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Abstract On the basis of the integrable Kaup-Boussinesq version of the shallow

water equations, an analytical theory of undular bores is constructed.

The problem of the decay of an initial discontinuity is considered.

1. Introduction

It is well-known that the standard procedure for the derivation of

system describing one-dimensional nonlinear shallow water waves from
the basic equations allows great exibility, due to the availability of two

small parameters (nonlinearity and dispersion) (see Whitham 1974). As

a result one has a number of systems, which are asymptotically equiv-

alent but have quite di�erent mathematical structure. In this paper

we consider the Kaup { Boussinesq (KB) version of the shallow water

equations (Kaup 1976):

ht + (hu)x +
1

4
uxxx = 0 ; ut + uux + hx = 0: (1)

This system, in comparison to other versions of the nonlinear shallow

water equations, has an advantage of complete integrability. Our aim is
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to utilise the integrable structure of the KB system for the exact analytic

description of undular bores.

In contrast to another integrable system, the Korteweg { de Vries

equation, which is often used as a satisfactory model for the shallow

water undular bores, the KB system has a natural two-wave structure,

which enables one to capture the e�ects of interaction of undular bores

and/or rarefaction waves arising in the decay of an initial jump disconti-

nuity in the surface elevation and/or horizontal velocity �elds, and also

to determine their mutual disposition.

2. Lax pair and conservation laws

The Lax pair for the system (1) was found by Kaup (1976) and can

be represented in the form (see El, Grimshaw & Pavlov 2000),

'xxx = 4[(�� u=2)2 � h]'x � 2[(�� u=2)ux + hx]'; (2)

't = (�� u=2)'x +
1

2
ux'; (3)

where � is a complex spectral parameter (the KB system (1) represents

the compatibility condition ('xxx)t = ('t)xxx) provided � is constant).

Combining (2) and (3) with the original system (1) we get the gener-

ation equation for the in�nite series of KB conservation laws

@t[2(�� u=2)'] = @x[
1

2
'xx � 2(2�2 � �u� h)']: (4)

One can observe that equation (2) can be integrated in x once with the

aid of the integrating factor ' to give

''xx �
1

2
'2x = 2(�2� �u� h+ u2=4)'2 � �(�; t); (5)

where �(�; t) is a `constant' of integration.

3. One-phase travelling wave solutions

We obtain the one-phase travelling wave solution to the KB system

in the `right' parametrization. `Right' here means that the parameters

(integrals of motion) appearing in the travelling wave solution would be

exactly Riemann invariants of the Whitham equations, which will be

derived in the next section. Some of these solutions were constructed
by Smirnov (1986) using general methods of �nite-gap integration. Here

we propose a simple straightforward method of obtaining the one-phase

real-valued solutions, along with the Whitham equations in Riemann

invariants. Our method is based on the simple substitution

u = U � �(�) ; h = h(�); (6)
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where � = kx� !t is the phase, and U = !=k is the phase velocity.

Substituting (6) into the original KB system (1) we get, after some

integration, the ordinary di�erential equation,

1

4
k2(�0)2 =

4Y
j=1

(�� rj) � R4(�) ; (7)

where we choose the roots of the polynomial R4(�) r1 > r2 > r3 > r4
as the constants of integration. The depth h(�) is expressed in terms of

�(�) :

h = �2�2 + 2�U + C ;

where

U =
1

2

4X
j=1

rj; U2
� C = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4;

Generically, rj 's can be either real or complex. Here, however, we restrict

ourselves to the case of real branch points, which corresponds to the

shallow water physics. Then, for � to be real it has to oscillate between

the roots r3 and r2.

Equation (7) can be integrated in terms of Jacobi elliptic functions

�(�) = r4 +
�24�34

�24 ��23sn
2(
p
�13�24(x� Ut);m)

; (8)

where the modulus m and the amplitude a are

m =
�23�14

�13�24

; a = �23 ; �ij = ri � rj: (9)

The wavelength is given by the periodicity condition
H
d� = 2�, which,

together with (7), yields

L = 2�k�1 =

r2Z

r3

d�q
R4(�)

=
2K(m)p
�13�24

; (10)

where K(m) is the complete elliptic integral of the �rst kind. As usual,

the cnoidal wave takes the sinusoidal form as m ! 0 (r2 ! r3) and

converts into a soliton as m! 1. In the soliton limit the result depends

on the way in which m ! 1, as it can appear by two ways; r1 ! r2 or

r3 ! r4 (see (9)). This corresponds to solitons moving in both directions

(see El, Grimshaw & Pavlov 2000 for details)
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4. Conservation laws on the one-phase travelling

solution

Our aim now is to present the generating equation for the conservation

laws (4) in a form suitable for averaging over the period of the travelling

wave solution (8). We put ' = '(�) and substitute the solution (6) of

the KB system into the stationary equation (2). After some simple but

rather lengthy manipulations, we get

'(�; �) = �(�)
�� �q
R4(�)

: (11)

Now, the conservation equation (4) takes the form for this chosen family

of solutions

@t
P (�; �)q
R4(�)

= @x
Q(�; �)q
R4(�)

; (12)

where

P (�; �) = 2�2 � U�� �2;

Q(�; �) = ��00 � 4�3� 2U�2+ 2�[4�(��U)� C] + 2[�2(��U)�C�]:

We emphasize that the normalizing factor �(�) cancels in (12) whilep
R4(�) cannot be cancelled as we are going to investigate the slow

dependence of the integrals of motion rj on x and t.

5. Whitham-KB equations in Riemann

invariants

Now we obtain the modulation equations for the parameters rj con-

sidered as slowly varying functions of x and t. The Whitham prescrip-

tion for obtaining the modulation equations (Whitham 1974) is that one

should average the needed number (four in our case) of conservation laws

over the period of the travelling wave solution. The generating equation

(12) provides us with the in�nite series of the conservation laws. We

introduce the averaging procedure by the formula

�f(r1; r2; r3; r4) =
2

L

r2Z

r3

f(�; r1; r2; r3; r4)q
R4(�)

d�: (13)

Applying this to (12) we get the generating modulation equation

@t
�P (�; r1; r2; r3; r4)q

R4(�)
= @x

�Q(�; r1; r2; r3; r4)q
R4(�)

: (14)
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Multiplying (14) by (� � rj)
3=2 and passing to the limit as � ! rj we

obtain the Whitham equations in Riemann form

@trj + Vj(r1; r2; r3; r4)@xrj = 0; j = 1; 2; 3; 4; (15)

where the characteristic speeds can be represented in a compact universal

form (El, Grimshaw & Pavlov (2000))

Vj =
1

2
f

X
rj � L(@L=@rj)

�1
g ; (16)

where L(r) is the wavelength given by (10).

6. Self-similar solutions to the Whitham-KB

system

Let us consider the initial data for the KB system in the form of a

step discontinuity: at t = 0 : u = u� ; h = h� for x > 0 ; and u =

u+ ; h = h+ for x < 0, which implies four free parameters . This type of

initial data is known to lead, in the systems of this type, to the onset of a

rapidly oscillating nonlinear wave. This wave is the undular bore and it

was �rst analytically described by Gurevich and Pitaevsky (GP) (1974)

on the basis of the KdV equation. The GP description implies that

the solution in the bore region has the form of a one-phase modulated

travelling wave. At one edge of the undular bore the oscillations have a

form of solitons (m = 1) and at the opposite edge they degenerate into

small-amplitude sinusoidal waves (m = 0). For the problem of decay

of an initial discontinuity the desired solution of the Whitham system

must be self-similar, i.e. rj = rj(x=t) . Then, the KB-Whitham system

(15) transforms into the system,

(Vj � �)
drj

d�
= 0 ; � = x=t; j = 1; 2; 3; 4 ; (17)

which implies that three of the invariants rj are constants and for the

remaining one (rk) we have the algebraic equation Vk = � .

For example, for the initial discontinuity with h� = 1 ; u� = 0 ; h+ =

(c+ 1)2=4 ; u+ = c� 1 ;�1 < c < 1 the solution is:

r1 = 1; r3 = c; r4 = �1 ;

r2 + c

2
+

r2 � c

1�
1� c

1� r2

E(m)

K(m)

=
x

t
; m =

2(r2� c)

(1� c)(r2+ 1)
: (18)

The solution (18) describes the slow modulation for the so-called simple

undular bore moving to the right (see Figure 1a). The oscillatory struc-

ture of the bore is given by the travelling solution (8). An analogous
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solution can be constructed for the simple undular bore moving to the

left (Figure 1b).

The Whitham-KB system has another family of self-similar solutions

coinciding with the standard rarefaction waves in the dispersionless shal-

low water theory. For example the above initial jump with c > 1 is

resolved by the rarefaction wave moving to the right (Figure 1c):

r4 � r� = �1 ; r3 = r2 = r1 � r+ = 2x=3t+ 1=3:

Analogously, for the resolution of the appropriate initial data, the rar-

efaction wave moving to the left can be constructed (Figure 1d).

One can see, that the number of free parameters both in the simple

undular bore and in the refraction wave is equal to three. Therefore to

resolve an arbitrary, four-parametric, initial jump one needs to combine

two di�erent waves which are provided by the two-wave nature of the

KB system. These waves may be undular bores as well as rarefaction

waves in various combinations. In the next section we consider the most

important cases .

7. Decay of an arbitrary initial discontinuity

Without loss of generality we consider the initial jump in the form:

t = 0 : h = 1; u = 0; for x < 0; and h = h0; u = u0; for x > 0;

where h0 and u0 are constants, h0 > 0. It is convenient to introduce two

new constants c�, which have the meaning of the Riemann invariants

for the dispersionless shallow water equations, instead of h0, u0.

c� =
u0

2
�

p
h0 (19)

Then we can illustrate some important cases with the aid of the diagrams

shown in Figure 2.

a) c+ > 1, 1 > c� > �1 (Figure 2a)

Two rarefaction waves separated by a plateau are produced as a result

of the decay. The self-similar coordinates of the weak discontinuites in

the solution of the Whitham system (edges of the waves) are

�4 = �1; �3 = (1 + 3c�)=2; �2 = (3 + c�)=2; �1 = (3c+ + c�)=2;

The value of h and u at the plateau are: up = 1+ c�; hp = (1� c�)
2=4:

b) c+ > 1, �5=3 < c� < �1 (Figure 2b)

A leading rarefaction wave and a trailing undular bore, separated by a

plateau, are produced . The coordinates of the edges are:

�1 = (3c++c�)=2; �2 = (3+c�)=2 ; �3 = (c��9)=2+8=(3+c�); �4 = c�:
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The values of h and u at the plateau are: up = 1+ c�; hp = (1� c�)
2=4

c) �1 < c� < c+, (3 + c�)=4 < c+ < 1 (Figure 2c)

The leading undular bore and the trailing rarefaction wave separated by

a plateau are produced . The coordinates of the edges are:

�1 = 1+(c++c�)=2; �2 = (2c++1+c�)=2�2(1�c+)(c+�c�)=(2c+�1�c�);

�3 = (1 + 3c�)=2; �4 = �1:

The values of h and u at the plateau are up = 1+ c�; hp = (1� c�)
2=4:

d) (3c2
�
+ 6c� + 7)=(4(3+ c�) < c+ < 1, c� < �1 (Figure 2d).

Two undular bores separated by a plateau are produced. The edges are:

�1 = 1+(c++c�)=2; �2 = c++(1+c�)=2�2(1�c+)(c+�c�)=(2c+�1�c�);

�3 = (c� � 9)=2 + 8=(3 + c�); �4 = �c�:

At the plateau we have up = 1+ c�; hp = (1� c�)
2=4:

The complete classi�cation for the problem of the decay of an initial

discontinuity for the KB equation can be found in (El, Grimshaw &
Pavlov 2000).
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Figure 1. Behaviour of the Riemann invariants in undulars bores moving a) to the

right, b) to the left; in rarefaction waves moving: c) to the right, d) to the left
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Figure 2. Behaviour of the Riemann invariants and the averaged depth in the decay

of an initial discountinuity problem for di�erent values of the initial step


