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On the isometries between Zpk and Zkp �Ana S�al�agean{Mandache yFebruary 1, 1999
AbstractWe prove that, except for the well-known case p = k = 2, it is not possible to construct aweight function on Zpk for which Zpk is isometric to Zkp with the Hamming metric.Keywords: Hamming metric, isometry, Gray map.The Gray map � from Z4 to Z22 is de�ned by �(0) = 00, �(1) = 10, �(2) = 11 and �(3) = 01. It isan isometry between Z4 with the Lee metric and Z22 with the Hamming metric. This fact playedan important role in proving that many important non-linear binary codes are in fact the imagesunder the Gray map of linear codes over Z4 (see [3] and the references therein). The minimum Leedistance and the Lee weight enumerator of a Z4-linear code equal the minimum Hamming distanceand the Hamming weight enumerator of the binary image of the code under the Gray map. Thisexplained the formal duality of certain pairs of non-linear binary codes that turned out to be theimages of dual Z4-linear codes.Let p � 2 be a prime and let k � 2. The existence of a weight on Zpk for which Zpk is isometric toZkp with the Hamming metric would allow the construction of not necessarily linear codes of lengthkn over Zp with the same minimum Hamming distance and Hamming weight enumerator as the�Research supported by the U.K. Engineering and Physical Sciences Research Council under Grant L07680.yAlgebraic Coding Research Group, Centre for Communications Research, University of Bristol, U.K.,e-mail :Ana.Maria.Mandache@bristol.ac.uk 1



minimum distance and the weight enumerator of Zpk-linear codes of length n.We prove that such a weight and isometry do not exist except for the case p = k = 2 discussedabove. (We excluded the trivial case k = 1 from the start). A similar result for the Lee metricon Zkp instead of the Hamming metric is proved in [4] by determining the symmetry group. Ourproof is elementary. For codes over Zp, the commonly used metric is the Hamming metric. Itcoincides with the Lee metric when p = 2 or p = 3. A distance-preserving map from Z2k to Z2k�12is constructed in [1, 2].We recall brie
y some basic de�nitions.De�nition 1 Let A1; A2 be two commutative groups in additive notation and G : A1 ! A2 a map.For i = 1; 2 let wti be a weight function de�ned on Ai and let di, de�ned by di(x; y) = wti(x � y)for all x; y 2 Ai, be the corresponding distance function. Then(i) G is a weight-preserving map if wt2(G(x)) = wt1(x) for all x 2 A1.(ii) G is a distance-preserving map if d2(G(x); G(y)) = d1(x; y) for all x; y 2 A1.(iii) G is an isometry if G is a one-to-one distance-preserving map. If an isometry exists then A1and A2 are called isometric.The following facts are easy to verify.Lemma 2 Let G : A1 ! A2 be a distance-preserving map. Then(i) G is weight-preserving i� G(0) = 0.(ii) The map G0 : A1 ! A2 de�ned as G0(x) = G(x) � G(0) is weight-preserving and distance-preserving. If G is an isometry then G0 is a weight-preserving isometry.Denote by wtH and dH the Hamming weight and distance functions on Zkp. We represent elementsof Zkp as k concatenated elements of Zp and write bi for bb : : : b| {z }i , where b 2 Zp.Theorem 3 There is no weight function on Zpk for which Zpk is isometric to Zkp with the Hammingmetric, except for the case p = k = 2. 2



Proof. Assume there is a weight function, wt, on Zpk such that Zpk and Zkp are isometric.Denote by d the corresponding distance function on Zpk and by G the isometry. By Lemma 2, wemay assume that G(0) = 0 and that G is weight-preserving. Hence dH(G(x); G(y)) = d(x; y) =wt(x� y) = wtH(G(x � y)) for all x; y 2 Zpk. The main idea of the proof is to use the constraintdH(G(x); G(y)) = wtH(G(x � y)) for showing that G can only exist when p = k = 2.Let a 2 Zpk be an element of weight 1. We examine the values of G(ia) for i 2 Z. We havedH(G((i+1)a); G(ia)) = 1, so jwtH(G((i+1)a))�wtH(G(ia))j � 1. Let j be the integer for which0 = wtH(G(0)) < wtH(G(a)) < wtH(G(2a)) < : : : < wtH(G(ja)) 6< wtH(G((j + 1)a)). Since theweight of G(ia) and of G((i+1)a) di�er by at most 1, we have wtH(G(ia)) = i for i = 1; : : : j. Wehave that 1 � j � k, as k is the maximum value for the Hamming weight on Zkp. After a suitablepermutation of the coordinates of Zkp we may assume that G(ia) = a1a2 : : : ai0k�i for i = 1; : : : j,where a1; : : : ; aj 2 Zp n f0g. Further, let s be the integer for which j = wtH(G(ja)) = : : : =wtH(G((j + s)a)) 6= wtH(G((j + s+ 1)a)). For any 0 � i � s� 1, G((j + i)a) and G((j + i+ 1)a)have the same weight and are at distance 1 from each other, so they must have the same supporti.e. all the G((j + i)a), i = 0; : : : ; s have non-zero symbols on the �rst j positions and zeroson the last k � j positions. Hence 0 � s < (p � 1)j and G((j + s)a) = b1 : : : bj0k�j for someb1; : : : ; bj 2 Zp n f0g. Of course, if s = 0 then ai = bi for i = 1; : : : ; j. Graphically, this looks asfollows: G(0) =G(a) = a1G(2a) = a1 a2G(3a) = a1 a2 a3... ... ... ...G(ja) = a1 a2 a3 : : : aj... ... ... ... ...G((j + s)a) = b1 b2 b3 : : : bjwith the blanks �lled with 0's. 3



We will now determine G((j + s + 1)a). We know it must be obtained from b1 : : : bj0k�j bychanging one symbol. We have dH(G((j + s + 1)a); G(a)) = wtH(G((j + s)a)) = j. If s = 0we also know wtH(G((j + s + 1)a)) = j � 1 from the de�nitions of j and of s, so we must haveG((j+s+1)a)) = 0a2 : : : aj0k�j = 0b2 : : : bj0k�j . If s � 1 then wtH(G((j+s+1)a)) = j�1 from thede�nition of s. We cannot have b1 = a1 because dH(G((j+s)a); G(a)) = wtH(G((j+s�1)a)) = j.So the only possibility of achieving dH(G((j+s+1)a); G(a)) = j is G((j+s+1)a)) = 0b2 : : : bj0k�j .We prove next, inductively, that G((j+s+ l)a)) = 0lbl+1 : : : bj0k�j for all 0 � l � j. We have seenthat this is true for l = 0; 1. We assume the assertion is true for a certain l, 0 < l < j and proveit for l+1. We have to change one of the symbols of G((j + s+ l)a)) = 0lbl+1 : : : bj0k�j to obtainG((j+ s+ l+1)a)). If we changed one of the �rst l zeros, then dH(G((j+ s+ l+1)a); G((j+ s)a))would be l or l � 1 instead of being equal to wtH(G((l + 1)a)) = l + 1. If we changed oneof the last k � j zeros or if we changed one of the elements bl+1; : : : ; bj to another non-zeroelement of Zp then dH(G((j + s + l + 1)a); G(la)) would be j or j + 1 instead of being equal towtH(G((j + s+ 1)a)) = j � 1. Hence one of the elements bl+1; : : : ; bj has to be changed to a zero,and from the condition dH(G((j + s + l + 1)a); G((l + 1)a)) = wtH(G((j + s)a)) = j we see thishas to be bl+1 i.e. G((j + s+ l+ 1)a) = 0l+1bl+2 : : : bj0k�j , which concludes the induction.
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We can now �ll in the remaining values in the table:G(0) =G(a) = a1G(2a) = a1 a2G(3a) = a1 a2 a3... ... ... ...G(ja) = a1 a2 a3 : : : aj... ... ... ... ...G((j + s)a) = b1 b2 b3 : : : bjG((j + s+ 1)a) = b2 b3 : : : bjG((j + s+ 2)a) = b3 : : : bj... ...G((2j + s� 1)a) = bjG((2j + s)a) =In particular, we have G((2j + s)a) = 0 i.e. (2j + s)a � 0 mod pk. So for the ideal (a) we have(a) = fiaji 2 Zg = fxajx 2 Zpkg = fiaji = 0; : : : ; 2j + s � 1g. Let U = fx 2 Zpkjwt(x) = 1g.We want to determine how many elements are in (a) \ U . As G is weight-preserving, (a) \ U =fx 2 (a)jwtH(G(x)) = 1g. If j � 2 then (a) \ U = fa; (2j + s � 1)ag. If j = 1 then (a) \ U =fa; 2a; : : : ; (s+ 1)ag and s+ 1 � (p� 1)j = p� 1. So j(a) \ Uj � maxf2; p� 1g.As a 2 U was chosen arbitrarily, we have proved that for any x 2 U there are at most maxf2; p�1gelements in in (x) \ U .Recall that any element x 2 Zpk can be written as x = piu for some 0 � i � k � 1 and u aunit in Zpk. The integer i is unique and will be denoted by logp x. Choose an element b 2 Uwith logp b minimal. For any other element c 2 U , logp c � logp b i.e. bjc and therefore c 2 (b).Hence U � (b). The number of elements of weight 1 in Zkp, and therefore in Zpk, is k(p � 1). Sok(p� 1) = jUj = j(b)\Uj � maxf2; p� 1g. When k � 2, the inequality k(p� 1) � maxf2; p� 1g is5



satis�ed only for p = k = 2. (The other solution, k = 1 and p arbitrary, corresponds to the trivialisometry between Zp and Zp.) 2We have proved, in particular, that for p = 2 and k > 2 none of the Gray maps is an isometry.Recall that a Gray map from Z2k to Zk2 is a one-to-one map G having the property that G(x)and G(x+ 1) di�er by exactly one bit. For weights on Z2k with wt(1) = 1 any isometry would inparticular be a Gray map.Acknowledgement. This paper was prompted by the question of C. Carlet (in his presentationof [2]) as to whether there are distance-preserving one-to-one maps from Z8 to Z32. Financialsupport from the U.K. Engineering and Physical Sciences Research Council (EPSRC) under grantL07680 is gratefully acknowledged.References[1] C. Carlet. Z2k-linear codes. IEEE Trans. Inform. Theory, 44(4):1543{1547, 1998.[2] C. Carlet. Z2k-linear codes. In Proceedings of the 1998 IEEE International Symposium onInformation Theory. IEEE, 1998.[3] A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sol�e. The Z4linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory,40:301{319, 1994.[4] S. Rodrigues Costa, J. Roberto Gerônimo, R. Palazzo Jr., J. Carmelo Interlando, and M. MunizSilva Alves. The symmetry group of Zqn in the Lee space and the Zqn-linear codes. In T. Moraand H. Mattson, editors, Proceedings of the 12th International Symposium, AAECC-12, number1255 in LNCS, pages 66{77. Springer Verlag, 1997.
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