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On the computation of the linear complexity and the c(s), while the Berlekamp-Massey algorithm only needss) bits.

k-error linear complexity of binary sequences with Thus, they are not applicable in realistic cryptographic situations”.
period a power of two The results presented in the current paper remedy this situation.
Namely, we prove in Section Ill that by suitably using the Games-
Ana Slagean Chan algorithm it is possible to compute the linear complexity of

a binary sequence, given only a finite segment af > 2c¢(s) bits

Abstract—The linear Games-Chan algorithm for computing the linear of the sequence, as long as we k_nOW that the p_erlod IS a power.of
complexity c(s) of a binary sequences of period ¢ = 2" requires the tWo (and we do not need to know in advance which power of two it
knowledge of the full sequence, while the quadratic Berlekamp-Massey is). Moreover, by suitably using the Stamp-Martin algorithm we can
algorithm only requires knowledge of 2¢(s) terms. We show that we can  compute the linear complexity of a finite sequence of lengtiewed
Imc’d'fy.the Games-Chan algorithm so that it computes the complexity in- oo o jnitial segment of an infinite sequence with period a power
inear time knowing only 2¢(s) terms. The algorithms of Stamp-Martin . . . .
and Lauder-Paterson can also be modified, without loss of efficiency, Of two, even in the case whenis less than twice the complexity.
to compute analogues of thek-error linear complexity for finite binary ~ Hence, for this particular type of sequences we obtain a linear (rather
sequences viewed as initial segments of infinite sequences with period athan guadratic) complexity algorithm with the same input and output

power of two. specifications as the Berlekamp-Massey algorithm
We also develop an algorithm which, given a constant and an infinite P P y alg '

binary sequences with period ¢ = 2", computes the minimum number ~ We cannot expect to be able to compute kkerror complexity of
k of errors (and the associated error sequence) needed over a period an infinite periodic sequence when we know less than one period of
of s for bringing the linear complexity of s below c. The algorithm has  the sequence, as we do not know how many of the errors in an error

a time and space bit complexity ofO(¢). We apply our algorithm to P - - - -
decoding andpencoding binl;ry r)épeate(d?root cygirt’:ycodes 0% length in pattern that minimises linear complexity will fall outside our known

linear, O(¢), time and space. A previous decoding algorithm proposed Portion of the sequence. What we can compute instead is an analogue
by Lauder and Paterson hasO(£(log £)2) complexity. notion of k-error complexity for finite sequences, which we define in

Index Terms— k-error linear complexity, linear complexity, repeated-  Section Il as being the minimum complexity of any infinite sequence
root codes, stream cipher. from a given class, whose initial segment coincides with the given
finite sequence on all but possibly up kopositions. This definition
fits well the cryptographic application mentioned above, and could be
used for example in looking for sequences of low complexity which

The linear complexity of a sequence (i.e. the length of thesincide with the correct sequence except for a certain percentage of
shortest recurrence relation, or Linear Feedback Shift Register whiglg positions in any initial segment.

generates the sequence) is a fundamental parameter for virtually aI|In Section |1l we also show that by suitably using the Stamp-Martin

applications of linearly recurrent sequences. algorithm, thek-error linear complexity of a finite binary sequence,
Computing the linear complexity(s) of a linearly recurrent \o\yeq as an initial segment of a sequence of period a power of

sequence over a field needs in general quadratic time (Berlekam@wO can be computed iO(¢) time, wheret is the length of the

Massey algorithm, [1], [2]). For the particular case of binary Sinite sequence. The error linear complexity spectrum of such a finite

quences with period a power of two, Games and Chan devised s%?quence can be computed @n(log £)?) time, by suitably using
algorithm with linear time and space bit complexity, [3].

The k-error linear complexity of a periodic sequeneef period . o
: o . . . However, the cryptographic applications of our results are more
N is the minimum linear complexity that can be obtained f§doy . . . . ) o
. . . o limited than it may look at first sight. This is due to the fact that
modifying up to k& terms in one period (and modifying all other . . .
sequences with periods a power of two are relatively weak from the

periods in the same way). This notion was defined in [4] and IS. ;
. ) . ; int of view of the number of terms needed to recover the whole
closely related to previously defined notions of sphere complexity [ . o .
sequence, see the discussion in Section IV.

and weight complexity [6]. ! ) )

The Games-Chan method has been extended by Stamp and Martiff} Section V we develop and algorithm which computes the
[4] to computing thek-error linear complexity of a binary sequenceMinimum number of errors that need to be made in one period of a
with period a power of two, still in linear time. Further, Lauder andinary sequence of period= 2" in order to bring the complexity
Paterson, [7], showed that the whole error linear complexity spectrith the sequence below a given value. In other words, for a given
(i.e. thek-error complexity for each value @) of a binary sequence ¢ It cOmputes the minimuni such that thek-error complexity of
of period ¢ = 2" can be computed i (£(log £)2) time. the sequence is no greater thar_llt Wlll al_so compute one error

An important application of computing the linear complexity angeduence for which this complexity is achieved. Our algorithm uses
k-error linear complexity appears in cryptography. If a sequencet%Chn'q“es similar to the Stamp-Martln AIgorlthm and to the so ca_lll_ed
used as a keystream in a stream cipher, an opponent interceplifig!!luP @nd B-pullup constructions of [7]. We include the explicit
part of the sequence will want to recover the whole sequence, ttfigorithm as Algorithm 5.1 and give its detailed bit complexity
breaking the cipher. If this is not possible, they might hope to at lea¥talysis, showing that the time and space complexities(a6).
determine a sequence which coincides with the correct sequencé\ifoarser estimation in [7] gives @(¢log () rather thanO(f) bit
all but a “small” number of positions. complexity for the Stamp-Martin algorithm.

The initial motivation of our work comes from a remark in [7], While our algorithm is interesting in its own right, the main
pointing to the fact that all the above mentioned efficient algorithnigotivation comes from its applicability to coding theory. Binary
for binary sequences with period a power of two “suffer from the fagepeated-root cyclic codes of length= 2" were introduced in [8].
that they require as input an entire period of a sequerioecompute They are subcodes of Reed-Muller codes and a majority logic

decoding is proposedoc. cit. Lauder and Paterson, [7], apply their

The material in this correspondence was included in part in a paper acce%ﬁjjorithm to decoding these codes@{¢(log ¢)?) time. We improve

for the International Symposium on Sequences and Their Applicatio ; . . .
SETA04, Seoul. South Korea, November 2004. 'Bh their result, by showing in Section VI that Algorithm 5.1 can be

The author is with the Department of Computer Science, Loughboroul§€d for encoding and decoding binary repeated-root cyclic codes in
University, UK (e-mailA.M.Salagean@Iboro.ac.uk ) linear time.

I. INTRODUCTION

the Lauder-Paterson algorithm.



Il. NOTATION, DEFINITIONS AND KNOWN RESULTS The error linear complexity spectrum of a sequence Py is de-
Jingd as the set of paifs(k, ¢k, v (5))[0 < k < wt((so,...,snv-1)}-

The Lauder-Paterson algorithm, [7], computes the error linear com-
S%I_exity spectrum of any binary sequence with peribeg= 2". The

bit complexity of the algorithm i€ (¢(log £)?). Again, one needs to
ow the full sequence in order to apply the algorithm.

One can also defing-linear complexity for costed sequences,
following [4], [7]. For a sequence € Py , a cost vectorost € R

and a real numbek, the k-error linear complexity of the costed
A. Infinite sequences sequence is defined as:

We denote bys the set of all (infinite) _Iir?ear_ly recurrent SEQUeNCes ¢, (s, cost) = min{c(s + ¢)|e € Py, Z costli] < k}.
over[F,. Note that for sequences over finite fields the following three 0<ic N ei£0
notions are equivalent: periodic, recurrent and linearly recurrent. (2)

Let s € S, s = so0,51,52.... We will say that a polynomial The usuak-error complexity of a (non-costed) sequence corresponds
fEFz], f = 2™ +am-_12™ ' +---+ a1z +ao is anannihilator to the k-error complexity of the same sequence with an associated
polynomial for s if s satisfies the linear recurrence given by theost vector in which all entries equal 1.
coefficients off i.e. sitm +am—18i4tm-1+---+ai18i+1+aos; =0 As noted in [7], the Stamp-Martin algorithm can be adapted to
for i = 0,1,2,.... The annihilator polynomials of form an ideal compute thek-error linear complexity of costed sequences with
in F2[z], denotedAnn(s). The monic annihilator polynomial of period¢ = 2" i.e. to computecy on (s, cost). If the entries of the
minimal degree is unique and is called ttlearacteristic polynomial cost vector are bounded by a constat then the complexity of the
of s. We will denote it byo (s). Note thato(s) generates\nn(s). The algorithm will be O(¢log M) (see Theorem 5.4 below).
linear complexity ofs is the degree of the characteristic polynomial
and will be denoted by(s). B. Finite sequences

Denote by Py the set of sequences if of (not necessarily  We will define now the notions of linear complexity akeinear
minimal) period N. If s € Py thenz® — 1 € Ann(s) and complexity for finite sequences. The finite sequences will be viewed

We first recall some basic facts on linearly recurrent sequences
establish the notation and definitions used in the paper.

Throughout the paper we work with binary sequences, i.e.
quences over the finite fielff.. Most of the facts and definitions
below work for sequences over any finite field, but we will nan
consider them here.

o(s)|z™N — 1. as initial segments of infinite sequences from a certain set of infinite
In this paper we will concentrate on sequences that admit as perigstiuences. More precisely, let= (29, 21, ..., 2:—1) € F5 be a finite

a power of two. We will denote by the set of binary sequencessequence of length > 1 and A C S a set of infinite sequences.

with period any power of two, i.67 = U2 Pyi. The linear complexity ot in A, denotedc(z, A), is defined as the
Using the fact that ifF2[x] we havez®” —1 = (z —1)?" for any minimum linear complexity of all sequences i which havez as

n we immediately obtain the following result: an initial segment i.e.:

Proposition 2.1: Let s € 7. The linear complexity ok equalsc
if and only if the characteristic polynomial afis (z — 1)°.
Hence for sequences with period a power of two, knowing theor any sequence of periodV, s € Py we have
linear complexity is tantamount to knowing the characteristic poly{(so, s1,...,sn-1), Pnv) = c¢(s) as s is uniquely determined
nomial. Note that this is not the case for sequences of arbitrary periog its first N elements.
N; sequences of same complexityan have different characteristic It is well known that one can determine the characteristic polyno-
polynomials ifz™ — 1 has several divisors of degree mial of a sequence € S once at leasc(s) successive terms of
The Games-Chan algorithm, [3], computes the linear complexigye known. We have therefore:
for any binary sequence with period a power of two, i.e. for any Proposition 2.2:If s € A and t > 2¢(s) then
s € Pan it computesc(s). The whole sequence needs to be knowr((so, - .., s¢—1), A) = c(s).
i.e. we need to know a (not necessarily minimal) pertog 2™ of The Berlekamp-Massey algorithm, [1], [2], computes the linear
the sequence an2® consecutive terms of the sequence. The timeomplexity of finite sequences, i.e. it computés, S) for any finite
(bit operations) and space complexity is linear in the pefiad the sequencez € F5. Equivalently, one can think of this algorithm
sequence. as computing the linear complexity(s) of an infinite sequence
We now define thé:-error linear complexity as in [4]. Let € Py s knowing only the first2c(s) terms of the sequence. Note the
and letk > 0 an integer. Denote byt( ) andd( , ) the Hamming algorithm is not restricted to sequences of a particular given period.
weight and the Hamming distance, respectively. Fherror linear The complexity of the Berlekamp-Massey algorithm is quadratic in
complexity of s as a sequence of peria¥l, denoted bycx, v (s), is  the lengtht of the finite sequence.
defined as the minimum complexity thaican have after modifying ~ Next we will extend the definition ok-error linear complexity to
k bits of a period: finite sequences. As before, let= (z0,21,...,21-1) € F5 be a
finite sequence of length > 1, A C S a set of infinite sequences
ck,n () = min{c(s + e)le € Pv, wt((eo, e1,...,en—1)) < k}. and k£ > 0. Intuitively, there are two ways of defining thieerror
@) linear complexity ofz in A. One is to define it as the minimum
The Stamp-Martin algorithm, [4], computes tkeerror linear com- |inear complexity of all infinite sequences i which coincide with
plexity for any binary sequence with period a power of two, i.e. for oy aj| except up tdk of the firstt positions. The other is to define
anys € Pon it computescy, o« (s). As in the Games-Chan algorithm, jt a5 the minimum linear complexity it of any finite sequence of
the whole sequence needs to be known and the time (bit operatiopg) same length asand which differs from: in at mostk positions.
and space complexity of the algorithm is linear in the pefiod 2" |t js easy to check that these two notions are equivalent, so we can

of the sequence. We stress the fact that the number of bit operationgdfine thek-error linear complexity ot in A, denotedcy (z, A), as:
the Stamp-Martin algorithm is indeed linear. The complexity estimate

O(f1og £) in [7] is too coarse, and the actual number of bit operations ¢+ (2, 4) = min{c(z + e, A)le € F, wt(e) < k} 4)
is O(¢), see Theorem 5.4. = min{c(s)|s € A,d((so,s1,...,5t-1),2) < k}.

c(z,A) = min{c(s)[s € A,s; =z fori=0,...,t —1}. (3)



Again, for any sequence of perio&, s € Px we have cg(z,7),thek-error linear complexity ok. In particular, fork =0

ck((s0,81,-..,8N-1), Pn) = cg,n(s), ass is uniquely determined we obtain the linear complexity of, c(z,7), regardless of whether
by its first N elements. this complexity is below half the number of terms of or not.
Similarly one could define th&-error linear complexity of costed The resulting algorithm obviously runs i@(¢) time and is thus a
finite sequences, but we will not need it here. more efficient alternative to the Berlekamp-Massey algorithm for the
particular class of binary sequences with period a power of two.
. COMPUTING THE LINEAR COMPLEXITY AND k-ERROR By appl;cing the_ Lauder-Paterson alggrithm to the 2same costed
LINEAR COMPLEXITY FOR FINITE SEQUENCES sequences’ described above we obtain a®(t(logt)”) algo-
rithm for computing the full error linear complexity spectrum
In this section our goal is to develop algorithms which COMPULE %, ¢, (z, T))|k = 0,1,...,wt(2)}.

the linear complexity and thé&-error linear complexity of a finite

sequence viewed as an initial segment of a binary sequence with

period a power of two (we do not need to know which power though).
Note that any infinite sequencec 7 will have period2® where Let us brigﬂy look '?lt the cr.yptographif: significance of our rgsults.

v is minimal such that(s) < 2°. Hence if we know at leastc(s) 1he scenario we will consider here is that we have a linearly

terms of s, we know in fact a whole period of the sequence, i.e. wkecurrent binary sequence (used in a stream cipher, for example) and

IV. CRYPTOGRAPHIC CONSEQUENCES

know the whole sequence. a cryptanalyst is attempting to recover the whole sequence given only
Theorem 3.1: Let z = (z0,21,...,2-1) € Fb be a finite @ Short” finite segment of the sequence. _ ,
sequence of length> 1. Defineu = [log, ¢] and define the infinite  Berlekamp-Massey algorithm allows them to do so, in quadratic
sequences’ of period2* as follows:s; = z; for i = 0,1,...,¢ — 1 time, once a segment of Iengt_h equ_al to twice the complexity is
ands, = z,_yu_1 fori=tt+1,...,2* —1. Then knowr_l. For_ binary sequences Wlth period a power of two, the met_hod
) If c(z,T) < % thenc(z, T) = c(s). described in the_ previous section allows the _cry_ptanalyst tp achleye
(i) If c(z,7) > % thenc(s') > % the same goal in linear rather than _quadratlc time, _knowmg again
Proof: By the definition (3) ofc(z, T), there is a sequence ONIY @ segment of length equal to twice the complexity. _
s €T such thats; = z; for i = 0,1,...,t — 1 ande(s) = c(z, T). However, note thgt if it is known that the sequence has as peno_d a
By construction2“~! < ¢ < 2v. power of two, knowing a segment of length equal to the complexity

(i) Since c(s) = e(2,T) < % <oul (g — 1)2%1 . (rather than twice thg cpmplexity) allows acryptaqalyst to recover the
whole sequence. This is due to the fact that in this case knowing the

complexity is equivalent to knowing the characteristic polynomial,

see Proposition 2.1. All a cryptanalyst would do is, given a segment

(i) From (3) we haver(s') > ¢(z, T), soc(s') > L. of ¢ terms of the sequencg assume thatx — 1)* is an annihile_ltor
The theorem above can be used for computing the linear compl@ynomial for s and computetthe rest of the sequence using the

ity of a finite sequence as follows. For a finite sequenaf length INear recurrence given biy: —1)". If the complexity of the sequence

¢, viewed as an initial segment of a sequence of period a pOV\)g s indeed no greater thanthey would get the correct sequence.

of two, we set up (in linear time) an infinite sequendeof period Hence, the class of sequencgs W'th,per,'c’d a power of t‘,NO doe; not
seem suitable for cryptographic applications from this point of view.

is an annihilator polynomial fos. Hences has period2“~! i.e.
si = 8;_ou—1 for all i > 2%"! and in particular for > t. It is now
easy to check that = s’ soc(z,7) = c(s').

2Mee2t1 a5 in Theorem 3.1. We then compute’) using the Games-
Chan algorithm. If the result is at mogt we output it asc(z, 7).
Otherwise we output a message “complexityzofjreater than half V. COMPUTING THE MINIMUM & TO ACHIEVE A GIVEN k-ERROR

the number of terms”. This scenario may be useful when we actually COMPLEXITY

want to compute the complexity of an infinite sequerder which In this section we modify the Stamp-Martin algorithm so that for
we know only the first terms. We know by Proposition 2.2 that thea given infinite periodic sequence of periédd= 2" and a given
complexity of the finite sequence is only guaranteed to give us themplexity c the algorithm outputs the minimum number of errérs
correct result for the infinite one if it is below half the number oheeded so that the linear complexity of the sequence equals or falls
terms. below c. The corresponding error sequence is also computed.

We may however want to compute the exact value(ef 7) even The general idea is that while the Stamp-Martin algorithm starts
if it turns out to be higher thart. This, as well as thes-error with a numberk of allowable errors and “forces” as many errors and
complexity can be computed using the theorem below. The maig early in the algorithm as possible in order to obtain the lowest
idea is that if we expand the finite sequence to an infinite periodd@mplexity possible, our algorithm will “force” as few errors and as
costed sequence such that the new terms of the sequence are arbiksgeyin the algorithm as possible, and only when absolutely needed
but have zero cost, then any changes to the new terms will not coimtorder to ensure the complexity stays no greater than the target
towards thek errors, only the changes in our original finite sequenagomplexity c.
will count. Since we also want to compute the error pattern (rather than just

Theorem 3.2: Let z = (z0,21,...,2¢—1) € F5 be a finite the number of errors) which brings the complexity obelow our
sequence of lengthh > 1. Defineu = [log,¢] and define the targetc, we have to also keep track of the positions of the errors.
infinite costed sequence’ of period 2" as follows: s; = 2; Algorithms for computing the error pattern are described in [7], [9].
and cost[i] = 1 for ¢ = 0,1,...,¢ — 1 and s; have arbitrary For our algorithm we will use a method similar to the so-called
binary values andwost[i] = 0 for ¢ = t,t + 1,...,2* — 1. Then pullup andB-pullup of [7], but in a more compact and efficient form.
ck(2,T) = cp,ou(s’, cost) forall k = 0,1,...,wt(z). In particular, Namely, we avoid the need of examining the cost vectors again (hence
c(z,T) = co,2u(s’, cost). we can safely overwrite them) and we use bitwise XOR and AND for
The proof is straightforward. a further increase in efficiency and compactness of the formulation.

Hence by setting up (in linear time) an infinite costed sequahce As in the Games-Chan and Stamp-Martin algorithms, at each step
of period2/°82t! as in Theorem 3.2 and then applying the Stamp = 0,...,n—1 we work with a sequence of period2™ 7. We split
Martin algorithm to COMPULE, »f1og, +] (s, cost) we obtain in fact the sequence up into the left and the right halind R, and construct



a new sequence of period 2™~ which will be processed at the error[j][i] — 1

subsequent step. We will use a two-dimensional aerayr to keep else

track of the errors that need to be made to the current sequence. A costli] « costli + £]; error[j][i + €] «— 1
vector flag will contain flags such thaflag[j], forj =0,...,n—1 endif

will signal if we decided to introduce or not errors in the sequence  endfor

at stepj. The rowerror[j], containing binary values, will give the endif

positions of the errors for stepin the case we do need to introduceendfor

errors, or in the case we do not, the positions where errors should- 0

be introduced, should it become necessary later. Only the entrieso = 1 then

error[§][0], . .., error[§][2"~7 — 1] will be used for eacly, so the if ¢ +1> cor cost[0] =0 then
two-dimensional arrayrror can in fact be stored efficiently as a k' — k' + cost[0]
one-dimensional array 02;.:01 on=d = 9n+1 _ 9 hits. We use the e+—1

two-dimensional array representation for expository purposes only. elsec’ « ¢ +1

An explicit algorithm is given below. We tried to keep as close as ?”dif
possible to the original formulation of the Stamp-Martin algorithm‘?nd'f
To avoid confusion with the notation of the Stamp-Martin algorithnfOr 7 = n — 1 downto 0 do
here we usé’ for the current number of errors artifor the current e — duplicatee)
value of the linear complexity of the sequence. To allow for extra if flaglj] =1 then e — e XOR error(j]
flexibility, we work with costed sequences. If the input sequence is ©lS€¢ — ¢ AND errorj]
not a costed sequence, the cost vector is initialised by setting all endif

entries to the value 1. endfor
return(e)

end
The function duplicate simply duplicates a binary string, i.e.
Input: 7, ¢, s, cost o concatenates it with a copy of itself. The XOR and AND operators
wheren, c are positive integers, are bitwise operators between binary strings of equal lengths.
5= (50,51,...,52-1) iS @ sequence of peric2l" given by  Theorem 5.2: Algorithm 5.1 is correct.
its first 2" terms andcost € R*" is a cost vector Proof: As in [4], [7] it can be seen that the cost vector is
Output:e, a sequence of peric@f® given by its first2™ terms, updated at any step so thatst[i] reflects the cost of changes in the

Algorithm 5.1: (Computing a sequenceof minimum cost such
thatc(s +¢) < ¢)

wheree is of minimal costhigl eicost[] such that original sequence in order to change the current elementwithout
c(s+e)<ec disturbing the results of the previous steps.
begin We prove by induction om that the quantityk’ computed in

a—s 02" —0, K «0,
for j=0ton—1do

Algorithm 5.1 is indeed minimal such thaf; on (s, cost) < c. For
n = 0 this can be readily verified. We assume the algorithm works

flag[j] <0 _ correctly forn — 1 and prove that it works for.. We consider the
for i=0to 2" —1 do error[j][i] — 0 endfor first run of the mainfor loop, whenj = 0. We denote by:(®) and
endfor cost¥ the values of the variables and cost at the beginning of

the first run of thefor loop, and bya¥ and cost) their values
at the end of the first run. The quantiiy represents the minimal

for j=0ton—1do
L—1/2 % now /¢ =29t

L=apai...ap-1; R= ApQp4+1 . ..QA20—1,
b—L+R

T « Y422 bi min(cost[i], cost[i + £])

if T=0o0rc +¢>cthen

K —k+T

flag[j] <1

fori=0to/—1do
if b; =1 then

if costli] < cost[i + ¢] then
a; — R;; cost[i] < cost[i + £] — cost[i];
error[j[i] — 1
else
a; < Lj; cost[i] « cost[i] — cost[i + ¢;
errorfjlli + 4] — 1
endif
else
a; < L;; costli] < cost[i] + cost[i + ]
endif
endfor
else
c—cd+4
fori=0to£—1do
a; — by
if costli] < cost[i + ¢] then

cost of making changes in the current sequeti@e such as to make
its left half, L be equal to its right halfR. The ‘if T = 0 or
¢ + ¢ > ¢ will decide whether we make these changes or not. If
T = 0, we obviously should make these changes, as they decrease the
complexity of the sequence at no costclf-¢ > ¢, i.e.2" 7 > ¢ (as
¢ =0and¢ =2""1 at this point), it means”) has to be changed
so that it has perio@™~* or less. Hence we do have to foréeto
be equal toR. We are left with the case whefi > 0 but 2" ™! < c.
Not doing changes in this case will mean that we &dd* to the
current valuec’ of the complexity and then process the sequence
aM = b, effectively computing’ as the minimal quantity such that
Cpr an—1(aM, cost™) < ¢ — 2771, By the induction hypothesis,
the algorithm computes thig’ correctly. Note thafl” is exactly the
minimum cost of changing all entries efY) = b to 0, i.e. the
minimum cost of reducing the complexity of" to 0. Hencet’ < T.
This means that not doing changes at this step is guaranteed to lead
to a final cost no grater than the cost of doing changes at this step,
while still keeping the complexity below the target

The correctness of the computation of the error pattern follows
from the correctness proofs of the so called L-pullup and B-pullup
constructions in [7]. One can show théiplicate(e) XOR error(j]
and duplicate(e) AND error[j], with error[j] computed as in the
algorithm above, are in fact equivalent, more compact expressions
for the L-pullup and the B-pullup of an error pattezn [ |



Example 5.3: We consider the sequeneseof period 16 given by each entry having a bit length of at mgs#- 2 (or log, M + j + 2
one periodl011 0111 1011 0110. We will compute the error pattern for costed sequences). The total space taken by the vectoris
which makes the complexity of this sequence be at most 5. We apgfy+ 2)2" 7 < 2771277 = 27+ hence linear ir2" (respectively
Algorithm 5.1 tos, with n = 4, ¢ = 5 and the cost vector having all (log, M+;j+2)2""7 < 2"(log, M +2) henceO(£log M) for costed
entries intialised to 1. The values of the strimgluring the algorithm sequences). As mentioned earlier, the matrixor hasn rows but
will be: @ = 1011 0110, @ = 1101, @ = 01 anda = 1. The values in row j only 2”7 entries are used, with = 0,...,n — 1. So we

of error(j] will be error(0] = 0000 0001 0000 0000, error[l] = only needy "~ 2"~/ = 2"*! — 2 bits. [ |

1110 0001, error[2] = 1000, error[3] = 10 and the flags will

be flagl0] = 1, flag[l] = 0, flag[2] = 1, flag[3] = 1 . The VI. DECODING REPEATEBROOT CYCLIC CODES

values ofe before each run of the finddr loop will be 0, 10, 0010, Repeated-root binary codes with length a power of two have been

0010 0000, and finallye = 0010 0001 0010 0000. We also have introduced in [8]. It is shownloc. cit., that these codes are subcodes
k' = 3 andc¢’ = 5 at the end of the algorithm. It can be verifiedof Reed-Muller codes, and it is proposed that they be decoded
that the sequence+ e = 1001 0110 1001 0110 has characteristic by majority logic, just like the Reed-Muller codes. An alternative
polynomial (z — 1), i.e. it has indeed complexity 5. decoding algorithm with bit complexit¢)(¢(log £)?), wherel = 2"
We now examine the complexity of the algorithm: is the length of the code, is proposed in [7]. In this section we develop
Theorem 5.4: Let s be an infinite binary sequence of perioda linear, O(¢), decoding algorithm for these codes. We show that
¢ = 2". The time bit complexity and the space bit complexity okncoding can also be achieved in linear time.
Algorithm 5.1 and of the Stamp-Martin algorithm are line@¢). As usual, a binary cyclic code of lengthcan be viewed as an
If the sequence is costed and the initial cost vector entries are idibal inFo[z]/(x* —1) and is generated by a divisor of — 1. When
integers of absolute value at masf, the time bit complexity and ¢ = 2" we havez’ — 1 = 22" — 1 = (z — 1)?", so the generator
the space bit complexity of Algorithm 5.1 and of the Stamp-Martipolynomial is of the form(z — 1)9 for someg. Alternatively, a

algorithm areO(¢log M). codeword of lengtlf can be viewed as a an infinite sequence of period
Proof: We prove the Theorem for Algorithm 5.1; the proof for¢, with the codeword being equal to one period of the sequence. If
the Stamp-Martin algorithm is similar. C is a code with generator polynomigl a sequence of period/

We first assume the sequence is not costed, so the cost veetpresents a codeword ifi iff the reciprocal of (z* — 1)/f is an
is initialised with all entries equal to 1. The initialisation ¢fag annihilator polynomial fors. For ¢ = 2™ this means that a sequence
anderror have complexity equal to the size of these arrays, whichof period/ represents a codeword @@ = ((x — 1)) iff (z—1)*"9
is linear in2™ (see the space complexity analysis below). At eads an annihilator polynomial fos, which in turn happens ifé has
execution of the mairfor loop the values of the vectawst are at complexity at most, wherec = ¢ — g.
most doubled, so their bit length is increased by 1. This means that aHence to decode a received vectgrviewed as a sequence of
the j-th execution of thdor loop the bit length of the entries of the period ¢, we have to find the error patter of minimum weight
vectorcost are changed from at mogt+ 1 to at mostj + 2. Inside  such that-+e € C, i.e.r + e has complexity at most. This means
the mainfor loop, the inneffor loops run fori = 0,1,...,¢—1. For we have to find the minimurk such that the:-error complexity ofr
eachi there is one manipulation (addition, subtraction or comparisois) at mostc i.e. c; ¢(r) < . In [7] this is achieved by computing the
of entries in the vectotost, so there are at mogt-2 bit operations. full error linear complexity spectrum of and picking up the smallest
Hence in total, there argj + 2)¢ = (5 4+ 2)2"7?~! bit operations valuek for which c .(r) < c.

during thej-th execution of the maifor loop. In total the mairfor We show that we could instead use Algorithm 5.1 for decoding,
loop performs and also for encoding these codes.
. Theorem 6.1: Binary repeated-root cyclic codes of lendtk= 2™
Z(j p2)2n il =3.2" 3 (5) can be encoded and decoded in linear time and space.

Proof: Let C' be the code consisting of sequences with pefiod

and complexity at most. For decoding a received vectorobtained
bit operations, which is linear ig". by transmitting the codeworsl with error e, we apply Algorithm 5.1

If the sequence is costed, then the entries of the cost vector hgyethe inputsn, c, » and a cost vector with all entries initialised to
initially a bit length oflog, M and at thej-th execution of thdor 1 The outpute gives the error, i.er + e is the corrected codeword.
loop their bit length is changed from at mdsk;, M +j+1toat For encoding, note that the code has dimenslbnA message
mOSthggM +j + 2. The sum (5) become} "~ (logo M +j + 1, € FS can be systematically encoded as the unique sequence
2)2"7 7 = (2" = 1) logy M +3-2" —n -3, which isO(flog M).  of period ¢ whose firstc symbols coincide withn and which has

As a side remark, we note that, while full details are not giveannihilator polynomialz —1)¢. To compute this sequence we could
in [7] regarding theO(¢log¢) claim for the bit complexity of the simply apply the recurrence relation given gy — 1)¢ with the
Stamp-Martin algorithm, we suspect this stems from a too coargftial terms given bym. However, this would yield ai®(c(¢ — ¢))
estimation for (5) along the lin€s,'_ (J+2)2" 7l < > (n+ algorithm i.e. a quadratic algorithm in general. Instead, we will again
1)2" I = (n4+1)(2" - 1), WhICh would then suggest(a(f log¢) use Algorithm 5.1, thus encoding in linear time. Namely we initialise
complexity. a sequence’ by puttings; = m; andcost[i] = 1fori =0,...,c—1

The lastfor loop, which computes the value of the errgrruns and s; having arbitrary values anebst[i] = 0 for i =c,..., £ — 1.
for j = n — 1 downto0 and for eachj it performs a bitwise XOR We run Algorithm 5.1 on the inputs, c, s’, cost and obtain an error
or a bitwise AND between two bitstrings of leng®#~7. Hence in vectore. Note that in this case the error vector will always have zero
total thisfor loop performsz“ 1 on=J = on+l _ 2 pit operations, cost. The encoding sequence for the messageill be s’ +¢. ®
which again is linear ir2". Example 6.2: We consider the code” = ((z — 1)) €

We now look at the space complexity. The bit arrayd., R,b  Fa[z]/(2'® — 1). This code can also be viewed as consisting of all
have length at mos2™ at all times. The entries of the arrayst periodic sequences of period 16 which have complexity at m®st
increase in size, but fewer and fewer are used. Namely, during-thell = 5. Let us first encode a message of length 5, say- 10010.
th execution of the maifor loop, we use onl2¢ = 2-2"~7~! entries, We apply Algorithm 5.1 to the sequense= 1001 0000 0000 0000,

J=0



n = 4, ¢ = 5 and a cost vector with the first 5 entries set to 1 and9] T. Kaida, S. Uehara, and K. Imamura, “Computation of therror linear

the remaining 11 entries set to 0. The values of the stiirduring
the algorithm will be:a = 1001 0000, a = 1001, a = 11 anda = 1.
The values oferror[j] will be error[0] = 0000 0000 1001 0000,
error[1] = 1000 0111, error[2] = 0110, error[3] = 00 and the
flags will be flag[0] = 1, flag[l] =0, flag[2] =1, flag[3] =1 .

complexity of binary sequences with peri@®,” in Concurrency and
Parallelism, Programming, Networkinger. Lecture Notes in Computer
Science, R. Yap, Ed., vol. 1179. Springer Verlag, 1996, pp. 182-191.

[10] ——, “An algorithm for thek-error linear complexity of sequences over

GF(p™) with period p™, p a prime,” Inform. Comput. vol. 151, pp.
134-147, 1999.

The values ofe before each run of the findbr loop will be 0, 00,
0110, 0000 0110, and finallye = 0000 0110 1001 0110. We also
havek’ = 0 andc¢’ = 5 at the end of the algorithm. It can be verified
that the sequence = s’ + e = 1001 0110 1001 0110 has indeed
linear complexity 5 so it is a codeword.

Next assume the codeword above is received as =
1011 0111 1011 0110, i.e. with three errors. To decode we apply
Algorithm 5.1 tor, with n = 4, ¢ = 5 and the cost vector
consisting of all 1's. As in Example 5.3, we obtain the ereoe=
0010 0001 0010 0000, and one can verify that this gives the correct
decoding, i.er + e = s.

Lauder and Paterson note that their decoding algorithm will also
be suitable for soft decoding, by settiago be a hard decision binary
version of the received word and setting each entry in the cost vector
to a real value corresponding to the “reliability” of the corresponding
0/1 value in the received word. Our Algorithm 5.1 can be used for
soft decoding in a similar way.

VII.

The Games-Chan and Stamp-Martin algorithms have been ex-
tended to sequences ovBp~ with period ¢ = p™, wherep is a
prime in [10], [5].

It is natural to ask if the results of this paper can be extended
to such sequences when> 2. Theorem 3.1 does not hold in this
setting. This can be seen from the fact that a sequenceer F,
with period a power op will have as minimal periogh” wherev is
minimal such that(s) < p¥. Having 2c(s) terms of the sequence

does not necessarily mean we have a full period, as we may still hA\R® Sdlagean Ana Silagean is currently a Lecturer in the Department of
v Computer Science of Loughborough University, UK. She has previously
2¢c(s) <p’if p>2.

. held positions at Nottingham Trent University and University of Britol, UK
Theorem 3.2 on the other hand, does hold for arbitpatjence we and at University of Bucharest, Romania. She graduated from Univeristy
can use it in conjunction with the algorithms of [10], [5] to comput®f Bucharest, Romania and holds a PhD from J. Kepler University, Linz,

the complexity and:-linear complexity of finite sequences oV, Austria. Her research interests are in coding theory, symbolic computation
viewed as initial segments of infinite sequences with pefiedp™. ~2Nd cryptography.
We expect that the algorithms of [10], [5] fgg > 2 could
be modified along the lines of Algorithm 5.1 and then applied to
encoding and decoding repeated-root cyclic codes @yer with
lengthp™.

EXTENSION TO p-ARY SEQUENCES
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