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Abstract

An investigation is made into water-wave propagation through a doubly-periodic array of vertical

cylinders extending to infinity in both horizontal directions. Methods are presented for the calcu-

lation of the frequency ranges for which wave propagation without change of amplitude is possible

(‘passing bands’), and for which propagation without change of amplitude is not possible (‘stopping

bands’). Some of the techniques may be used to determine the decay of wave amplitude within the

stopping bands. Approximate and numerical techniques are used to show how this infinite-array

problem is related to trapped modes, Rayleigh-Bloch waves, and the problem of wave diffraction

by a grating made up of a finite number of cylinder rows.
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1 Introduction

The problem of a particle moving in a periodic potential has been studied extensively in solid-state

physics and there is an established formalism for its investigation (Ashcroft & Mermin, 1976). A

mathematically related problem is the propagation of water waves above a patch of sea bed with

undulations that are periodic in one horizontal direction (see O’Hare & Davies, 1993, and references

therein). Given a particular sea bed, it is observed that there are ranges of frequency where there is

strong reflection, and complementary ranges for which there is weak reflection of a monochromatic

incident wave. Recently, Chou (1998) has considered water-wave interaction with an infinite array of

periodically arranged surface scatterers using the formalism of solid state physics. He investigated

geometries with finite periodicity in both one and two horizontal directions and found that for

certain ranges of frequency wave propagation through the array without change in amplitude is

possible, although in general there will be a change in phase from one scatterer to another. In

complementary ranges of frequency, wave propagation without change of amplitude is not possible.

In the terminology of solid-state physics, these ranges of frequency are known as passing bands and

stopping bands, respectively.

In this paper, the propagation of waves through a doubly periodic array of identical vertical

cylinders is examined in detail. This work is motivated in part by a proposal for a airport in

Japan that involves a floating platform supported by thousands of cylindrical legs. Over recent

years, this has provoked interest in how water waves interact with very large arrays of vertical

cylinders (Kagemoto & Yue, 1986; Kagemoto, 1998; Kashiwagi, 1999). The main purpose of the

work is to investigate how knowledge of the relatively straightforward problem of wave propagation

through infinite arrays of cylinders can be used to make deductions about propagation through

finite arrays. Although set into the context of water waves, the present work also has an acoustic

interpretation. Related work on sound propagation through tube bundles is reported by Heckl &

Mulholland (1995).

The problem is formulated in §2 in terms of a velocity potential for the flow. Because of the

doubly-periodic arrangement of cylinders, it is possible to confine attention to a cell in a horizontal

plane that contains only a single cylinder. For a rectangular array this primitive cell is also rectan-

gular and so-called Bloch conditions are used to relate the potential and its normal derivative on

opposite sides of the rectangle. Throughout this paper the problem of wave propagation through

an infinite array will be referred to as ‘the Bloch problem’. An approximate solution of the Bloch

problem for unidirectional wave propagation is presented in §3. This is used to show how pass-

ing and stopping bands arise in the water-wave problem. Within a passing band waves are able

to propagate through the array without change of amplitude. Within stopping bands there is an
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exponential decrease of wave amplitude with distance.

For a passing band the boundary-value problem is self-adjoint and the frequencies can be cal-

culated quite straightforwardly by means of a variational principle. This method is used in §4
to investigate how the band structure develops as the cylinder radius is increased from zero. In

addition, calculations are presented to show how the solutions obtained approach previously-known

trapped mode and Rayleigh-Bloch wave solutions as one of the cell dimensions is allowed to increase

without bound. In this context, the term Rayleigh-Bloch wave is used to describe a non-periodic

wave that propagates along an infinitely-long line of equally-spaced cylinders and decays to zero in

the perpendicular horizontal direction. The term trapped mode is here reserved for certain limiting

cases when the solution and the geometry have the same periodicity.

The variational method of §4 gives no information about the rate of amplitude decay within

stopping bands. Two numerical methods which calculate this decay are given in §5. In the first

method, a series that satisfies the cylinder boundary condition identically is applied pointwise

to satisfy the conditions on the cell walls. This method is straightforward to use but is not very

robust for higher frequencies. The second technique is a more robust, but also more computationally

expensive, boundary-integral method based on an application of Green’s theorem.

The final sections of the paper deal with wave diffraction by a finite number of parallel rows

of cylinders, where each row is of infinite length. In §6, a wide-spacing formulation is used to

demonstrate explicitly how, for the case of wave propagation normal to the rows, the transmission

beyond a finite number of rows is related to the Bloch problem. In §7, various numerical calculations

using the methods of §§4–5.2 are used to investigate the finite-array problem when waves are able

to propagate in more than one direction.

2 General formulation

A periodic array of identical, rigid, circular cylinders, which extend to infinity in all horizontal

directions, stands in water of constant depth h. Cartesian coordinates are chosen so that the x

and y axes lie in a horizontal plane and the z axis is directed vertically upwards. The origin of

coordinates is on the axis of one of the cylinders and located in the plane of the mean free surface.

Water waves of radian frequency ω propagate through the array. The water is assumed to be

inviscid and incompressible and the flow to be irrotational. The cylinders extend throughout the

depth and so, under the usual assumptions of the linearised theory of water waves, solutions for

the velocity potential may be sought in the form

Φ(x, y, z, t) = Re{φ(x, y) coshκ(z + h) e−iωt}, (1)
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where

(∇2 + κ2)φ = 0 (2)

throughout the fluid region and κ is the real positive root of the dispersion relation

ω2 = gκ tanhκh. (3)

The geometrical description of the array (or lattice) of cylinders adopted here is that used in

the theory of crystal structures in solid state physics (see Ashcroft & Mermin, 1976, Chapters 4

and 5). Let a1 and a2 be two vectors that span the lattice, that is every translation between the

axes of cylinders in the horizontal plane has the form of a so-called lattice vector

R = m1a1 +m2a2, (4)

where m1 and m2 are integers. It is also convenient to introduce so-called reciprocal lattice vectors

K satisfying

K ·R = 2πp (5)

where p is an integer. If the reciprocal lattice vectors are expressed in the form

K = n1b1 + n2b2 (6)

for integers n1, n2 then (5) is satisfied provided

ai · bj = 2πδij , (7)

where δij is the Kronecker delta.

In other contexts (Ashcroft & Mermin, 1976, Chapter 8; Chou, 1998), Bloch’s theorem is used

to justify looking for solutions in the form

φ(r) = eiq·r ψ(r), (8)

where r is the position vector of an arbitrary point in the array, q is a real-valued vector, and the

function ψ has the same periodicity as the lattice, that is

ψ(r + R) = ψ(r) (9)

for all lattice vectors R. Here solutions are also sought in this form, but in the water-wave problem

q may be complex. The above is exactly equivalent to seeking solutions that satisfy

φ(r + R) = eiq·R φ(r), (10)
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Figure 1: Definition sketch for one cell of a rectangular array.

where R is again any lattice vector. If q is real then it measures the change in the phase of the

motion as the lattice is traversed. If q has a non-zero imaginary part then there is also a decay in

amplitude as a wave propagates through the array.

Two basic approaches to the problem are used here. One approach is to specify the wave vector

q = q1i + q2j and then solve for the wavenumber κ (here i and j are unit vectors in the x and y

directions, respectively). Alternatively, κ and one component of q is specified and the problem is

then to determine the second component of q.

Equation (10) is unchanged if q is augmented by any reciprocal lattice vector K. Thus, given a

solution φ(r; q) then φ(r; q+K) is also a solution. Consequently, it is sufficient to restrict attention

to the so-called ‘first Brillouin zone’ {Re q1L ∈ [−π, π], Re q2W ∈ [−π, π]}, as long as it is born

in mind that for any pair (κ,q), for which the problem has a non-trivial solution, such solutions

also exist for pairs (κ,q + K). Further, if any component of q is reversed in sign this corresponds

to a reversal of the direction of propagation of that component. Thus, attention is confined to

the region {Re q1L ∈ [0, π], Re q2W ∈ [0, π]} and all results for q will be given within this region.

This method of displaying results is known as a ‘reduced zone scheme’ (Ashcroft & Mermin, 1976,

p. 160).

For a rectangular array of cylinders of diameter D with

a1 = Li and a2 = W j (11)

it is sufficient to consider a single rectangular cell of length L and width W as illustrated in figure 1.

The corresponding primitive reciprocal lattice vectors are

b1 =
2πi
L

and b2 =
2πj
W

. (12)
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For this geometry, equation (10) is equivalent to the four independent conditions

φ(L/2, y) = eiq1L φ(−L/2, y)

∂φ

∂x
(L/2, y) = eiq1L ∂φ

∂x
(−L/2, y)

 , |y| ≤W/2, (13)

φ(x,W/2) = eiq2W φ(x,−W/2)

∂φ

∂y
(x,W/2) = eiq2W ∂φ

∂y
(x,−W/2)

 , |x| ≤ L/2. (14)

The mathematical problem has been reduced to the solution the field equation (2) within the fluid

region of the cell {|x| ≤ L/2, |y| ≤ W/2} subject to the boundary conditions (13)–(14) and the

condition of no flow through the cylinder wall, namely

∂φ

∂r
= 0 on r = D/2, (15)

where (r, θ) are standard plane polar coordinates with origin at the centre of the primitive cell

illustrated in figure 1.

3 An approximate solution

To illustrate clearly some important features of the problem defined by equations (2) and (13)–(15)

an approximate solution is now presented for the case q2 = 0. The main assumption is that the

cell length in the x direction is much greater than the wavelength so that κL >> 1. Further, only

solutions symmetric about y = 0 are considered and the boundary conditions (14) are replaced by

the special case
∂φ

∂y
= 0 on y = ±W/2, (16)

which is equivalent to having solid channel walls at y = ±W/2. The conditions (13) are retained

in their general form. It will also be assumed that the wavenumber satisfies κW < 2π so that only

waves with no y dependence may propagate in a channel of width W . The main aim is to calculate

the so-called Bloch transmission coefficient

TB = eiq1L (17)

which measures the phase change and attenuation of a wave as it propagates through one cell of

the array in the direction of x increasing (see equations 13).

If the length L of the cell is sufficiently large, then only plane waves propagating along the

channel can exist in the vicinity of x = ±L/2, the evanescent modes will be negligible. Thus, in

the neighbourhood of x = −L/2,

φ = A1 eiκx +B1 e−iκx, (18)
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and in the neighbourhood of x = L/2,

φ = A2 eiκx +B2 e−iκx, (19)

for some complex constants A1, A2, B1 and B2. The wave with amplitude A2 propagates away

from the cylinder and is due to the transmission of A1 past the cylinder and the reflection of B2

from the cylinder. Similarly, the wave with amplitude B1 arises from the transmission of B2 and

the reflection of A1. Thus

A2 = TA1 +RB2 and B1 = TB2 +RA1, (20)

where R and T are the reflection and transmission coefficients for a single cylinder in the channel

(c.f. Heckl, 1992, equations 37). The boundary conditions (15) and (16) are used in the calculation

of R and T which are assumed to be known for all κ. Application of the Bloch conditions (13) gives

two further equations which, together with equations (20), yield a system which has a non-trivial

solution provided TB = eiq1L satisfies the quadratic

T 2
B T e−iκL−TB (T 2 −R2 + e−2iκL) + T e−iκL = 0. (21)

If the complex number T is expressed in the form

T = |T | eiδ (22)

then it may be shown that

R = |R| ei(δ±π/2) (23)

(Mei, 1983, §7.6.2, describes the derivation for purely two-dimensional case, the channel case is a

trivial extension). Use of these relations and the energy relation

|R|2 + |T |2 = 1, (24)

valid below the cut-off wave number κW = 2π, allows the above quadratic to be rewritten as

T 2
B −

2 cos(δ + κL)
|T | TB + 1 = 0. (25)

The product of the roots is unity so that if eiq1L is a root then so is e−iq1L. The sum of the roots

then yields

cos q1L =
cos(δ + κL)
|T | ≡ f(κL), (26)

say (c.f. Ashcroft & Mermin, 1976, p. 148), which is an equation for q1L entirely in terms of real

quantities. Provided |f(κL)| ≤ 1, equation (26) has only real solutions for q1L and waves will
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propagate through the array with their amplitude unchanged. The ranges of frequency for which

this occurs are known in solid-state physics as ‘passing bands’. However, whenever |f(κL)| > 1

solutions are of the form q1L = nπ+ iQ for real Q and some integer n. As the product of the roots

is unity, the two roots have the form (−1)n e∓Q with now Q > 0. Waves that propagate in the

direction of x increasing correspond to the upper sign, while the lower sign corresponds to waves

propagating in the direction of x decreasing. In both cases the amplitude of the motion decreases

as the wave propagates. The ranges of frequency for which this occurs are known in solid-state

physics as ‘stopping bands’.

In contrast to the application of this theory to crystal lattices, complex q in the water-wave

problem has a physical interpretation. Further discussion of this is given later in §5.1 where a

method for the computation of complex q is presented. The next section is devoted to a method

of computation valid for real q only.

4 Variational formulation of the eigenvalue problem

4.1 Method

Attention is now turned to numerical methods for the calculation of solutions to the problem defined

by equations (2) and (13)–(15). For a specified real Bloch wave vector q = {q1, q2} the problem is

self-adjoint and the corresponding infinite sequence of eigenvalues λ = κ2 of the negative Laplacian

may be determined by a standard application of the Rayleigh-Ritz method (see, for example, Duff

& Naylor, 1966, Chapter 6). The Rayleigh quotient for a given trial function u is

R(u) =

∫
A
|∇u|2 dA∫
A
|u|2 dA

, (27)

where A is the fluid domain within the horizontal cross section illustrated in figure 1. The Neumann

condition (15) is a ‘natural’ boundary condition and need not be incorporated into the trial function

u. However, it is essential that u satisfies the Bloch condition (10). This is achieved by writing

u =
P∑

m,n=−P
Amn ei(q+Kmn)·r (28)

where

Kmn = 2π
(m
L

i +
n

W
j
)

(29)

is a reciprocal lattice vector, as defined in equation (5), and r = xi + yj is the position vector of an

arbitrary point in A. Approximations to the eigenvalues correspond to the local minima of R(u)
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with respect to variations in the coefficients Amn. This leads to the generalised eigenvalue problem

P∑
m,n=−P

(Eklmn − λHklmn) = 0, k, l = −P, . . . P, (30)

for λ where

Hklmn =
∫
A

ei(Kkl−Kmn)·r dA =


− πD

αklmn
J1

(
1
2Dαklmn

)
, k 6= m and l 6= n,

WL− 1
4πD

2, k = m and l = n,

(31)

Eklmn =
[
(q1 + 2πk/L) (q1 + 2πm/L)

+ (q2 + 2πl/W ) (q2 + 2πn/W )
] ∫

A

ei(Kkl−Kmn)·r dA (32)

=
[
(q1 + 2πk/L) (q1 + 2πm/L) + (q2 + 2πl/W ) (q2 + 2πn/W )

]
Hklmn,

αklmn = 2π
(

(k −m)2

L2
+

(l − n)2

W 2

)1/2

, (33)

and J1 denotes the Bessel function of the first kind and order one.

The eigenvalue problem is solved using standard numerical techniques. The value of P required

to achieve a particular accuracy depends on the parameters W/L and D/L. Most of the calculations

in this paper are for W/L = 1 and D/L = 0.5; in this case P = 12 is sufficient to obtain at least

seven-figure accuracy for the twelve smallest eigenvalues. Smaller values of D/L or values of W/L

significantly different from unity require larger values of P .

Although the above formulation uses q1 and q2 as input and then solves for κ, it is rela-

tively straightforward to adapt the technique to use q2 and κ as input and then solve for q1. Let

{κi(q1, q2), i = 1, 2, . . .} denote the set of the square roots of the eigenvalues λ corresponding to

specified values of q1 and q2. Fix q2 and for the chosen κ define

f(q1;κ, q2) = min
i
|κ− κi(q1, q2)|. (34)

Now determine the local minima of f(q1;κ, q2) as a function of q1 ∈ [0, π/L]. If a minimum of

f(q1;κ, q2) is zero (within some tolerance), then the corresponding value of q1 is a solution (there

may be more than one such q1). If the global minimum of f(q1;κ, q2) is not zero then, for the

specified q2, the chosen κ is in a stopping band.
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4.2 Results

The case q2 = 0 will be considered in some detail. This case can be interpreted by writing the

potential in terms of parts that are symmetric and antisymmetric in y so that

φ(x, y) = φS(x, y) + φA(x, y), (35)

where

φS(x, y) = 1
2 [φ(x, y) + φ(x,−y)] (36)

and

φA(x, y) = 1
2 [φ(x, y)− φ(x,−y)] , (37)

and hence
∂φS
∂y

(x, 0) = φA(x, 0) = 0. (38)

From the Bloch conditions (14), it follows immediately that

φS(x,W/2) = 1
2

[
1 + e−iq2W

]
φ(x,W/2) (39)

∂φS
∂y

(x,W/2) = 1
2

[
1− e−iq2W

] ∂φ
∂y

(x,W/2) (40)

φA(x,W/2) = 1
2

[
1− e−iq2W

]
φ(x,W/2) (41)

∂φA
∂y

(x,W/2) = 1
2

[
1 + e−iq2W

] ∂φ
∂y

(x,W/2) (42)

and so when q2 = 0

∂φS
∂y

(x,W/2) =
∂φS
∂y

(x,−W/2) = φA(x,W/2) = φA(x,−W/2) = 0. (43)

Thus, solutions to the problem with q2 = 0 correspond either to motions that are symmetric about

y = 0 and satisfy homogeneous Neumann conditions on y = ±W/2 (referred to here as type I

modes), or to solutions that are antisymmetric about y = 0 and satisfy homogeneous Dirichlet

conditions on y = ±W/2 (type II modes). All solutions satisfy the Bloch conditions (13).

The type I and type II modes (as well as other modes) could be solved for separately by making

appropriate choices of trial function with trigonometric functions. However, the determination of

the form of the elements of the matrices in (30) is then a rather longer calculation. It is simpler to

adopt the approach given above and identity the modes by computing the boundary values of the

eigenvector and its normal derivative.

Calculations are now presented for various geometrical parameters in figures 2–4; the results

are displayed in the reduced-zone scheme discussed in §2. Before presenting numerical results for
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Figure 2: Eigenvalue κL vs. wave vector q1L; W/L = 1, D/L = 0, q2L = 0.
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Figure 3: Eigenvalue κL vs. wave vector q1L; W/L = 1, D/L = 0.1, q2L = 0.

the full problem, it is instructive to consider the problem when there is no cylinder present so that

only the Bloch conditions need be satisfied. Attention will be restricted to modes with κW < 4π;

for any q1, type I modes are

φ = eiq1x, κ = q1, (44)
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Figure 4: Eigenvalue κL vs. wave vector q1L; W/L = 1, D/L = 0.5, q2L = 0.

φ = eiq1x cos
2πy
W

, κ =
(
q2

1 +
4π2

W 2

)1/2

, (45)

and the only type II modes are

φ = eiq1x sin
2πy
W

, κ =
(
q2

1 +
4π2

W 2

)1/2

. (46)

Clearly, the second type I mode and the type II mode share the same eigenvalue κ. Results for the

case W = L are displayed in figure 2 and each continuous curve linking q1L = 0 to q1L = π, here

called a branch, is labelled as either type I or type II. The branches of each mode type are indexed

in strictly ascending order of κL. Note that some branches of type I modes cross and the indexing

has been chosen to reflect the behaviour observed when a cylinder is introduced.

For a cylinder of non zero but small radius, as in figure 3, the pattern is superficially very similar.

However, there are three significant differences. First of all, the type I and type II modes with

identical eigenvalues in the absence of the cylinder have now split; identification of the branches was

made by computing the corresponding eigenvector and verifying the boundary conditions. Secondly,

the crossings of type I modes no longer exist. This has been verified carefully by increasing the

accuracy of the computations in these regions. Finally, with non-zero D/L there are so-called

band gaps, although this is not immediately apparent from figure 3 as they are quite narrow. For

example, for 0.99π . κL . 1.01π there is no corresponding real value of q1L. In other words, for

κL in this range (and for q2L = 0) it is not possible for waves to propagate through the array

without change of amplitude.
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For a larger radius, as in figure 4, the situation is more confused and it is not easy to identify

the different modes by direct comparison with figure 2. The labelling on the figure was arrived at

by observing the changes as D/L was increased through values not displayed here, and confirmed

by computation of the eigenvector. The existence of band gaps is now clearly displayed, the first

band gap has now widened to 0.77π . κL . 1.14π. The significance of these band gaps will be

discussed later in §§6–7.

For q1L equal to either zero or π, the solutions obtained may satisfy either homogeneous Dirich-

let or homogeneous Neumann conditions on x = ±L/2. This can be seen explicitly by examining

the symmetries of φ as in equations (39)–(42). In particular, q1L = 0 can correspond to either the

symmetric Neumann modes or the antisymmetric Dirichlet modes while q1L = π can correspond to

either the antisymmetric Neumann or the symmetric Dirichlet modes. Similar comments apply to

q2W and the cell boundaries at y = ±W/2. Hence, for q1L and q2W both equal to one of zero or π,

the solutions obtained may correspond to standing waves satisfying the same homogeneous bound-

ary condition on opposite sides of the cell. To obtain other standing-wave solutions satisfying, for

example, a homogeneous Neumann condition on x = −L/2 and a homogeneous Dirichlet condition

on x = L/2 the underlying periodicity of the solutions must be increased to accommodate a cell of

twice the size.

4.3 Connection with trapped modes

The variational method is now used to investigate how so-called ‘trapped modes’ are recovered as

one of the cell dimensions, W say, is allowed to increase indefinitely. A trapped mode is a free

oscillation of finite energy within an unbounded fluid. Callan, Linton & Evans (1991) proved that

such trapped modes may exist within a rigid, parallel-walled channel of infinite length that has a

rigid cylinder symmetrically placed about the centre line. Subsequently, trapped modes have been

found to exist when homogeneous Dirichlet conditions are applied on the channel walls (this is

non-physical within the context of water waves in a channel, but the problem can be interpreted

in terms of wave interaction with arrays of cylinders; see Maniar & Newman, 1997).

Evans & Porter (1999) give a review of the present state of knowledge regarding trapped modes

supported by a rigid cylinder in a channel, and the following summarises some of these results using

their notation for mode identification. Modes satisfying Neumann (Dirichlet) conditions on the

channel walls, here x = ±L/2, are denoted by N(D) and modes that are symmetric (antisymmetric)

about y = 0 are denoted by S(A). (In view of equations (39)–(42), for the Bloch problem this

classification is sufficient to identify all boundary conditions applied on the cell perimeter and all

symmetries about x, y = 0.) For some κL ∈ (0, π) an NS trapped mode exists for any D/L,
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W/L κL (0.5, NS) κL (0.9, NS) κL (0.9, NA) κL (0.5, DS)

1 0.765π 0.526π 2.053π 1.896π

2 0.860π 0.818π 1.149π 1.942π

3 0.879π 0.851π 1.031π 1.951π

4 0.884π 0.859π 1.002π 1.954π

5 0.885π 0.860π 0.992π 1.955π

∞ 0.886π 0.861π 0.99π 1.956π

Table 1: Approach of standing-wave frequencies to trapped-mode frequencies as the
cell aspect ratio W/L → ∞. The number in parentheses is the cylinder diameter
D/L and the letters identify the mode (see the text).

but an NA mode exists only for D/L & 0.81. For some κL ∈ (0, 2π) a DS mode exists for all

D/L . 0.68, but no corresponding DA mode has been found. All of these modes are antisymmetric

about the centre-line of the channel x = 0 and are below the first appropriate cut-off frequency for

antisymmetric propagating modes. The cut-off for Neumann modes is κL = π and for Dirichlet

modes it is κL = 2π.

The notation described above has been used to identify some of the standing-wave modes in

figure 4. For q1L = 0 there is a double eigenvalue at κL ' 1.896π and the DS mode is the limit of

the I3 curve as q1L→ 0. Data showing the approach to trapped modes as W/L increases is given

in table 1. The trapped mode frequencies (W/L→∞) are taken from Callan et al. (1991) for the

NS modes, from Maniar & Newman (1997) for the DS mode, and from Evans & Porter (1999) for

the NA mode. The latter value was estimated from graphical results and so is given to only two

significant figures.

Consider first the modes corresponding to q1L = π. For D/L = 0.5, as W/L → ∞ the NS

mode marked in figure 4 remains the only mode below κL = π. All other modes remain above

κL = π, and will tend asymptotically to a cut-off at κL = nπ for some positive integer n (under the

assumption that there are no embedded trapped modes for this geometry). For this NS mode, the

convergence of κL to the trapped mode value as W/L increases is shown in table 1. For D/L = 0.5,

the marked NA mode does not become a trapped mode. However, for D/L = 0.9, as W/L → ∞
the lowest NS and NA modes both asymptote to trapped modes below the cut-off at κL = π as

shown in table 1. Again, all other modes appear to remain above the cut-off as W/L is increased.

The eigenvalues are clearly very close to the trapped-mode frequencies for W/L = 5. The change

in the approximate eigenfunction u (calculated from equation 28) as W/L increases is illustrated in

figure 5 for an NS mode showing that, as W/L→∞, u becomes increasingly concentrated around
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Figure 5: Approximate eigenfunction u (NS mode) vs. y/W on x = L/2 for W/L = 1
(– – – –), W/L = 3 (– · – · –), and W/L = 5 (———–); D/L = 0.5, q2L = 0.

y = 0 and seems to approach zero at y/W = ±1/2, which is the expected behaviour if the limit is

to be a trapped mode.

The final mode marked in figure 4 is the DS mode corresponding to q1L = 0. The antisymmetric

propagating wave cut-off is at κL = 2π when Dirichlet conditions are applied on the channel walls

and the trapped mode value of κL is now a little below 2π (see table 1). As W/L is increased, more

and more modes move below κL = 2π. Calculations suggest that, with the exception of the DS

mode, these modes all satisfy Neumann conditions on x = ±L/2 and are symmetric about x = 0;

in an infinite channel there is no positive cut-off frequency for such modes and so in general the

potential will not decay to zero as |y| → ∞. Thus, it seems that the single DS mode is the only

mode that can asymptote to a trapped mode for q1L = 0 and κL < 2π.

Note that standing waves that asymptote to trapped modes can be found irrespective of whether

a Neumann or Dirichlet boundary condition is applied on y = ±W/2 (that is whether q2W = 0

or q2W = π respectively). This topic and the nature of the approach to a trapped mode will be

investigated further in another paper.

4.4 Connection with Rayleigh-Bloch waves

A generalisation of a trapped mode is the so-called ‘Rayleigh-Bloch’ wave. Such waves may propa-

gate along an infinite row of equally-spaced, rigid, vertical cylinders with decay of the fluid motion

to zero in the direction normal to the row. Evans & Porter (1999) give a review of the present
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q1L
1
5π

1
4π

1
3π

2
5π

1
2π

3
5π

2
3π

3
4π

4
5π

κL (BB) 0.197π 0.246π 0.328π 0.394π 0.491π 0.588π 0.651π 0.728π 0.773π

κL (RB) 0.200π 0.250π 0.332π 0.398π 0.497π 0.594π 0.657π 0.733π 0.777π

Table 2: Comparison between the present calculations (BB) and Rayleigh-Bloch
wave frequencies (RB); W/L = 5, D/L = 0.5, q2L = 0.

0 0.5Π Π
qL

0

0.5Π

Π

ΚL

0.8Π 0.9Π Π
qL

0.8Π

0.9Π

Π

ΚL

Figure 6: Eigenvalue κL vs. wave vector q1L; W/L = 5, D/L = 0.9, q2L = 0. The
right-hand figure is an enlargement of part of the left-hand figure. The dashed line
is the cut-off κL = q1L.

state of knowledge concerning Rayleigh-Bloch waves of this type and they report two types of

Rayleigh-Bloch wave that, for a fixed q1L ≤ π, exist for discrete κL ∈ (0, q1L). These are waves

symmetric about x = 0 that exist for all non-dimensional cylinder diameters D/L ∈ (0, 1], and

waves antisymmetric about x = 0 that exist only when 0.81 . D/L ≤ 1. As for trapped modes,

the numerical evidence suggests that the frequencies of Rayleigh-Bloch waves are recovered in the

present problem by taking the limit W/L → ∞. Comparison between the present calculations

and those for symmetric Rayleigh-Bloch waves made by Porter & Evans (1999, table 2) is made in

table 2.

Another example is illustrated in figure 6. For D/L = 0.9, all but two of the frequency curves

remain above the cut-off at κL = q1L. The complete curve below the cut-off corresponds to

symmetric Rayleigh-Bloch waves and the partial curve to antisymmetric Rayleigh-Bloch waves. The

latter curve is close to the appropriate curve in figure 10(b) of Evans & Porter (1999). Calculations
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for D/L = 0.5 are reported by Evans & Porter (1999) and McIver, Linton & McIver (1998) and

their graphical results may be compared with the I1 curve in the present figure 4.

The limiting values as q1L → π of the Rayleigh-Bloch wavenumbers κL corresponding to the

two lowest curves in figure 6 are just the NS and NA trapped modes for D/L = 0.9 given in table 1.

All known Rayleigh-Bloch waves become trapped waves in this limit. The DS mode discussed in

§4.3 is not the limit of any known Rayleigh-Bloch wave and it may be that there is a hitherto

undiscovered Rayleigh-Bloch wave for which the DS mode is the limit.

5 Numerical calculations within the stopping bands

The method of §4 is suitable only for calculations within passing bands. In this section an outline is

given of two standard numerical methods that can be used for calculations within stopping bands.

5.1 Point-matching formulation

For specified κ and q2, the problem defined by equations (2) and (13)–(15) may be formulated as

an eigenvalue problem for q1 as follows. The series

φ = A0C0(κr) +
N∑
n=1

Cn(κr) (An cosnθ +Bn sinnθ) , (47)

where

Cn(κr) = Jn(κr)Y ′n(κD/2)− Yn(κr)J ′n(κD/2), (48)

satisfies both the field equation (2) and the cylinder boundary condition (15). The remaining

Bloch conditions (13)–(14) are satisfied pointwise. Let (r, θ) = (ri, θi) be the polar coordinates

of P + Q points on two sides of the primitive cell {|x| ≤ L/2, |y| ≤ W/2}. The first P points

are on {x = L/2, |y| ≤ W/2} and, in order to apply the Bloch conditions, complementary points

(r, θ) = (ri, π − θi) are required on {x = −L/2, |y| ≤ W/2}. The remaining Q points are on

{y = W/2, |x| ≤ L/2} with complementary points (r, θ) = (ri,−θi) on {y = −W/2, |x| ≤ L/2}.
Application of the Bloch conditions at these points leads to a system of equations for the

unknown coefficients {A0, A1, . . . , AN , B1, . . . , BN} = xT , say. If the conditions are satisfied in the

least-squares sense then a necessary condition for a minimum of the sum of squares of the residuals

with respect to x has the form

Ax = 0, (49)

where A is a (2N + 1)× (2N + 1) matrix. There is a non-trivial solution for x provided detA = 0.

Rather than seek a zero of detA, values of κL and q2W are specified and |detA| minimised as a
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function of q1L. This formulation works very well for κW . 2π. Within this range, an accuracy

for q1L of a three digits or more is usually obtained for N = 16 and P = Q = 4N .

The system of equations resulting from application of the Bloch conditions may also be rewritten

as a generalised eigenvalue problem for the eigenvalue eiq1L which can be solved using the QZ

algorithm (Golub & Van Loan, 1983). A reduction to a standard eigenvalue problem is not possible

in general as the matrices involved become nearly singular as P and Q are increased. The method

works well for κL . 4π, but for κL & 4π large values of N , P and Q are required to obtain

reasonable accuracy and the QZ algorithm becomes unreliable and may converge to erroneous

values if insufficient care is taken. With this in mind, a more robust, but more expensive, method

of computation is described in the next section.

5.2 Boundary-integral formulation

For given κ and q2, the problem defined by equations (2) and (13)–(15) may be formulated as

an eigenvalue problem for q1 using an application of Green’s theorem to the potential φ and a

suitable Green’s function G. The Green’s function is chosen to satisfy the cylinder-surface boundary

condition (15) and is

G(x, y; ξ, η) = H0(κR)−
∞∑
n=0

εn
J ′n(κD/2)
H ′n(κD/2)

Hn(κρ)Hn(κr) cosn(θ − ψ). (50)

Here, (ρ, ψ) and (ξ, η) are respectively the polar and Cartesian coordinates of the source point P ,

(r, θ) and (x, y) are the corresponding coordinates of the field point Q, R is the distance between

P and Q and satisfies

R2 = (x− ξ)2 + (y − η)2 = r2 + ρ2 − 2rρ cos(θ − ψ), (51)

Jn denotes the Bessel function of the first kind and order n, Hn denotes the Hankel function of the

first kind and order n, ε0 = 1, and εn = 2 for n ≥ 1. That G satisfies the boundary condition (15)

may be verified using Graf’s addition theorem (Abramowitz & Stegun, 1964, equation 9.1.79).

With the above choice of Green’s function, Green’s theorem yields

φ(P ) =
1
2i

∫
S

(
φ(Q)

∂G

∂nQ
(P ;Q)−G(P ;Q)

∂φ

∂nQ
(Q)
)

dsQ (52)

where the integration is taken over the boundary S of the rectangular region {|x| ≤ L/2, |y| ≤W/2},
and the subscript Q on the outward normal coordinate n and the tangential coordinate s is used to

denote derivatives with respect to the field variables. Substitution of the representation (52) into

the conditions on φ in equations (13)–(14), and application of all of (13)–(14) under the integral
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sign, gives a set of four coupled integral equations for the four unknown functions

f(y) ≡ φ(L/2, y), u(y) ≡ ∂φ

∂x
(L/2, y), |y| ≤W/2, (53)

g(x) ≡ φ(x,W/2), v(x) ≡ ∂φ

∂y
(x,W/2), |x| ≤ L/2. (54)

Divide the interval |y| ≤W/2 in to M elements of equal length and the interval |x| ≤ L/2 in to

N elements of equal length. The functions f(y), u(y), g(x) and v(x) are assumed to be constant

over the appropriate individual elements which allows the simultaneous integral equations to be

reduced in a standard way to a matrix system for the unknown function values that has the form

A(λ2, κL)x = λ1B(λ2, κL)x (55)

where λ1 = eiq1L, λ2 = eiq2W , A andB are matrices of order 2(N+M)×2(N+M), and x is the vector

of unknown function values. Equation (55) is a generalised eigenvalue problem for the eigenvalue

λ1 which can be solved by the QZ algorithm (Golub & Van Loan, 1983). Significant reduction in

computational time can be obtained by reducing the size of the system by elimination of f and u

from (55). Note that a reduction to a standard eigenvalue problem is not possible as the matrices

involved become nearly singular as M and N increase. Computations for a square cell suggest

that q1L may be computed to about three-figure accuracy for κL . 4π by taking M = N = 16.

The boundary-integral method is recommended for calculations of TB in the stopping bands for

κL & 2π.

5.3 Results

Typical results for the Bloch transmission coefficient TB = eiq1L (see §3) are illustrated in figure 7.

The ranges 0 < κL . 0.77π, 1.14π . κL . 1.79π and 1.90π . κL < 2π, are passing bands

where |TB| = 1 so that the waves propagate through the array with constant amplitude. The

complementary ranges 0.77π . κL . 1.14π and 1.79π . κL . 1.90π are stopping bands in which

|TB| < 1 so that the waves decay in amplitude as they propagate. The passing bands were first

identified using the method of §4.1 and then TB was computed in the stopping bands using the

above least-squares formulation.

Figure 8 shows how the real and imaginary parts of q1L vary with κL for the same geometry

as used in figure 7. As κL is increased in the first passing band, Im{q1L} = 0 and the I1 mode

is followed up to the first stopping band. Within the stopping band the phase Re{q1L} remains

constant while Im{q1L} varies. The I2 mode is then followed until the second stopping bound where

Re{q1L} again remains constant. After the second stopping band there are two modes; the II1 mode
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Figure 7: Bloch transmission coefficient |TB| vs. wavenumber κL; W/L = 1, D/L = 0.5, q2L = 0.
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Figure 8: Real (——–) and imaginary (– – – –) parts of q1L vs. wavenumber κL;
W/L = 1, D/L = 0.5, q2L = 0.

is followed in figure 8. The behaviour obtained here from numerical calculations confirms exactly

that observed in the approximate solution of §3 that is based upon a wide-spacing approximation.
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6 Unidirectional wave propagation through an array

The behaviour described in the preceding sections for a doubly infinite array is related to the

reflection and transmission properties of an array that has finite length in the x direction. This is

illustrated here for normal incidence, q2 = 0, and κW < 2π using the wide-spacing formalism of

Evans (1990). Consider N infinitely long rows of cylinders situated at x = Lm, m = 1, 2, . . . N .

Each row may be thought of as a single cylinder with axis on y = 0 between channel walls at

y = ±W/2. Divide the fluid domain into N + 1 regions as follows:

Region 1: −∞ < x < L1,

Region m: Lm−1 < x < Lm, m = 2, 3, . . . , N,

Region N+1: LN < x <∞.
(56)

Here Lm+1 − Lm = L, m = 1, 2, . . . , N − 1. It will be assumed that κL >> 1. Suppose that an

incident plane wave propagates in the direction of x increasing and this is reflected and transmitted

by the complete grating. Under the wide-spacing approximation, at sufficiently large distances

from the cylinders, in region m the solution may be written as

φ = Am eiκx +Bm e−iκx . (57)

In region 1 this will correspond to the incident and reflected wave for the complete grating and in

region N + 1 to the transmitted wave. The solutions in region m and region m+ 1 may be related

to the reflection and transmission coefficients for a single row, R and T respectively, in the same

way as described before equations (20). This leads to the equations

A1 = 1, B1 = RN , AN+1 = TN , BN+1 = 0, (58)

Am+1 eiκLm = TAm eiκLm +RBm+1 e−iκLm

Bm e−iκLm = TBm+1 e−iκLm +RAm eiκLm

 , m = 1, 2, . . . , N, (59)

where RN and TN are the reflection and transmission coefficients for the complete array of N rows.

The steps described by Evans (1990) allow this system to be rewritten in the form TN ei(κLN+κL)

0

 = SN

 eiκL1

RN e−iκL1

 (60)

where the matrix

S =

 (T −R2/T ) eiκL R eiκL /T

−R e−iκL /T e−iκL /T

 ; (61)
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the system is easily solved to determine RN and TN . Let

SN ≡

 s11 s12

s21 s22

 (62)

then, in particular,

TN = eiκ{L1−LN−L}
(
s11 −

s12s21

s22

)
. (63)

For purely numerical purposes it is straightforward to evaluate SN directly. However, Evans

(1990) gives an explicit formula for SN which yields further insight into the problem. From Evans’

result it is easy to deduce that

s11 −
s12s21

s22
=

sinhβ
sinh(β −Nα)

(64)

where

coshα =
eiκL

2T
(
T 2 −R2 + e−2iκL

)
=

cos(δ + κL)
|T | , (65)

coshβ =
eiκL

2R
(
T 2 −R2 − e−2iκL

)
=

sin(δ + κL)
|R| (66)

and δ is the phase of the transmission coefficient introduced in equation (22). From equation

(26) it may be seen that α is directly related to the Bloch wavenumber q1 in the corresponding

periodic-array problem.

At wave frequencies for which |T | < | cos(δ + κL)|, α has a non-zero real part and β is pure

imaginary. Let β = ib so that

|TN |2 =
sin2 b

sin2 b+ sinh2Nα
(67)

and it is readily apparent that |TN | → 0 as N →∞. The frequencies at which this behaviour occurs

correspond precisely to the stopping bands in the infinite-array problem. At wave frequencies for

which |T | > | cos(δ + κL)|, α = iq1L is pure imaginary and coshβ and sinhβ are both real. Now

|TN |2 =
sinh2 β

sinh2 β + sin2Nq1L
. (68)

and |TN | is oscillatory. The frequencies at which this behaviour occurs correspond precisely to the

passing bands in the infinite-array problem.

The above behaviour of TN is confirmed in figure 9 using results for a grating with N = 10

rows. The required reflection and transmission coefficients for a single cylinder were calculated by

the method of Linton & Evans (1993). Comparison is made with |TB|10 which is the transmission

coefficient for propagation through a distance 10L in the doubly infinite array. The oscillatory

behaviour in |T10| is due to end effects for the finite number of rows. Clearly, the Bloch transmission
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Figure 9: Transmission coefficient |T10| for ten rows of cylinders (dashed line) and
Bloch transmission coefficient |TB|10 (solid line) vs. wavenumber κL; W/L = 1,
D/L = 0.5.

coefficient may be used to predict the properties of a large, but finite, number of rows of cylinders.

Similar numerical comparisons of the Bloch transmission coefficient with the transmission by finite

arrays have been made by Heckl & Mulholland (1995) in the context of acoustic transmission in

tube bundles.

The approximate positions of the troughs in transmission (and hence peaks in reflection) can

be explained through the phenomenon of Bragg scattering that is well-known in x-ray diffraction

by a crystal (Ashcroft & Mermin, 1976, p.96). For strong overall reflection to occur the waves

reflected from different rows of a grating must interfere constructively and, for the normal incidence

investigated here, this occurs when κL = nπ, for integer n, which is clearly consistent with the

results of figure 9.

7 Multi-directional wave propagation through an array

The previous section dealt with normal incidence on a grating and with frequencies where the

reflected and transmitted waves are also normal to the grating. This section deals with an arbitrary

angle of incidence and with the general case where the reflected and transmitted fields may contain

components whose propagation direction is not parallel to the incident wave.

Consider wave scattering by a grating of N identical rows of cylinders as described at the
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beginning of §6; the configuration is assumed to be symmetric about x = 0. A wave with potential

φI = eiκr cos(θ−θq) (69)

is incident from the left at an angle θq to the x axis, where (r, θ) are polar coordinates defined by

(x, y) = (r cos θ, r sin θ). This wave will be diffracted to obtain a reflected field

φ ∼
ν∑

p=−µ
Rqp e−iκr cos(θ+θp) as x→ −∞ (70)

and a transmitted field

φ ∼
ν∑

p=−µ
Tqp eiκr cos(θ−θp) as x→∞, (71)

where

sin θp = sin θq +
2pπ
κW

, (72)

µ = [(1 + sin θq)κW/2π] and ν = [(1− sin θq)κW/2π] (73)

and [·] indicates that the integer part should be taken (see Twersky, 1962). The far-field forms (70)–

(71) are valid for any integer q ∈ [−µ, ν]. Conservation of energy requires that the components of

the reflection and transmission matrices R and T satisfy

ν∑
p=−µ

(
|Rqp|2 + |Tqp|2

)
cos θp = cos θq (74)

(Twersky, 1962). An algorithm for the computation of approximations to the reflection and trans-

mission matrices for multiple rows from the properties of a single row is given by Heckl & Mulholland

(1995, §3.2), and their formulation was used for the calculations described below. The reflection

and transmission matrices for a single row were calculated using the method of Linton & Evans

(1993).

Heckl & Mulholland (1995) also give an approximate method for the calculation of the Bloch

transmission coefficient. When compared with the present methods there is good agreement except

in the vicinity of κW = 2nπ, for positive integer n, where there can be considerable disagreement.

Computations for scattering by multiple rows are now used to illustrate the relationship between

that problem and the Bloch problem of wave transmission through an infinite array. The results

in figure 10 are for normal incidence (θq = 0) and show how the quantity

ET =
ν∑

p=−µ
|Tqp|2 cos θp, (75)

which is proportional to the transmitted wave energy, varies with the number of rows N . Results

are given for three wave numbers κL ∈ (2π, 4π) for which, according to (73), there are a total of
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Figure 10: Transmitted energy ET for normal wave incidence vs. number of rows
of cylinders N ; W/L = 1, D/L = 0.5, κL = 2.7π (– · – · –), κL = 3π (– – – –),
κL = 3.7π (———).

three propagating wave directions. The wavenumber κL = 2.7π is within a stopping band (see

figure 4) and there is very little energy transmission through more than two rows of cylinders. By

contrast, κL = 3π is within a passing band and there is significant wave transmission through any

number of rows. The third value κL = 3.7π is not within a stopping band. However, it can be seen

from figure 4 that the only mode that can propagate through an infinite array is antisymmetric

about y = 0. However, under normal incidence, the scattering problem is completely symmetric

and antisymmetric waves cannot be excited leading to suppression of wave transmission through the

finite array. If the angle of incidence is not zero but instead one of the other associated propagation

directions, so that sin θq = 2π/κW say, then the problem is longer completely symmetric and

there is significant energy transmission through any number of rows for κL = 3.7π. However, the

transmission in the ‘symmetric’ normal direction is still negligible.

In this scattering problem, the complete solution has the form

φ(x, y) = eiq2y ψ(x, y) (76)

where

q2 = κ sin θq (77)

and ψ is periodic in y with period W . Thus, the y variation is exactly that occurring in the Bloch

problem. By specifying q2 in the Bloch problem according to equation (77) and solving for the
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Figure 11: Maximum Bloch transmission |TB| vs. angle of incidence θq; W/L = 1,
D/L = 0.5, κL = 2.7π.

Bloch transmission coefficient TB useful information can be obtained about the scattering problem.

For most wave numbers there are at least two distinct values of |TB| and hence, in figure 11, the

maximum |TB| is plotted as a function of angle for fixed κL. The variational method was used

to identify the passing bands and the boundary-integral method used to make calculations within

the stopping bands. When |TB| = 1 significant wave energy can be expected to propagate through

a finite number of rows. When |TB| < 1 little wave energy will propagate through the complete

system and the decay with distance can be estimated from |TB|.
A wider picture in figure 12 shows the distribution of passing and stopping regions as a function

of incidence angle and wave number. This figure was constructed using the technique described at

the end of §4.1. In the unshaded regions, max{|TB|} = 1 and in general there will be significant

wave transmission through a finite array. In the shaded regions |TB| < 1 and, in general, wave

transmission will be effectively blocked within the first few rows of a finite array.

8 Conclusion

A variety of techniques have been presented for the calculation of water-wave propagation through

an doubly-periodic infinite array of vertical cylinders extending throughout the fluid depth. The

phenomena of stopping and passing bands that arise in solid-state physics have been shown to arise

in this water-wave Bloch problem as well.
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Figure 12: Passing (unshaded) and stopping (shaded) regions as a function of angle
of incidence θq and wave number κL; W/L = 1, D/L = 0.5.

The point-matching technique of §5.1 may be extended to other geometries by modifying the

series in equation (47). For example, the corresponding series for a circular dock can be calculated

using the method given by Garrett (1971). For this geometry, the potential will no longer have

the form (1). However, (1) will hold approximately sufficiently far from the cylinder for evanescent

modes to be negligible, and so an approximate theory strictly valid only for small cylinder to

spacing ratios is obtained. A similar modification of the Green’s function (50) can be made in the

boundary-integral method of §5.2.

The final sections of the paper are devoted to the relationship between the Bloch problem and

water-wave scattering by a finite number of rows, but where each row is of infinite extent. Further

work is required to relate the Bloch problem to wave scattering by an array that is finite in both

horizontal directions.
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