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Validation of Dynamic Web Pages generated by an Embedded Scripting Language 

 

SUMMARY 

 

This paper attempts to provide insight as to how to guarantee a statement like: My PHP script produces WML. 

To expand a little, the emphasis is to ensure that a script always produces a valid WML page. The context is 

where pages in a web-site are being created by an embedded scripting language (like PHP, ASP, Perl) and also 

that the resulting pages are to conform to a strict tagged mark-up scheme like WML or XHTML.  Although 

there are validators for static pages there is nothing available to check that a page containing embedded 

scripting will (always) generate valid documents. What is required is a validator for dynamic web pages. 
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INTRODUCTION 

 

Ever since the world-wide web came into existence a large proportion of HTML web-sites have contained 

pages with malformed HTML. However because the web-browsers have been lenient to a fault in rendering 

poorly structured documents, it has not been of great concern to most web users. In more recent times, when a 

large proportion of pages are being dynamically generated by various server-side scripting languages, it is still 

not essential to ensure that scripts produce properly structured HTML. However with the advent of XML, and 

the derived subset WML, the situation has changed. The browsers on WAP-enabled mobile phones are much 

less tolerant. The pages of a WAP site must be correctly structured. In particular they must be well-formed 

XML and in addition, to be valid, they must conform to the WML Document Type Definition (DTD). If a 

WML site is made up entirely of static WML pages, then each of these pages can be checked for conformance 

using standard validators [e.g. 1,2,3,4]. However if a page is dynamically generated then the question arises as 

to how the script responsible can be checked to ensure that it always delivers valid WML. 
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ENSURING VALID SCRIPT OUTPUT 

 

The problem of guaranteeing valid XML output from programs has been tackled head on in several projects 

which offer completely new languages. Thus if a programmer is able and willing to learn and switch to an 

entirely different language then there is a solution. New languages like JWIG [5], CDuce [6], XDuce [7] either 

do not allow the programmer to generate invalid output because of the way the output is constructed via 

templates or the programs created have the ability to be analysed at compile time to guarantee that only valid 

documents can be constructed at run-time. JWIG is a Java-based development system incorporating the bigwig 

language and thus provides safe dynamic document construction. CDuce & XDuce are programming languages 

specifically aimed at manipulating XML documents and feature datatypes suited to that need including regular 

expression types. Although these languages provide an attractive solution for the future, there is a legacy 

problem with the vast number of existing scripted web-pages and for those who are unwilling or unable to 

switch to the newer languages. 

 

Exhaustive testing can only prove that a program generates correct output for the most trivial of programs. For 

any non-trivial program the only proof possible is that the program output matches the program specification in 

some way. In the context of this paper the specification of the output is that it is valid WML (or XHTML). This 

is a syntactic specification. So the problem is one of demonstrating that a particular program (a script written in 

PHP, ASP, Perl or similar) produces output that is correctly structured according to a particular syntax. 

 

Now proofs of program correctness are notoriously difficult to construct and ideally we are looking for a simple 

tool that can routinely be used by ordinary scripters to ensure that their scripts produce valid output. A solution 

is proposed which has two stages. Firstly a notation is developed in which every possible output from a script 

can be captured. Secondly a method is developed to check the notated output from the script, to decide whether 

all actual output would be syntactically correct. In this paper the two stages are developed for WML or 

XHTML as the mark-up language and PHP as the scripting language, although the method generalises to any 

XML conformant mark-up language and any procedural scripting language. 
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SCRIPTED WEB-PAGES 

 

A web-page intended to be rendered by a browser is authored as a text file and should conform to some tagged 

mark-up language like HTML. In its simplest form it is referred to as a static web-page. However, if it contains 

any scripting elements to be executed by the web-server before delivery to the browser, then it is called a 

dynamic page. It is the validation of dynamic pages that is the subject of this paper.  

 

There are several server-side scripting languages (PHP[8], ASP[9], Perl[10], etc.). At its simplest, a server-side 

scripting language generates its output by echo or print commands. The scripted elements are often embedded 

among the marked-up text so the code to generate a short WML page using PHP could look like this 

 

 <wml> 

 <?php 

  echo "<card>"; 

  echo "</card>"; 

  ?> 

 </wml> 

 

In this and subsequent examples, the required '<?xml ...>' header and the '<!DOCTYPE wml ...>' header lines 

are omitted for brevity. Also note that PHP code is written inside 'brackets' which can be written 

 

 <?php ... ?> 

 

and which can, in certain circumstances, be abbreviated to 

 

 <? ... ?> 

 

XML, DTDS AND WML 
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The context of this paper is where a script is used to deliver a page that has to conform to a strict tagged mark-

up language. A WAP site[11] based on WML pages where at least some of the pages contain server-side 

scripting is an example. WML pages are XML pages which in addition conform to a Document Type Definition 

(DTD). An XML page is termed well-formed if it satisfies simple rules like an end tag for every start tag and 

strict nesting of tags. An XML page is termed valid if it conforms to a DTD. A DTD describes the tags that can 

be used, their attributes and the content that the tags enclose. 

 

As an example, a simplified extract of the WML DTD[12] can be shown as 

 

 <!ELEMENT wml ( card+ )> 

 <!ELEMENT card ( p* )> 

 <!ELEMENT p ( #PCDATA )*> 

 

This DTD notation can be read as follows. For a document to be a valid WML document there must be a single 

wml element which must contain at least one (+) card element. Each card element may contain zero or more 

(*) paragraph elements (p). Finally each paragraph element may contain an arbitrary amount of 'Parsed 

Character Data' (meaning anything that is not a tagged element). The part of the DTD which defines attribute 

structure is not shown. 

 

VALIDATING SCRIPTED WEB-PAGES 

 

Here is an example of a PHP script which contains a structured statement (a loop) 

 

 <wml> 

 <card> 

 <? 

  while($i<$limit){ 

   echo "<p> $i </p>"; 

   $i++; 
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  } 

 ?> 

 </card> 

 </wml> 

 

We might argue informally that, whatever the value of $limit, the result of this script is good WML because the 

while-loop, when executed, will always generate paragraph tags (<p>...</p>) in pairs and that the <card> tag 

accepts any number of such pairs (including none). Another way of describing this is to realise that we have 

captured the output of the script using notation borrowed from regular expressions 

 

 <wml> <card> ( <p> not_a_tag* </p>)* </card> </wml> 

 

Furthermore we have mentally 'checked' this against the WML DTD. The wml element contains exactly one 

card element (1 or more is allowed) and the card element contains zero or more paragraph elements (zero or 

more allowed). 

 

VALIDATION BY TESTING 

 

It has already been mentioned that the notion of proof by exhaustive testing is infeasible. However we briefly 

consider the generation of carefully chosen test sets. Since the notation of DTD's is fairly restricted, we could 

perhaps generate a test set of sample output - perhaps three samples in this case, the first with no paragraph 

tags, the second with exactly one and the third with two paragraph tags. This test set could be validated using 

conventional validators. If all the samples passed the validation test, some confidence would be gained that the 

script would always produce valid output. But this method is unworkable for more complicated scripts where 

the number of samples of output to be tested would expand factorially and still there would be no absolute 

proof. So we will return to the idea of capturing the output of a script using regular expression notation and 

working directly with that. For the trial implementation described in this paper validation is obtained by 

formally extending the DTD to allow it to recognise the regular expression description of the generalised output 

from the script. 
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AUGMENTING THE DTD 

 

The point of having a rule like  

 

 <!ELEMENT card ( p* )> 

 

in the DTD is to accept a sequence of any number of valid paragraph elements as valid content for a card. If a 

script contains a loop which, on each iteration, generates a paragraph element,  we wish to capture the output of 

the script more like 

 

 (p_elt)* 

 

than as 

 

 p_elt p_elt p_elt ...  

 

As the environment is a tagged mark-up language, rather than use the '*' notation, it seems better to use a tag 

notation. So the meta-tag <p_list> is invented with definition 

 

 <!ELEMENT p_list (p)> 

 

and will be used when the script emits a collection of zero or more paragraph elements via a while loop. It is 

anticipated that the output from any script can be captured via such notation. If this is done then the DTD which 

validates the output will need to be augmented with extra rules to accept the meta element p_list in places where 

(p*) is indicated. We might augment the DTD rules for card as follows 

 

 <!ELEMENT card ( p | p_list )* > 
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This effect of this last rule is to allow within a card structure, any number (*) of components, each being an 

individual paragraph element (<p>...</p>) or a paragraph list (<p_list><p>...</p></p_list>) which represents 

the output of a loop-structure in a script.  

 

By continuing in this way the original DTD can be augmented so that it is directly capable of accepting the 

'regular expression' notation version of the output from the example script which was originally written as 

 

 <wml> <card> ( <p> not_a_tag* </p>)* </card> </wml> 

 

but would now be rewritten as 

 

<wml><card><p_list><p>PCDATA</p></p_list></card></wml> 

 

Now that the basic principle has been explained by example it may be useful to check the consequences of what 

has been proposed. A script is to be processed to produce an expression which represents all possible outputs 

from the script. Following this the expression is to be checked by a validator using a DTD augmented by rules 

involving additional meta-tags like <p_list>.  

 

This apparently two-stage process is actually accomplished in three stages. It is convenient in the first stage of 

processing the PHP to introduce less specific meta-tags e.g. <LIST> rather than <p_list>.  A middle stage is 

responsible for deducing the appropriate specific meta-tags like <p_list> which are then validated by the third 

stage. 

 

NOTATING ALL POSSIBLE OUTPUT FROM A PHP SCRIPT 

 

We need to be able to process a PHP script to obtain a meta-tagged expression representing its generalised 

output. It is required to build something which is more than a parser but less than a full-blown interpreter for 

PHP. Primarily it should be able to recognise echo commands and deduce the resultant output and also 

recognise structures like while-loops and 'encode' any output from them within meta-tags like <LIST>. Notice 
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that the relationship that has been exploited so far is that between the while-loop in the script and the meaning 

of the "*" in the DTD. So do other similar relationships exist? 

 

The notation of a DTD is essentially to define the content of elements via 

 

 zero or more of  a* 

 at least one of  a+ 

 option   a? 

 choice   a|b 

 sequence   a,b 

 

So far we have only introduced the <LIST> meta-tag for the "*" notation and linked it to the while-loop. The 

full set of meta-tags linked to program structures are shown below where <t> stands for an arbitrary tag: 

 

(i) a* - <LIST> - linked with the while loop: 

 

 while(...) echo "<t>...</t>"; 

 

becomes 

 

 <LIST><t>...</t></LIST> 

 

and eventually 

 

 <t_list><t>...</t></t_list> 

 

(ii) a+ - <LIST1> - associated with the repeat loop: 

 

 do echo "<t>...</t>"; while(...); 
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becomes 

 

 <LIST1><t>...</t></LIST1> 

 

(iii) a? - <OPTION> - associated with the short conditional 

 

 if (...) echo "<t>...</t>"; 

 

becomes 

 

 <OPTION><t>...</t></OPTION> 

 

(iv) a|b - <CHOICES> - associated with the long conditional 

 

 if (...) echo "<t>1</t>"; else echo "<t>2</t>";  

 

becomes 

 

 <CHOICES><CHOICE><t>1</t></CHOICE> 

  <CHOICE><t>2</t></CHOICE></CHOICES> 

 

(v) a,b - no meta-tag is needed for sequence 

 

Based on the relationship 

 

 for(E1;E2:E3)S =  E1;while(E2){S;E3} 

 

for loops can be treated as while loops in this context. 
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Now that we have extended the collection of meta-tags and looked at how they might be used, we can complete 

our extension of the definition of card which was originally  

 

 <!ELEMENT card (p*)> 

 

and which was provisionally extended to 

 

 <!ELEMENT card ( p | p_list )* > 

 

From a scripting point of view, the zero or more p elements that will form the content of a card can be 

produced by any combination of loops and conditionals, i.e. by any combination of meta-elements which 

deliver none, one or more paragraph elements. Using the complete set of meta-tags it can be seen that the rule 

for p* should be further extended to allow list1, choices and option components. So the full definition expands 

to 

 

 <!ELEMENT card ( p | p_option | p_choices | p_list | p_list1 )* > 

 

By contrast when we are dealing with a "one or more" rule, for example  

 

 <!ELEMENT wml (card+) > 

 

it would be extended in a more limited way to 

 

 <ELEMENT wml ( card | card_choices | card_list1 )+ > 

 

It is not possible to include card_option or card_list structures as alternatives as these allow empty possibilities 

and would break the force of the "+".  
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THE MIDDLE STAGE  

 

There are two considerations which suggest a middle stage in the process. The first, already presented, is the 

post processing of the meta-tagged output to make such changes as <LIST> to <p_list>. The second motivation 

comes from considering the DTD extension for rules involving repetition of "one or more" (+).  

 

We would want sequences containing a definite card element  like 

 

 <card>...</card> 

 <? while(...) echo "<card>...</card>"; ?> 

 

which on a first pass would be converted to 

 

 <card>...</card> 

 <LIST><card>...</card></LIST>  

 

and then to 

 

 <card>...</card> 

 <card_list><card>...</card></card_list>  

 

to be acceptable as card+  i.e. <card_list1>. This suggests that a middle stage in the process before the extended 

DTD validation should include some algebraic simplification towards a canonical form. This process would be 

defined by simplification rules like 

 

 t1 <t_list> t2 </t_list>  =>  <t_list1> t1 t2 </t_list1> 

 

The  right hand side of this rule is to be read as "there is a sequence of one or more t structures with t1 and t2 

being representative of the elements involved. By regarding the component elements as being of five types (t, 
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t_list, t_list1, t_option, t_choices) it is clear that there are 25 cases of this type to consider where adjacent 

elements of the same type t are aggregated into a list or list1 structure. These rules are all added to the 

simplifier. There are also simplification rules for nested meta-tags for example 

 

 <t_list><t_list1>...</t_list1></t_list> => <t_list>...</t_list> 

 

Now this coalescing of structures based on the same tag would not be safe if the DTD involved contained a rule 

like 

 

 <!ELEMENT exactly4p (p,p,p,p) > 

 

If the simplification process found consecutive paragraph tags it would change them to <p_list1>...</p_list1> 

and the DTD would not be satisfied. However inspection shows that the WML and XHTML DTDs do not 

define sequences with adjacent tags the same. 

 

There are two consequences of this simplification process for the extended rules for the DTD. The first is that, 

because of aggregation, definitions like <!ELEMENT p_list (p)> must minimally be upgraded to <!ELEMENT 

p_list (p*)> [but see also the appendix]. Secondly, changes made to occurrences of t* in the original DTD can 

now be simplified because all sequences of tags of the same kind will be reduced to either <t_list> or <t_list1>. 

The original DTD had 

 

 <!ELEMENT card (p*)> 

 

which was extended to  

 

 <!ELEMENT card ( p | p_option | p_choices | p_list | p_list1 )* > 

 

We can now omit the final "*" and write 
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 <!ELEMENT card ( p | p_option | p_choices | p_list | p_list1 ) > 

 

meaning that any sequence of zero or more paragraph structures will be represented either as an actual 

paragraph tag, an optional paragraph tag, choices of paragraph tag, a list of zero or more paragraph tags or a list 

of one or more paragraph tags. In fact the substitution chosen in practice uses the entity convention 

 

 <!ENTITY % p.star "( p | p_option | p_choices | p_list | p_list1 )" > 

 <!ELEMENT card ( %p.star; ) > 

 

Similar considerations apply to occurrences of t+, t? and t1|t2 in the original DTD and the substitutions are 

presented in full in the appendix. 

 

THE PROTOTYPE IMPLEMENTATION 

 

An initial trial was carried out using PHP as the scripting language and WML and (strict) XHTML as 

alternative mark-up languages. 
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PHP script

<p>1</p>
<?php while($q) echo "<p>2</p>";
if($t) echo "<br />";

via parser
constructed using YACC/LEX

<p>1</p><LIST><p>2</p></LIST>
<OPTION><br  /></OPTION>

via simplifier
written in prolog

<p_list1><p>1</p><p>2</p></p_list1>
<br_option><br /></br_option>

meta-tagged output

canonical form 

accept/reject

via prolog validator
working with augmented DTD

The 3 Stage Process

 

 

 The parser for PHP was written using LEX & YACC [13]. The DTDs for WML and XHTML are publicly 

available [12,14]. The DTDs were extended by hand using the entity notation as described above. Prolog was 

used as the main implementation language to prototype the middle and final stages. The  meta tagged 

generalised output expression is imported into prolog, simplified and then the result validated against the 

(augmented) DTD. The resulting three stage process is shown in the diagram. 

 

It is possible to create a recogniser for XML files conforming to a specific DTD using the prolog DCG system 

[15]. However by using SWI-Prolog [16] advantage can be taken of the prewritten SGML/XML parser package 

[17] which can both import an XML document into prolog and validate it against a chosen DTD. The XML 

import works by translating a tag structure like <tag attributes>content</tag> into a prolog term with the 

general structure element(tag, [attributes], [content]). The package is able to accept a DTD in its standard 

textual presentation [12,14]. 

 

The simplifier needs to implement the 25 adjacency rules mentioned earlier. It is implemented in prolog and so 

the rule given earlier as 
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 t1 <t_list> t2 </t_list>  =>  <t_list1> t1 t2 </t_list1> 

 

becomes 

 

 element( tag, [attrs ], [ ... t1, element( t_list, [], [ t2 ] ) ... ] ) 

     => 

 element( tag [ attrs ], [ ... element( t_list1, [ ], [ t1, t2 ] ) ... ] ) 

 

These replacements are made during a tree walk of the content of the root tag. 

 

When building the parser, no official syntax for PHP was located (but see [18]). However it was easy to create a 

syntax for most of the language including: 

 

 • the full range of operators in expressions 

 • the control statements 

 • function declarations and function calls 

 • arrays 

 

One special feature of the compiling actions is that it is necessary to inspect structured statements to find out if 

they contribute any output. Only if the statements contribute output are the meta-tags are required. To see this 

consider the following extract 

 

 while($i<10){ 

  echo "<p>...</p>"; $i++; 

 } 

 while($j<10){ 

  $v[$j]=0; $j++; 

 } 
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Now the first loop (based on the counter $i) makes a contribution to the WML output and should be represented 

in the output expression by 

 

 <LIST><p>...</p></LIST> 

 

The second loop (based on the counter $j) does not make a contribution to the WML output and has no 

representation in the output expression.  

 

The most serious omission in the trial implementation is the lack of proper interpretation of the string in the 

echo statement. The correct interpretation of the PHP statement 

 

 echo "the value of variable x is $x"; 

 

requires variable interpolation, that is the value of the variable is to be inserted in place of its name ($x). To 

keep the trial implementation simple, the variable interpolation has not yet been attempted. This means that the 

validator will only give the correct results if either 

 

  • the PHP script does not use variable interpolation or 

  • the only values that would be interpolated are PCDATA 

 

Functions which contribute to the output by side effects (echo or inline tagged content) can be used. However 

functions which contribute to the output by return value are not handled correctly. 

 

LIMITATIONS OF THE VALIDATION METHOD 

 

One consequence of this syntactic approach to validation is that the script must work within structures rather 

than across them. The specific restriction is that each control structure used in the script must deliver either a 

single complete tagged element or a sequence of complete tagged elements all of the same type.  
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Two examples of scripting style which ultimately deliver valid output, but which are unacceptable to our 

validator are given. The first develops a list of tags but the loop involved generates an end tag followed by a 

start tag. 

 

 echo "<p>"; 

 echo "0"; 

 while(...){ 

  echo "</p>"; 

  echo "<p>"; 

  echo "1"; 

 } 

 echo "</p>"; 

   

For any particular execution this script will result in a sequence like 

 

 <p> 0 </p> <p> 1 </p> <p> 1 </p> <p> 1    ...    </p> 

 

which is valid. However it will be given the following meta-tags 

 

 <p> 0    <LIST> </p> <p> 1 </LIST>   </p> 

 

Unfortunately the trial implementation uses a prewritten XML to prolog importer. Since this structure is not 

valid XML it will fail the import. So although there is a potential for writing rules to 'simplify' this kind of 

expression along the lines of  

 

 ab(cab)*c  =>  abc(abc)*  =>  (abc)+ 

 

they cannot be used in the prototype.  
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It would be possible in many cases like this to re-write the script with minimal effort to achieve the same effect. 

It is arguable that requiring structures in the script to generate whole tagged elements would produce an 

inherently cleaner and/or clearer version of the script anyway. 

 

The second example is where a loop generates a list of tags which are complete in themselves but not enclosed. 

 

 echo "<p>"; 

 while(...){ 

  echo "<strong>message</strong>"; 

  echo "<br />"; 

 } 

 echo "</p>"; 

 

The simplifier is presented with 

  

 <LIST><strong>message</strong><br /></LIST> 

 

and cannot find a tag name t to change <LIST> to <t_list>. In practice it has been possible in many cases like 

this to circumvent the issue by using an enclosing <span> or <div> tag within the loop. 

 

CONCLUSION & FURTHER WORK 

 

Initial trials have proved encouraging. The department has an intranet with interlinked sites for students and 

staff. The dynamic pages are powered by PHP and MySQL. Typical scripts have been checked by the system as 

described above. The WML scripts were easy to check and showed up minor problems only. There are many 

quite involved HTML scripts. Representative examples of the more involved scripts have been checked. Since 

they were originally written as HTML and not XHTML, the first thing that needed to be done was to make them 

XML compatible. This means having closing tags for every opening tag and requires <br> to be changed to <br 
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/> and similar changes to <hr>, <img...> <link...>, etc and making sure that e.g. <p> tags have their closing 

</p>. The system showed up instances where the PHP structures were not delivering single whole tagged 

structures. In all the examples tested so far it has been possible (and simple) to rewrite the PHP accordingly and 

so have the system accept the updated script. 

 

The examples tested include scripts which access a database to provide data to deliver to the WML page. 

Another typical script that has been tested is the kind which can deliver either a <form> or a reply to the form 

depending on whether a Submit button has been pressed.  

 

 <html> 

 <? if(isset($Submit)){ 

  ... //construct <html> reply page based on data from <form> 

 }else{ 

  ... //draw <form> on <html> page to elicit data from user 

 }?> 

 </html> 

 

This style of scripting is quite common and the validator checks both types of <html> page in one operation. 

 

In looking for public domain scripts to test, the popular phpMyAdmin application was selected. PhpMyAdmin 

is a system written in PHP for administering MySQL databases via a web interface. The PHP source is freely 

downloadable [19]. Two 800 line scripts were tested, one (db_details_structure.php) which displays a list of 

tables in a selected database and the other (tbl_properties_structure.php) which displays the properties of a 

selected table.  

 

Testing these gave error messages from our validator which on investigation revealed instances of where a 

control structure did not deliver a complete tagged structure, e.g. 

 

 if($alternate) 
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  echo "<table><tr>...header style 1...</tr>"; 

 else 

  echo "<table><tr>...header style 2...</tr>"; 

 

This was actually placed inside a function so the structure was 

  

 output_header($alternate); 

 ...output table data... 

 echo "</table>"; 

 

By placing the building of the table data into a function it would be simple enough to change the structure to 

 

 if($alternate){ 

  echo "<table><tr>...header style 1...</tr>"; 

  output_table_data(); 

  echo "</table>"; 

 }else{ 

  echo "<table><tr>...header style 2...</tr>"; 

  output_table_data(); 

  echo "</table>"; 

 }   

 

Thus a rewrite is possible and necessary in order to have this script validated by our system. It is a matter of 

judgement whether the benefits of the validation balance the programming style enforced on the script 

programmer. 

 

While obvious limitations apply to the validator described in this paper it nevertheless is applicable to a 

significant proportion of existing scripts which form the stated target. It seems that many scripts used to 

generate WML and (x)HTML use the scripting language in a simple way. In this case 'simple' means that the 
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structure of the intended output is modelled in the structure of the script. This in turn means that, after parsing 

the script, a very simple strategy can be used to generate the expression which captures the generalised output 

of the script. This leaves the engine required to perform the generation of the expression closer to a parser than 

an interpreter. 

 

As various limitations have been found with the prototype implementation it is reasonable to ask whether any 

alternative implementation strategies are possible. Consider the middle 'simplification' process. Chuang [20] has 

used ML to validate XML using WML as an example, by exploiting the parametric module facility. Hosoya and 

Pierce [21] report on their use of ML (via CAML) as a vehicle for regular expression pattern matching for  

XML. They create CAML functions directly from a DTD which perform a 'type check' on XML data that it is 

valid against the DTD. These methods still have the restriction that their input must be XML and so do not 

eliminate the current major obstacle with the middle process. 

 

The limitations of the parsing strategy used to create tagged output from PHP scripts can only be completely 

removed by building or having access to a full PHP interpreter. Nevertheless even with these simple tools a 

validator has been built which is useful because it can fully validate a range of typical scripts. It is believed that 

this is the first attempt to build a validation tool for a script per se. 

 

Although a script has been written to generate the rules needed to augment the DTD a tool to automate the 

substitutions within the original DTD is required. It is believed that some limited variable interpolation could be 

added fairly easily which would usefully extend the range of scripts which can be validated. 

 

The validation technique that has been described (however implemented) can readily be applied to other 

scripting languages and any other target mark-up language that is specified as a sublanguage of XML via a 

DTD. 

 

APPENDIX - CHANGES TO DTD 
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For each tag (t) mentioned in the DTD five new (derived) tags  must be defined. They are t_option, t_choice, 

t_choices, t_star, t_plus.  

 

(i) t_option : the optional t in t_option can be represented by structures that yield 0 or 1 units of t 

 

 <!ELEMENT t_option ( t | t_option | t_choices )> 

 

(ii) t_choice: a t_choice structure can be represented by structures that yield exactly 1 unit of t 

 

 <!ELEMENT t_choice ( t | t_choices )+ > 

 

(iii) t_choices: each choice of a t_choices structure can be represented by t_choice 

 

 <!ELEMENT t_choices ( t_choice , t_choice ) > 

 

(iv) t_list: the elements of the possibly empty list t_list can be represented by structures that yield 0, 1 or more 

units of t 

 

 <!ELEMENT t_list ( t | t_option | t_choices | t_list | t_list1 )*> 

 

 

(v) t_list1: the elements of the non-empty list t_list1 can be represented by structures that yield 1 or more units 

of t 

 

 <!ELEMENT t_list1 ( t | t_choices | t_list1 )+> 

 

Four entities are also defined for each tag (t), being %t;, %t.opt;, %t.star; and %t.plus;. 

 

The following replacements are made within the DTD 
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 (...t...)   (... %t; ...) 

 (...t?...)    (... %t.opt; ...) 

 t* or (...| t | ...)*   %t.star; or (...| %t.star; |  ...)* 

 t+ or (...| t | ...)+   %t.plus; or (...| %t.plus; |  ...)+ 

 

The four entities are defined as follows: 

 

(i) %t; - a single tag t can be represented by structures that yield exactly 1 unit of t 

 

 <!ENTITY % t "(  t | t_choices )"> 

 

(ii) %t.opt; -  an optional tag t? can be represented by structures that yield 0 or 1 units of t 

 

 <!ENTITY % t.opt "( t | t_option | t_choices )"> 

 

(iii) %t.star; -  a possibly empty list t* can be represented by structures that yield 0 or more units of t 

 

 <!ENTITY % t.star "( t | t_option | t_choices | t_list | t_list1 )"> 

 

(iii) %t.plus; - a non empty list t+ can be represented by structures that yield 1 or more units of t 

 

 <!ENTITY % t.plus "( t | t_choices | t_list1 )"> 

 

Note: These entities can also be used to simplify the definitions of the 5 derived tags given earlier in the 

appendix. 
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