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The theory of optical dispersive shocks generated in propagation of light beams through photore-
fractive media is developed. Full one-dimensional analytical theory based on the Whitham modu-
lation approach is given for the simplest case of sharp step-like initial discontinuity in a beam with
one-dimensional strip-like geometry. This approach is confirmed by numerical simulations which are
extended also to beams with cylindrical symmetry. The theory explains recent experiments where
such dispersive shock waves have been observed.
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I. INTRODUCTION

Study of optical solitons is a large area of modern research which is important both scientifically and for potential
applications (see, e.g., [1, 2]). Different kinds of solitons have already been observed in various nonlinear optical
media and their behavior has been explained in the frameworks of such mathematical models as nonlinear Schrödinger
(NLS) and generalized nonlinear Schrödinger (GNLS) equations for different dimensions and geometries, so that one
can consider the properties of single solitons as well enough understood.

However, there are situations when many solitons are generated so that they comprise a dense soliton lattice. In such
situations, it is impossible to neglect interactions between solitons and one has to consider evolution of the structure as
a whole rather than to trace evolution of each soliton separately. Usually, such soliton structures appear as a result of
wave breaking of a large enough initial pulse or large disturbance along constant background. Hence, such structures
can be considered as a dispersive counterparts of shock waves well known in physics of compressible viscous fluids
(see, e.g., [3]). In a viscous fluid, the shock can be represented as a narrow region within which strong dissipation
processes take place. In optics, on the contrary, dissipation effects can be neglected compared with dispersion ones
and the shock discontinuity resolves into an expanding region filled with nonlinear oscillations. Such dispersive shock
waves are known as tidal bores in rivers [4] and have been also observed in some other physical systems including
collisionless plasma [5] and Bose-Einstein condensate [6]. Experiments on such dispersive shock waves production in
optics have been recently reported in [7, 8]. Motivated by these experiments, we shall consider here the theory of
dispersive shock waves in photorefractive media.

Since the number of interacting solitons in dispersive shocks is usually much greater than unity and these solitons
are spatially ranked in amplitude, such a dispersive shock can be represented as a modulated periodic wave with
parameters changing a little in one transverse or longitudinal period of envelope amplitude of the electromagnetic
wave. A slow change of the parameters of the envelope amplitude is governed to leading order by the Whitham
modulation equations obtained by averaging conservation laws over the family of nonlinear periodic solutions or by
the application of the averaged variational principle (see, e.g., [3, 9, 10]). For the one-dimensional NLS equation, the
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Whitham equations were derived in [11, 12] (see also [10]) and the mathematical theory of dispersive shock waves
for the defocusing case was developed in [13–19]. It was applied to the propagation of signals in optical fibers in [20]
and in Bose-Einstein condensates in [6, 21]. It should be mentioned that for the case of the 1D NLS equation, the
presence of an integrable structure has important consequences for the modulation (Whitham) system, namely, the
latter can be represented in a diagonal (Riemann) form, which dramatically simplifies further analysis. The method
of obtaining the Whitham equations in this form is based on the Inverse Scattering Transform (IST) applied to the
NLS equation [11],[12]. However, in the case of the GNLS equation, the IST method cannot be used anymore, and
the diagonal structure of the Whitham system is not available. Nevertheless, it was shown in [22]-[24] that in this
case, the main characteristics of the dispersive shock wave still can be found by using some general properties of
the Whitham equations which remain present even in non-integrable case. Here we shall use this latter method for
derivation of parameters of one-dimensional dispersive shock waves generated in photorefractive crystals and shall
confirm our analytical results by numerical simulations, which also provide a more detailed information in the cases
when the analytical approach is not yet developed (say in 2D).

II. MAIN EQUATIONS

Photorefractive optical solitons were first observed in the experiment [25] and in the experiments [7, 8] the formation
of dispersive shock waves has been observed in spatial evolution of light beams propagating through self-defocusing
photorefractive crystals, so that beam non-uniformities give rise to breaking singularities and their resolution through
dispersive shocks. As is known, propagation of such stationary beams is described by the equation

i
∂ψ

∂z
+

1
2k0

∆⊥ψ +
k0

n0
δn

(|ψ|2) ψ = 0, (1)

where ψ is envelope field strength of electromagnetic wave with wave number k0 = 2πn0/λ, z is the coordinate along
the beam, x, y are transverse coordinates, r = (x, y), ∆⊥ = ∂2/∂2x + ∂2/∂2y is transverse Laplacian, n0 is a linear
refractive index, and in photo-refractive medium we have

δn = −1
2
n3

0r33Ep
ρ

ρ + ρd
, (2)

where Ep is applied electric field, r33 electro-optical index, ρ = |ψ|2, and ρd is a saturation parameter.
For mathematical convenience, we introduce non-dimensional variables

z̃ =
1
2
kn2

0r33Ep

(
ρc

ρd

)
z, x̃ = kn0

√
1
2
r33Ep

(
ρc

ρd

)
x, ỹ = kn0

√
1
2
r33Ep

(
ρc

ρd

)
y, ψ̃ =

√
ρcψ, (3)

where ρc is a characteristic value of optical intensity (its concrete definition depends on the problem under consider-
ation; for instance, it can the background intensity), so that Eq. (1) takes the form of GNLS equation

i
∂ψ

∂z
+

1
2
∆⊥ψ − |ψ|2

1 + γ|ψ|2 ψ = 0, (4)

where γ = ρc/ρd and tildes are omitted. If saturation effect is negligibly small (γ|ψ|2 ¿ 1), then this equation reduces
to the usual NLS equation

i
∂ψ

∂z
+

1
2
∆⊥ψ − |ψ|2ψ = 0. (5)

It is convenient to represent these equations in a fluid dynamics type form by means of the substitution

ψ(r, z) =
√

ρ exp
(

i

∫ r

u(r, z)dr
)

, (6)

so that they are transformed to

ρz +∇⊥(ρu) = 0,

uz + (u∇⊥)u +∇⊥f(ρ)−∇⊥
[
∆⊥ρ

4ρ
− (∇⊥ρ)2

8ρ2

]
= 0,

(7)
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where

f(ρ) =
ρ

1 + γρ
for the GNLS equation (4) (8)

and

f(ρ) = ρ for the NLS equation (5) . (9)

The light intensity ρ in the hydrodynamic interpretation has a meaning of a density of a “fluid” and Eqs. (8), (9) can
be viewed as “equations of state” for such a fluid. The function u(r, z) is a local value of the wave vector component
transverse to the direction of the light beam; in hydrodynamic representation it has a meaning of the “flow velocity”.
The variable z plays the role of time so it is natural to describe the deformations of the light beam in evolutionary
terms. Obviously, if initial distribution does not depend on one of the transverse coordinates (say y), then transverse
differential vector operators reduce to usual derivatives (∇⊥ = ∂/∂x, ∆⊥ = ∂2/∂x2).

Evolution, according to (7) of an initial distribution, specified at z = 0, typically leads to wave breaking and
formation of dispersive shock waves. One can distinguish the following typical cases:

• generation of dispersive shocks in the evolution of a bright strip hump above a uniform (background) intensity
distribution,

• generation of sequences of solitons from a strip “hole” in the light intensity,

• generation of dispersive shocks in the evolution of a bright cylindrically symmetrical hump above a uniform
intensity distribution.

In 1D geometry such humps can be modeled qualitatively by step-like pulses with sharp boundaries, and these models
are convenient for analytical considerations. As was shown in [6] for the NLS equation case with γ = 0, this model
agrees quite well with numerical simulations of 2D dynamics. Therefore we shall start here with these idealized
models.

III. ANALYTICAL THEORY OF ONE-DIMENSIONAL DISPERSIVE SHOCKS GENERATED IN
DECAY OF A STEP-LIKE INITIAL DISTRIBUTION

We shall start with analytical treatment of shocks described by 1D equation

iψz +
1
2
ψxx − f(|ψ|2)ψ = 0, (10)

or, in a fluid dynamics form, by the system

ρz + (ρu)x = 0,

uz + uux +
df

dρ
ρx +

(
(ρx)2

8ρ2
− ρxx

4ρ

)

x

= 0,
(11)

where the nonlinear refraction function f(ρ) is given by Eq. (8) or (9). The systems of the type (11) are often referred
to as dispersive hydrodynamics systems.

We consider initial distributions of the intensity and transverse wave vector in the form

ρ(x, 0) =
{

ρ0 for x < 0,
1 for x ≥ 0; u(x, 0) = 0, (12)

that is we assume that the initial velocity u(x, 0) is equal to zero everywhere which means that the initial beam enters
the photo-refractive medium at z = 0 without any focusing. For the sake of definiteness we assume also that ρ0 > 1.

At the initial stage of evolution, linear waves are generated which propagate according to the dispersion law obtained
by means of linearization of Eqs. (11) about the uniform state ρ = ρ0, u = u0 (we keep here a nonzero value of u0

for future convenience), that is ρ = ρ0 + ρ1 exp[i(kx − ωz)], u = u0 + u1 exp[i(kx − ωz)], where ρ1, u1 ¿ 1. Then a
simple calculation yields

ω = ω0(ρ0, u0, k) = ku0 ± k

√
ρ0

(1 + γρ0)2
+

k2

4
. (13)
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Note that ω′′(k) > 0, which implies appearance of dark solitons in full nonlinear solutions. But before consideration
of such solutions, we shall discuss a nonlinear stage of evolution in dispersionless approximation when one can neglect
the higher order terms in the system (11). While in the case of general smooth initial data this stage of evolution
is responsible for the formation of breaking singularities in the solution, its consideration also provides important
insights into the nonlinear dissipationless dispersive dynamics of discontinuous disturbances of the type (12) even
beyond the breaking point.

A. Dispersionless approximation

In dispersionless approximation, the system (11) reduces to standard equations of compressible fluid dynamics

ρz + (ρu)x = 0,

uz + uux + f ′(ρ)ρx = 0.
(14)

Because of the bi-directional nature of this system, generally, an initial step (12) resolves into a combination of
two waves propagating in opposite directions. One of these waves represents a rarefaction wave with clear physical
meaning, but the other one leads to a multi-valued dependence of the intensity ρ(x, z) and transverse wave number
(associated flow velocity) u(x, z) on the x–coordinate. Nevertheless, this formal global solution sheds some light on
the structure of the actual physical solution and some its elements will be used later, therefore we shall consider it
here. To this end we cast the system (14) into a diagonal form (see, for instance, [3, 10]) by introduction of new
variables—Riemann invariants

r± = u± 2√
γ

arctan
√

γρ, (15)

so that it takes the form

∂r±
∂z

+ V±
∂r±
∂x

= 0, (16)

where the characteristic velocities V± are expressed in terms of the hydrodynamic variables ρ, u by the relationships

V± = u±
√

ρ

1 + γρ
. (17)

When γ → 0 we have r± = u ± 2
√

ρ, V± = u ± √
ρ, i.e. the usual expressions for the dispersionless limit of the

defocusing NLS equation (the shallow-water system—see, for instance, [13]).
Since in the case of the step-like initial conditions the variables r± must depend on a self-similar variable ζ = x/z

alone, the equations Eqs. (16) reduce to (V± − ζ)(dr±/dζ) = 0 and we arrive at the so-called simple-wave solutions:

u +
√

ρ

1 + γρ
=

x

z
, u− 2√

γ
arctan

√
γρ = r0

− = constant, (18)

or

u−
√

ρ

1 + γρ
=

x

z
, u +

2√
γ

arctan
√

γρ = r0
+ = constant. (19)

The constants here are chosen from the continuity conditions at the points where the simple waves enter the regions
of constant intensities. Since the left-propagating rarefaction wave described by (19) matches with the external flow
ρ = ρ0, u = 0 (see Fig. 1a) we have r0

+ = 2√
γ arctan

√
γρ0 and, correspondingly

u =
2√
γ

(arctan
√

γρ0 − arctan
√

γρ) . (20)

Now, substituting this into the first equation (19) we get
√

ρ

1 + γρ
+

2√
γ

(arctan
√

γρ− arctan
√

γρ0) = −x

z
, (21)



5

which determines implicitly the intensity ρ as a function of x/z in the rarefaction wave. For x < x−1 we have
ρ = ρ0 = constant so x = x−1 is the point of weak discontinuity which must propagate with sound velocity (see, for
instance [26]) which in our case is

cs(ρ) =
√

ρ

1 + γρ
, (22)

Indeed, substituting ρ = ρ0 into (21) we get x−1 /z = −cs(ρ0). As a matter of fact, the speeds of propagation of weak
discontinuities in the photorefractive system agree with the group speeds determined by the long wavelength limit
k → 0 in the linear dispersion relation (13).

Next, for x > x−2 we have ρ = 1, u = 0 (see Fig. 1a) and this does not agree with the relationship (20) in the
constructed left-propagating rarefaction wave solution. Hence, we have to introduce some intermediate distribution

ρ(x/z) = ρ− = constant, u(x/z) = u− = constant (23)

which matches with the rarefaction wave at some x = x+
1 . Now, to connect the intermediate distribution (23)

with ρ = 1, u = 0 downstream, we have to use the right-propagating simple wave solution (18) where the constant
r0
+ = 2√

γ arctan
√

γ. Hence we get

u =
2√
γ

(arctan
√

γρ− arctan
√

γ) (24)

and
√

ρ

1 + γρ
+

2√
γ

(arctan
√

γ − arctan
√

γρ) =
x

z
. (25)

Equations (20) and (24) at ρ = ρ− must give u = u−; hence they yield the equation

arctan
√

γρ− =
1
2

(arctan
√

γρ0 + arctan
√

γ) (26)

which determines the parameter ρ−:

ρ− =
[ √

1 + γρ0 − 1 +
√

ρ0(
√

1 + γ − 1)
γ
√

ρ0 − (
√

1 + γρ0 − 1)(
√

1 + γ − 1)

]2

. (27)

When ρ− is known, the parameter u− is found from the equation (24),

u− =
2√
γ

(
arctan

√
γρ− − arctan

√
γ
)

. (28)

The “internal” end points x+
1 and x−2 are found by substituting the intermediate values ρ−, u− into the similarity

solutions (18), (19),

x+
1

z
= u− −

√
ρ−

1 + γρ−
,

x−2
z

= u− +

√
ρ−

1 + γρ−
. (29)

These points correspond to the weak discontinuities which propagate with sound velocities cs(ρ−) in opposite directions
in the reference frame associated with the uniform flow u−. The whole structure of intensity distribution is shown in
Fig. 1a. It has the region x−2 < x < x+

2 with the three-valued intensity, corresponding to the formal solution (18),
which is obviously non-physical and its appearance serves as an indication that an oscillating dispersive shock wave is
generated in the region of transition from ρ = ρ−, u = u− to ρ+ = 1, u+ = 0. The arising physical structure is shown
schematically in Fig. 1b. Importantly, the boundaries x1,2 of the oscillatory zone by no means coincide with those in
the formal three-valued dispersionless solution. It is remarkable, however, that in spite of such radical qualitative and
quantitative change of the flow, the values of ρ− and u− themselves turn out to be still determined by the previous
equations (27) and (28). This is a consequence of the dispersive shock jump condition which requires that the values
of the Riemann invariant r− = u− (2/

√
γ) arctan

√
γρ at both end points of the dispersive shock wave must be equal

to each other:

r−|x−2 = r−|x+
2

, (30)
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FIG. 1: Decay of the initial discontinuity of light intensity in a beam propagating through a photorefractive crystal. (a)
Dispersionless approximation with non-physical region of multi-valued intensity. (b) Schematic picture of formation of dispersive
shock due to interplay of dispersive and nonlinear effects. The values of x−1 and x+

1 are the same for (a) and (b) while the
values of x−2 and x+

2 are different.

which gives at once Eq. (28). Since the rarefaction wave, even in the presence of dispersion, is still described with good
accuracy by the dispersionless approximation (see [27], [28] for the general linear asymptotic analysis of the dispersive
resolution of the weak discontinuities at the edges of the rarefaction wave), we deduce that Eq. (27) obtained in the
framework of the dispersionless fluid dynamics also remains valid. One should emphasize that, although all obtained
relationships, strictly speaking, hold only asymptotically for sufficiently large “times” z, as we shall see from the
direct numerical solution, they hold with good accuracy for rather moderate z. The dispersive jump condition of the
type (30) was proposed for the first time in [28] where it was based on intuitive physical reasoning and the results of
numerical simulations of collisionless plasma flows. A consistent mathematical derivation of this condition along with
some important restrictions to its applicability was given in the framework of the Whitham theory in [22, 24].

As was mentioned, the end points of the oscillatory region of the dispersive shock in Fig. 1b do not coincide with
the end points of the three-valued region in Fig. 1a. Indeed, this oscillatory zone arises due to interplay of dispersion
and nonlinear effects and has a structure similar to that observed in the much studied integrable defocusing NLS
equation case (see [13] -[21]). Namely, near the leading edge x+

2 the wave transforms into a vanishing amplitude
linear wavepacket and at the trailing edge x−2 it converts into a dark soliton. Hence, the end point of the oscillatory
zone x+

2 must move with the group velocity of linear waves cg = ∂ω0/∂k calculated for some non-zero value of
k = k+ in contrast to the dispersionless approximation corresponding to k → 0 (in addition to vanishing amplitude
of oscillations a → 0). The end point x−2 moves with the corresponding soliton velocity which also has nothing to do
with the dispersionless limit (note, that in the soliton limit k → 0 but the amplitude a = a− remains finite). Thus,
our task is to determine the main quantitative characteristics of the oscillatory region of the dispersive shock—the
velocities of its end points as well as the amplitude a− of the trailing soliton at x = x−2 and the wave number k+ at
the leading edge point x = x+

2 .
One can observe that the oscillatory structure of the dispersive shock wave is characterized by two different spatial

scales: the intensity oscillates very fast inside the shock but the parameters of the fast oscillations change little in one
wavelength in x-direction and in one period along the beam z-axis. This suggests that the oscillatory dispersive shock
can be represented as a slowly modulated nonlinear periodic wave and, hence, we can apply the Whitham modulation
theory [3] to its description. In the Whitham approach, the original equation containing higher order x-derivatives
is averaged over the family of nonlinear periodic traveling wave solutions. As a result, one obtains a system of the
first order nonlinear partial differential equations of hydrodynamic type (i.e. linear with respect to first derivatives)
governing the slow evolution of modulations. The modulation system does not contain any parameters of the length
dimension, so it allows one to introduce the edges x±2 (z) of the dispersive shock wave in a mathematically consistent
way, as characteristics where matching of the “internal” (modulation) and “external” (dispersionless fluid dynamics)
solutions occurs. Of course, strictly speaking the averaged description is valid only when the ratio of the typical
wavelength to the width of the oscillatory zone is small. For our case of the decay of an initial discontinuity this
corresponds to a “long-time” asymptotic behaviour, z À 1. However, as we shall see from the comparison with direct
numerical solution, the results of the modulation approach turn out to be valid even for rather moderate values of z.

The modulation approach to the description of dispersive shock waves was realized for the first time by Gurevich
and Pitaevskii [27] in the framework of the Korteweg – de Vries equation. To put this approach into practice for the
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light beam deformations in a photorefractive medium, we first have to study periodic solutions of the equations (11).

B. Periodic waves and solitons in photorefractive crystals

The traveling wave solution of the system (11) is obtained by the substitution ρ = ρ(θ), u = u(θ), where θ = x− cz
is the phase and c = constant is the phase velocity. As a result, we obtain by integrating the first equation (11)

u = c +
A

ρ
, (31)

where A is an arbitrary constant. Substituting (31) into the second equation (11) and performing one integration
with respect to θ we obtain an ordinary differential equation of the second order,

1
8

(
dρ

dθ

)2

=
1
4

d2ρ

dθ2
ρ− ρ2f(ρ)−Bρ2 − A2

2
, (32)

where B is another constant of integration. We shall seek its integral in the form

(
dρ

dθ

)2

= a1ρ

∫
f(ρ)dρ + a2ρ

2 + a3ρ + a4, (33)

where a1, a2, a3, and a4 are the constant coefficients to be found. Substituting (33) into (32) we find, with the account
of the specific dependence f(ρ), the eventual form of the sought integral,

(
dρ

dθ

)2

= −8ρ

γ2
ln(1 + γρ) +

(
a2 +

8
γ

)
ρ2 + a3ρ + a4 ≡ Q(ρ). (34)

Here a2, a3 and a4 are arbitrary constants two of which are connected with A and B by the relations

a2 = 8B, a4 = −4A2, (35)

and a3 is an additional constant so that (34) is indeed the first integral of Eq. (32). We denote the roots of the
equation Q(ρ) = 0 as e1 ≤ e2 ≤ e3. Then the density oscillations in the traveling wave occur between e1 and e2. The
amplitude of the wave is then given by a = e2 − e1. The small-amplitude linear wave configuration corresponds to
e1 → e2 while for solitons we have e2 = e3. By imposing the periodicity condition ρ(θ) = ρ(θ + 2π/k) we find the
wave number k of the traveling wave in the form of the integral

k = π

(∫ e2

e1

dρ√
Q(ρ)

)−1

. (36)

While the equation (34) cannot be integrated in closed form, it is not difficult to find the relationships characterizing
its special solution in the form of a dark soliton. For this solution we must have the following boundary conditions
satisfied at infinity:

ρ → ρb, u → ub, dρ/dθ → 0, d2ρ/dθ2 → 0 for |θ| → ∞, (37)

plus the condition dρ/dθ = 0 at ρ = ρm ≤ ρb, where ρm is the value of the “density” in the minimum of the dark
soliton and ρb is the “background” intensity. Applying these conditions to (31), (34) we obtain, after simple algebra,
the expressions for the coefficients in (34) for the soliton configuration,

a2 = − 8ρb

1 + γρb
− 4(ub − c)2,

a3 =
8
γ2

ln(1 + ρb)− 8ρb

γ(1 + γρb)
+

4(ub − c)2(ρ2
m + ρ2

b)
ρb

,

a4 = −4(ub − c)2ρ2
b .

(38)

The curves Q(ρ) in a “soliton configuration” for several values of γ are shown in Fig. 2. The condition that in the
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0.4 0.6 0.8 1.2 1.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

Q(  )

ρ

ρ

γ = 0

γ = 1

γ = 2
e e  = e1 2 3

FIG. 2: Plots of the function Q(ρ) corresponding to ρb = 1, ρm = 0.2 and different values of γ and ρb = 1, ρm = 0.2, so that
e1 = 0.2, e2 = e3 = 1.
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FIG. 3: The plot of soliton velocity as a function of the saturation parameter γ. The other parameters are: ρb = 1, ρm = 0.2.

soliton limit ρb is a double zero of the function Q(ρ), that is dQ(ρ)/dρ = 0 at ρ = ρb, yields the relationship between
the soliton velocity c and the amplitude a = ρb − ρm for given ρb, ub:

(c− ub)2 =
2ρm

γa

[
1
γa

ln
1 + γρb

1 + γρm
− 1

1 + γρb

]
. (39)

The dependence of the soliton velocity on the saturation parameter γ is shown in Fig. 3.
For future analysis it is important to introduce one more parameter—the inverse half-width κ of the soliton— using

the exponential decay of the intensity ρb − ρ as |θ| → ∞:

ρb − ρ ∝ exp(−κ|θ|), |θ| → ∞. (40)

To find the relationship between κ and other parameters we take the series expansion of Q(ρ) for small values of
ρ′ = ρb − ρ and find (dρ′/dθ)2 = (1/2)(d2Q/dρ2)ρb

(ρ′)2 = κ2(ρ′)2; hence

κ =

(
1
2

d2Q

dρ2

∣∣∣∣
ρb

)1/2

=
[

8ρm + 4γρb(ρb + ρm)
γ(ρb − ρm)(1 + γρm)2

− 8ρm

γ2(ρb − ρm)2
ln

1 + γρb

1 + γρm

]1/2

. (41)

The dependence of κ on γ is shown in Fig. 4.
The profile of the intensity ρ(θ) is determined by the integral (see Eq. (34))

θ =
∫ ρ

ρm

dρ√
Q(ρ)

, (42)
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FIG. 4: The plot of inverse half-width κ of photorefractive soliton as a function of saturation parameter γ. The other parameters
are: ρb = 1, ρm = 0.2.
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FIG. 5: Profiles of the intensity in photorefractive solitons for values of γ = 0, 1, 2. The other parameters are: ρb = 1, ρm = 0.2.

where it is assumed that the intensity ρ takes the minimal value ρ = ρm at θ = 0 which determines the integration
constant. The wave form of a dark soliton for different values of the parameter γ is shown in Fig. 5.

For γ ¿ 1 we have asymptotic expansions (for simplicity we take ub = 0)

c =
√

ρm

(
1− γ

3
(2ρb + ρm)

)
+O(γ2). (43)

κ = 2
√

ρb − ρm

[
1− γ

3
(3ρb + ρm)

]
+O(γ2), (44)

and for γ À 1 other expansions

c =

√
2[ρm(ln(ρb/ρm)− 1) + ρ2

m/ρb]
(ρb − ρm)γ

+O(γ−2), (45)

κ =
2
√

ρb − 2ρm ln(ρb/ρm)− ρ2
m/ρb

(ρb − ρm)γ
+O(γ−3). (46)

One can see that the leading terms in (43) and (44) agree with the well-known dependencies for dark solitons of
the NLS equation [13].

The particular case of soliton solution with ρm = 0, ub = 0 (hence c = 0) in photorefractive media has been found
in [29].



10

C. Dispersive shock wave

The general periodic solution of the photorefractive equation depends on the fast phase variable θ and is character-
ized by four parameters e1, e2, e3, c, where ej , j = 1, 2, 3 are the zeroes of the function Q(ρ) (34), which determine the
profile of the intensity, and c is the phase velocity. In a modulated wave, these four parameters become slow variables
of x and z. In the Whitham theory [3], it is postulated that this slow evolution (modulation) ej(x, z), c(x, z) can be
found from the conservation laws of the dispersive equation averaged over fast oscillations with respect to the phase
variable θ. An additional modulation equation naturally arises as the wave number conservation law kz + ωx = 0
and essentially represents a condition of the existence of a slowly modulated periodic wave (see, for instance, [3]).
Several averaging procedures have been proposed yielding equivalent results for various physical systems (see [9]) so
the Whitham modulation theory can be now considered as quite well established. As a result, using the original pro-
cedure of averaging conservation laws, the Whitham system for the GNLS equation can be obtained in the following
general form

(Pi(e1, e2, e3, c))z + (Qi(e1, e2, e3, c))x = 0 , i = 1, 2, 3, (47)

(k(e1, e2, e3, c))z + (ω(e1, e2, e3, c))x = 0 , ω = kc. (48)

Here P1 = ρ, P2 = u, P3 = ρu are the conserved “densities” of the GNLS equation (7) and Qi, i = 1, 2, 3, are the
corresponding “fluxes”. The averaging is performed over the periodic family (31), (34) according to

f(e1, e2, e3, c) =
k

π

e2∫

e1

f(ρ; e1, e2, e3, c)√
Q(ρ)

dρ . (49)

Now the system (47), (48) is, in principle, completely defined.
The modulation system (47), (48) being the system of hydrodynamic type can be hyperbolic (real characteristic

velocities – modulationally stable case) or elliptic (complex characteristic velocities – modulationally unstable case).
It is known very well (see [11], [12], [10]) that for the defocusing NLS equation, which is an integrable particular case
of the the GNLS equation (4), the modulation system is strictly hyperbolic. Our numerical simulations show that
traveling waves in the GNLS equation are modulationally stable and this suggests that the corresponding Whitham
system is hyperbolic as well. So, in what follows, we shall assume hyperbolicity of the Whitham system, which will
allow us to use some arguments of classical characteristics theory [3, 26, 30].

Now, to describe analytically the dispersive shock wave as a whole, we have to solve four modulation equations (47),
(48) for the slowly varying parameters e1, e2, e3 and c of the periodic solution. These equations must be equipped with
special matching conditions to guarantee continuity of the mean flow at the free boundaries x±(z) defining the edges
of the dispersive shock wave. In view of the numerically established qualitative spatial structure of the photorefractive
dispersive shock wave (see Fig. 1b) we require that

at x = x+(z) : a = 0 , ρ = ρ+ , u = u+ , (50)

at x = x−(z) : k = 0 , ρ = ρ− , u = u− , (51)

where x+ ≡ x+
2 (from now on we shall omit the subscript 2 in x−2 and x+

2 ). The dependencies of ρ, u, k, a on
e1, e2, e3, c are defined by (49) and formulae of Section III.B, and the pairs (ρ−, u−) and (ρ+, u+) represent the
solution of the dispersionless approximation (14) evaluated at the trailing and leading edges of the dispersive shock
wave respectively. The edges x±(z) of the dispersive shock wave represent free boundaries defined by the kinematic
boundary conditions with clear physical meaning explained in Section III.A:

dx+

dz
= cg(ρ+, u+, k+) ,

dx−

dz
= csol(ρ−, u−, a−) , (52)

where cg(ρ+, u+, k) = ∂ω0/∂k is the group velocity of the linear wave packet with the dominant wavenumber k
propagating against the hydrodynamic background ρ+, u+ (see (13) for the linear dispersion relation ω = ω0(ρ0, u0, k))
and csol(ρ−, u−, a) is the velocity of the dark soliton with amplitude a propagating against the background ρ−, u−

(see (39) for the dependence of the soliton velocity on its amplitude). Of course, the values of the wavenumber k+ at
the leading edge and the amplitude a− of the trailing dark soliton are both to be determined, so the determination
of the edges x±(z) represents a part of this nonlinear boundary value problem.
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Following the pioneering work of Gurevich and Pitaevskii [27] on the dispersive shock wave description in the
framework of the KdV equation, the effective methods for treatment of such problems have been developed for the
whole class of evolution equations which share with the KdV equation the unique property of complete integrability
(see, e.g., [10]). On the level of the Whitham equations, one of the manifestations of integrability is the presence of
the full system of Riemann invariants, an event generally highly unlikely for the systems of hydrodynamic type with
number of equations exceeding two. In particular, the NLS equation (5) belongs to this class, and the corresponding
theory of dispersive shock formation was developed in the papers [13–19] and successfully applied to the description of
shocks in nonlinear optics [20] and Bose-Einstein condensates [6, 21]. However, the photorefractive equation (4) is not
completely integrable and therefore the methods based on the presence of rich underlying algebraic structure of such
equations cannot be applied here. Nevertheless, as was shown in [22]-[24], the main quantitative characteristics of
the dispersive shock wave can be derived using the general properties of the Whitham equations (47), (48) reflecting
their origin as certain averages, and here we shall apply this method to the description of dispersive shock waves in
photorefractive media. To be specific, we shall be interested in the locations of the edges of the dispersive shock wave
and in the amplitude of the largest (deepest) soliton at the trailing edge, the parameters that are usually observed in
experiment.

The method of Refs. [22]-[24], which will be used below, is formulated most conveniently in terms of the physical
modulation parameters ρ, u, k, a appearing in the matching conditions (51), (50). The key of the method lies in the
fact that the modulation system (47), (48) dramatically simplifies in the cases (a = 0, k 6= 0) and (k = 0, a 6= 0)
corresponding to the limiting wave regimes realized at the boundaries of the dispersive shock wave.

1. Leading edge

At the leading edge x = x+(z) the amplitude of oscillations vanishes, a = 0. Since the Whitham averaging procedure
remains valid for the case a = 0 (averaging over the periodic family with vanishing amplitude), then we conclude that
the Whitham system must admit an exact reduction at a = 0 and, therefore, the system of four Whitham equations
must reduce here to only three equations. Now, if the amplitude of oscillations vanishes, then the average of a function
of the oscillating variable equals to the same function of the averaged variable: F (ρ, u) = F (ρ, u). Thus, when a = 0
the Whitham system must agree with the dispersionless approximation (14) describing large-scale non-oscillating
flows, i.e. the modulation equations for ρ̄, ū, a reduce to

a = 0, ρz + (ρ u)x = 0, uz + u ux + f ′(ρ)ρx = 0. (53)

We note that this reduction of the Whitham equations is also consistent with the matching condition (50) at the
leading edge of the dispersive shock wave where a = 0 and which requires that the solution of the Whitham equations
must match with the solution of the equations of the dispersionless approximation. Of course, equations (53) can be
derived directly from the modulation equations (47) by passing in them to the limit a = e2−e1 → 0 (see, for instance,
[33] for the corresponding calculation in the context of fully nonlinear shallow-water waves), however, validity of (53)
appears to be obvious from the presented qualitative reasoning.

To complete the zero-amplitude reduction of the modulation system we need to pass to the same limit as a → 0 in the
“number of waves” conservation law (48) in which we assume the aforementioned change of variables (e1, e2, e3, c) 7→
(ρ, u, k, a),

kz + (ω(ρ, u, k, a))x = 0, ω = kc. (54)

As a result, we get

kz + (ω0(ρ, u, k))x = 0, (55)

where

ω0(ρ, u, k)) = k

(
u +

√
ρ

(1 + γρ)2
+

k2

4

)
(56)

is the dispersion relation (13) of linear waves propagating about slowly varying background with locally constant
values of ρ and u (here we restrict ourselves with right-propagating waves). Equations (53), (55) comprise a closed
system which represents an exact zero-amplitude reduction of the full Whitham system (47), (48) (see [22], [24] for
a detailed justification of this reduction for a class of weakly dispersive nonlinear systems) and, as we shall see, its
analysis with an account of boundary conditions (50), (51) yields the necessary information about the leading edge
x = x+(z) of the dispersive shock wave.
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Now we observe that the “ideal” hydrodynamic equations (53) are decoupled from (55) and thus, can be solved
independently for ρ(x, z), u(x, z). However, since the values of ρ and u at a = 0 are subject to boundary conditions
(50), one should take into account the restriction on the admissible values of ρ and u at the boundaries of dispersive
shock wave imposed by the simple-wave transition condition (30). Since this restriction is consistent with the equations
(53), it can be incorporated directly into the reduced modulation system by putting

u =
2√
γ

(
arctan

√
γρ− arctan

√
γ
)

. (57)

Substitution of (57) into system (53), (55) further reduces it to only two differential equations

ρz + V+(ρ)ρx = 0 , kz + (Ω(ρ, k))x = 0 , (58)

where

V+(ρ) =
2√
γ

(arctan
√

γρ− arctan
√

γ) +
√

ρ

1 + γρ
, (59)

Ω(ρ, k) = ω0(ρ, u(ρ), k) = k

[
2√
γ

(
arctan

√
γρ− arctan

√
γ
)

+

√
ρ

(1 + γρ)2
+

k2

4

]
. (60)

The system (58) has two families of characteristics:

dx

dz
= V+(ρ) (61)

and

dx

dz
=

∂Ω(ρ, k)
∂k

. (62)

The family (61) is completely determined by the simple-wave evolution of the function ρ(x, z) according to the
dispersionless approximation of the GNLS equation. This family transfers “external” hydrodynamic data into the
dispersive shock wave region and does not depend on the oscillatory structure. Contrastingly, the behaviour of the
characteristics belonging to the family (62) depends on both ρ and k. Comparison of the definition (52) of the
leading edge x+(z) with (62) with the account of (60) shows that the leading edge of the dispersive shock wave
represents a characteristic belonging to the family (62). Now, since the system (58) consists of two equations, then
according to general properties of characteristics of nonlinear hyperbolic systems of partial differential equations (see,
for instance, [30], [3], [26]), one cannot specify two values k and ρ independently on one characteristic, so the admissible
combinations of ρ and k at the leading edge of the dispersive shock wave are determined by a characteristic integral
of the reduced modulation system (58).

To this end, we substitute k = k(ρ) into (58) to obtain at once

a = 0 :
dk

dρ
=

∂Ω/∂ρ

V+ − ∂Ω/∂k
on

dx

dz
=

∂Ω
∂k

. (63)

The above ordinary differential equation for k must be solved with the initial condition k(ρ−) = 0. Indeed, since
the equation (63) was derived for the case a = 0 it must remain valid in the case of the dispersive shock wave of
zero intensity, so the dependence k(ρ) should correctly reproduce the zero wavenumber condition at the trailing edge
where ρ = ρ− (see (51)).

By introducing the variable

α =

√
1 +

k2(1 + γρ)2

4ρ
, (64)

instead of k, in (63), and using Eq. (60), we arrive at the ordinary differential equation

dα

dρ
= − (1 + α)[1 + 3γρ + 2α(1− γρ)]

2ρ(1 + γρ)(1 + 2α)
. (65)
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with the initial condition

α(ρ−) = 1 , (66)

where ρ− is determined in terms of the initial discontinuity (12) by Eq. (27). Once the solution α(ρ) is found, the
wave number k+ at the leading edge, where ρ = ρ+ = 1, is determined from (64) as

k+ = k(1) =
2
√

α2(1)− 1
1 + γ

. (67)

The velocity of propagation of the leading edge is defined by the kinematic condition (52), which , with an account
of (62), assumes the form

s+ =
dx+

dz
=

∂Ω
∂k

(1, k+) =
1

1 + γ

(
2α(1)− 1

α(1)

)
. (68)

For the NLS equation case, i.e. when γ = 0, the expression for s+ in terms of the density jump across the dispersive
shock wave can be obtained explicitly: the equation

dα

dρ
= −1 + α

2ρ
, α(ρ−) = 1 (69)

is readily integrated to give

α(ρ) = 2

√
ρ−

ρ
− 1 (70)

and thus

s+ =
8ρ− − 8

√
ρ− + 1

2
√

ρ− − 1
for γ = 0 (71)

in agreement with known results [13].
For small values of the saturation parameter γ ¿ 1 one can find the correction to this formula with the use of

Eqs. (65) and (68). Indeed, if we introduce α = α0 + α1, where α0 is given by Eq. (70) and α1 has the order of
magnitude of γ, then the series expansion of Eq. (65) yields the differential equation for the correction α1:

dα1

dρ
= −α1

2ρ
+

8
√

ρ−/ρ− 6
4
√

ρ−/ρ− 1

√
ρ−

ρ
γ , (72)

which can be easily solved with account of the initial condition α1(ρ−) = 0 to give

α1(1) = 2γ
√

ρ−
{

1− ρ− + 64

[
ln

4
√

ρ− − 1
3
√

ρ−
+

1−
√

ρ−

4
√

ρ−
+

1− ρ−

32ρ−

]}
. (73)

Then substitution of this expression into Eq. (68) gives an explicit approximate formula for s+:

s+ =
8ρ− − 8

√
ρ− − 1

2
√

ρ− − 1
(1− γ) +

[
2− 1

(2
√

ρ− − 1)2

]
α1(1), (74)

which is correct for small γ as long as α1(1) ¿ 1.

2. Trailing edge

In the vicinity of the trailing edge x = x−(z) the photorefractive dispersive shock wave represents a sequence of
weakly interacting dark solitons propagating on the slowly varying background ρ, u. Since one has k → 0 as x → x−,
we shall be interested in passing to a soliton limit in the modulation system (47), (48). Instead of performing this
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limiting passage by a direct calculation (which can be quite involved technically), we shall invoke the reasoning similar
to that used in the study of the zero-amplitude regime to investigate a reduced modulation system as k → 0.

In limit as k → 0, the distance between solitons (i.e., a wavelength 2π/k) tends to infinity, so the contribution
of solitons into the averaged flow ρ, u vanishes, and, similarly to the case of the vanishing amplitude, we have
F (ρ, u) = F (ρ, u). Hence, we arrive again at the ideal hydrodynamics system (53) for ρ, u. Next, using the arguments
identical to those used earlier for the case a = 0 but applied now to the case k = 0 we conclude that, for the
matching condition (51) at the trailing edge to be consistent with the simple-wave transition condition (30) we should
incorporate the relation (57) into the reduced as k → 0 modulation system to obtain the same equation for ρ (see
(58)), which we reproduce one more time:

ρz + V+(ρ)ρx = 0 . (75)

Now we need to pass to the limit as k → 0 the wave conservation law. This limiting transition, unlike that as
a → 0, is a singular one, so it requires a more careful consideration. First we note that the wave conservation law is
identically satisfied for k = 0 so we need to take into account higher order terms in the expansion of (54) for small k.
Following [22], [24] we introduce a “conjugate wave number”

k̃ = π

(∫ e3

e2

dρ√
−Q(ρ)

)−1

(76)

instead of the amplitude a and the ratio Λ = k/k̃ instead of the original wave number k, so that the parameters
(ρ, u, Λ, k̃) provide a new set of the modulation parameters which is convenient for consideration of the vicinity of
the soliton edge of a dispersive shock. The variable k̃ can be considered as a wave number of oscillations of the variable
ρ in the interval e2 ≤ ρ ≤ e3 governed by the “conjugate” traveling wave equation

(
dρ

dθ̃

)2

= −Q(ρ) , (77)

where Q(ρ) is defined in Eq. (34) and θ̃ is a new phase variable. In the soliton limit e2 → e3 we can expand Q(ρ) in
the vicinity of its minimum point ρ = e2 = e3 so that Eq. (77) takes the form of the “energy conservation law” of the
harmonic oscillator,

1
2

(
dρ

dθ̃

)2

+
1
4

d2Q

dρ2

∣∣∣∣
ρ

(ρ− ρ)2 = Q(ρ).

Then comparison with Eq. (41) shows that in this limit

k̃ =

√
1
2

d2Q

dρ2

∣∣∣∣
ρ

= κ , (78)

which explains the physical meaning of the variable k̃ in the limit we are interested in. This analogy can be amplified
by noticing that Eq. (77) can be viewed as the traveling wave equation corresponding to the “conjugate” GNLS
equation obtained from (4) by replacing the variables x and z by ix and iz respectively so that θ in (34) is replaced
by iθ̃ what leads to the change of sign in (34) transforming this equation to Eq. (77). Now, the same transformation
maps a harmonic wave exp[i(kx − ωz)] to the tails of the soliton solution exp[±κ(x − csolz)], that is in the soliton
limit the conjugate frequency ω̃0 can be obtained from the harmonic dispersion relation by a substitution

iω̃0 = ω0(iκ). (79)

Actually, this fact is well known and can be used for calculation of the dependence of the soliton velocity csol = ω̃0/κ
on its inverse half-width κ from the dispersion relation for linear waves (see, e.g., [31]). Thus, for photorefractive dark
solitons propagating along the slowly varying background ρ, u we have the conjugate dispersion relation

ω̃0(ρ, u, κ)) = κ

(
u +

√
ρ

(1 + γρ)2
− κ2

4

)
, (80)
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which, after substitution of the simple-wave relation (57), assumes the form (cf. (60))

Ω̃(ρ, κ) = ω̃0(ρ, u(ρ), κ) = κ

[
2√
γ

(
arctan

√
γρ− arctan

√
γ
)

+

√
ρ

(1 + γρ)2
− κ2

4

]
. (81)

Now we are ready to study the asymptotic expansion as k → 0 of the wave conservation law (54). First we substitute
k = Λk̃ into Eq. (54) to obtain

k̃Λz + ω̃Λx + Λ(k̃z + ω̃x) = 0 , (82)

where ω̃ = ck̃. Next we consider Eq. (82) for small Λ ¿ 1 and assume that Λ ¿ Λz, Λx for the solutions of our interest
(this is known to be the case modulation solutions describing dispersive shock waves in weakly dispersive systems,
where at the soliton edge one has k → 0 but |kx|, |kz| → ∞ — see [22] for the general discussion of this behaviour
and [27] for the detailed calculations in the KdV case). Then to leading order we get the characteristic equation

∂Λ
∂z

+
Ω̃
κ

∂Λ
∂x

= 0 , (83)

which is to say

Λ = Λ0 on
dx

dz
=

Ω̃(ρ, κ)
κ

, (84)

where Λ0 ¿ 1 is a constant. In particular, when Λ0 = 0 the characteristic (84) specifies the trailing edge (see (52)).
Now, considering Eq. (82) along the characteristic family dx/dz = Ω̃/κ and using k̃ = κ, ω̃ = Ω̃ to leading order, we
obtain

κz + Ω̃x = 0 on
dx

dz
=

Ω̃(ρ, κ)
κ

. (85)

We note that equation κz +Ω̃x = 0 arises as a “soliton wave number” conservation law in the traditional perturbation
theory for a single soliton (see, for instance, [32]) but to be consistent with the full modulation theory it should be
considered along the soliton path dx/dz = csol = Ω̃/κ.

Since ρ and κ cannot be specified independently on one characteristic, there should exist a local relationship κ(ρ)
consistent with the system (75), (85). Substituting κ = κ(ρ) into (85) and using (75) we obtain

dκ

dρ
=

∂Ω̃/∂ρ

V+ − ∂Ω̃/∂κ
. (86)

The initial condition for the ordinary differential equation (86) follows from the requirement that the obtained depen-
dence κ(ρ) should be applicable to the case of the zero-intensity dispersive shock wave, which corresponds to initial
values ρ− = ρ+ = 1. In this case, the width of solitons gets infinitely large, that is κ → 0 in the limit ρ → ρ+; this
follows also from Eq. (41) in the limit ρm → ρb. Hence we require κ(1) = 0.

According to the kinematic condition (52) the velocity of the soliton edge is equal to the soliton velocity, so we have

s− =
dx−

dz
=

Ω̃(ρ−, κ−)
κ−

, (87)

where κ− = κ(ρ−).
By introducing a new variable

α̃ =

√
1− κ2(1 + γρ)2

4ρ
(88)

instead of κ, Eq. (86) reduces to the ordinary differential equation

dα̃

dρ
= − (1 + α̃)[1 + 3γρ + 2α̃(1− γρ)]

2ρ(1 + γρ)(1 + 2α̃)
(89)
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FIG. 6: Dependence of velocities s+ and s− on the saturation parameter γ for fixed values of the intensities at two sides of the
dispersive shock: ρ− = 2 and ρ+ = 1.

with the initial condition

α̃(1) = 1. (90)

When the function α̃(ρ) is found, the velocity of the trailing soliton is determined by Eqs. (87), (81), (88) as

s− =
2√
γ

(arctan
√

γρ− − arctan
√

γ) +

√
ρ−

1 + γρ−
α̃(ρ−). (91)

Then the amplitude a = ρ− − ρm of the trailing soliton as a function of the intensity jump ρ− across the dispersive
shock can be found from the equation (39) with c = s−, ub = u−, ρb = ρ−:

ρ−α̃2(ρ−)
(1 + γρ−)2

=
2(ρ− − a)

γa

[
1
γa

ln
1 + γρ−

1 + γ(ρ− − a)
− 1

1 + γρ−

]
. (92)

Again, in the case γ = 0 corresponding to the NLS equation, all the formulae can be written down explicitly:
Eq. (89) reduces to

dα̃

dρ
= −1 + α̃

2ρ
, (93)

and its solution satisfying the boundary condition (90) is

α̃(ρ) =
2√
ρ
− 1. (94)

Then Eqs. (91) and (92) give

s− =
√

ρ− (95)

and

a = 4(
√

ρ− − 1) (96)

respectively, in agreement with known results [13]. Again for small γ we can find the correction to Eq. (95) in an
explicit form. If we denote α̃ = α̃0 + α̃1, where α̃0 is given by Eq. (94), then α̃1 satisfies the equation

dα̃1

dρ
= − α̃1

2ρ
+

8/
√

ρ− 6
4/
√

ρ− 1
γ√
ρ
, α̃1(1) = 0, (97)
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which is readily integrated to give

α̃1(ρ−) =
2γ√
ρ−

{
ρ− − 1 + 64

[
ln

4−
√

ρ−

3
+

√
ρ− − 1

4
+

ρ− − 1
32

]}
, (98)

and hence

s− =
√

ρ−(1 + α̃1(ρ−))−
[
2
3
(ρ−

√
ρ− − 1) + ρ−(2−

√
ρ−)

]
γ. (99)

It is worth noticing that this perturbation approach breaks down for ρ− ≥ 16 because of logarithmic divergence
in Eq. (98) as ρ− → 16 − 0. The velocities of the dispersive shock edges as functions of the saturation parameter
γ are shown in Fig 6. As we see, the presence of even small values of the saturation parameters γ change the
expansion velocities considerably compared with the NLS case γ = 0 because the saturation effects diminish the
effective nonlinearity which forces the intensive light beam to expand.

3. Characteristic velocity ordering

From general point of view, it is important to note that a simple-wave dispersive shock considered above is subject
to the conditions similar to “entropy” conditions in viscous shocks theory [22, 24]. Basically, these conditions require
that the number of independent parameters characterizing the modulation solution for the dispersive shock must be
equal to the number of characteristics families transferring initial data from the x axis into the dispersive shock region
in the (x, t) plane. For the photorefractive dispersive shock we have four parameters characterizing the initial step
(12) and one algebraic restriction due to the simple-wave transition condition (30). Thus, the number of independent
parameters is three. Then, analysis of the characteristic directions at the edges of the dispersive shock waves leads
to the following inequalities establishing the ordering between the velocities of the dispersive shock edges and the
characteristic velocities (17) of the dispersionless system :

V −
− < s− < V −

+ , V +
+ < s+, s+ > s−, (100)

where subscripts correspond to definitions (17) and superscripts to two edges of the dispersive shock with constant
values of ρ± and u±. Inequalities (100) provide consistency of the above analytical construction for the derivation of
the dispersive shock edges, which heavily relies on the properties of characteristics. We have checked that inequalities
(100) are satisfied for a wide range of parameters. As an illustration, we present in Fig. 7 the plots of the characteristic
speeds in the simple-wave photorefractive dispersive shock for γ = 0.2 as functions of the intensity jump across the
shock. One can see that the ordering (100) is satisfied.
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FIG. 8: Dependence of the critical intensity ρ− at the trailing edge of the dispersive shock on the saturation parameter γ for
fixed value of the intensity ρ+ = 1 at the leading edge.
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FIG. 9: Dependence of the variable eα on the intensity ρ− at the trailing edge of the dispersive shock for fixed value of the
intensity ρ+ = 1 at the leading edge at γ = 0.2; the “termination” point corresponds to the intensity ρ−br = 4.873 where
analytical theory loses its applicability.

4. Vacuum point

We now investigate dependence of the main properties of the dispersive shock wave on the value of the intensity
jump across the shock, which is equal to the value ρ− at the trailing edge as the value ρ+ = 1 at the leading edge is
fixed (of course, we assume u+ = 0 and u− given by Eq. (28)).

It is clear already from the simplest case γ = 0 that there is a possibility for the value ρm at the minimum of the
trailing dark soliton to become zero (or, which is the same, a = ρ−) for a certain value of the initial jump ρ−. Then
it follows from (96) that this happens at ρ− = 4. This gives rise to a vacuum point with ρ = 0 at the trailing edge
of the dispersive shock [14]. When the initial step ρ− > 4, the vacuum point occurs at some xv inside the dispersive
shock zone, x− < xv < x+, and the typical profile of the shock changes (see [14]). The appearance of the vacuum
point in the dispersive shock is manifested by the singularity in the profile of u at x = xv but the “momentum” ρu
remains finite.

For the photorefractive case, when γ 6= 0, the critical value of ρ− = ρ−cr corresponding to the appearance of the
vacuum point at the trailing edge of the dispersive shock can be found by putting ρ− = a in (92) which immediately
yields the equation for ρ−cr

α̃(ρ−cr) = 0, (101)

where α̃(ρ) is the solution of the ordinary differential equation (89). The dependence ρ−cr(γ) is shown in Fig. 8.
Comparison of Eq. (91) with Eq. (28) shows that at the critical point ρ− = ρ−cr we have s− = u−, that is the trailing
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soliton is at rest in the reference frame of the intermediate constant state in the decay of an initial discontinuity (12)
(see Section III.A).

The dependence of α̃ on ρ− is shown in Fig. 9. One should note that the change of sign of α̃ at ρ− = ρcr does
not constitute nonphysical behaviour even though α̃ as defined by (88) is a positive value. In fact, for ρ− > ρcr,
the velocity u changes its sign at x = xv so that the trailing edge of such a “supercritical” dispersive shock wave
propagates to the left relative to the vacuum point. To incorporate this change, one should use another branch in the
linear dispersion relation (13) which leads to the change of the sign in the definition of α̃. As a result, the consistent
change of signs in (81) and (89) leads to the same result for the trailing edge speed s− defined by (99).

One can also see from (89) that a singularity in the behaviour of α̃(ρ−) is expected at some “termination point”
ρ− = ρ−br satisfying 2α(ρ−) + 1 = 0 for γ 6= 0. For γ = 0.2 the value ρ−br ≈ 4.873. This singularity has also its
counterpart in the perturbation theory represented by Eq. (98). The described pathology in the modulation solution
for ρ− ≥ ρ−br, however, is not confirmed by the direct numerical solutions (see Section IV below) and does not seem
to have physical sense. One of the explanations of such a discrepancy is that for large values of ρ− the accepted
assumption of applicability of the single-phase modulation theory can fail. Indeed, the developed theory is based
on the supposition that solutions of our non-integrable photo-refractive system (11) behave qualitatively similar to
their counterparts in the integrable NLS equation case so that the dispersive shock wave can be described with high
accuracy by the single-phase modulated solution. However, such a supposition can fail in the regions where a drastic
change of the behavior of a modulated wave takes place. Just this situation occurs in the vicinity of the vacuum
point, at which the profile of u(x) has a singularity. So one can expect some discrepancy between predictions of the
modulation theory and exact numerical solutions for the dispersive shock waves with ρ− sufficiently close to or grater
than ρcr. As a rough estimate for ρ−cr one can use the value ρ−cr = 4 obtained for the integrable NLS equation. Since,
by definition, α̃(ρ−br) = −1/2 < 0 for all γ > 0, on can conclude that one always has ρ−br > ρ−cr so the predictions of
the developed modulation theory can become unreliable for such large intensity jumps across the dispersive shock.

D. Number of solitons generated from a localized initial pulse

Now we consider an asymptotic evolution of a large-scale decaying initial disturbance

ρ(x, 0) = ρ0(x) ≤ 1, u(x, 0) = u0(x); ρ0(x) → 1 , u0(x) → 0 as |x| → ∞, (102)

so that the typical spatial scale of this disturbance L À 1. As the numerical simulations for the GNLS equation show,
such an initial “well” generally decays as z →∞ into two groups of dark solitons propagating in opposite directions,
which is consistent with the “two-wave” nature of the GNLS equation. For γ = 0 the dynamics is described by the
integrable NLS equation and the soliton parameters are found from the generalized Bohr-Sommerfeld rule [18]. In
the present non-integrable case of the GNLS equation (11) these parameters can be obtained by an extension of the
modulation method of obtaining the parameters of the dispersive shock wave for the case when the initial distribution
corresponds to the simple wave solution of the dispersionless equations, that is one of the Riemann invariants (15)
is supposed to be constant. This extension has been developed in [33] in the context of fully nonlinear shallow-
water waves and we shall use it here to derive the formula for the total number of solitons resulting from the initial
disturbance (102). First, we assume that for the large-scale initial data (102) one can neglect the contribution of
the radiation into the asymptotic as z → ∞ solution, which implies that the whole initial disturbance eventually
transforms into solitons (this is known to be the case for the integrable NLS equation and is also confirmed by our
numerical simulations for the GNLS equation). Next, we notice that this transformation into solitons occurs via
an intermediate stage of the dispersive shock wave formation so we can apply the general modulation theory to its
description and then to make some inferences pertaining to the eventual soliton train state as z →∞.

For definiteness, we consider here the right-propagating dispersive shock wave forming from the profile (102) satis-
fying an additional simple-wave restriction (28)

u0(x) =
2√
γ

(arctan
√

γρ0(x)− arctan
√

γ) . (103)

We consider the wave number conservation law (54), which is one of the modulation equations describing the dispersive
shock wave. For the considered case with decaying at infinity initial profile (102) we have k → 0 as |x| → ∞ and,
therefore, equation (54) implies conservation of the total number of waves,

N ∼= 1
2π

∫ +∞

−∞
kdx = constant. (104)
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We use an approximate equality sign here due to asymptotic character of the modulation theory which inherently
cannot predict an integer N exactly. In the Whitham description of the dispersive shock wave, the x-axis is subdivided,
after the wave breaking at z > zb, into three regions described in Section III.C :

−∞ < x < x−(z), x−(z) ≤ x ≤ x+(z), x+(z) < x < ∞ , (105)

where x±(z) are the boundaries of the dispersive shock wave. Generally, these boundaries are not straight lines as in
the case of the decay of the initial step-like pulse considered above but their nature as characteristics of the modulation
system remains unchanged. In view of (105), the integral in (104) can be expressed as a sum of three integrals,

N ∼= 1
2π

{∫ x−(z)

−∞
k(x, z)dx +

∫ x+(z)

x−(z)

k(x, z)dx +
∫ ∞

x+(z)

k(x, z)dx

}
. (106)

To apply formula (106) we need first to define the wavenumber k outside the dispersive shock wave as it has been
actually defined so far only within the nonlinear modulated wave region [x−(z), x+(z)]. The extended definition of k
should be consistent with the matching conditions (50), (51) for all z.

We know that at the soliton edge x−(z) of the Whitham zone we have k(x−(z), z) = 0, so we can safely put
k(x, z) = 0 in the region x < x−(z) and, hence, the first integral vanishes. At the same time, the value of k is
not explicitly prescribed at the leading edge x+(z) by the boundary condition (50) but is rather determined as a
function of ρ due to the fact that the leading edge is a characteristic of the modulation system — see Section III.C.
The dependence k+(ρ) is determined then by the ordinary differential equation (63) (we note that the simple-wave
transition condition (28) is already embedded in (63) and is consistent with the initial conditions (103)). This ordinary
differential equation should be, again, solved with the initial condition k(ρ−) = 0, and now ρ− = ρb

∼= 1 where we
have taken into account that for large pulse (102) the wave breaking occurs close to the background intensity, ρb

∼= 1.
Thus, we get the characteristic integral k = k+(ρ) along the leading edge. The intensity ρ(x, z) in the downstream
region x > x+(z) satisfies the simple-wave dispersionless equation

ρz + V+(ρ)ρx = 0 (107)

with the initial condition ρ(x, 0) = ρ0(x), i.e. the solution is given implicitly by ρ = ρ0(x− V+(ρ)z). Therefore, to be
consistent with the boundary values of k prescribed by the characteristic integral of the modulation equations, we have
to define the wave number downstream the dispersive shock wave as k+(ρ(x, z)), where ρ(x, z) is the aforementioned
simple-wave solution. Then, at z = 0 we get an effective initial distribution of k in terms of the initial data for ρ
given by (102):

k(x, 0) = k+(ρ0(x)) (108)

for x ≥ xb, where xb is the coordinate of the breaking point; obviously xb = x−(zb) = x+(zb). Note that this
definition is also consistent with our definition k ≡ 0 upstream of the dispersive shock wave, since k+(1) = 0. Thus,
(108) describes initial data for the wave number for all x. The function k(x, 0) can be interpreted as the wave number
distribution for a “virtual” linear modulated wave which accompanies the initial hydrodynamic distributions (ρ(x, 0),
u(x, 0) and transforms, after the wave breaking, into the dispersive shock and, eventually, into a train of solitons.

Now, we consider (106) for z = 0 and notice that, since the second integral disappears for z < zb, zb > 0 (there is
no dispersive shock before the breaking point formation so we put x+(z) = x−(z) for z ≤ zb), this expression reduces
to

N ∼=
∫ ∞

−∞
k(x, 0)dx =

∫ ∞

−∞
k+(ρ0(x))dx. (109)

As was shown in Section III.C, it is convenient to introduce an auxiliary function α(ρ) instead of k+(ρ) according
to (64) so that

k+ = 2

√
ρ(α2 − 1)
1 + γρ

. (110)

Then α(ρ) satisfies the ordinary differential equation (65) with the initial condition α(1) = 1. As a result, the number
of solitons as z →∞ is determined by the formula

N ∼= 1
2π

∫ +∞

−∞
k(x, 0)dx =

1
π

∫ +∞

−∞

√
ρ0(x)(α2

0(x)− 1)
1 + γρ0(x)

dx, (111)



21

−75 −50 −25 0 25 50 75 100 125
x

0

2

4

6

ρ

t = 0
t = 32
ρ−

 = 2.466

FIG. 10: Evolution of the initial step-like pulse with ρ0 = 5 and ρ = 1 for the case of γ = 0.1. The general structure confirms
formation of a rarefaction wave, a dispersive shock and an intermediate constant state in between. Intensity ρ− = 2.466
calculated according to Eq. (27) coincides with the numerical result for the intensity of the intermediate state. Coordinates of
the edges of the rarefaction wave at t = 32 calculated analytically are equal to x−1 = −47.7, x+

1 = −9.02 for the rarefaction wave
and x−2 = 42.57, x+

2 = 99.52. One can see that they agree quite well with numerical results. Small-amplitude waves generated
at around x = −50 correspond to the linear dispersive “resolution” of the weak discontinuity occurring at the trailing edge of
the rarefaction wave.

where α0(x) = α(ρ0(x)).
When γ = 0, the solution α(ρ) of (65) is given by (70) and assumes here the form

α =
2√
ρ
− 1 for γ = 0. (112)

Then, for the total number of solitons we have from (111)

N ∼= 1
π

∫ +∞

−∞

√
(2−

√
ρ0(x))2 − ρ0(x) =

2
π

∫ +∞

−∞

√
1− ρ

1/2
0 dx for γ = 0, (113)

which agrees with the “simple-wave” reduction of the semi-classical quantization results for the defocusing NLS
equation obtained in [18].

IV. NUMERICAL SIMULATIONS OF NONLINEAR WAVES IN PHOTOREFRACTIVE MEDIA

In this Section, we compare the analytical predictions of the preceding Sections with the results of direct numerical
simulation of the formation of dispersive shock waves in photorefractive equation (4).

First, we have studied numerically evolution of the step-like pulse. The corresponding results are shown in Fig. 10.
As we see, all the parameters (velocities of the edges of the rarefaction wave and the dispersive shock, intensity of the
intermediate state) are in a good agreement with the analytical predictions of Section III.A.

We have constructed the dependence of ρ− and u− on the saturation parameter γ using the results of the numerical
simulations. The results shown in Fig. 11 agree very well with the analytical predictions based on the “simple-wave”
jump condition (30) which is applicable for not too large values of ρ− (. 4) such that the vacuum point is not formed.
In Fig. 12 we show the dependence of the edge “velocities” s± on the intermediate intensity ρ− (with u− calculated
according to “simple-wave” jump condition (28)). As we see, a good agreement is observed for ρ− < 4. However,
as ρ− increases with growth of ρ0 and becomes greater than ρ−cr ' 4, Eq. (28) no longer yields the values of u−

compatible with the prescribed value of ρ− so that only a single right-propagating dispersive shock is generated; this
is illustrated by Fig. 13, where a new “intermediate” region of constant flow is seen to be formed which matches with
the dispersive shock propagating to the right, while another dispersive shock is apparently forming to the left of this
new constant state providing matching with ρ0. Surprisingly, we have found that the large-amplitude dispersive shock
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FIG. 11: Dependence of intermediate values (solid lines) of intensity (a) and transverse wave vector (b) on the saturation
parameter γ for fixed values of the initial discontinuity parameters: ρ0 = 5, u0 = 0 for x < 0 and ρ+ = 1, u+ = 0 for x > 0 at
z = 0. Numerically calculated values are shown by crosses.
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FIG. 12: Dependence of s± on ρ− (with u− calculated according to (28)); γ = 0.2. Solid lines correspond to analytical formulae
(68) and (91), and dots correspond to results of numeric simulations.

wave transition between the new intermediate constant state and ρ = 1 now satisfies a classical shock jump condition
which follows from the balance of “mass” and “momentum” across the shock as it takes place in classical dissipative
shocks. Using the dispersionless equations (14) represented in a conservative form we find that formal shock jump
conditions yield the dependence

u− =
√

2(ρ− − 1)√
(ρ− + 1)(1 + γρ)(1 + γ)

. (114)

We have checked that dependence (114) is indeed satisfied very well for ρ− > 4. The physical mechanism supporting
the appearance of the classical shock conditions in a dissipationless system such as (11) is not quite clear at the
moment. We note that similar effect of appearance of the classical shock jump condition across the expanding
dispersive shock have been recently observed in [34] for large-amplitude shallow-water undular bores modeled by the
Green-Naghdi system, which is also not integrable by the IST. At the same time, it is known very well that for the
dispersive shocks described by the integrable NLS equation, the simple-wave jump condition is satisfied exactly for all
values of initial density jump – this follows from the full modulation solution (see [14], [20], [6]) and is also confirmed
by our numerical simulations. So it is possible that the described phenomenon of the appearance of the classical shock
conditions constitutes a specific manifestation of nonintegrability in dispersive dissipationless systems which is yet to
be explored.

Next, we have compared the analytical predictions of subsection III.D for number of dark solitons generated from
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FIG. 13: Dispersive shock evolving from the step-like pulse with ρ− and u− related by the “simple-wave” jump condition
for large value of ρ− = 10 much greater than ρ− = 4. Occurrence of a vacuum point in the region between x = 100 and
x = 150 is clearly seen. A new intermediate constant state is formed in the region behind the dispersive shock showing that
the simple-wave jump condition (28) does not prevent anymore the formation of the second wave for large values of ρ−.
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FIG. 14: Profile of intensity at z = 100 evolved from the initial pulse (115) (dashed line) with initial profile of u(x) calculated
according to (103).

a hole-like disturbance with numerical simulations. We took the initial distribution of intensity

ρ0(x) =
(

1− 1
cosh(0.2x)

)2

(115)

and the initial distribution of transverse wave number was calculated according to the equation (103). Evolution
of such a pulse according to the photorefractive equation with γ = 0.2 is illustrated by Fig. 14 where the profile of
intensity is shown at z = 100. As we see, this pulse, after the wave breaking and formation of a dispersive shock,
evolves eventually into a number of dark solitons. We note that the appearance of several solitons propagating to
the left does not contradict to the unidirectional restriction guaranteed by the simple-wave initial conditions (115),
(103) – these left-propagating solitons occur due to relatively high amplitude of the initial disturbance (115), which
leads to the appearance of the vacuum point at the intermediate stage of the dispersive shock wave and, therefore, to
the formation of some number of left-propagating solitons – see Section III.C. The total number of created solitons
calculated by means of the modulation formula (111) as a function of the saturation parameter γ is shown by solid
line in Fig. 15 and the corresponding results of numerical simulations are indicated by dots. Taking into account the
asymptotic nature of the developed analytical theory for this integer-valued function, and the fact that considered
initial data (115) produce a vacuum point (i.e. at some stage of the dispersive shock development the “instantaneous”
initial jump ρ− > ρ−cr), the agreement can be considered as quite good.
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FIG. 15: Number of solitons N as a function of γ; solid line represents analytical dependence (111) and dots correspond to
numerical simulations.

FIG. 16: Density plot of the output intensity evolved from a strip-like initial distribution.

In Refs. [6, 8] the theory of dispersive shocks, evolving from a step-like pulse according to the NLS equation (5)
(γ = 0) was used for qualitative explanation of dispersive shocks with other geometries in concrete physical situations
(see also [21] where the NLS theory of the wave breaking was also used for description of dispersive shocks in Bose-
Einstein condensates). In a similar way, the developed here theory of dispersive shocks in photorefractive media can
be used for the description of experiments on generation of optical shocks. Such experiments were described in [7, 8]
and here we present some results based on the numerical solutions of the photorefractive equation (4) with the initial
conditions similar to the initial light distributions in the mentioned experimental works (similar results of numerical
simulation were presented in [8]).

In [8] the distribution of output intensities are presented for initial distributions in the form of a strip, a circle,
and two separated circles. We have performed numerical simulations with similar initial conditions. In Fig. 16 we
present a density plot of the output intensity evolved, according to the photorefractive equation with γ = 0.1, from
the strip-like initial distribution given by the formula

ρ(x) =
{

1 + 5(1− x2/25)0.2 for |x| < 5,
1 for |x| > 5,

(116)

which approximates with a good enough accuracy the constant values of intensities inside the strip and outside it.
Similar density plot for the circle initial distribution is shown in Fig. 17.

As we see, in both cases the initial “hump” breaks with formation of dispersive shocks—in the strip-like geometry
we get two shocks propagating in opposite directions and in circular geometry we have a ring-like dispersive shock
expanding in radial direction.
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FIG. 17: Density plot of the output intensity evolved from a circle initial distribution.

FIG. 18: Interaction of two circular dispersive shocks.

In Fig. 18 an interaction of two circular dispersive shock waves is shown. It is remarkable that even in this two-
dimensional nonintegrable photorefractive case, the nonlinear dispersive shock waves interact apparently elastically,
without production of other waves in the region of their overlap. It is this kind of picture that is expected in the
system with γ = 0 described by the integrable NLS equation where the interaction of two dispersive shocks leads to the
formation of a two-phase modulated wave region described by the corresponding multiphased-averaged modulation
system [19]. While the analytical description of multiphase nonlinear waves in photorefractive equation (11) is not
available, the qualitative similarity between the solution behaviour for the nonintegrable photorefractive equation and
for the NLS equation for moderate values of initial amplitudes can be considered as a confirmation of robustness of
the modulated travelling wave ansatz in the description of dispersive shock waves in nonintegrable systems, at least
for some reasonable range of initial amplitudes.

V. CONCLUSION

In this paper, we have developed the theory of formation of dispersive shocks in propagation of intensive light beams
in photorefractive optical systems. The theory is based on Whitham’s modulation approach in which a dispersive
shock is described as a modulated nonlinear periodic wave and slow evolution along the propagation axis is governed
by the averaged modulation equation. In spite of the absence of complete integrability of the equation describing
propagation of light beams in photorefractive media, the main characteristic parameters of shocks can be determined
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by means of the approach developed in [22]–[24] and based on the study of reductions of Whitham equations for the
wave regimes realized at the boundaries of the dispersive shock. In particular, “velocities” of the dispersive shock
edges are found as functions of the jump of intensity across the shock as well as amplitude of the soliton at the rear
edge of the shock. The number of solitons produced from a finite initial disturbance is also determined analytically
for initial distributions related by a so-called simple wave condition. The analytical theory agrees very well with
numerical simulations as long as there is no vacuum point in the shock. Appearance of a vacuum point leads to the
formation of a singularity in a “transverse” wavevector distribution and such a drastic change in the wave behavior
cannot be traced by the developed approach. However, this situation occurs at very high input intensities of a light
beam so that for practical purposes the developed theory provides accurate enough approximation.

Although the theory is essentially one-dimensional (i.e. with one transverse space coordinate) it can give qualitative
explanation of experiments with other geometries, which is illustrated by the results of numerical simulations.
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