always 
determines the type of function that follows. 

Grosan and Abraham (2009) worked with multi-
chromosome genotypes. The number of 
chromosomes was varied. However, the number of 
genes per chromosome was fixed. In this research, 
each gene corresponded to either a terminal: T = {a, 
b, c, d} or a function: F = {+, *}. A function gene 
also included pointers towards the function 
parameters to tell the system which terminals were 
to be manipulated by the function. Also, the first 
gene of the chromosome was always a terminal. This 
was to ensure that only syntactically correct 
programs are evolved. Very differently from above, 
Yosif et al. (2010) introduced the novel approach of 
adapting a support vector machine to predict 
phenotypes from genotype data. 

Similarly to Withall et al. (2008), the genotype 
in our research is represented as a string of integers. 
There are no fixed length genomes determined 
however; instead the genotype can contain any 
number of genes. The direct mapping of these 
integers to the corresponding structures is achieved 
through an innovative approach involving XML 
rules. The first gene in the string determines the 
XML rule to be followed, which in itself guides the 
mapping of the rest of the genes into a valid 
phenotype. This is explained in detail in section 3.2. 

3 GENOTYPES to PHENOTYPES  

As previously mentioned, some details about this 
research, including the GP representation chosen and 
a thorough explanation of our novel genotype-
phenotype mapping approach used on the REs 



 

domain, was published in a previous paper (Xhemali 
et al., 2010-a), thus they will not be repeated here. 
The rest of this paper concentrates on the application 
of the genotype-phenotype approach to a completely 
different domain – that of Software Programs, 
specifically „Sorting‟ programs – in order to 
illustrate the flexibility of our approach. 
Additionally, the fitness function for the „Sorting‟ 
programs is presented and experimental results are 
discussed.  

The examples in this paper are based on the 
work of Withall et al. (2008). They are kept as close 
to the original as possible in order to ensure their 
integrity. One main difference however, is that in 
Whithall‟s work the evolved programs were in Perl, 
whereas in this paper their validity is ensured against 
VB script. Although the evolutionary system is 
developed in VB.NET with a MS SQL Server 
database backend, VB Script was used in order to 
extend the application to execute each evolved 
program, as these are obviously not compiled into 
the application. The .NET framework allows for the 
execution of dynamic code through the 
System.CodeDom.Compiler and the appropriate 
namespaces, however, this is more complicated and 
slower during execution than utilising the Microsoft 
Script Control from VB.NET.  

3.1 ‘Sorting’ Program  

The „Sorting‟ program was chosen, because it is 

a popular, well known program and a standard 

Computer Science problem due to its higher 

complexity over other small software programs such 

as: „Sum finder‟, „Maximum value finder‟ etc.  

The aim of a „Sorting‟ program is to order a list 

of integers or characters in ascending order. The 

output of a „Sorting‟ program is therefore another 
list, rather than a single value.  

 

 
 

Figure 1: Specification of „Sort‟ (Withall et al., 2008) 

The „Sorting‟ programs evolved in this research 

are concerned with the sorting of lists of integers. 

Figure 1 shows a specification of the „Sorting‟ 

problem. 
The following explains the general details behind 

the genotype-phenotype mapping for software 

structures, as well as the additional statements and 

genes needed for the „Sorting‟ program.  

3.2 XML Mapping 

Our genotype-phenotype mapping consists of 
two main components: the XML rules, which guide 
the system through the mapping process and the 
Repairing function, which makes sure that the 
evolved programs are syntactically correct. The 
genotype-phenotype mapping process is as follows: 

 

Pseudo-code: Genotype-Phenotype Mapping  

1) Determine the XML rule to follow 

2) Follow the chosen XML rule to the end 

3) IF the Genotype has fewer genes than the rule 

requires 

a) Follow the rule for the number of genes 

available  

b) Repair outcome to create a valid partial 

solution. 
4) IF the Genotype has enough genes for the XML 

rule 

a) Follow all the components in the rule 

b) Repair outcome (if necessary) to create a 

valid and complete solution. 

5) IF the Genotype has more genes than the  rule 

requires 

a) Follow the same steps as above (4a and 4b) 

b) Ignore the rest of the genes in the Genotype 

 

 
Note that this is not a character by character 

evolution, because this would increase the search 
space and dramatically increase the execution time. 
Instead, programs are divided into two collections: 
Variables (e.g. “tmp1”, “tmp2”, “tmp3”) and 
Comparisons (e.g. “>”, “<”, “!=” etc.). Each evolved 
gene is translated to an element of one of these 
collections. There is a separate XML rule for each 
software structure (e.g. “FOR”, “IF ... THEN ... 
ELSE”, “ADD”, “ASSIGN” etc.). Each rule is 
composed of a number of components, which guide 
the system through the translation of each gene to 
the corresponding software structure (Figure 2). For 
example, the IF ... THEN structure, of format (IF 
variable1 comparison variable2 THEN), requires 
three evolvable genes: two variables and one 
comparison. Table 1, Table 2 and Figure 3 illustrate 



 

this scenario by giving an example of the genotype-
phenotype mapping process. 

 

Figure 2: Sample of XML Rules 

 
Each component refers to either the elements in 

the above two collections, or to other predefined 

elements that do not need to be evolved and as such 
do not require the use of any extra genes, such as: 
the different operators associated with each 
programming structure (e.g. “+” is always associated 
with “Add”; “=” is always associated with “Assign”, 
thus these do not need to be evolved) or the 
keywords required by the programming language 
chosen – in this case VBScript – in order to create 
syntactically correct code (e.g. “THEN”, “TO” etc).  

The Repairing function is responsible for making 
sure that all the different software structures are 
combined correctly to create a syntactically correct 
and complete software program. Figure 2 shows a 
sample of the XML rules and components needed to 
guide the genotype-phenotype stage of the genetic 
evolution of software programs. Table 1 shows a 
sample Genotype to be translated using the 
information in Figure 2.  

  Note that the first gene in the genotype is 
always associated with the XML rule choice. The 
modulo function is used for this reason. In the above 
example (Table 1), the value of the first gene is 10. 
This represents the software structure to be used. In 
this case, there are five different rules in the XML 
file, so 10 mod 5 = 0 means that the structure chosen 
is an „IF‟. This structure contains four different 
components (Figure 2). The first three components 
require the use of a gene to choose from either the 
„variables‟ or the „comparisons‟ collections. The 
„variables‟ collection has three elements, whereas 
the „comparisons‟ has four, therefore, 27 mod 3 = 0, 
7 mod 4 = 3 and 13 mod 3 = 1 give elements „x‟, „<‟ 
and „y‟ respectively.  

The fourth component (id=“5”) tells the 
Repairing function that the THEN keyword is 
required next. The „THEN‟ keyword is a mandatory 
requirement for IF statements in VB.NET or 
VBScript, thus this component does not need to be 
evolved and as such does not require the use of an 
extra gene from the genotype. 

The nested = “true” attribute seen in Figure 2 
indicates that the IF structure, differently from one-
line statements, such as „Add‟ or „Multiply‟, expects 
other statement(s) inside. The following gene (gene 
19) in the genotype is therefore used to determine 
the statement type to be nested in this IF. Therefore, 
19 mod 5 = 4 means that the next statement is „Add‟. 
The remaining components are dealt with in the 
same manner (see Table 2).  

Once all the required genes have been decoded, 
the resulting phenotype is repaired to ensure it is 
syntactically correct. The Repairing function is an 
independent function, which scrutinises the 
phenotype created in order to guarantee the syntactic 
validity of the solution. This function is in charge of 
tasks like: closing software structures appropriately 
(e.g. FOR loops in VB.NET need to end in NEXT 



 

for them to be valid); adding the necessary 
operators, which do not need to be evolved (e.g. the 
„Add‟ (“+”) and the „Assign‟ (“=”) operators); 
tidying up the phenotype in cases when there are 
fewer genes available than required by the XML 
rule; adding header and footer information about a 
solution such as: variable declaration or variable 
return etc. All this is achieved through the use of a 
STACK programming structure, which works in a 
LIFO (Last In First Out) manner.  

Figure 3 shows the complete software structure 
(phenotype) for the above example. The additional 
symbols and programming keywords added by the 
repairing function are shown encircled.  

 
Table 1: Genotype 

 
 

 

Table 2: Genotype to Software Statement Mapping 

 

Comp. 
No. 

Component 
Gene 
Used 

Modulo Translation 

- - 10 0 If 
1 Variable 27 0 x 

2 Comparison 7 3 < 

1 Variable 13 1 y 

5 
Then-

Keyword 
- - Then 

- - 19 4 Add 

1 Variable 9 0 x 

11 Assign - - = 

1 Variable 63 0 x 

7 Addition - - + 

1 Variable 4 1 y 

 
 
 

 

 

Figure 3: Phenotype 

 
Updating the XML rules, once written, would 

require little effort, because software statements and 

structures are rigid in the number of components 

needed and the order in which they are needed. For 

example, the Add statement mentioned above may 

sum up more than two variables, however, there will 
always be need for one variable to which this sum is 

assigned, one „Assign‟ operator and one or more 

„Addition‟ operators. Adding new XML rules for 

new statements or structures would be equally as 

effortless, because it would only require the addition 

of the different components for that structure to the 

XML rules as well as any additional variables or 

comparisons that may be required. 
The changes that were made to our Genotype-

Phenotype mapping process for the „Sorting‟ 

software programs involved the simple addition of 

one more structure and a few more variables and 

comparison values. Specifically, a special nested 

FOR loop was added to the current software 

structures, similarly to Withall et al. (2008), which 

includes two nested FOR loops in the following 

format:  

 

FOR (var1 = 0 TO var2)  

 FOR (var3 = var1+1 TO var2) 

  ...  

  
The above could have been achieved through the 

existing FOR loop structure (Figure 2), however, we 

chose to add the nested FOR loop, because this is a 

standard structure used when comparing elements in 

a list and it results in faster execution of the 

evolution process.  

Due to the „Sorting‟ program dealing with lists or 

arrays of integers, a few more variable types needed 

to be added to distinguish between normal variables 

and array variables (since a normal variable x is 

entirely different from the variable array(x)). This is 
to maintain the accuracy of the evolved solutions.  

The Experimental Results section presents and 

discusses the results of our experiment. 

3.3 Fitness Function 

Similarly to Withall et al. (2008), the fitness 
function in this research has been simplified to only 
compare adjacent items in the list of integers rather 
than all the possible pairs in the list. This decision 
was made in order to speed up the evolution process. 

 
Code: Fitness Function for ‘Sorting’ 

 

If list.Length > 0 Then 

   For i As Int32=0 To list.Length - 2 

      If list(i) <= list(i + 1) Then 

         fitness += 1 

      End If 

   Next 

End If 

 

If list.length > 1 Then 

   fitness = fitness/(list.Length-1) 

Else ‘The list has only got one integer 

   fitness = 1 

End If 

If x < y Then

    x = x + y

End If

10 27 7 13 19 9 63 4



 

 
The code for the „Sorting‟ program is presented 

above to show its simplicity. Note that the necessary 
header information such as variable declaration and 
initialisation are left out for clarity. Also note that 
this function is only called if the post-evolution list 
of integers contains the same elements as the pre-
evolution list of integers.  

4 EXPERMIMENTAL RESULTS 

Details about the evolutionary system used in 
this research were discussed in a previous paper 
(Xhemali et al., 2010-b) however, the main 
parameters used by the system are summarised in 
here to help the reader fully appreciate the 
experimental results presented: 

 

 

Figure 4: Complete „Sorting‟ Solution: (1) 

 

 Population size: 10 
 Tournament size: 40% 
 Fitness Target: 1 
 Uniform Crossover Rate: 50% 
 Mutation Rate: 1 gene per genotype 
 Initial Population: Random 

 
The following gives the results from the 

experiments set up for the evolution of „Sorting‟ 
programs. In order to maintain the similarity with 
the work of Withall et al. (2008), there were ten runs 
of the experiment, each with a maximum number of 
generations of 50,000. None of the experiments 
needed this many generations however, and each run 
produced a valid „Sorting‟ program.  

Figure 4 shows one of the „Sorting‟ programs 
produced by the system. Note that this example 
shows the full VBScript code executed from within 
VB.NET 2008. The header and footer of the solution 
(shown in Figure 4 within the dotted rectangle) was 
added to the solution by the Repairing function. The 
part of the code shown within the solid rectangle 
was evolved by the system (and tidied up by the 
Repairing function, as described in section 3.2).  

All experiments presented in this paper were 
based on the sorting process of a fixed list of seven 
integers – a(1, 3, 2, 4, 8, 5, 9) – however, further 
experiments were carried out with different integer 
lists to ensure that the results in this paper were not 
somehow influenced by the integers chosen. 

Table 3 gives information about five of the 
„Sorting‟ solutions evolved (Fitness Score: 1), which 
were also generated by Withall et al. (2008). The 
information includes the number of generations 
(Gens) taken for the solution to be generated and the 
amount of time taken to arrive to this solution. The 
remaining five solutions (6-10), also with a Fitness 
Score of 1, refer to additional „Sorting‟ solutions 
evolved during the experiments for this paper.  

 
Table 3: „Sorting‟ Results 

 

Solution 
No. 

Gens 
Gens 

(Withall) 
Time 

Time 
(Withall) 

1 35467 47975 57‟33” 1h04‟28” 

2 16200 14189 25‟25” 19‟22” 

3 8950 8219 12‟08” 10‟22” 

4 15982 16312 23‟12” 21‟57” 

5 762 5834 2‟36” 8‟00” 

6 20050 - 27‟31” - 

7 739 - 2‟19” - 

8 1690 - 4‟48” - 

9 559 - 1‟45” - 

10 93 - 0‟15” - 
 



 

The solutions themselves (without the header or 
footer information), including the five that were 
different from the solutions generated by Withall et 
al. (2008) are listed in Appendix A. 

In relation to the results in Table 3, it is 
important to note that comparing the results of 
different evolutionary systems is not straightforward 
and by no means definitive. Despite experiments 
being carried out on the same domain, a touch of 
luck is also involved in getting to a perfect solution 
quickly from evolutionary experiments. This is 
because, depending on the crossover of the genes 
and particularly on the (random) gene that gets 
chosen for mutation and the outcome of the mutation 
itself, a perfect solution may not be reached at the 
same time by different systems. Furthermore, even 
experiments carried out on the same system at 
different times, may not arrive at the same solution 
at the exact same generation. Keeping this in mind, 
Table 3 shows that Withall et al. (2008) need fewer 
generations than this research for two of the above 
solutions (2 and 3). This research needs fewer 
generations for solutions 1, 4 and 5.  

One thing is evident however, that Withall‟s 
timings (time needed per generation) are lower than 
those in this research. As previously mentioned 
Withall‟s genetic evolutionary system was all 
written in Perl, thus there was no need for 
converting the evolved code to a Scripting language 
first to achieve dynamic execution, since Perl is 
already a scripting language. The system in this 
research however, was written in VB.NET and 
includes the additional step of forcing the execution 
of the solution as VBScript from within the VB.NET 
application. This affects the overall execution speed. 
Furthermore, it was observed during the experiment 
that VBScript displayed a message box to the user 
each time the script took longer than normal to 
execute. The user was then asked to choose whether 
to allow the script to continue running or end it and 
allow the system to move onto the next script.  

We managed to change the VBScript control to 
make the decision by itself, without involving the 
user. Although this has sped up the execution, it is 
still an extra step that VBScript has to do behind the 
scenes, which increases the overall execution time 
for the evolutionary system. 

A potential solution may be to change the system 
to execute the dynamic programs in Perl instead of 
VBScript and see if this makes a difference to the 
above timing issue. Another solution may be to 
allow .NET itself to execute the dynamic code 
through the inbuilt System.CodeDom.Compiler, 
however, this is a more complicated solution, which 
may still result in time wastage due to the additional 
manipulation that VB.NET will have to make to 
itself to compile the dynamic code at runtime. 

4 CONCLUSIONS 

This paper has discussed an innovative approach 
to mapping genotypes to phenotypes through XML 
rules in relation to software statements and 
structures as well as complete software programs. 
Utilising XML gives this technique many 
advantages including: improved readability, 
compatibility with many programming languages, 
portability and extendibility (XML is not restricted 
to a limited set of keywords defined by the 
proprietary vendors, which aids the process of 
creating rules of different levels of complexity). 

Experiments were set up to test the complete 
evolutionary system on the evolution of „Sorting‟ 
programs. The „Sorting‟ program was chosen 
because it represents a well known, standard 
Computer Science problem, which is complex 
enough to really test the evolutionary system. 

Our evolutionary system was originally created 
to deal with the evolution of Regular Expressions. 
However, it was discovered, that it was easily 
adaptable to other domains, including that of 
Complete Software Structures. In fact, the only two 
areas that needed to be changed to make the system 
work for the new domain, were the XML rules and 
the Fitness function. 

The experimental results from the evolution of 
„Sorting‟ programs highlight the efficacy and 
flexibility of our system, despite the complexity of 
the „Sorting‟ problem for GP systems.  

However, further testing needs to be done to 

ensure the reliability of this approach for other 

complex programs.  
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APPENDIX A 

These are the „Sorting‟ programs generated in 

this research. Solution (1) was shown in Figure 4. 

Solutions (1-5) match those obtained by Withall et 

al. (2008), whereas the remaining (6-10) are new. 

Note that parts of the following programs may 

look different to „hand written‟ code for „Sorting‟ 

programs. Solutions (3) and (9) are the closest to the 

conventional „hand coded‟ version. 

 

„Sorting‟ Solution: (2) 
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„Sorting‟ Solution: (4) 

 

 
„Sorting‟ Solution: (5) 
 

 
 

„Sorting‟ Solution: (6) 
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„Sorting‟ Solution: (8) 
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„Sorting‟ Solution: (10) 

 

 


