

-1-

This item was submitted to Loughborough’s Institutional Repository by the author and is made
available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288388125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

-2-

Validation of Dynamic Web Pages generated by an Embedded Scripting Language

Dr Roger G. Stone

Department of Computer Science

Loughborough University

Loughborough

LE11 3TU

email: R.G.Stone@lboro.ac.uk

tel: 01509 222686

fax: 01509 211586

-3-

Validation of Dynamic Web Pages generated by an Embedded Scripting Language

SUMMARY

This paper attempts to provide insight as to how to guarantee a statement like: My PHP script produces WML.

To expand a little, the emphasis is to ensure that a script always produces a valid WML page. The context is

where pages in a web-site are being created by an embedded scripting language (like PHP, ASP, Perl) and also

that the resulting pages are to conform to a strict tagged mark-up scheme like WML or XHTML. Although

there are validators for static pages there is nothing available to check that a page containing embedded

scripting will (always) generate valid documents. What is required is a validator for dynamic web pages.

KEYWORDS

Validation, Dynamic Web-Pages, WML, XHTML, PHP, DTD

INTRODUCTION

Ever since the world-wide web came into existence a large proportion of HTML web-sites have contained

pages with malformed HTML. However because the web-browsers have been lenient to a fault in rendering

poorly structured documents, it has not been of great concern to most web users. In more recent times, when a

large proportion of pages are being dynamically generated by various server-side scripting languages, it is still

not essential to ensure that scripts produce properly structured HTML. However with the advent of XML, and

the derived subset WML, the situation has changed. The browsers on WAP-enabled mobile phones are much

less tolerant. The pages of a WAP site must be correctly structured. In particular they must be well-formed

XML and in addition, to be valid, they must conform to the WML Document Type Definition (DTD). If a

WML site is made up entirely of static WML pages, then each of these pages can be checked for conformance

using standard validators [e.g. 1,2,3,4]. However if a page is dynamically generated then the question arises as

to how the script responsible can be checked to ensure that it always delivers valid WML.

-4-

ENSURING VALID SCRIPT OUTPUT

The problem of guaranteeing valid XML output from programs has been tackled head on in several projects

which offer completely new languages. Thus if a programmer is able and willing to learn and switch to an

entirely different language then there is a solution. New languages like JWIG [5], CDuce [6], XDuce [7] either

do not allow the programmer to generate invalid output because of the way the output is constructed via

templates or the programs created have the ability to be analysed at compile time to guarantee that only valid

documents can be constructed at run-time. JWIG is a Java-based development system incorporating the bigwig

language and thus provides safe dynamic document construction. CDuce & XDuce are programming languages

specifically aimed at manipulating XML documents and feature datatypes suited to that need including regular

expression types. Although these languages provide an attractive solution for the future, there is a legacy

problem with the vast number of existing scripted web-pages and for those who are unwilling or unable to

switch to the newer languages.

Exhaustive testing can only prove that a program generates correct output for the most trivial of programs. For

any non-trivial program the only proof possible is that the program output matches the program specification in

some way. In the context of this paper the specification of the output is that it is valid WML (or XHTML). This

is a syntactic specification. So the problem is one of demonstrating that a particular program (a script written in

PHP, ASP, Perl or similar) produces output that is correctly structured according to a particular syntax.

Now proofs of program correctness are notoriously difficult to construct and ideally we are looking for a simple

tool that can routinely be used by ordinary scripters to ensure that their scripts produce valid output. A solution

is proposed which has two stages. Firstly a notation is developed in which every possible output from a script

can be captured. Secondly a method is developed to check the notated output from the script, to decide whether

all actual output would be syntactically correct. In this paper the two stages are developed for WML or

XHTML as the mark-up language and PHP as the scripting language, although the method generalises to any

XML conformant mark-up language and any procedural scripting language.

-5-

SCRIPTED WEB-PAGES

A web-page intended to be rendered by a browser is authored as a text file and should conform to some tagged

mark-up language like HTML. In its simplest form it is referred to as a static web-page. However, if it contains

any scripting elements to be executed by the web-server before delivery to the browser, then it is called a

dynamic page. It is the validation of dynamic pages that is the subject of this paper.

There are several server-side scripting languages (PHP[8], ASP[9], Perl[10], etc.). At its simplest, a server-side

scripting language generates its output by echo or print commands. The scripted elements are often embedded

among the marked-up text so the code to generate a short WML page using PHP could look like this

 <wml>

 <?php

 echo "<card>";

 echo "</card>";

 ?>

 </wml>

In this and subsequent examples, the required '<?xml ...>' header and the '<!DOCTYPE wml ...>' header lines

are omitted for brevity. Also note that PHP code is written inside 'brackets' which can be written

 <?php ... ?>

and which can, in certain circumstances, be abbreviated to

 <? ... ?>

XML, DTDS AND WML

-6-

The context of this paper is where a script is used to deliver a page that has to conform to a strict tagged mark-

up language. A WAP site[11] based on WML pages where at least some of the pages contain server-side

scripting is an example. WML pages are XML pages which in addition conform to a Document Type Definition

(DTD). An XML page is termed well-formed if it satisfies simple rules like an end tag for every start tag and

strict nesting of tags. An XML page is termed valid if it conforms to a DTD. A DTD describes the tags that can

be used, their attributes and the content that the tags enclose.

As an example, a simplified extract of the WML DTD[12] can be shown as

 <!ELEMENT wml (card+)>

 <!ELEMENT card (p*)>

 <!ELEMENT p (#PCDATA)*>

This DTD notation can be read as follows. For a document to be a valid WML document there must be a single

wml element which must contain at least one (+) card element. Each card element may contain zero or more

(*) paragraph elements (p). Finally each paragraph element may contain an arbitrary amount of 'Parsed

Character Data' (meaning anything that is not a tagged element). The part of the DTD which defines attribute

structure is not shown.

VALIDATING SCRIPTED WEB-PAGES

Here is an example of a PHP script which contains a structured statement (a loop)

 <wml>

 <card>

 <?

 while($i<$limit){

 echo "<p> $i </p>";

 $i++;

-7-

 }

 ?>

 </card>

 </wml>

We might argue informally that, whatever the value of $limit, the result of this script is good WML because the

while-loop, when executed, will always generate paragraph tags (<p>...</p>) in pairs and that the <card> tag

accepts any number of such pairs (including none). Another way of describing this is to realise that we have

captured the output of the script using notation borrowed from regular expressions

 <wml> <card> (<p> not_a_tag* </p>)* </card> </wml>

Furthermore we have mentally 'checked' this against the WML DTD. The wml element contains exactly one

card element (1 or more is allowed) and the card element contains zero or more paragraph elements (zero or

more allowed).

VALIDATION BY TESTING

It has already been mentioned that the notion of proof by exhaustive testing is infeasible. However we briefly

consider the generation of carefully chosen test sets. Since the notation of DTD's is fairly restricted, we could

perhaps generate a test set of sample output - perhaps three samples in this case, the first with no paragraph

tags, the second with exactly one and the third with two paragraph tags. This test set could be validated using

conventional validators. If all the samples passed the validation test, some confidence would be gained that the

script would always produce valid output. But this method is unworkable for more complicated scripts where

the number of samples of output to be tested would expand factorially and still there would be no absolute

proof. So we will return to the idea of capturing the output of a script using regular expression notation and

working directly with that. For the trial implementation described in this paper validation is obtained by

formally extending the DTD to allow it to recognise the regular expression description of the generalised output

from the script.

-8-

AUGMENTING THE DTD

The point of having a rule like

 <!ELEMENT card (p*)>

in the DTD is to accept a sequence of any number of valid paragraph elements as valid content for a card. If a

script contains a loop which, on each iteration, generates a paragraph element, we wish to capture the output of

the script more like

 (p_elt)*

than as

 p_elt p_elt p_elt ...

As the environment is a tagged mark-up language, rather than use the '*' notation, it seems better to use a tag

notation. So the meta-tag <p_list> is invented with definition

 <!ELEMENT p_list (p)>

and will be used when the script emits a collection of zero or more paragraph elements via a while loop. It is

anticipated that the output from any script can be captured via such notation. If this is done then the DTD which

validates the output will need to be augmented with extra rules to accept the meta element p_list in places where

(p*) is indicated. We might augment the DTD rules for card as follows

 <!ELEMENT card (p | p_list)* >

-9-

This effect of this last rule is to allow within a card structure, any number (*) of components, each being an

individual paragraph element (<p>...</p>) or a paragraph list (<p_list><p>...</p></p_list>) which represents

the output of a loop-structure in a script.

By continuing in this way the original DTD can be augmented so that it is directly capable of accepting the

'regular expression' notation version of the output from the example script which was originally written as

 <wml> <card> (<p> not_a_tag* </p>)* </card> </wml>

but would now be rewritten as

<wml><card><p_list><p>PCDATA</p></p_list></card></wml>

Now that the basic principle has been explained by example it may be useful to check the consequences of what

has been proposed. A script is to be processed to produce an expression which represents all possible outputs

from the script. Following this the expression is to be checked by a validator using a DTD augmented by rules

involving additional meta-tags like <p_list>.

This apparently two-stage process is actually accomplished in three stages. It is convenient in the first stage of

processing the PHP to introduce less specific meta-tags e.g. <LIST> rather than <p_list>. A middle stage is

responsible for deducing the appropriate specific meta-tags like <p_list> which are then validated by the third

stage.

NOTATING ALL POSSIBLE OUTPUT FROM A PHP SCRIPT

We need to be able to process a PHP script to obtain a meta-tagged expression representing its generalised

output. It is required to build something which is more than a parser but less than a full-blown interpreter for

PHP. Primarily it should be able to recognise echo commands and deduce the resultant output and also

recognise structures like while-loops and 'encode' any output from them within meta-tags like <LIST>. Notice

-10-

that the relationship that has been exploited so far is that between the while-loop in the script and the meaning

of the "*" in the DTD. So do other similar relationships exist?

The notation of a DTD is essentially to define the content of elements via

 zero or more of a*

 at least one of a+

 option a?

 choice a|b

 sequence a,b

So far we have only introduced the <LIST> meta-tag for the "*" notation and linked it to the while-loop. The

full set of meta-tags linked to program structures are shown below where <t> stands for an arbitrary tag:

(i) a* - <LIST> - linked with the while loop:

 while(...) echo "<t>...</t>";

becomes

 <LIST><t>...</t></LIST>

and eventually

 <t_list><t>...</t></t_list>

(ii) a+ - <LIST1> - associated with the repeat loop:

 do echo "<t>...</t>"; while(...);

-11-

becomes

 <LIST1><t>...</t></LIST1>

(iii) a? - <OPTION> - associated with the short conditional

 if (...) echo "<t>...</t>";

becomes

 <OPTION><t>...</t></OPTION>

(iv) a|b - <CHOICES> - associated with the long conditional

 if (...) echo "<t>1</t>"; else echo "<t>2</t>";

becomes

 <CHOICES><CHOICE><t>1</t></CHOICE>

 <CHOICE><t>2</t></CHOICE></CHOICES>

(v) a,b - no meta-tag is needed for sequence

Based on the relationship

 for(E1;E2:E3)S = E1;while(E2){S;E3}

for loops can be treated as while loops in this context.

-12-

Now that we have extended the collection of meta-tags and looked at how they might be used, we can complete

our extension of the definition of card which was originally

 <!ELEMENT card (p*)>

and which was provisionally extended to

 <!ELEMENT card (p | p_list)* >

From a scripting point of view, the zero or more p elements that will form the content of a card can be

produced by any combination of loops and conditionals, i.e. by any combination of meta-elements which

deliver none, one or more paragraph elements. Using the complete set of meta-tags it can be seen that the rule

for p* should be further extended to allow list1, choices and option components. So the full definition expands

to

 <!ELEMENT card (p | p_option | p_choices | p_list | p_list1)* >

By contrast when we are dealing with a "one or more" rule, for example

 <!ELEMENT wml (card+) >

it would be extended in a more limited way to

 <ELEMENT wml (card | card_choices | card_list1)+ >

It is not possible to include card_option or card_list structures as alternatives as these allow empty possibilities

and would break the force of the "+".

-13-

THE MIDDLE STAGE

There are two considerations which suggest a middle stage in the process. The first, already presented, is the

post processing of the meta-tagged output to make such changes as <LIST> to <p_list>. The second motivation

comes from considering the DTD extension for rules involving repetition of "one or more" (+).

We would want sequences containing a definite card element like

 <card>...</card>

 <? while(...) echo "<card>...</card>"; ?>

which on a first pass would be converted to

 <card>...</card>

 <LIST><card>...</card></LIST>

and then to

 <card>...</card>

 <card_list><card>...</card></card_list>

to be acceptable as card+ i.e. <card_list1>. This suggests that a middle stage in the process before the extended

DTD validation should include some algebraic simplification towards a canonical form. This process would be

defined by simplification rules like

 t1 <t_list> t2 </t_list> => <t_list1> t1 t2 </t_list1>

The right hand side of this rule is to be read as "there is a sequence of one or more t structures with t1 and t2

being representative of the elements involved. By regarding the component elements as being of five types (t,

-14-

t_list, t_list1, t_option, t_choices) it is clear that there are 25 cases of this type to consider where adjacent

elements of the same type t are aggregated into a list or list1 structure. These rules are all added to the

simplifier. There are also simplification rules for nested meta-tags for example

 <t_list><t_list1>...</t_list1></t_list> => <t_list>...</t_list>

Now this coalescing of structures based on the same tag would not be safe if the DTD involved contained a rule

like

 <!ELEMENT exactly4p (p,p,p,p) >

If the simplification process found consecutive paragraph tags it would change them to <p_list1>...</p_list1>

and the DTD would not be satisfied. However inspection shows that the WML and XHTML DTDs do not

define sequences with adjacent tags the same.

There are two consequences of this simplification process for the extended rules for the DTD. The first is that,

because of aggregation, definitions like <!ELEMENT p_list (p)> must minimally be upgraded to <!ELEMENT

p_list (p*)> [but see also the appendix]. Secondly, changes made to occurrences of t* in the original DTD can

now be simplified because all sequences of tags of the same kind will be reduced to either <t_list> or <t_list1>.

The original DTD had

 <!ELEMENT card (p*)>

which was extended to

 <!ELEMENT card (p | p_option | p_choices | p_list | p_list1)* >

We can now omit the final "*" and write

-15-

 <!ELEMENT card (p | p_option | p_choices | p_list | p_list1) >

meaning that any sequence of zero or more paragraph structures will be represented either as an actual

paragraph tag, an optional paragraph tag, choices of paragraph tag, a list of zero or more paragraph tags or a list

of one or more paragraph tags. In fact the substitution chosen in practice uses the entity convention

 <!ENTITY % p.star "(p | p_option | p_choices | p_list | p_list1)" >

 <!ELEMENT card (%p.star;) >

Similar considerations apply to occurrences of t+, t? and t1|t2 in the original DTD and the substitutions are

presented in full in the appendix.

THE PROTOTYPE IMPLEMENTATION

An initial trial was carried out using PHP as the scripting language and WML and (strict) XHTML as

alternative mark-up languages.

-16-

PHP script

<p>1</p>
<?php while($q) echo "<p>2</p>";
if($t) echo "
";

via parser
constructed using YACC/LEX

<p>1</p><LIST><p>2</p></LIST>
<OPTION>
</OPTION>

via simplifier
written in prolog

<p_list1><p>1</p><p>2</p></p_list1>
<br_option>
</br_option>

meta-tagged output

canonical form

accept/reject

via prolog validator
working with augmented DTD

The 3 Stage Process

 The parser for PHP was written using LEX & YACC [13]. The DTDs for WML and XHTML are publicly

available [12,14]. The DTDs were extended by hand using the entity notation as described above. Prolog was

used as the main implementation language to prototype the middle and final stages. The meta tagged

generalised output expression is imported into prolog, simplified and then the result validated against the

(augmented) DTD. The resulting three stage process is shown in the diagram.

It is possible to create a recogniser for XML files conforming to a specific DTD using the prolog DCG system

[15]. However by using SWI-Prolog [16] advantage can be taken of the prewritten SGML/XML parser package

[17] which can both import an XML document into prolog and validate it against a chosen DTD. The XML

import works by translating a tag structure like <tag attributes>content</tag> into a prolog term with the

general structure element(tag, [attributes], [content]). The package is able to accept a DTD in its standard

textual presentation [12,14].

The simplifier needs to implement the 25 adjacency rules mentioned earlier. It is implemented in prolog and so

the rule given earlier as

-17-

 t1 <t_list> t2 </t_list> => <t_list1> t1 t2 </t_list1>

becomes

 element(tag, [attrs], [... t1, element(t_list, [], [t2]) ...])

 =>

 element(tag [attrs], [... element(t_list1, [], [t1, t2]) ...])

These replacements are made during a tree walk of the content of the root tag.

When building the parser, no official syntax for PHP was located (but see [18]). However it was easy to create a

syntax for most of the language including:

 • the full range of operators in expressions

 • the control statements

 • function declarations and function calls

 • arrays

One special feature of the compiling actions is that it is necessary to inspect structured statements to find out if

they contribute any output. Only if the statements contribute output are the meta-tags are required. To see this

consider the following extract

 while($i<10){

 echo "<p>...</p>"; $i++;

 }

 while($j<10){

 $v[$j]=0; $j++;

 }

-18-

Now the first loop (based on the counter $i) makes a contribution to the WML output and should be represented

in the output expression by

 <LIST><p>...</p></LIST>

The second loop (based on the counter $j) does not make a contribution to the WML output and has no

representation in the output expression.

The most serious omission in the trial implementation is the lack of proper interpretation of the string in the

echo statement. The correct interpretation of the PHP statement

 echo "the value of variable x is $x";

requires variable interpolation, that is the value of the variable is to be inserted in place of its name ($x). To

keep the trial implementation simple, the variable interpolation has not yet been attempted. This means that the

validator will only give the correct results if either

 • the PHP script does not use variable interpolation or

 • the only values that would be interpolated are PCDATA

Functions which contribute to the output by side effects (echo or inline tagged content) can be used. However

functions which contribute to the output by return value are not handled correctly.

LIMITATIONS OF THE VALIDATION METHOD

One consequence of this syntactic approach to validation is that the script must work within structures rather

than across them. The specific restriction is that each control structure used in the script must deliver either a

single complete tagged element or a sequence of complete tagged elements all of the same type.

-19-

Two examples of scripting style which ultimately deliver valid output, but which are unacceptable to our

validator are given. The first develops a list of tags but the loop involved generates an end tag followed by a

start tag.

 echo "<p>";

 echo "0";

 while(...){

 echo "</p>";

 echo "<p>";

 echo "1";

 }

 echo "</p>";

For any particular execution this script will result in a sequence like

 <p> 0 </p> <p> 1 </p> <p> 1 </p> <p> 1 ... </p>

which is valid. However it will be given the following meta-tags

 <p> 0 <LIST> </p> <p> 1 </LIST> </p>

Unfortunately the trial implementation uses a prewritten XML to prolog importer. Since this structure is not

valid XML it will fail the import. So although there is a potential for writing rules to 'simplify' this kind of

expression along the lines of

 ab(cab)*c => abc(abc)* => (abc)+

they cannot be used in the prototype.

-20-

It would be possible in many cases like this to re-write the script with minimal effort to achieve the same effect.

It is arguable that requiring structures in the script to generate whole tagged elements would produce an

inherently cleaner and/or clearer version of the script anyway.

The second example is where a loop generates a list of tags which are complete in themselves but not enclosed.

 echo "<p>";

 while(...){

 echo "message";

 echo "
";

 }

 echo "</p>";

The simplifier is presented with

 <LIST>message
</LIST>

and cannot find a tag name t to change <LIST> to <t_list>. In practice it has been possible in many cases like

this to circumvent the issue by using an enclosing or <div> tag within the loop.

CONCLUSION & FURTHER WORK

Initial trials have proved encouraging. The department has an intranet with interlinked sites for students and

staff. The dynamic pages are powered by PHP and MySQL. Typical scripts have been checked by the system as

described above. The WML scripts were easy to check and showed up minor problems only. There are many

quite involved HTML scripts. Representative examples of the more involved scripts have been checked. Since

they were originally written as HTML and not XHTML, the first thing that needed to be done was to make them

XML compatible. This means having closing tags for every opening tag and requires
 to be changed to <br

-21-

/> and similar changes to <hr>, <img...> <link...>, etc and making sure that e.g. <p> tags have their closing

</p>. The system showed up instances where the PHP structures were not delivering single whole tagged

structures. In all the examples tested so far it has been possible (and simple) to rewrite the PHP accordingly and

so have the system accept the updated script.

The examples tested include scripts which access a database to provide data to deliver to the WML page.

Another typical script that has been tested is the kind which can deliver either a <form> or a reply to the form

depending on whether a Submit button has been pressed.

 <html>

 <? if(isset($Submit)){

 ... //construct <html> reply page based on data from <form>

 }else{

 ... //draw <form> on <html> page to elicit data from user

 }?>

 </html>

This style of scripting is quite common and the validator checks both types of <html> page in one operation.

In looking for public domain scripts to test, the popular phpMyAdmin application was selected. PhpMyAdmin

is a system written in PHP for administering MySQL databases via a web interface. The PHP source is freely

downloadable [19]. Two 800 line scripts were tested, one (db_details_structure.php) which displays a list of

tables in a selected database and the other (tbl_properties_structure.php) which displays the properties of a

selected table.

Testing these gave error messages from our validator which on investigation revealed instances of where a

control structure did not deliver a complete tagged structure, e.g.

 if($alternate)

-22-

 echo "<table><tr>...header style 1...</tr>";

 else

 echo "<table><tr>...header style 2...</tr>";

This was actually placed inside a function so the structure was

 output_header($alternate);

 ...output table data...

 echo "</table>";

By placing the building of the table data into a function it would be simple enough to change the structure to

 if($alternate){

 echo "<table><tr>...header style 1...</tr>";

 output_table_data();

 echo "</table>";

 }else{

 echo "<table><tr>...header style 2...</tr>";

 output_table_data();

 echo "</table>";

 }

Thus a rewrite is possible and necessary in order to have this script validated by our system. It is a matter of

judgement whether the benefits of the validation balance the programming style enforced on the script

programmer.

While obvious limitations apply to the validator described in this paper it nevertheless is applicable to a

significant proportion of existing scripts which form the stated target. It seems that many scripts used to

generate WML and (x)HTML use the scripting language in a simple way. In this case 'simple' means that the

-23-

structure of the intended output is modelled in the structure of the script. This in turn means that, after parsing

the script, a very simple strategy can be used to generate the expression which captures the generalised output

of the script. This leaves the engine required to perform the generation of the expression closer to a parser than

an interpreter.

As various limitations have been found with the prototype implementation it is reasonable to ask whether any

alternative implementation strategies are possible. Consider the middle 'simplification' process. Chuang [20] has

used ML to validate XML using WML as an example, by exploiting the parametric module facility. Hosoya and

Pierce [21] report on their use of ML (via CAML) as a vehicle for regular expression pattern matching for

XML. They create CAML functions directly from a DTD which perform a 'type check' on XML data that it is

valid against the DTD. These methods still have the restriction that their input must be XML and so do not

eliminate the current major obstacle with the middle process.

The limitations of the parsing strategy used to create tagged output from PHP scripts can only be completely

removed by building or having access to a full PHP interpreter. Nevertheless even with these simple tools a

validator has been built which is useful because it can fully validate a range of typical scripts. It is believed that

this is the first attempt to build a validation tool for a script per se.

Although a script has been written to generate the rules needed to augment the DTD a tool to automate the

substitutions within the original DTD is required. It is believed that some limited variable interpolation could be

added fairly easily which would usefully extend the range of scripts which can be validated.

The validation technique that has been described (however implemented) can readily be applied to other

scripting languages and any other target mark-up language that is specified as a sublanguage of XML via a

DTD.

APPENDIX - CHANGES TO DTD

-24-

For each tag (t) mentioned in the DTD five new (derived) tags must be defined. They are t_option, t_choice,

t_choices, t_star, t_plus.

(i) t_option : the optional t in t_option can be represented by structures that yield 0 or 1 units of t

 <!ELEMENT t_option (t | t_option | t_choices)>

(ii) t_choice: a t_choice structure can be represented by structures that yield exactly 1 unit of t

 <!ELEMENT t_choice (t | t_choices)+ >

(iii) t_choices: each choice of a t_choices structure can be represented by t_choice

 <!ELEMENT t_choices (t_choice , t_choice) >

(iv) t_list: the elements of the possibly empty list t_list can be represented by structures that yield 0, 1 or more

units of t

 <!ELEMENT t_list (t | t_option | t_choices | t_list | t_list1)*>

(v) t_list1: the elements of the non-empty list t_list1 can be represented by structures that yield 1 or more units

of t

 <!ELEMENT t_list1 (t | t_choices | t_list1)+>

Four entities are also defined for each tag (t), being %t;, %t.opt;, %t.star; and %t.plus;.

The following replacements are made within the DTD

-25-

 (...t...) (... %t; ...)

 (...t?...) (... %t.opt; ...)

 t* or (...| t | ...)* %t.star; or (...| %t.star; | ...)*

 t+ or (...| t | ...)+ %t.plus; or (...| %t.plus; | ...)+

The four entities are defined as follows:

(i) %t; - a single tag t can be represented by structures that yield exactly 1 unit of t

 <!ENTITY % t "(t | t_choices)">

(ii) %t.opt; - an optional tag t? can be represented by structures that yield 0 or 1 units of t

 <!ENTITY % t.opt "(t | t_option | t_choices)">

(iii) %t.star; - a possibly empty list t* can be represented by structures that yield 0 or more units of t

 <!ENTITY % t.star "(t | t_option | t_choices | t_list | t_list1)">

(iii) %t.plus; - a non empty list t+ can be represented by structures that yield 1 or more units of t

 <!ENTITY % t.plus "(t | t_choices | t_list1)">

Note: These entities can also be used to simplify the definitions of the 5 derived tags given earlier in the

appendix.

REFERENCES/LINKS

1. W3C HTML Validator (free web service), http://validator.w3.org/

-26-

2. WDG HTML Validator (own free web service and links to other validators), http://www.htmlhelp.com/

3. CSE HTML Validator (commercial product), http://www.htmlvalidator.com

4. WML Validator, http://www.w3schools.com/wap/wml_validate.asp

5. JWIG, http://www.brics.dk/JWIG

6. CDuce, http://www.cduce.org/

7. XDuce, http://xduce.sourceforge.net/

8. Hypertext Preprocessor (PHP), http://www.php.net/

9. Microsoft Active Server Pages (ASP), http://msdn.microsoft.com/asp/

10. Practical Extraction & Report Language (PERL), http://www.perl.com/

11. Wireless Application Protocol (WAP), http://www.w3schools.com/wap/

12. Wireless Markup Language Document Type Definition (WML DTD),

http://www.wapforum.org/DTD/wml_1_1.dtd

13. YACC/LEX, Unix Programmers Manual (see also http://dinosaur.compilertools.net/)

14. XHTML Document Type Definition (Strict) (XHTML DTD), http://www.w3.org/TR/xhtml1/DTD/xhtml1-

strict.dtd

-27-

15. A Logic Programming Approach to Supporting the Entries of XML Documents in an Object Database,

Ching-long Yey, PADL 2000: 278-292

16. SWI-Prolog, http://www.swi-prolog.org/

17. SWI-Prolog SGML/XML parser, http://www.swi-prolog.org/packages/sgml2pl.html

18. PHP syntax, http://www.mare.ee/indrek/sablecc/php4.sablecc3.txt

19. phpMyAdmin - MySQL database administration tool, http://www.phpmyadmin.net/

20. Generic Validation of Structural Content with Parametric Models, Chuang, T-R, Proceedings of the 6th

ACM SIGPLAN Conference on Functional Programming (ICFP'01), ACM SIGPLAN Notices 36(10), Oct

2001

(http://portal.acm.org/ft_gateway.cfm?id=507649&type=pdf&coll=Portal&dl=GUIDE)

21. Regular Expression Pattern Matching for XML, Hosoya, H. & Pierce, B.C., Proceedings of the 28th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pp 67 - 80, 2001

(http://portal.acm.org/citation.cfm?id=360209&dl=ACM&coll=portal)

