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MULTIPLE SCATTERING BY MULTIPLE SPHERES:
A NEW PROOF OF THE LLOYD-BERRY FORMULA
FOR THE EFFECTIVE WAVENUMBER*

C. M. LINTONT AND P. A. MARTIN#

Abstract. We provide the first classical derivation of the Lloyd-Berry formula for the effective
wavenumber of an acoustic medium filled with a sparse random array of identical small scatterers.
Our approach clarifies the assumptions under which the Lloyd-Berry formula is valid. More precisely,
we derive an expression for the effective wavenumber which assumes the validity of Lax’s quasi-
crystalline approximation but makes no further assumptions about scatterer size, and then we show
that the Lloyd—Berry formula is obtained in the limit as the scatterer size tends to zero.
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1. Introduction. Suppose that we are interested in the scattering of sound by
many small scatterers; for example, we might be interested in using ultrasound to
determine the quality of certain composites [14], fresh mortar [2], or food products
such as mayonnaise [21]. If we knew the shape, size, and location of every scatterer,
we could solve the multiple-scattering problem by solving a boundary integral equa-
tion, for example. However, usually we do not have this information. Thus, it is
common to regard the volume containing the scatterers as a random medium, with
certain average (homogenized) properties. Here, we are concerned with finding an
effective wavenumber, K, that can be used for modelling wave propagation through
the scattering volume. This is a classical topic, with a large literature: we cite well-
known papers by Foldy [7], Lax [16, 17], Waterman and Truell [25], Twersky [23], and
Fikioris and Waterman [6], and we refer to the book by Tsang et al. [22] for more
information.

A typical problem is the following. The region z < 0 is filled with a homogeneous
compressible fluid of density p and sound-speed c. The region z > 0 contains the
same fluid and many scatterers; to fix ideas, suppose that the scatterers are identical
spheres. Then, a time-harmonic plane wave with wavenumber k = w/c (w is the an-
gular frequency) is incident on the scatterers. The scattered field may be computed
exactly for any given configuration (ensemble) of N spheres, but the cost increases as
N increases. If the computation can be done, it may be repeated for other configura-
tions, and then the average reflected field could be computed (this is the Monte-Carlo
approach). Instead of doing this, we shall do some ensemble averaging in order to
calculate the average (coherent) field. One result of this is a formula for K.

Foldy [7] considered isotropic point scatterers; this is an appropriate model for
small sound-soft scatterers. He obtained the formula

(1.1) K? = k? — 4nigno /k,

where ng is the number of spheres per unit volume and g is the scattering coefficient for
an isolated scatterer. The formula (1.1) assumes that the scatterers are independent
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and that ng is small. We are interested in calculating the correction to (1.1) (a term
proportional to n3), and this will require saying more about the distribution of the
scatterers; specifically, we shall use pair correlations. Thus, our goal is a formula of
the form

(1.2) K% = k2 + 61n0 + 6ang,

with computable expressions for §; and §2. Moreover, we do not only want to restrict
our formula to sound-soft scatterers.

There is some controversy over the proper value for d5. In order to state one such
formula, we introduce the far-field pattern f. For scattering by one sphere, we have
uin = exp (ik - r) for the incident plane wave, where k = kk, r = r7, k = |k| and
r = |r|; the angle of incidence, 6;y,, is defined by cos 8, = k - 2, where z = (0,0,1) is
a unit vector in the z-direction. Then the scattered waves satisfy

(1.3) uge ~ (ikr)"Le*" f(©) as kr — oo,
where cos © = # - k. Then, Twersky [23] has obtained (1.2) with
(14) 61 = —(47i/k)f(0) and & = (4n%/k*)sec? Oy { [f (7 — 20:m)]* — [£(0)]*} .

This formula involves 60y, so that it gives a different effective wavenumber for different
incident fields. The same formulas but with 6i, = 0 (normal incidence) were given by
Urick and Ament [24] and by Waterman and Truell [25]:

(1.5) 01 = —(47i/k)f(0) and & = (4x*/k*) {[f(m)]* = [f(0)]*}.

Other formulas were obtained more recently [13, 27].
In 1967, Lloyd and Berry [19] showed that the formula for d2 should be

) = U O [ s G O ),

with no dependence on 6;,. They used methods and language coming from nuclear
physics. Thus, in their approach, which they “call the ‘resummation method’, a point
source of waves is considered to be situated in an infinite medium. The scattering
series is then written out completely, giving what Lax has called the ‘expanded’ repre-
sentation. In this expanded representation the ensemble average may be taken exactly
[but then| the coherent wave does not exist; the series must be resummed in order to
obtain any result at all.” The main purpose of the present paper is to demonstrate
that a proper analysis of the semi-infinite model problem (with arbitrary angle of inci-
dence) leads to the Lloyd—Berry formula. Our analysis does not involve “resumming”
series or divergent integrals. It builds on a conventional approach, in the spirit of the
paper by Fikioris and Waterman [6].

There are two good reasons for giving a new derivation of the Lloyd-Berry for-
mula. First, our analysis clarifies the assumptions that lead to (1.6). Second, erro-
neous formulas (such as (1.4) or (1.5)) continue to be used widely, perhaps because
they are simpler than (1.6) or perhaps because the original derivation in [19] seems
suspect. For some representative applications, see [14, 2, 20] and [21, chapter 4].

The paper begins with a brief summary of some elementary probability theory.
The pair-correlation function is introduced, including the notion of “hole correction”,
which ensures that spheres do not overlap during the averaging process. In §3, we
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consider isotropic scatterers, and derive the integral equations of Foldy (independent
scatterers, no hole correction) and of Lax (hole correction included). Foldy’s equation
is solved exactly. A method is developed in §3.2 for obtaining an expression for K
which does not require an exact solution of the integral equation, merely an assump-
tion that an effective wavenumber can be used at some distance from the “interface” at
z = 0 between the homogeneous region (z < 0) and the region occupied by many small
scatterers (z > 0). The virtue of this method is that it succeeds when the governing
integral equation cannot be solved exactly. Thus, in §3.3, we obtain an expression
for K from Lax’s integral equation; Foldy’s approximation is recovered when the hole
correction is removed. The same method is used in §4 but without the restriction to
isotropic scatterers. We start with an exact, deterministic theory for acoustic scatter-
ing by N spheres; the spheres can be soft, hard, or penetrable. We combine multipole
solutions in spherical polar coordinates with an appropriate addition theorem. This
method is well known; for some recent applications, see [15, 9, 11]. The exact system
of equations is then subjected to ensemble averaging in §4.3; Lax’s “quasi-crystalline
approximation” [17] is invoked. This leads to a homogeneous infinite system of linear
algebraic equations; the existence of a non-trivial solution determines K. We solve
the system for small ng and recover the Lloyd-Berry formula.

An analogous theory can be developed in two dimensions, and leads to a result
that is reminiscent of the Lloyd—Berry formula [18]. However, the three-dimensional
calculations described below are much more complicated, as they involve addition
theorems for spherical wavefunctions and properties of spherical harmonics. Never-
theless, the final results are rather simple.

2. Some probability theory. In this section, we give a very brief summary
of the probability theory needed. For more information, see [7], [16] or chapter 14
of [12].

Suppose we have N scatterers located at the points r1,72,...,7N; denote the
configuration of points by Ay = {r1,72,...,7n5}. Then, the ensemble (or configura-
tional) average of any quantity F(r|Ay) is defined by

(21) <F(7‘)> ://p(’l"l,T‘g,,T'N)F(’l"lAN)dvldVN,

where the the integration is over N copies of the volume By containing N scatterers.
Here, p(r1,...,7n)dVidVa---dVy is the probability of finding the scatterers in a
configuration in which the first scatterer is in the volume element dV; about 71, the
second scatterer is in the volume element dV5 about 72, and so on, up to rn. The
joint probability distribution p(ri,...,ry) is normalized so that (1) = 1. Similarly,
the average of F(r|Ay) over all configurations for which the first scatterer is fixed
at ry is given by

(22) <F(7‘)>1 = / . -/p(’l"g, ey ’l"N|7‘1) F(T‘|AN) d‘/g s dVN,

where the conditional probability p(ra,...,ry|r1) is defined by p(ri,re,...,7rN) =
p(r1) p(ra,...,rylr1). If two scatterers are fixed, say the first and the second, we
can define

(2.3) (F(r)12 = /'"/p(T‘37---,7‘N|7“1,7"2)F(7'|AN)dV3"'dVN,

where p(ra,...,rN|r1) = p(ra|r1) p(Ts, ..., TN|T1, T2).
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As each of the N scatterers is equally likely to occupy dVi, the density of scatterers
at r1 is Np(r1) = ng, the (constant) number of scatterers per unit volume. Thus

(2.4) p(r) =no/N = [By|™",

where | By| is the volume of By. For spheres of radius a, the simplest sensible choice
for the pair-correlation function is

(25) p(’f‘g|’l"1) = (no/N)H(ng - b)7 where R12 = |T‘1 - T2|

and H is the Heaviside unit function: H(xz) =1 for x > 0 and H(z) = 0 for z < 0.
The parameter b (the “hole radius”) satisfies b > 2a so that spheres are not allowed
to overlap.

3. Foldy—Lax theory: isotropic scatterers. Foldy’s theory [7] begins with a
simplified deterministic model for scattering by N identical scatterers, each of which
is supposed to scatter isotropically. Thus, the total field is assumed to be given by
the incident field plus a point source at each scattering center, 7;:

N
(3.1) w(r|AN) = win(r) + 9 Y tex(r; 75| AN) ho(klr — 7).
j=1
Here, h,(w) = h%l)(w) is a spherical Hankel function, g is the (assumed known)

scattering coefficient, and the exciting field uyx is given by

N
(3.2) Uex (7570  AN) = win(7) + 9 ) tex(rys 75| AN) ho(klr — 7;));
=1
J#n
the N numbers uex(r;;7;|An) (j =1,2,..., N) required in (3.1) are to be determined
by solving the linear system obtained by evaluating (3.2) at r = 7,,.
If we try to compute the ensemble average of u, using (3.1) and (2.1), we obtain

(3.3) (u(r)) = uin(r) + 9”0/3 (Uex(T1))1 ho(klr — 71]) dVA,

where we have used (2.2), (2.4) and the indistinguishability of the scatterers. For
(tex(T1))1, we obtain

(34)  (tex(T))1 = win(r) + g(N — 1)/3 p(r2|r1) (uex(r2))12 ho(klr — 72f) dVa,

where we have used (2.3) and (3.2). Equations (3.3) and (3.4) are the first two in
a hierarchy, involving more and more complicated information on the statistics of
the scatterer distribution. In practice, the hierarchy is broken using an additional
assumption. At the lowest level, we have Foldy’s assumption,

(35) <ueX(T)>1 =~ <U(T’)>7

at least in the neighborhood of ;. When this is used in (3.3), we obtain

(3.6) (u(r)) = uin(r) + gno/B (u(r1)) ho(klr —r1|)dVi, r € Bn.
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We call this Foldy’s integral equation for (u). The integral on the right-hand side is
an acoustic volume potential. Hence, an application of (V2 + k?) to (3.6) eliminates
the incident field and shows that (V? + K2){u) = 0 in By, where K2 is given by
Foldy’s formula, (1.1).

At the next level, we have Lax’s quasi-crystalline assumption (QCA) [17],

(3.7 (Uex(T))12 = (Uex(T))2-

When this is used in (3.4) evaluated at » = r1, we obtain
(3.8)  v(r) =up(r) + g(N — 1)/ p(ri|r)v(ry) ho(klr — r1])dVi, r € By,
By

where v(r) = (uex(r))1. We call this Laz’s integral equation.
In what follows, we let N — oo so that By — By, a semi-infinite region, z > 0.

3.1. Foldy’s integral equation: exact treatment. Consider a plane wave at
oblique incidence, so that

(3.9) uin = exp (ik - ) = €% exp (ikr - q)

where r = (z,y,2), ¢ = (x,y,0), k = kr + az, z = (0,0, 1), the wavenumber vector
k is given in spherical polar coordinates by

k=kk with k= (sin by, €oS P, sin by, sin ¢y, cosbiy), 0 <Oy < 7/2,

o = kcosO;, and k7 is the tranbverse wavenumber vector, satisfying kp -z = 0.
For a semi-infinite domain B, (z > 0), Foldy’s integral equation (3.6) becomes

(w(z,y,2)) = uin(z,y, 2 +gn0/ / / u(lx+ X, y+Y,21)) ho(kor)dX dY dzq,

for 0 < |z| < 00, 0 < |y| < oo and z > 0, where o1 = /X2 + Y2+ (2 — 21)2. This
equation can be solved exactly. Thus, writing

(3.10) (u(z,y,2)) =U(z) exp (ikr - q), 0<]q| <oo, 2z>0,
we obtain

(3.11)  U(z) = e'*? —|—gn0/ / / (21) ho(ko1) exp (ikr - Q) dX dY dz;

for z > 0, where Q = (X,Y,0).
In Appendix B, it is bhOWH that

(3.12) / / ho(ko1) exp (ikp - Q)dX dY = éela‘z—zﬂ.
Thus, we see that U solves
(3.13) U(z) = e 2”9”0/ Ulz) el =ldzy, 2> 0.

Now, put U(z) = Upe™*?, so that (3.13) gives

2mgng ( 206N el >

iz iaz
Uge'* —e'** = — -
ika A —a?2 N—a
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where we have assumed that Im A > 0. If we compare the coefficients of e'**, we see

that Uy cancels, leaving
(3.14) M\ — a? = —4rigng/k,

which determines A. Then, the coefficients of el** give Uy = 2a//(\ + a). A similar
method can be used to find (u) when By, is a slab of finite thickness, 0 < z < h.
It is natural to define an effective wavenumber vector by

(3.15) K = K (sin? cos g, sindsingp, cost) = KK
= (ksin 6y, cos ¢in, ksin b, sin ¢in, A),

whence

(3.16) A=Kcos?¥ and Ksind = ksinby,.

The last equality is recognized as Snell’s law, even though K and ¥ are complex, with
Im K > 0. Hence, we see that

(3.17) N —o? = K? -k

whence (3.14) reduces to Foldy’s formula (1.1).

3.2. Foldy’s integral equation: alternative treatment. We have seen that
Foldy’s integral equation can be solved exactly, and that the solution process has two
parts: first find A (and hence the effective wavenumber) and then find Up. In fact,
A can be found without finding the complete solution; the reason for pursuing this is
that we cannot usually find exact solutions. Thus, consider (3.13), and suppose that

U(z) = Upe™*  for z > ¢,

where Uy, A and ¢ are unknown. To proceed, we need say nothing about the solution
U in the “boundary layer” 0 < z < £. Now, evaluate the integral equation for z > ¢;
we find that

. . 2wgng /é . 2mwgng /oo .
iz iaz iaz 1) e~ iot 4y t ia|z—t| dt
Upe e =—"—e ; U(t)e + - ) U(t)e

= Ae™ + Bl for z > ¢,
where A = —4mignoUp/[k(A? — a?)] and

27Tgn0 ¢ it 27Tig’rLOU0 iA—a)l
B= U(t) e ot df + —2 22 1A=t
ka /0 (t)e +ka()\—a)e

Then, setting Uy = A gives (3.14) again, without knowing the solution U everywhere.
This basic method will be used again below.

3.3. Lax’s integral equation. Using (2.5) for p(ri|r) in (3.8) gives

(318) ’U(T) = uin('r) + ano

U(’I”l)ho(le)d’l”l, r e BN,

b
BN

where BY(r) = {r1 € By : Ry = |r — r1| > b}, which is By with a (possibly
incomplete) ball excluded.
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Let N — oo and take an incident plane wave, (3.9), giving

v(x,y, 2) = e exp (ikr - q) + gno/ vz + X,y+Y, 21) ho(kor) dX dY dz,
21>0, 01>b
for 0 < |g| < co and z > 0. As in §3.1, we write
(3.19) v(z,y,2) =V (z) exp (ikr-q), 0<]qg|<o0, z>0,
giving
(3.20) V(z) = e + gno/ V(z1) ho(ko1) exp (ikr - Q) dX dY dzy,
21>0, 01>b

for 0 < |q| < co and z > 0. Then, using (3.12), we see that V solves
(3.21) V(z) = el + gn()/ V(z1) L(z — z1)dz, 2> 0,
0

where the kernel, £(z — 21), is given by

o c(Z) p2m ) )
(3.22)L(Z) = k—”ela‘zl - / ho(k/Q? 4 Z2)e*@sinOincos (2=¢in) (9 4P dQ
0

«Q 0

_ o(2)
— 2_7; el 2l 27T/ ho(k/Q? + Z2) Jo(kQ sin6i,) Q dQ
0

with ¢(Z) = vb? — Z2 H(b — | Z]); here, J,, is a Bessel function and we have written
the double integral over X and Y in (3.20) as an integral over all X and Y minus an
integral through the cross-section of the ball at z, if necessary.

We have been unable to solve (3.21) exactly. However, the alternative method
described in §3.2 can be used. Thus, let us suppose that

(3.23) V(z) = Voe**  for z > ¢,

where Vj, A and ¢ are unknown. Then, consider (3.21) for z > £+ b, so that the
interval |z — 21| < b is entirely within the range z; > ¢. Using (3.22), (3.21) gives

Vo ei)\z — el _ 2m iaz ‘ —iat 2 [ ia|z—t|
z+b c(z—t)
_on V(t)/ ho(k/Q2 + (2 — 0)2) Jo (kQ sin 0) Q dQ dt
z—b 0

for z > £+ b. Equation (3.23) can be used in the second and third integrals. The
second integral is elementary, and has the value

21iVy [l 20 .
———¢ — 5 5 ¢ .
ka A—a A2 —a?

Denote the third integral in (3.24) by I3; we have

b N
Is = —21V, / M) / ho(k/Q T €2) Jo (kQ sin f) Q dQ de
0

—b

T b
= 27V e / / glArcosd ho(kr) Jo(krsin 6 sin 6;y,) r2 sin 6 dr d6
o Jo

2 T b
=-V ei)\z / / / eir[)\ cos 0+k sin 0 sin 6y, cos (¢—din)] ho (k'f’) T2 sinfdr do d(b
0 0 0
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Using (3.16), the exponent simplifies to K - r, whence
Iy=-V ei)‘Z/ exp (iK - 7)ho(k|r|) AV (r)
<b
. b ™ eikr .
= —27Vpet® / —— lBTeost 12 6in 0 dh dr
0 0 lk’l"
b

210 ixs ikr (JiKr _ —iKr AmiVo ixz
zk—Ke /0 e (e — e )drzme {].—NQ(Kb)}7

where Ny(z) = e**{cosz —i(kb/z)sinz}. Using these results in (3.24), noting (3.17),
we obtain

Vo et — el = Ae™* + Bel®* for z >+ b,
where

47Tign0V0
k(k? — K?)

2 ¢ : omignoVo |
No(Kb), B= 7Tgno/ V(t) e iot dt 4 —91070 pix—a)e

A= ka Jo ka(A — «)

For a solution, we must have A = V{), whence
(3.25) K? = k* — 4nig(no/k) No(KD),

which is a nonlinear equation for K. Notice that this equation does not depend on
the angle of incidence, ;.

We have NVy(Kb) — 1 as Kb — 0 so that, in this limit, we recover Foldy’s formula
for the effective wavenumber, (1.1).

Let us solve (3.25) for small ng. (We could use the dimensionless volume fraction
4

§7ra3n0, but it is customary to use ng.) Begin by writing

(326) K2:k2+61n0+52n3+... ,

where d; and s are to be found; for 01, we expect to obtain the result given by (1.1).
It follows that K = k + 181m9/k + O(n3) and then

No(Kb) = Ny(kb) + (Kb — kb)NG(kb) + - - -
=1 — 3ib(no/k)d1do(kb) + O(nj),

where dg(r) = 1—2~1e!® sinz. When this approximation for No(Kb) is used in (3.25),
we obtain

K? = k? — 4rnigng /k — 2mbg(no/k)*61do (kD).

Comparison of this formula with (3.26) gives §; = —4wig/k (as expected) and dy =
8m2ig?bk—3dy(kb), so that we obtain the approximation

4mig 8ib(mgng)? kb SIN kb
2 _ 1.2 _ AikbR MY
(3.27) K =k 7o + & 1—e )

(Recall that a common choice for the hole radius is b = 2a.) As far as we know, the
formula (3.27) is new. Note that the second-order term in (3.27) vanishes in the limit
kb — 0.



MULTIPLE SCATTERING BY MANY SPHERES 9

4. A finite array of identical spheres: exact theory. Let O be the origin of
three-dimensional Cartesian coordinates, so that a typical point has position vector
r = (x,y, z) with respect to O. Define spherical polar coordinates (r,0,¢) at O, so
that » = r# = r(sinfcos ¢, sinfsin¢g, cosf). We consider N identical spheres, S,
j =1,2,...,N. The sphere S; has radius a and center O; at r = r;. We define
spherical polar coordinates (p;,0;,¢;) at O;, so that r = p; + r; with

p; = p;jp; = p;(sinb;cos¢;, sinb;sing;, cosby).

We assume that §; = 0 is in the z-direction (§ = 0).
Exterior to the spheres the pressure field is u, where

(4.1) V2u + k*u = 0.
Inside S}, the field is u;, where
(4.2) V2u; + Kk?u; = 0,

k = w/¢ and ¢ is the sound speed inside the spheres. The transmission conditions on
the spheres are
1 Ou _ 10u;

4.3 U= uj, -
(4.3) ! pdp; O

on p;j=a, j=1,...,N,

where p is the fluid density inside the spheres.

A plane wave, given by (3.9), is incident on the spheres. The problem is to
calculate the scattered field outside the spheres, defined as us. = u — u;,. We start
with just one sphere, in order to fix our notation.

4.1. Scattering by one sphere. For the incident plane wave, we have

(4.4) uin(r) = exp (ik - 7) = 4m Y "7 (r) Yy (k),

n,m

where Y™ () = jn (kr)Y,"(#), jn(w) is a spherical Bessel function, Y™ (#) = Y.™(0, ¢)
is a spherical harmonic (see Appendix A), the overbar denotes complex conjugation
and we have used the shorthand notation

00 n
n,m n=0m=-—n

With our choice of normalization, the spherical harmonics are orthonormal; see (A.1).
For the scattered and interior fields, we can write

Uge(T) = 47721”AmZn (r) and uine(r —47er”Bm]n (k) Y, (7),
respectively, where ¥ (r) = hy,(kr) Y, (), the coeflicients A7 and B! are to be
found, and the factor

i (ka)jn(Ka) = jn(ka)jy (ra)
qht, (ka) jn(ka) — hn(ka)j;,(ka)’

(4.5) Zn =
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with ¢ = pé/(pc), has been introduced for later convenience. Then, the transmission

conditions on r = a yield A™ and B™; in particular, we obtain A™ = =Y (k). Also,
the far-field pattern, defined by (1. 3) is given by

(4.6) f(©) =4n> " Z, A7 Y(F) = — i(2n+ 1)Z, P, (cos ©),

n,m n=0

where cos © = 7 k and we have used (A.3) in order to evaluate the sum over m. Note
that we recover the sound-soft results in the limit ¢ — 0, whereas the limit ¢ — oo
gives the sound-hard results.

4.2. Scattering by N spheres. A phase factor for each sphere is defined by
I; = exp (ik - r;), and then we can write

il

(4.7) uin = Ijexp (ik - p;) = 47L; Y i) (p;) Y (

n,m

We seek a solution to (4.1) and (4.2) in the form

U = Ui + 47TZ Zl”Am Znp'(pj),  uj = 47rZi"B7Tj Jn(kp) Y (D),

j=1lnm n,m

for some set of unknown complex coefficients Am and BJ.
Now, in order to apply the transmission condltlons on each sphere, we shall need
an addition theorem. Thus, given vectors a, b and ¢ = a + b, we have

(4.8) vnt(e) =) Sut(b)dli(a) for la| < b,
v,
where the separation matrix SE" is given by
(4.9) SU(R) = 4mi™ ™ (=)™ Y it (R) Gln,mi v, —pi q)-
q

In this formula, G is a Gaunt coefficient (defined by (A.5)) and the sum has a finite
number of terms; in fact, ¢ runs from |n — v| to (n + v) in steps of 2, so that

(4.10) (g +n+v) is even.

For more information on the addition theorem, see [3, 9, 10] and references therein.

Let Ryj =7rs —1; = P — Ps be the position vector of O, with respect to O;.
Then, provided that ps < Rs; = |Rs;| for all j, we can write the field exterior to the
sphere S; as

(4.11) umird {100 Vi (k) + A 2t (p.) }

—|—47TZ¢ (ps) ZZl”A”ZS“m sj)-

j=1v.p
J#s

The geometrical restriction implies that this expression is valid near the surface of
Ss and so (4.11) can be used to apply the transmission conditions on ps = a. Thus,
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after using the orthogonality of the functions Y,"(p,), (A.1), and then eliminating

the coefficients B}, we obtain
_ s=1,2,...,N,
(4.12) +ZZlV "AL 7,80 (Ryy) = —LY(k), n=0,12,...,
j=1 v, m=-n,...,n,

J#s
an infinite linear system of equations for A7%. Note that the quantities ¢, £ and a

only enter the equations through the terms Z,,.

4.3. Arrays of spheres: averaged equations. The above analysis applies to
a specific configuration of scatterers. Now we take ensemble averages. Specifically,
setting s = 1 in (4.12) and then taking the conditional average, using (2.5), we obtain

(4.13) (A™) e Zlv "Z, / SE™(Ryg) (A 12 dVa = —L Y7 (k),
Bn:Ri2>b
forn=0,1,2,... and m = —n,...,n. Then, we let N — oo so that By becomes the

half-space z > 0, and invoke Lax’s QCA, (3.7). This implies that (A7%)15 = (A7%),.
Hence, (4.13) reduces to

T S | S (Ra) (Aly)s Vs = 1Y (R),
U, 22>0, R12>b

forn=0,1,2,...and m = —n,...,n. As I = exp (ik - r1) = ! exp (ikr - q;) with
a = kcosby, and g, = (s, ys,0), we seek a solution to (4.14) in the form

(4.15) (Ans)s = ©7'(25) exp (ikr - q,)

so that

(4.16)

e (1) +no Yy 11T"Z, St (Raz) exp (ikr - ga1) @ (25) AV = =Yy (k),
[ 22>0, R12>b

forn=0,1,2,... and m = —n,...,n, where q,; = q;, — q;.

Proceeding as before, suppose that for sufficiently large z (say z > ¢) we can write
(4.17) P (2) = FMe?,

Then if z; > ¢+ b, (4.16) becomes
(4.18)

¥4
Fe™ 4 Z(—i)“%{ / D (20) L1 (231) dz2+F#eMMﬁ:?} = —clonym(k),
0

forn=0,1,2,...and m = —n ,n, where z91 = 29 — 21,
ﬁ”m 221 / / S”m Rgl exp (ikT . q21) dxg dyg,

My = / SiT (Ra1) exp (ik - ggy) €71 dVh
29>, Ro1>b
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and we have used SK™(—r) = (—1)"TVSE™(r), a relation that follows from (4.9).
Indeed, because of (4.9), it is sufficient to consider

= [ [ e ek Qdxay

for z < 0 and
My = / ¥ (Ra1) U(Rar) dVa,
z2>0, Ro1>b
where ¥(R) = % exp (ik7 - Q) = exp (iK - R) and K = KK is defined by (3.15).
From (B.5), we have
m 2mi"” m (L) sie(z1—22)
L7 (z21) = o Y (k) e ™72 for zg > zo.

Hence, L4 is proportional to el*(#1=22) and so the integral term in (4.18) is propor-
tional to el®*1,
The volume integral M* can be evaluated readily using Green’s theorem. We

have V2 — U2y = (k? — K2)y™W. It follows that

m_ 1 mO¥ v
M"_kQ—KQ/BB["an \Ijan dSs,

where 0B consists of two parts, the plane 2z = £ and the sphere Ri3 = b. Now, on
29 =¥, 0/On = —0/0z2 and so we have

ov oY 21
I LAT v %]d”’édyz:ﬁe‘(“”(“) "+ @) Y (R),

0z Oz

using (B.8). Thus, the plane part of B contributes a term to M#“™ proportional to
el(®=M21 which in turn gives a contribution to (4.18) proportional to el®*1,
Next, from (4.4), we have

¥ =exp (iK-R) =47 > i"j,(KR) Y}'(R) V}'(K).

i

Then, the contribution from the sphere R = b is

Q R=b

" OR OR

= 4mb® > "V (K){kjy (Kb) bl (kb) — K jL,(Kb) hn (kD) } / Y mYEdQ
v, Q

— 4 (K) (ko (KD) 1 (kD) — K, (KD) b (kD))

which is independent of z1; here, Q is the unit sphere and we have used (A.1).
Collecting up our results, we find that (4.18) can be written as

(4.19) A e 4 B elo = —elom ym(k),
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forn=20,1,2,..., m = —n,...,n and z; > £+ b, where

(1.20) AT = F'+ (” S ZZ B SN N 00 o i),

(4.21) N () = {2 71, (5) b (kB) — kb ju () 1y (KD)'}

and we have used (4.10) to remove a factor of (—1)?t"*¥_ In particular, we note that
Ny appeared in §3.3 during our analysis of Lax’s integral equation.

From (4.19), we immediately obtain A7 =0 for n = 0,1,2,..., m = —n,...,n.
These equations yield an infinite homogeneous system of linear algebraic equations
for F*. The existence of a non-trivial solution to this system determines K.

It is worth noting that even though the solution of the system A" = 0 can depend
on 6;, via K (see (3.15)), the effective wavenumber itself, K, should not depend on 6.

4.4. Approximate determination of K for small ny. The only approxima-
tion made in the derivation of the system A" = 0 is the QCA, which is expected to
be valid for small values of the scatterer concentration (nga® < 1). We now assume
(as in §3.3) that nob/k? is also small and write K2 = k% + 61ng + dan3 + .... Then

(4.22) N (Kb) =1 — Lib(no/k)d1d,, (kb) + O(nd),
where
(4.23) dn(x) =z, (z)[xhy, () + b (2)] + [27 = n(n+ 1)]jn(z) hn(2),
and so
N, (Kb) 1 ibd,, (kb) &
(4.24) e TR 53 + O(no).

If (4.24) is substituted in A™ = 0, with A defined by (4.20), and O(n?) terms
neglected, we obtain
(4.25)

(47T)2i Tl()52 ( b’fl()
Fm — -1 m Z F,u mip m Z F,uXm,u
n k51 ( ) Z Wnu + Z nv

where
(4.26) Wit = Y™K G(n,mi v, —ps; ),
(4.27) Xt =" YPTMK) Gn,mi v, — s ) dg (D).

The Gaunt coefficients appear in the linearisation formula for spherical harmonics,
(A.4). Replacing u by —p and # by K in the complex conjugate of (A.4), we obtain

Wit =Y, ™ (K) Y)/(K).

So, at leading order, (4.25) gives

(47)%
= Z,FrYHK
R TRGLDD
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forn=0,1,2,...and m = —n,...,n. Put F* = Ynm(K) ﬁ,’ln, whence

~ (4m)?i T
"= Z,F*YHMK) Y (K),
= Y YLK YK

v,p

forn =0,1,2,... and m = —n,...,n. But the right-hand side of this equation does
not depend on n or m, so that Fm = F say. Hence

(4.28) 61 = (4r Z Z VH(K) Y (K).

v= p=—v

The sum over p can be evaluated using Legendre’s addition theorem, (A.3). Putting
71 = 72 = K in (A.3), and noting that P,(1) = 1, we obtain

(4.29) 6 = % Y @v+1)z, = —@f( 0),

v=0

where f is the far-field pattern, given by (4.6).
Returning to (4.25), we now put

FI' =Y,m(K) F + noGr,

and then the O(ng) terms give

= 4dm
(4.30) G =Y (K)V+ (%2 ’”FZZ YHK) Xt
where
(47)% . 8y ~
4.31 V= Z,GFYHMK) — =F
(4.31) w2 A -5

Note that V' does not depend on n or m. Substituting for G# from (4.30) in (4.31),
making use of (4.28), gives a formula for ds:

lb m m (P n T vm
(4.32) = %3 nzm; ZnZ, Y (K) Y (K) XM,
So far we have not made any assumptions about the size of ka or kb (though
clearly kb > 2ka). Now we will assume that kb is small. In the limit x — 0, we have
dy(x) ~in/z. Using this approximation simplifies X  defined by (4.27). Hence,

nv

(4.33) by~ —= 47T/k: Z Z ZnZy Kny(K)  as kb — 0,
n=0v=0
where
(4.34) K, ( Z Z HmY (K ZqY” ™K)G(n,m;v, —p; q).

m=—n g=—v
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From (A.5) and fOQﬂ e™? d¢ = 27d¢,,, we have
V) G v, =) = (<) SV (K) [ VIV ao
2 1 [ — N
el R O ACICE SEL)
47 Q
using (A.3). Hence, using (A.3) two more times, we obtain

B ) = SR S a0 1) [ Pue )RR R0 K a

<>
~

\/2n+1 2V+1Z\/2q—+gn01/0q

(47)3/2

where we have used Y,0 = \/(2n + 1)/(47) P,, and (A.5). When this formula for K,
is substituted in (4.33), we obtain complete agreement with the formula of Lloyd and
Berry [19]; see Appendix C.

In conclusion, we note that if we were to replace (2.5) with the (clearly unreason-
able)

p(r2|r1) = (no/N)H (|22 — 21| — a),

a similar analysis to that given above yields T'wersky’s erroneous expression for ds,
as given in (1.4). We omit the details of this calculation, but see [19] for a related
discussion and [18] for analogous calculations in two dimensions.

Appendix A. Spherical harmonics. We define spherical harmonics Y,* by

V() = Y 6.6) = (1) 2 [P (s o,

where P} is an associated Legendre function. We have orthonormality,

(Al) /QY;LTLY_#dQ = 5nv5m,u;

where Q is the unit sphere. Also, Y7 ™ = (—1)™Y,m.
For 0 < m < n, we have the expansion

[(n—m)/2]
P;Ln(t) 1 dm+n 2 n n,m yn—m—2I
(42) A—@)mz ~ gpagmn Y= > Bt )

=0

where [n] denotes the integer part of n. The coefficients B, are known explicitly,
but we shall not need them.
We shall make use of Legendre’s addition theorem, namely,

n

A dr mia \ Ve
(A3) P’n,(rl 'TQ) - om+ 1 Z Yn (Tl)Yn (TQ)’

m=—n

where P, (t) is a Legendre polynomial.
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The linearisation formula for spherical harmonics is

(A.4) Y (@) YE(#) =Y Y E) Gnymi v, s ),
q
where G is a Gaunt coefficient. Note that G is real. Making use of (A.1), we obtain

(A.5) G(n,m;v, —pu;q) = (_1)m/ WYVHW do.
Q

Appendix B. Some integrals. Consider the integral
L(z) = / / ho(kR) exp (ikp - Q) dX dY,
where R = |[R|, R = (X,Y,2) and Q = (X,Y,0). Put Q = Q(cos®, sin®, 0) so

that k- Q = kQ sin 6, cos (P — ¢y ). Hence, as dX dY = Q dQ d®, we can integrate
over P, giving

L(2) = 2r / " ho(k/OT 5 22) Jo (kQ sin i) Q dQ.
0

We have
QeFVQ*+2 1 d gy /ore
hk/2+z2: = — — e Q-i-z7
Qho(kv@Q ) ik/Q2+ 22 (ik)2dQ
so that an integration by parts (using Jj = —J1) gives
(B.1) L(z) = 2nk~2{e*2l — L(2)},
where

L(z) = ksin 6, J1(kQ sin 0y,) ik Q2422 0.
0

Now, from [8, eqn. 6.637(1)] (with v = 1 therein), we have
oo g—ay/z24 62
0o Va+p?

where X1 = 18{y/a® + 72 £ a}, Rea > 0, Re# > 0 and Rey > 0. From [1, 10.2.13
and 10.2.17], the modified Bessel functions are given by

(B.2) Ji(yz)dz = I o(X ) Ky 9(X4),

Ljo(w) = {2/(mw)}/? sinhw  and K jo(w) = {r/(2w)}/?e™
so that
Ia(X0) Ky ja(X4) = (37) 7 {0 — o VT
Then, differentiating (B.2) with respect to a gives

(B.S) ’y/ Jl (,Yx) e—a\/r2+52 df,C — e—aﬂ _ Le_ﬁ /a2+,y2.
0 \/m
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The calculations leading to (B.3) are certainly valid for Rea > 0, Re8 > 0 and
Revy > 0. We want to use it for § = z; as the left-hand side of (B.3) is an even
function of 3, we can replace 5 by |5| on the right-hand side. We also want to
substitute a = —ik and v = ksin iy, so that /a2 + 2 = +ikcosfy,. To determine
the sign, we note that (from [8, equs. 6.671(1) and 6.671(2)])

’y/ Ji(vz) e de =1 — ———— for k >,
; 1(yz) o

implying that we should take \/a? + 2 = —ikcosf;,. (Alternatively, we note that
the right-hand side of (B.3) is an analytic function of a in a cut plane; we can take
the cut between a = iy and a = —iy (v real and positive), and we choose the branch
so that the right-hand side of (B.3) is real when a is real and positive. This leads to

Va2 + % = —iy/k? — 42 when a = —ik with £ > v > 0.) Hence,
i/(Z) _ eik|z| _ eik\z\ cos Oin sec Oi,

and so (B.1) gives

2w

ik|z| cos Oin
k2 cos Oip

(B.4) L(z) = /OO /OO ho(kR) exp (ikr - Q)dX dY =
This formula generalizes. Thus, let
e = [ [ ur®) ek @paxa.
with ¥ (r) = h,(kr)Y,”* (7). Then,

2mi” A :
! Y (k) e thzeostin for 2 <,

(B.5) Ly (2) = Poostn "

with a similar formula for z > 0 (which we shall not need). When both m = 0 and
0in =0, (B.5) reduces to a result obtained in [24].
To prove (B.5), begin by assuming that 0 < m < n. Let
(B.6) Q™ (r) = hy,(kr) P™(cos 6) ™.
(™ (r) is a normalized form of Q7 (r).) Then, we have [5, 26, 4]
Qi (r) = Vi ho(kr),

where the Erdélyi operator Y, is defined by

((n—m)/2] 1/ o
mo__ m _ 1\l pnm n—m—21 [ i
yn - (Dwu) ; ( 1) Bl (Dz) ’ Dﬂﬁy k (833 + 18y>

and D, = —k~10/0z; the coeflicients B;"™ appear in the expansion (A.2). Hence,

O™ (z) = /m /m Q™(R) exp (ikr - Q)dX dY = Z(—1)13;“”(Dz)”—m—ﬂzm(z),
—00 J —00 1
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where the sum is from [ = 0 to the integer part of (n —m)/2, and
Im(z) = /°° /°° exp (ikr - Q) (Dxy )" ho(kR) dX dY
_ / - / " ho(kR) (—=Dxy)™ exp (k- Q) dX dY = i sin™ iy, e™%n [(2).
Hence, substituting for L(z) from (B.4), and carrying out the differentiations with

respect to z, we obtain

2 i ) )
B.7 O™ (2) = ————— P (cos O, ) e ¢m g~ 1kzcos bin
( ) n ( ) kQ COSGin n ( m)
for z < 0. The result (B.5) follows after multiplication by the appropriate normalisa-
tion constant. It can be shown that the same result is also true for —n < m < 0.
Next, we consider an integral required in §4.3. We have

LOU oM

Z2

= elw—zl)/ / exp (ikr - g91) {—i/\Qﬁ + % } dw dys,
— 00 J—00 Oz zo={

where ¥ = exp (iK - Ra1). Using
D = (2n+ 1) H{(n —m+ DO — (n+m)Q 1}

and (B.7) thrice gives the integral’s value as

2m .
(B.8) k—”e“a—*)(n—f) "L\ + @) P (cos B, ) €M,
(&%

where we have also used (2n + 1)tP*(t) = (n —m + 1)PJ (t) 4+ (n +m) P ().

Appendix C. The Lloyd-Berry formula. Recall the formula (1.6). From
(4.6) and Y,2(#) = \/(2n + 1)/(4m) P, (cos 8), we obtain

f0) = —Var > V2 +12,Y,.
n=0
Then, the linearisation formula (A.4) gives

(C.1) FOF = > T(nviq) Pycos),

n=0v=0 gq

where

T(n,v;q) = V/An(2n+ 1)(2v + 1)(2¢ + 1) Z,Z, G(n, 0;v,0; q).

(C.2) ~S@P+FOP =) Tnrig) {1 - (-1)%}.

n=0v=0 ¢
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For the integral term in (1.6), we use (C.1) and

(C.3) /077 = (10/2) ;9 2 (cosB) d / \/: =(-1)7-1-2q.

(The last equality was obtained as follows. From [8, eqn. 7.225(1)], we have

2

1
%—Hﬁ{T()"’_TnJA Pp(t)dt

[ 7=
:2(—1)"\/1+x+2/r Va —tP)(t)dt,

after an integration by parts, where T, (cosf) = cosné is a Chebyshev polynomial
and we have used P,(—1) = (—1)". Now, differentiate this formula with respect to z
and then let  — 1, using 7,,(1) = 1 and T7,(1) = n?.) Substituting (C.1), (C.2) and
(C.3) in (1.6) gives

7_[_2 o0 o0
(C.4) 522—1—42229”(”%‘1)7

n=0v=0 ¢

which is the same as (4.33).
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