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Abstract

We prove that, except for the well-known case p = k = 2, it is not possible to construct a

weight function on Z i for which Z & is isometric to Z’; with the Hamming metric.
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The Gray map ¢ from Zg4 to Z3 is defined by ¢(0) = 00, ¢(1) = 10, ¢(2) = 11 and ¢(3) = 01. It is
an isometry between Z4 with the Lee metric and Z3 with the Hamming metric. This fact played
an important role in proving that many important non-linear binary codes are in fact the images
under the Gray map of linear codes over Z,4 (see [3] and the references therein). The minimum Lee
distance and the Lee weight enumerator of a Z4-linear code equal the minimum Hamming distance
and the Hamming weight enumerator of the binary image of the code under the Gray map. This
explained the formal duality of certain pairs of non-linear binary codes that turned out to be the

images of dual Z 4-linear codes.

Let p > 2 be a prime and let £ > 2. The existence of a weight on Z,« for which Z is isometric to
Zf) with the Hamming metric would allow the construction of not necessarily linear codes of length

kn over Z, with the same minimum Hamming distance and Hamming weight enumerator as the
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minimum distance and the weight enumerator of Z -linear codes of length n.

We prove that such a weight and isometry do not exist except for the case p = k = 2 discussed
above. (We excluded the trivial case & = 1 from the start). A similar result for the Lee metric
on Zf) instead of the Hamming metric is proved in [4] by determining the symmetry group. Our
proof is elementary. For codes over Z,, the commonly used metric is the Hamming metric. It
coincides with the Lee metric when p = 2 or p = 3. A distance-preserving map from Z,x to Z%IPI

is constructed in [1, 2].
We recall briefly some basic definitions.
Definition 1 Let Ay, Ay be two commutative groups in additive notation and G : A1 — As a map.

For i =1,2 let wt; be a weight function defined on A; and let d;, defined by d;(z,y) = wti(z — y)

for all z,y € A;, be the corresponding distance function. Then

(i) G is a weight-preserving map if wt2(G(z)) = wti(z) for all x € Ay.

(ii) G is a distance-preserving map if d2(G(x),G(y)) = di(x,y) for all z,y € A;.

(iii) G is an isometry if G is a one-to-one distance-preserving map. If an isometry exists then A,
and As are called isometric.

The following facts are easy to verify.

Lemma 2 Let G : A — Ay be a distance-preserving map. Then
(i) G is weight-preserving iff G(0) = 0.

(ii) The map G' : Ay — As defined as G'(x) = G(x) — G(0) is weight-preserving and distance-

preserving. If G is an isometry then G' is a weight-preserving isometry.

Denote by wtg and dg the Hamming weight and distance functions on Zf). We represent elements

of Zf) as k concatenated elements of Z, and write b’ for bb...b, where b € Z,,.

i
Theorem 3 There is no weight function on 7, for which 7, is isometric to Zf) with the Hamming

metric, except for the case p = k = 2.



ProOF. Assume there is a weight function, wt, on Z,» such that Z, and Zf) are isometric.
Denote by d the corresponding distance function on Z . and by G the isometry. By Lemma 2, we
may assume that G(0) = 0 and that G is weight-preserving. Hence du(G(x),G(y)) = d(z,y) =
wt(z —y) = wtg(G(z —y)) for all 2,y € Z . The main idea of the proof is to use the constraint

du(G(z),G(y)) = wtu(G(z — y)) for showing that G can only exist when p =k = 2.

Let a € Z, be an element of weight 1. We examine the values of G(ia) for i € Z. We have
du(G((i+1)a),G(ia)) = 1,s0 | wtu (G((i+1)a)) —wtu (G(ia))| < 1. Let j be the integer for which
0 =wty(G(0)) < wty(G(a)) < wtg(G(2a)) < ... < wtg(G(ja)) £ wta(G((j + 1)a)). Since the
weight of G(ia) and of G((i + 1)a) differ by at most 1, we have wtg(G(ia)) =ifori=1,...j5. We
have that 1 < j < k, as k is the maximum value for the Hamming weight on Zf). After a suitable

permutation of the coordinates of Zf) we may assume that G(ia) = ajas...a;0F " fori =1,...7,
where a1,...,a; € Zp\ {0}. Further, let s be the integer for which j = wtg(G(ja)) = ... =
wtg (G((5 + 8)a)) # wtu(G((j + s+ 1)a)). Forany 0 <i<s—1,G((j +1i)a) and G((j + i+ 1)a)
have the same weight and are at distance 1 from each other, so they must have the same support
ie. all the G((j + ¢)a), i = 0,...,s have non-zero symbols on the first j positions and zeros

on the last k — j positions. Hence 0 < s < (p — 1)/ and G((j + s)a) = by ...b;0¥7 for some

bi,...,b; € Z,\ {0}. Of course, if s = 0 then a; = b; for i = 1,...,j. Graphically, this looks as

follows:
G(0) =
G(a) = m
G(2a) = ay as
G(3a) = a1 a2 as
G(]a’) = a a9 as a]'
G((j+s)a) = b by by ... b

with the blanks filled with 0’s.



We will now determine G((j + s + 1)a). We know it must be obtained from b; ...b;0¥~7 by
changing one symbol. We have dy(G((j + s + 1)a),G(a)) = wtu(G((j + s)a)) = j. f s =0
we also know wty(G((j + s+ 1)a)) = j — 1 from the definitions of j and of s, so we must have
G((j+s+1)a)) = 0az...a;0* 7 = 0by...b;0" 9. If s > 1 then wtgy (G((j+s+1)a)) = j+1 from the
definition of s. We cannot have b, = a; because du (G((j +5)a),G(a)) = wtu(G((j+s—1)a)) = j.
So the only possibility of achieving dg (G((j+s+1)a), G(a)) = j is G((j+s+1)a)) = 0by...b;0" 3,
We prove next, inductively, that G((j +s+1)a)) = 0'bj41 ... b;0*77 for all 0 < I < j. We have seen
that this is true for [ = 0,1. We assume the assertion is true for a certain I, 0 < [ < j and prove
it for I + 1. We have to change one of the symbols of G((j + s+ 1)a)) = 0'bj41 ...b;0* 77 to obtain
G((j+s+1+4+1)a)). If we changed one of the first | zeros, then dg(G((j +s+1+1)a), G((j + s)a))
would be I or I — 1 instead of being equal to wtg(G((l + 1)a)) = 1 + 1. If we changed one
of the last £ — j zeros or if we changed one of the elements b;11,...,b; to another non-zero
element of Z, then du(G((j + s + 1 + 1)a),G(la)) would be j or j + 1 instead of being equal to
wtg(G((j + s+ 1)a)) = j — 1. Hence one of the elements b;41,...,b; has to be changed to a zero,
and from the condition dg (G((j + s + 1+ 1)a), G((l + 1)a)) = wtg(G((j + s)a)) = j we see this

has to be b1 i.e. G((j +s+ 1+ 1)a) = 0F'b4o...b;057 which concludes the induction.



We can now fill in the remaining values in the table:

G(0) -
G(a) = wm

G(2a) = a a

G(3a) = a1 a» as

G(]a) = a a2 Qs BN 7
G((] + S)a) = bl bg b3 . bj
G((2j+s—1)a) = b;

G((2] + s)a) =

In particular, we have G((2j + s)a) = 0 i.e. (2 + s)a = 0 mod p*. So for the ideal (a) we have
(a) = {iali € Z} = {zalx € Z} = {iali =0,...,2j +s—1}. Let U = {x € Zp|wt(z) = 1}.
We want to determine how many elements are in (a) NU. As G is weight-preserving, (a) NU =
{z € (a)|wtu(G(z)) = 1}. If j > 2 then (a) "U = {a,(2j + s — 1)a}. If j = 1 then (a) NU =

{a,2a,...,(s+a}and s+ 1< (p—1)Y =p—1. So |(a) NU| < max{2,p — 1}.

As a € U was chosen arbitrarily, we have proved that for any = € U there are at most max{2,p—1}

elements in in (z) NU.

Recall that any element x € Z,x can be written as z = plu for some 0 < i < k—1 and u a
unit in Zyx. The integer ¢ is unique and will be denoted by log, z. Choose an element b € U
with log, b minimal. For any other element ¢ € U, log, ¢ > log, b i.e. blc and therefore ¢ € (b).
Hence U C (b). The number of elements of weight 1 in Z%, and therefore in Z, is k(p — 1). So

kE(p—1)= U] =|(b)NU| < max{2,p—1}. When k > 2, the inequality k(p — 1) < max{2,p—1}is



satisfied only for p = k = 2. (The other solution, £k = 1 and p arbitrary, corresponds to the trivial

isometry between Z, and Z,,.) O

We have proved, in particular, that for p = 2 and k£ > 2 none of the Gray maps is an isometry.
Recall that a Gray map from Z.x to Z% is a one-to-one map G having the property that G(z)
and G(z + 1) differ by exactly one bit. For weights on Z,x with wt(1) = 1 any isometry would in

particular be a Gray map.
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