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Abstract

In the coastal oceans, the interaction of currents (such as the
barotropic tide) with topography can generate large-amplitude, hori-
zontally propagating internal solitary waves. These waves often occur
in regions where the waveguide properties vary in the direction of
propagation. We consider the modeling of these waves by nonlinear
evolution equations of the Korteweg-de Vries type with variable co-
efficients, and we describe how these models to describe the shoaling
of internal solitary waves over the continental shelf and slope. The
theories are compared with various numerical simulations.

1 Introduction: Variable-coefficient Korteweg-

de Vries equation

Solitary waves are nonlinear waves of permanent form, first observed by
Russell (1844) in a now famous report on his observations of a free surface
solitary wave in a canal, and his subsequent experiments. Later, theoretical
work by Boussinesq (1871) and Rayleigh (1876) confirmed Russell’s findings,
and then Korteweg and de Vries (1895) derived their well-known equation,
which contains the solitary wave as one of its principal solutions. But it
was not until the second half of the twentieth century that it was realised
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that the Korteweg-de Vries (KdV) equation, as well as being a notable inte-
grable equation, was also a valid model for solitary waves in a wide variety of
physical contexts. Of principal concern here are the large-amplitude internal
solitary waves which propagate in the coastal oceans (for recent reviews see
, e.g., Apel (1995), Grimshaw (2001) and Holloway et al (2001)). They owe
their existence to a balance between nonlinear wave-steepening effects and
linear wave dispersion, and hence can be effectively modeled by nonlinear
evolution equations of the KdV-type.

Many studies based on KdV-type models have used equations with con-
stant coefficents. Beginning with seminal paper by Benney (1966) there
have been derivations of a (constant-coefficient) KdV equation suitable for
the description of internal solitary waves, see, for instance, Lee and Beard-
sley (1974), Ostrovsky (1978), Maslowe and Redekopp (1980), Grimshaw
(1981), Tung et al (1981)), and the recent articles by Holloway et al (1997,
1999, 2001), Grimshaw (2001, 2005), Grimshaw et al (2006) and Helfrich
and Melville (2006)) which review the literature in this area. However, in
the present oceanic framework, the waves are propagating on a background
whose properties vary in the wave propagation direction. In this situation,
an appropriate model equation is the variable-coefficient KdV equation

At + cAx +
cQx

2Q
A+ µAAx + δAxxx + νA = 0 , (1)

Here A(x, t) is the amplitude of the wave, and x, t are space and time variables
respectively. The coefficient c(x) is the relevant linear long wave speed, and
Q(x) is the linear magnification factor, defined so that QA2 is the wave action
flux density for linear long waves. The coefficients µ and δ of the nonlinear
and dispersive terms respectively are determined by the waveguide properties
of the specific physical system being considered, and they are functions of x.
The final term νA represents nonconservative effects arising from dissipative
or forcing terms in the underlying basic state. Extra terms can also be
added to represent dissipative effects on the wave itself (see Grimshaw et
al (2003)), and Coriolis effects due to the Earth’s rotation (see Grimshaw
et al (1998b, 2006)) , but these will not be considered here. The variable-
coefficient KdV equation for water waves was developed by Ostrovsky and
Pelinovsky (1970) and later systematically derived by Johnson(1973b), while
Grimshaw (1981) gave a detailed derivation for internal waves (see also Zhou
and Grimshaw(1989) and Grimshaw (2001)). The derivation assumes the
usual KdV balance that the amplitude η has the same order as the dispersion,
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measured by ∂2/∂x2, and in addition assumes that the waveguide properties
(i.e. the coefficients c,Q, µ, δ) vary slowly so that Qx/Q for instance is of the
same order as the dispersion. In this scenario, the first two terms in (1) are
the dominant terms, and hence we make the transformation

U =
√
QA , τ =

∫ x dx

c
, ξ = τ − t . (2)

Substitution into (1) yields, to the same order of approximation as in the
derivation of (1),

Uτ + αUUξ + λUξξξ + νU = 0 (3)

α =
µ

c
√
Q
, λ =

δ

c3
. (4)

The coefficients α, λ are functions of τ alone. Note that although τ is a
variable along the spatial path of the wave, we shall subsequently refer to it
as the “time”. Similarly, although ξ is a temporal variable (in a reference
frame moving with speed c), we shall subsequently refer to it as a ”space”
variable. We shall call equation (3) the vKdV equation.

In this paper, we shall review the theory of slowly-varying solitary waves
based on the variable-coefficient Korteweg-de Vries equation (3) in Section
2. But because internal solitary waves are often of large amplitudes, it is
sometimes useful to include a cubic nonlinear term in (1) and (3), which
then become respectively (see the review by Grimshaw 2001),

At + cAx +
cQx

2Q
A+ µAAx + µ1A

2Ax + δAxxx + νA = 0 , (5)

Uτ + αUUξ + βU2Uξ + λUξξξ + νU = 0 , (6)

where β =
µ1

cQ
. (7)

Equations (3, 6), sometimes with various modifications such as with an addi-
tional dissipative term, or with a term taking account of the earth’s rotation,
have been applied to the study of internal solitary wave wave transformation
in the coastal zone by many authors (for instance Cai et al. (2002), Djordje-
vic and Redekopp (1978), Grimshaw et al (2004, 2006), Holloway et al (1997,
1999), Hsu et al (2000), Liu et al (1988, 1998, 2004), Orr and Mignerey (2003)
and Small (2001a,b, 2003),

In Section 3, we shall describe the slowly-varying solitary wave solutions
of the vKdV equation (3) and of the extended vKdV equation (6), and in
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particular examine in Section 4 the behaviour at certain critical points where
either α or β vanish. Then in Section 5 we shall indicate how these theoretical
results can be applied for realistic oceanic conditions, and in this context we
will show world maps of the coefficients of the extended vKdV equation (3)
However, before proceeding to the main body of this paper, we shall present
in Section 2 a brief account of the derivation of the KdV equation for internal
solitary waves.

2 Derivation of the Korteweg-de Vries equa-

tion for internal solitary waves

Here we shall give an outline of the derivation of the KdV equation for surface
and internal waves ( a more complete discussion and further references can
be found in the articles by Holloway et al (1997, 1999, 2001), Grimshaw
(2001) and Grimshaw et al (2006), on which this present account is based).
For simplicity we suppose first that the waveguide does not vary in the wave
propagation direction. Consider then an inviscid, incompressible fluid which
is bounded above by a free surface and below by a rigid boundary. We
shall suppose that the flow is two-dimensional and can be described by the
spatial coordinates (x, z) where x is horizontal and z is vertical, so that the
free surface is z = η and the bottom is z = −h (see Figure 1). The basic
equations are then,

ρ(ut + uux + wuz) + px = 0 , (8)

ρ(wt + uwx + wwz) + pz + gρ = 0 , (9)

ρt + uρx + wρz = 0 , (10)

ux + wz = 0 . (11)

Here (u,w) are the velocity components, p is the pressure and ρ is the density,
while t is the time coordinate. Note that the effect of the earth’s rotation
has been neglected. The boundary conditions are

w = 0 at z = −h , (12)

p = 0, at z = η , (13)

ηt + uηx = w , at z = η . (14)
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z
ηz=

z=-h

Figure 1: Coordinate system.

In order to develop the multiscale asymptotic procedure which will lead to the
KdV equation, it is useful to introduce a small parameter ε << 1 to describe
the long-wave approximation. Thus we rescale the horizontal coordinate and
time,

X = εx , T = εt , (15)

and then assume that all variables depend on (X,T, z). It follows that we
must also the replace w with εw.

In the basic state the fluid has a density ρ0(z), a horizontal shear flow
u0(z) in the x−direction, and a pressure field p0(z). This basic state satisfies
the equations (8, 9, 10, 11), and the boundary conditions (12, 13, 14) The
density stratification is described by the buoyancy frequency N(z), where

N2(z) = −gρ0z

ρ0

. (16)

We shall proceed to obtain the KdV equation for internal solitary waves,
but note that to recover the theory for water waves from this general for-
mulation it is sufficient just to put the density ρ0(z) = constant and (for
simplicity) u0(z) = 0 as well. To describe internal solitary waves we seek
solutions whose horizontal length scales are much greater than h, and whose
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time scales are much greater than N−1. We shall also assume that the waves
have small amplitude, characterised by the parameter α << 1. It is useful to
define an auxiliary variable, ζ the vertical isopycnal displacement from the
basic state, defined by the equation ρ(z, x, t) = ρ0(z − ζ, x). Thus we seek
an expansion in which

ρ = ρ0 + αρ1 + α2ρ2 + · · · , (17)

with similar expansions for all other variables. Linear long wave theory is
obtained at the leading order and has solutions in the separable form

gρ1 = ρ0N
2ζ1 , ζ1 = A(θ, S)φ(z, τ) , (18)

where S = ε2T = ε3t θ = X − cT = ε(x− ct) . (19)

The expression for the amplitude A ensures that

AT + cAX = ε2AS . (20)

The remaining dependent variables are given by

u1 = A((c− u0)φ)z , w1 = −Aθ
c

(c− u0)φ , p1 = ρ0(c− u0)
2Aφz , (21)

Here c is the linear long wave speed, and the modal functions φ(z) are defined
by the boundary-value problem,

{ρ0(c− u0)
2φz}z + ρ0N

2φ = 0 , for − h < z < η0, (22)

φ = 0 at z = −h , (c− u0)
2φz = gφ at z = η0 . (23)

Typically, the boundary-value problem (22, 23) defines an infinite se-
quence of modes, φ±n (z), n = 0, 1, 2, . . . , with corresponding speeds c±n .
Here, the superscript “±” indicates waves with c+n > uM = maxu0 and
c−n < uM = minu0 respectively. We shall confine our attention to these
regular modes, and consider only stable shear flows. Nevertheless, we note
that there may also exist singular modes with um < c < uM for which an
analogous theory can be developed (Maslowe and Redekopp, 1980). Note
that it is useful to let n = 0 denote the surface gravity waves for which c
scales with

√
gh, and then n = 1, 2, 3, . . . denotes the internal gravity waves

for which c scales with Nh. In general, the boundary-value problem (22, 23)
is readily solved numerically. Typically, the surface mode φ0 has no extrema

6



in the interior of the fluid and takes its maximum value at the surface z = 0,
while the internal modes φ±n (z), n = 1, 2, 3, . . . , have n extremal points in the
interior of the fluid, and vanish near z = 0 (and, of course, also at z = −h).
Since the modal equations are homogeneous, we are free to impose a nor-
malization condition on φ(z). A commonly used condition is that φ(zm) = 1
where |φ(z)| achieves a maximum value at z = zm with respect to z. In this
case the amplitude αA is uniquely defined as the amplitude of ζ1) at zm.

It can now be shown that, within the context of linear long wave theory,
any localised initial disturbance will evolve into a set of outwardly propagat-
ing modes, each given by an expression of the form (18). Assuming thats the
speeds c±n of each mode are sufficiently distinct, it is sufficient for large times
to consider just a single mode. Henceforth, we shall omit the indices and
assume that the mode has speed c, amplitude A(θ, S) and modal function
φ(z). Then, as time increases, the hitherto neglected nonlinear terms begin
to have an effect, and cause wave steepening. However, this is opposed by the
terms representing linear wave dispersion, also neglected in the linear long
wave theory. A balance between these effects emerges as time increases and
the outcome is the KdV equation for the wave amplitude. These processes
are enforced by imposing the KdV balance

α = ε2 . (24)

Then, in the expansion (17) this process is formally determined at the next
order, where the equation for ζ2 is,

{ρ0(c− u0)
2ζ2Xz}z + ρ0N

2ζ2X = M2 , for − h < z < ζ0 ,(25)

ζ2X = 0 at z = −h , ρ0(c− u0)
2ζ2Xz − ρ0gζ2X = N2 , at z = ζ0 . .(26)

Here the inhomogeneous terms M2, N2 are known in terms of A(X,T ) and
φ(z), and are given by

M2 = 2{ρ0(c− u0)φz}zAS + 3{ρ0(c− u0)
2φ2

z}zAAθ
−ρ0(c− u0)

2φAθθθ , (27)

N2 = 2{ρ0(c− u0)φz}AS + 3{ρ0(c− u0)
2φ2

z}AAθ . (28)

Note that the left-hand side of equations (25, 26)) are identical to the
equations defining the modal function (i.e. (22, 23)), and hence these equa-
tions can be solved only if a certain compatibility condition is satisfied. The
required compatibility condition is that the inhomogenous terms in (25, 26)
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should be orthogonal to the solutions of the adjoint of the modal equations
(22, 23). This gives ∫ ζ0

−h
M2φ dz = [N2φ]z=ζ0 . (29)

Substituting the expressions (27, 28) into (29) we obtain the required evolu-
tion equation for A, namely the KdV equation

AS + µAAθ + δAθθθ = 0 . (30)

Taking into account the scaling (15) this is just (1), reduced to the case of
constant coefficients (that is, Q = 0), and where here the coefficients µ and
δ are given by

Iµ = 3

∫ 0

−h
ρ0(c− u0)

2φ3
z dz , (31)

Iδ =

∫ 0

−h
ρ0(c− u0)

2φ2 dz , (32)

where I = 2

∫ 0

−h
ρ0(c− u0)φ

2
z dz . (33)

Note that for a right-going wave (that is c > uM) the coefficient δ > 0, but
that µ can take either sign.

Proceeding to the next highest order will yield an equation set analogous
to (25, 26) for ζ3, whose compatibility condition then determines an evolution
equation for the second-order amplitude A2. We shall not give details here,
but note that using the transformation A + αA2 → A, and then combining
the KdV equation (30) with the evolution equation for A2 will lead to a
higher-order KdV equation for A,

AS + µAAθ + δAθθθ

+α{δ1Aθθθθθ + µ1A
2Aθ + σ1AAθθθ + σ2AθAθθ} = 0 .

Explicit expresions for the coefficients are given by Gear and Grimshaw
(1983), Lamb and Yan (1996), and Grimshaw et al (2002)). However, this
equation is not unique, as the near-identity transformation A→ A+α(aA2+
bAθθ) asymptotically reproduces the same equation but with altered coeffi-
cients,

(δ1, µ1, σ1, σ2) → (δ1, µ1 − aµ, σ1, σ2 − 6aδ + 2bµ).
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Note that to be Hamiltonian, σ2 = 2σ1. Further the enhanced transformation

A→ A+ α(aA2 + bAθθ + a′Aθ

∫ θ

Adθ + b′θAT ) ,

can asymptotically reduce the higher-order equation to the KdV equation
provided that µ 6= 0, δ 6= 0.

A particularly important special case of the higher-order KdV equation
arises when the nonlinear coefficient µ (30) in the KdV equation is close to
zero. In this situation, the cubic nonlinear term in the higher-order KdV
equation is the most important higher-order term. The KdV equation (30)
may then be replaced by the extended KdV equation,

AS + µAAθ + αµ1A
2Aθ + δAθθθ = 0 . (34)

For µ ≈ 0, a rescaling is needed and the optimal choice is to assume that µ is
0(ε), and then replace A with A/ε. In effect the amplitude parameter is ε in
place of ε2. The coefficient µ1 of the cubic nonlinear term is given in terms
of integrals of the modal function φ and the second order correction term χ2

(see Grimshaw et al (2002) and Poloukhina et al (2002) for details).
The derivation sketched above was for the case of a waveguide with con-

stant properties in the horizontal direction. But, in the oceanic case, the
waveguide often varies slowly due to varying depth, and slow variations in the
basic state hydrology and background currents. These effects can be formally
incorporated into the theory by supposing that the basic state is a function
of the slow variable χ = ε2θ = ε3x. That is, h = h(χ), u0 = u0(χ, z) with a
corresponding vertical velocity field ε3w0(z, χ), a density field ρ0(z, χ) a cor-
responding pressure field p)(χ, z) and a free surface displacement η0(χ). This
basic sate satisfies the full equation set (8 - 14), with the exception of the mo-
mentum equations (8, 9) where there are body forces (ε3F0(χ, z), ε

6G0(χ, z))
respectively. That is

ρ0(u0u0χ + w0u0z) + p0χ = F0 , (35)

ε6ρ0(u0w0χ + w0w0z) + p0z + gρ0 = ε6G0 , (36)

u0ρ0χ + w0ρ0z = 0 , (37)

u0χ + w0z = 0 . (38)

w0 + u0hχ = 0 at z = −h(χ) , (39)

p0 = 0, at z = η0 , (40)

u0η0χ = w0 , at z = η0 . (41)
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With this scaling, the slow background variability enters the asymptotic anal-
ysis at the same order as the weak nonlinear and weak dispersive effects. As
noted in the Introduction, it is now necessary to replace the variables S, θ
with τ, ξ (2), where it is convenient to replace the slow variable χ with τ .
An asymptotic analysis analogous to that described above then produces the
vKdV equation (1) (Grimshaw (1981) and Zhou and Grimshaw (1989)). Here
first note that we again obtain the expressions (18, 21) with the modal sys-
tem again defined by (22, 23). But now c = c(τ) and φ = φ(z, τ), where the
τ -dependence is parametric. The analysis then leads to an expression equiv-
alent to (25, 26) but with extra inhomogeneous terms corresponding to the
slow variability in the basic state. The compatibility condition will then yield
the vKdV equation (1) now with variable coefficients µ = µ(τ), δ = δ(τ), but
which are again defined by (31, 32, 33) (but the upper limit in the integrals
is now z = η0 replacing z = 0). For the present case of internal waves, we
find that (see the Appendix of Zhou and Grimshaw (1989)

Q = c2I , ν = −
∫ η0

−h
φφzF0z . (42)

Here I is defined by (33)). Note also that the expression for Q can also be
simply determined by requiring that QA2 should be the wave action flux in
the linear long wave limit (see, for instance, Grimshaw (1984)).

We shall conclude this section with two illustrative examples. First con-
sider the case of water waves. We put the density ρ = constant so that then
N2 = 0 (16). Then we obtain the well-known expressions

φ =
z + h

h
for − h < z < 0 , c = (gh)1/2 . (43)

and so µ =
3c

2h
, δ =

ch2

6
, Q = 2gc . (44)

Similarly, for interfacial waves, let the density be a constant ρ1 in an
upper layer of height h1 and ρ2 > ρ1 in the lower layer of height h2 = h−h1.
That is

ρ0(z) = ρ1H(z + h1) + ρ2H(−z − h1) ,

so that ρ0N
2 = g(ρ2 − ρ1)δ(z + h1) .

Here H(z) is the Heaviside function and δ(z) is the Dirac δ-function. First,
let us replace the free boundary with a rigid boundary so that the upper
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boundary condition for φ(z) becomes just φ(0) = 0. This is a good approxi-
mation for oceanic internal solitary waves. Then we find that

φ =
z + h

h2

for− h < z < h1 ,

φ = − z

h1

for− h1 < z < 0 ,

c2 =
g(ρ2 − ρ1)h1h2

ρ1h2 + ρ1h2

(45)

Substitution into (31, (32, 33) yields

µ =
3c(ρ2h

2
1 − ρ1h

2
2)

2h1h2(ρ2h1 + ρ1h2)
,

δ =
ch1h2(ρ2h2 + ρ1h1)

6(ρ2h1 + ρ1h2)

Q = 2g(ρ2 − ρ1)c . (46)

Note that for the usual oceanic situation when ρ2 − ρ1 << ρ2, the nonlinear
coefficient µ for these interfacial waves is negative when h1 < h2 (that is,
the interface is closer to the free surface than the bottom), and is positive
in the reverse case. The case when h1 ≈ h2 leads to the necessity to use the
extended KdV equation (34).

Next, consider the case when the upper boundary is free, so that

φ =
z + h

h2

for− h < z < h1 ,

φ =
c2 + gz

c2 − gh1

for− h1 < z < 0 ,

c4

g2
− c2

g
h+ h1h2

ρ2 − ρ1

ρ2

= 0 . (47)

The expression (47) has two real positive solutions for c2, namely c20 >
gmax(h1, h2) ≥ gmin(h1, h2) > c21 > 0, corresponding to the free surface
(barotropic) mode and the interface (baroclinic) mode respectively. Substi-
tution into (31, 32, 33) yields

Iµ = 3c2
[ρ2

h2
2

+
ρ1g

3h1

(c2 − gh1)3

]
,
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Iδ =
c2

3g

[
gρ2h2 +

ρ1(c
6 − (c2 − gh1)

3)

(c2 − gh1)2

]
,

I = 2c
[ρ2

h2

+
ρ1g

2h1

(c2 − gh1)2

]
. (48)

It is readily seen that for the free-surface mode, the nonlinear coefficient µ
is always positive, but that it can have either sign for the interface mode.

3 Deformation of solitary waves

3.1 Slowly-varying solitary waves: Korteweg-de Vries
case

We turn now to the task of obtaining solutions to the vKdV equation (3)
when the coefficients α = α(τ), λ = λ(τ). In view of the potential appli-
cation to internal solitary waves, our focus will be on the effect of variable
coefficients on the propagation and deformation of a solitary wave. There
are two contrasting limits where asymptotic analysis can be made. In one
case the background state changes rapidly from one constant state to another
constant state, over a distance much shorter than a typical wavelength. This
leads to a disintegration of the solitary wave into several solitary waves, a pro-
cess often called fissioning. This will be described below in subsection 3.3.
In the other case, the background state varies slowly relative to a typical
wavelength. In this case the dominant effect is a slow adiabatic deformation
of the wave, described as a slowly-varying solitary wave, and discussed in
this subsection for the vKdV equation(3) and in the next subsection for the
extended vKdV equation (6).

We now suppose that the coefficients α, λ in the vKdV equation are slowly
varying, and write

α = α(σ) , λ = λ(σ) , σ = κτ , κ << 1 . (49)

Consistently we also replace ν with κν(σ). These definitions enable us to
define the slowly-varying condition that the half-width (i.e. the width of the
wave at the level of one half of the maximum amplitude) should be much less
than 1/κ. We then invoke a multi-scale asymptotic expansion of the form
(see Johnson (1973a) and Grimshaw (1979))

U = U0(ψ, σ) + εU1(ψ, σ) + · · · , (50)
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ψ = ξ − 1

κ

∫ σ

V (σ) dσ . (51)

U is defined over the domain −∞ < ψ < ∞, and we require that A remain
bounded in the limits ψ → ±∞. Since we can assume that λ > 0 small-
amplitude waves will propagate in the negative ξ-direction, and so we can
suppose that A → 0 as ψ → ∞. However, it will transpire that we cannot
impose this boundary condition as ψ → −∞.

Substitution of (50) into (3) yields,

−V U0ψ + αU0U0ψ + λU0ψψψ = 0 , (52)

−V U1ψ + α(U0U1)ψ + λU1ψψψ = −U0σ − νU0 . (53)

Equation (52) has the solitary wave solution

U0 = asech2(Kψ) , (54)

where V =
αa

3
= 4λK2 . (55)

When the coefficients are constants, this is just the well-known KdV solitary
wave. Here it is a slowly-varying solitary wave as the amplitude a = a(σ),
and hence the also the speed V = V (σ), k = k(σ). The main aim of the
analysis is to determine how these parameters vary, and this is determined
at the next order of the expansion.

We now seek a solution of (53) for U1 which is bounded as ψ → ±∞, and
in fact U1 → 0 as ψ → ∞. In order to determine the conditions that need
to be imposed on the right-hand side of (53) we need to consider the adjoint
equation to the homogeneous operator on the left-hand side of (53), which is

−V U1ψ + αU0U1ψ + λU1ψψψ = 0 . (56)

Two solutions are 1, U0; while both are bounded, only the second solution
satisfies the condtion that U1 → 0 as φ → ∞. A third solution can be
constructed using the variation-of-parameters method, but it is unbounded
as ψ → ±∞. Hence only one orthogonality condition can be imposed, namely
that the right-hand side of (53) is orthogonal to U0, which leads to∫ ∞

−∞
U0(U0σ + νU0)dψ = 0 . (57)

or P0σ = 2νP0 where P0 =

∫ ∞

−∞
U2

0 dψ . (58)
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As the solitary wave (54) has just one free parameter (e.g. the amplitude a),
this equation suffices to determine its variation. Substituting (54, 55) into
(58) yields

P0 =
4a2

3K
, (59)

and so a3 = C
α

λ
exp (−4

∫ σ

νdσ) , (60)

where C is a constant of integration. Note that in the conservative case when
ν = 0, this expression (60) is a simple algebraic expression for the variation
of the amplitude.

We now recall that the vKdV equation possesses two conservation laws

∂M

∂τ
= −νM , M =

∫ ∞

−∞
Udx , (61)

∂P

∂τ
= −2νP , P =

∫ ∞

−∞
U2dx , (62)

for mass and momentum respectively, and express the conservation of M,P
in the conservative case when ν = 0. The condition (57) is easily recognized
as the leading order expression for conservation of momentum (62). But
since this completely defines the slowly-varying solitary wave, we now see
that this cannot simultaneously conserve total mass. This is also apparent
when one examines the solution of (53) for U1, from which it is readily shown
that although U1 → 0 as ψ →∞, A1 → D1 as ψ → −∞ where

V D1 = −M0σ − νM0 , (63)

where M0 =

∫ ∞

∞
U0dψ =

2a

K
. (64)

This non-uniformity in the slowly-varying solitary wave has been recognized
for some time, see, for instance, Grimshaw and Mitsudera (1993) and the
references therein. The remedy is the construction of a trailing shelf Us of
small amplitude O(κ) but long length-scale O(1/κ), which thus has O(1)
mass, but O(κ) momentum. It resides behind the solitary wave, and to
leading order is given by

Us = κUs(Ξ) exp (−
∫ σ

Σ

νdσ) , Ξ = κξ < Ψ(σ) =

∫ σ

V dσ . (65)
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Here Ξ = Ψ(σ) defines the location of the solitary wave, and Σ(Ξ) is the
inverse of this defining relation, that is, Ξ = Ψ(Σ(Ξ)) is an identity in Ξ.
Us(Ξ) is independent of σ, and is determined so that the shelf amplitude is
just κD1(σ) at the location of the solitary wave, that is Us(Φ(σ)) = D1 (63).
At higher orders in κ the shelf itself will evolve and may generate secondary
solitary waves (El and Grimshaw (2002) and Grimshaw and Pudjaprasetya
(2004)). It may readily be verified that the slowly-varying solitary wave and
the trailing shelf together satisfy conservation of mass.

In the conservative case when ν = 0 the expressions (60) and (63) reduce
to

a3 = C
α

λ
, D1 =

aσ
2λK3

(66)

These expressions show that the amplitude increases (decreases) as α/λ in-
creases (decreases), and that the trailing shelf then has the same (opposite)
polarity (recall that the sign of α determines the polarity of the solitary
wave). A particular case of interest is when the nonlinear coefficient α passes
through zero, while λ stays finite. The prediction from the adiabatic formula
(71) is that the solitary wave amplitude goes to zero, and so the solitary is
destroyed. The outcome of this situation needs numerical simulations, and
these will be described below in section 4.

3.2 Slowly-varying solitary waves: extended Korteweg-
de Vries case

We now turn to the variable-coefficient extended KdV equation (6), where
we can use the same multi-scale asymptotic expansion used in subsection 3.1,
that is, (49, 50) with (51). The leading term is the solitary wave now given
by

U0 =
D

1 +B coshKψ
, (67)

where V =
αD

6
= λK2 , (68)

and B2 = 1 +
6λβK2

α2
. (69)

The amplitude is a = D/1 + B. The family of solutions (67) depend on a
single parameter, which can conveniently be taken as B, and are displayed in
Figure 3. As before, we take λ > 0 without loss of generality. Then, for β < 0
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there is just one branch of solutions, with 0 < B < 1; they range from small-
amplitude solitary waves of KdV-type with the familiar “sech2”-profile when
B → 1, to a limiting wave of amplitude −α/β as B → 0; this limiting wave is
characterized by a flat top, and are sometimes called “table-top” waves. For
β > 0 there are two branches; one has 1 < B < ∞ and ranges from small-
amplitude KdV-type waves when B → 1, to arbitrarily large waves with a
“sech”-profile as B → ∞. The other branch has has the opposite polarity,
exists for −∞ < B < −1, and ranges from arbitrarily large waves with
a “sech”-profile to a limiting algebraic solitary wave of amplitude −2α/β.
Solitary waves with smaller momentum cannot exist, and from the point of
view of the associated spectral problem are replaced by breathers, that is,
pulsating solitary waves (see, for instance, Clarke et al 2000, Grimshaw et al
1999, Pelinovsky and Grimshaw 1997).

We now follow the same procedure described in subsection 3.1. That is,
the determination of how the key parameter B of (67) varies with σ is found
either by considering the next-order term in the expansion, or equivalently by
using the conservation law (62) for momentum, which can easily be shown
to also hold for the variable-coefficient extended KdV equation (6). The
outcome is that (57) holds for the solitary wave (67) and so we get that

P0 =
D2

K

∫ ∞

−∞

du

(1 +B coshu)2
= C exp (−2

∫ σ

νdσ) , (70)

or G(B) = C| β
3

λα2
|1/2 exp (−2

∫ σ

νdσ) , (71)

where G(B) = |B2 − 1|3/2
∫ ∞

−∞

du

(1 +B coshu)2
.(72)

Here C is again a constant of integration. The integral term in G(B) can be
explicitly evaluated, and so we finally get

B2 > 1 : G(B) = 2(B2 − 1)1/2 ∓ 4arctan

√
B − 1

B + 1
, (73)

0 < B < 1 : G(B) = 4arctanh

√
1−B

1 +B
− 2(1−B2)1/2 . (74)

The alternative signs in (73) correspond to the cases B > 1 or B < −1.
Expressions of this type have been used by Egorov (1993) for water waves,
and Grimshaw et al (1999, 2004) for internal waves.
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Figure 2: The solitary wave family (67). The upper panel is for β < 0 and
the lower panel is for β > 0; in both panels α > 0, λ > 0.
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Next, just as for the vKdV case discussed in subsection 3.1, the slowly-
varying solitary wave is accompanied by a trailing shelf, in order to conserve
total mass. To leading order it is determined exactly as described in subsec-
tion 3.1, and so is given by (65) where here

B2 > 1 : M0 = ±|6λ
β
|1/2 4arctan

√
B − 1

B + 1
, (75)

0 < B < 1 : M0 = ±|6λ
β
|1/2 4arctanh

√
1−B

1 +B
. (76)

Here the alternative signs in (75) and (76) correspond to the cases αB > 0
or αB < 0.

The expression (71) provides an explicit formula for the dependence of
B on the environmental parameters α, β, λ, ν. It is readily shown that G(B)
(73) is a monotonically increasing function of |B| for 1 < |B| < ∞, and
is a monotonically decreasing function of B for 0 < B < 1 (74). For the
conservative case when ν = 0, we see that as |β3/λα2| → ∞, then so does
G(B); we infer that then, if β < 0 so that 0 < B < 1, B → 0 and the wave
approaches the limiting “table-top” shape. On the other hand if β > 0 and
1 < |B| < ∞ then |B| → ∞ and the wave shape approaches the “sech”-
profile, The behaviour of the wave amplitude in these limits depends on the
behaviour of each of the parameters α, β, λ. But since we can usually expect
λ(> 0) to be finite and bounded away from zero, we see that these limiting
shapes are achieved only as either β → ∞, or as α → 0. For the case
when β → ∞, with α, λ remaining finite and bounded away from zero, it is
readily shown from (71, 73) that |B| ∼ β3/2, and then (68, 69) show that
the amplitude behaves as a ∼ β1/2 and K ∼ β. On the other hand, when
β → −∞, again with α, λ remaining finite and bounded away from zero, it
is readily shown from (72, 74) that G(B) ∼ β3/2 and B ∼ 2 exp (−G/2), and
then (68, 69) show that the amplitude behaves as a ∼ −α/β and K ∼ 1/β1/2.
This is the limiting “table-top” wave, of increasing width. We note here that
as the width of the “table-top” wave increases, the basic assumption that
the wave width is much less than the scale of the background variability
(expressed through the variable coefficients) will be violated, leading to an
eventual breakdown of the adiabatic behaviour. The case when α → 0 is
more complicated, and will be described below in section 4.

On the other hand, again with ν = 0, we see that as |β3/λα2| → 0, then
so does G(B). In this case B → 1, G(B) ∼ |B − 1|3/2 (see (73, 74)) and the
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wave profile reduces to the KdV “sech2”-shape, provided that either β < 0
when 0 < B < 1, or if β > 0, then the wave initially belongs to the branch
defined by 1 < B < ∞. But if β > 0 and the wave initially belongs to
the branch defined by −∞ < B < −1, then the limit G(B) → 0 cannot
be achieved; instead we expect a transition to a breather. Let us suppose
that this limiting situation is achieved by |α| → ∞, with |β|, λ remaining
bounded. Then it follows from (71, 74) that |B − 1| ∼ 1/|α|2/3, and then
(68, 69) show that K ∼ |α|2/3 and the amplitude behaves as a ∼ |α|1//3, in
agreement with the vKdV result (66). The alternative case when |β| → 0 is
more complicated and will be described below in section 4.

3.3 Fission

Here we suppose that the background state changes rapidly from one constant
state to another constant state, over a distance much shorter than a typical
wavelength. Consider the conservative case when ν = 0, and suppose that is,
in the vKdV equation (3) (and in the evKdV equation (6)), the coefficients
α(τ), λ(τ) (and β(τ)) vary rapidly with respect to the wavelength of a solitary
wave. Suppose, for instance that the coefficients make a rapid transition from
the values α−, λ− (β−) in τ < 0 to the values ν+, λ+, (β+) in τ > 0. Then a
steady solitary wave can propagate in the region ξ < 0, given in the vKdV
case by (see (54. 55))

U = a sech2(K(ξ − V τ)) , V =
α−a

3
= 4λ−K

2 . (77)

For the evKdV equation, the corresponding expression is (see (67, 68, 69))

U =
D

1 +B coshK(ξ − V τ)
, V =

αD

6
= λK2 , B2 = 1 +

6λβK2

α2
. (78)

It will pass through the transition zone τ ≈ 0 essentially without change.
However, on arrival into the region τ > 0 it is no longer a permissible so-
lution of (3), which now has constant coefficients ν+, λ+ (and β+). Instead,
with τ = 0, the expression (77) (and (78)) now forms an effective initial con-
dition for the new constant-coefficient KdV (and eKdV) equation. Both the
KdV and the eKdV are integrable equations, and the theory based on the
inverse scattering transform can be used to predict the outcome. In general,
this initial condition will evolve into a number of solitons, and it is this pro-
cess which is called fission. Numerical simulations of the vKdV and eKdV
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equations for the stated conditions on the coefficients, that is a rapid transfer
form one set of constant values to another set, confirm this general scenario.

In the case of the KdV equation, an explicit expression can be derived for
the amplitude of these solitons (see Tappert and Zabusky (1971), Johnson
(1972) for an application to water waves, Djordevic and Redekopp (1978) for
an application to internal waves and Zheng et al (2001) for an application
to observations of fissioning of internal solitary waves in the Gulf of Aden).
The KdV equation is exactly integrable using an associated spectral problem,
with the inverse scattering transform, from which the solution in τ > 0 can
now be constructed. Indeed in this case the spectral problem has an explicit
solution (e.g. Drazin and Johnson, 1989). The outcome is that the initial
solitary wave fissions into N solitons, and some radiation. The number N of
solitons produced is determined by the ratio of coefficients R = α+λ−/α−λ+.
If R > 0 (i.e. there is no change in polarity), then N = 1+[((8R+1)1/2−1)/2]
([· · ·] denotes the integral part); as R increases from 0, a new soliton (initially
of zero amplitude) is produced as R successively passes through the values
m(m + 1)/2) for m = 1, 2, · · ·. But if R < 0 (that is, there is a change in
polarity) no solitons are produced and the solitary wave decays into radiation.

4 Passage through critical points

The analysis of the adiabatic transformation of a solitary wave in subsections
3.1 and 3.2 shows that the critical points where α = 0, or where β = 0 are
sites where we may possibly expect a dramatic change in the wave structure.
We consider only the conservative case when ν = 0 and at first examine
the vKdV model (3) so that β = 0. Let us then suppose that α = 0 at
σ = 0, where, without loss of generality, we can assume that α passes from
negative to positive values as σ increases. Initially the solitary wave is located
in σ < 0 and has negative polarity. Then, near the transition point, the
amplitude of the wave decreases to zero as a ∼ −|α|1/3, while K ∼ |α2/3|;
the momentum of the solitary wave is of course conserved (at least to leading
order), the mass of the solitary wave increases (in absolute value) as 1/|α1/3|,
its speed decreases as α4/3, and the amplitude D1 of the trailing shelf just
behind the solitary wave grows as 1/|α|8/3; the total mass of the trailing shelf
grows as 1/|α|1/3, in balance with that of the solitary wave, while the total
mass remains a negative constant. Since the tail grows to be comparable
with the wave itself, the adiabatic approximation breaks down as the critical
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point is approached. Nevertheless, we can infer that the the solitary wave
itself is destroyed as the wave attempts to pass through the critical point
α = 0. The structure of the solution beyond this critical point has been
examined numerically by Grimshaw et al (1998a), who showed that the shelf
passes through the critical point as a positive disturbance, which then being
in an environment with α > 0, can generate a train of solitary waves of
positive polarity, riding on a negative pedestal (see Figure 2). Of course,
these conclusions may need to be modified when the cubic nonlinear term in
(6) is taken into account near the critical point (Grimshaw et al, 1999), and
this issue is taken up later in this section.

In a typical oceanic situation, where there is a relatively sharp near-
surface pycnocline, an internal solitary wave of depression is generated in the
deep water and propagates shorewards until it reaches a critical point. For
a simple two-layer model, this is where the pycnocline is close to the mid-
depth (see 46). The theory described above then predicts that this wave will
be destroyed in the vicinity of this critical point and replaced in the shallow
water shorewards of the critical point by one or more internal solitary waves of
elevation riding on a negative pedestal. This basic scenario has been observed
in several places in the ocean, For instance, this phenomena has been reported
by Salusti et al (1989) in the Eastern Mediterranean, by Holloway et al (1997,
1999) in the North West Shelf of Australia, by Hsu et al (2000) in the East
China Sea, and recently during the ASIEX experiment in the South China
Sea by Duda et al (2004), Liu et al (2004), Orr and Mignerey (2003), Ramp
et al (2004), Yang et al (2004), and Zheng et al (2003). But elsewhere in the
ocean, where there are no such critical points, the shoreward propagating
small-amplitude internal solitary waves are expected to deform adiabatically
(at least within the framework of the vKdV equation). Examples of this
behaviour occur on the Malin Shelf off the North-west coast of Scotland, see
Small (2003), Grimshaw et al (2004) and Small and Hornby (2005), and in
the Laptev Sea in the Arctic, see Grimshaw et al (2004).

We next take account of the cubic nonlinear term in (6) and so suppose
that α passes through zero (again with ν = 0), but that β 6= 0 at the critical
point σ = 0 where α = 0. First, let us suppose that β < 0, 0 < B < 1. Then
as α→ 0, we see from (71) and (74) that G(B) ∼ 1/|α|, and B → 0 with B ∼
2 exp (−G/2). Thus the approach to the limiting “table-top” wave is quite
rapid. From (68. 69) we see that in this limit, K ∼ |α| and the amplitude
approaches the limiting value a ∼ −α/β. Thus the wave amplitude decreases
to zero, and, interestingly, this is a more rapid destruction of the solitary
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Figure 3: A numerical simulation of the vKdV equation (3) for the case when
δ = 1, ν = 0 and α varies from −1 to +1. The upper panel is when α = 0 and
the lower panel is when α = +1. The simulation shows a strong deformation
of the initial solitary wave of depression at α = 0, followed at α = 1 by the
emergence of a number of solitary waves of elevation.

22



wave than for the case when β = 0. The mass M0 (76) of the solitary wave
grows as |α|−1 and so the amplitude D1 of the trailing shelf (63) grows as
1/|α|4. The overall scenario after α has passed through zero is similar to that
described above for the vKdV equation (3) and has been discussed in detail
by Grimshaw et al (1999). Essentially the trailing shelf passes through the
critical point as a disturbance of the opposite polarity to that of the original
solitary wave, which then being in an environment with the opposite sign of
α, can generate a train of solitary waves of the opposite polarity, riding on
a pedestal (see Figure 4 for an example where a “table-top” solitary wave is
converted to another such wave of opposite polarity, riding on a pedestal).

Next, let us suppose that β > 0 so that 1 < |B| < ∞ There are the two
sub-cases to consider, B > 0 or B < 0, when the the solitary wave has the
same or opposite polarity to α. Then, as α→ 0, |B| → ∞ as |B| ∼ 1/|α|. It
follows from (68. 69) that then K ∼ 1, D ∼ 1/|α|, a ∼ 1,M0 ∼ 1. It follows
that the wave adopts the “sech”-profile, but has finite amplitude, and so can
pass through the critical point α = 0 without destruction. But the wave
changes branches from B > 0 to B < 0 as |B| → ∞, or vice versa. An
interesting situation then arises when the wave belongs to the branch with
−∞ < B < −1 and the amplitude is reducing. If the limiting amplitude of
−2α/β is reached, then there can be no further reduction in amplitude for
a solitary wave. Instead a breather will form. An example of this outcome
is shown in Figure 5, where the wave has entered this regime after passing
through the critical point. Of course, such a transformation to a breather can
occur without the necessity to pass through a critical point. For instance, the
wave amplitude could be reduced by the action of friction, and an instance
of breather formation by this process is described by Grimshaw etal (2003).

Finally, we consider the situation when β → 0, α 6= 0 but again ν = 0.
This case has been studied by Nakoulima et al (2004) using both an asymp-
totic analysis analogous to that used here, and direct numerical simulations.
As already noted above, in this case B → 1, G(B) ∼ |B − 1|3/2 (73, 74),
and it then follows from (71) that G ∼ |β|3/2 and so |B − 1| ∼ |β|. There
are three sub-cases to consider. First, suppose that initially β < 0 and so
0 < B < 1. As |β| → 0, 1 − B ∼ |β| and the wave profile becomes the
familiar KdV “sech2”-shape. It is readily shown from (68, 69) that then
K, a,M0, D1 ∼ 1 and so the wave can pass through the critical point β = 0
without destruction. However, after passage through the critical point, the
wave has moved to a different solitary branch (see Figure 3), and this may
change its ultimate fate. A typical scenario is shown in Figure 6, which shows
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Figure 4: A numerical simulation of the evKdV equation (6) for the case when
δ = 1, β = −0.083, ν = 0 and α varies from 1 to −1. The upper panel shows
the initial condition of a “table-top” solitary wave of elevation at α = −1,
the middle panel shows a strong deformation at α = 0, and the lower panel
shows the leading wave at α = +1. This wave is another ”table-top” wave,
but now one of depression riding on a small positive pedestal
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Figure 5: A numerical simulation of the evKdV equation (6) for the case
when δ = 1, β = 0.3, ν = 0 and α varies from 1 to −1. The initial wave
(not shown) is a solitary wave of elevation belonging to the branch for which
B > 0. It then passes adiabatically through the critical point , changing the
sign of B to B < 0, and arrives at the location α = −1 at a time τ = T with
only a small deformation. However, at this stage its amplitude is below that
allowed for a steady solitary wave, and so it deforms into a breather, shown
in the middle panel for τ = 2T and the lower panel for τ = 4T
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the transformation of a “table-top” solitary wave (upper panel in Figure 3)
to a KdV “sech2”-KdV solitary wave at the critical point, and further evo-
lution as a solitary wave of the upper branch in the lower panel of Figure
3. Second, suppose that initially β > 0 and 1 < B < ∞. Now B − 1 ∼ β
and again the wave profile becomes the familiar KdV “sech2”-shape, while
K, a,M0, D1 ∼ 1, allowing the wave to pass through the critical point β = 0
without destruction, but moving now form the upper branch in the lower
panel of Figure 3 to the “table-top” brach in the upper panel of Figure 3.
Third, suppose that initially β > 0 and −1 > B > −∞. In this case it an
be shown from (73) that G(B) decreases from ∞ to a finite value of 2π as
B increases from −∞ to −1. Consequently the limit β → 0 in (71) cannot
be achieved. Instead as β decreases the limit B = −1 is reached, when the
wave has become an algebraic solitary wave. Presumably a further decrease
in β would generate breathers.

5 Oceanic applications and discussion

As we have already mentioned in Section 1 and elsewhere, the vKdV and the
extended vKdV equations (3) (or (1)) and (6) (or (5)) have been extensively
used to model the evolution of internal solitary waves over topography in
the coastal oceans. For instance, Grimshaw et al (2004) used the extended
vKdV equation (6) to study the deformation of an internal solitary wave as
it evolves over three representative continental shelves, the North West Shelf
(NWS) of Australia, the Malin Shelf off the North West coast of Scotland,
and the Laptev Sea in the Arctic. In Figure 7 we display the coefficients of
the extended vKdV equation (5) (note the relations (4, 7) between these co-
efficients and those of (6)) for the NWS, using data from the section from the
point (19.2oS, 115.7oE) to the point (19.8oS, 116.5oE) along which CTD data
were obtained in January 1995 (see Holloway et al (1997,1999)). Only the
topography and the density stratification were used to evaluate these coeffi-
cients, and any effect of background currents was ignored, so that ν = 0 here.
We see that as the depth decreases the linear magnification factor Q, the lin-
ear phase speed c and the linear dispersive coefficient δ all decrease; this is
to be expected, as in general they can be expected to scale approximately
as h1/2, h1/2 and h5/2 respectively. In particular, the dramatic decrease in δ
can be expected to enhance the effect of nonlinearity as the wave propagates
shoreward (see the adiabatic expression (66) for instance). From Figure 7
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Figure 6: A numerical simulation of the evKdV equation (6) with α = 1, λ =
1, ν = 0 and β varies from −1 to 1, showing the transformation of a “table-
top” solitary wave to a KdV “sech2”-KdV solitary wave at the critical point,
and further evolution as a solitary wave tending to a “sech”-profile.
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we see that there are three critical points where the quadratic coefficient
µ = 0 at approximately 45, 59, 61km and µ is almost zero again at 93km;
the cubic coefficient µ1 is initially quite small and vanishes at approximately
13, 31, 41km and again at 68km. Consequently, we expect the internal soli-
tary wave to evolve adiabatically as a wave of depression up to about 45km
along the path, after which it will deform according to the critical point
scenarios described above.

In Figure 8, we display the evolution along the NWS of an internal soli-
tary wave whose initial amplitude is 10m (see Grimshaw et al (2004) for
analogous results for initial amplitudes of 5, 15m). As expected, the evo-
lution is adiabatic up to 45km. At this critical point µ1 > 0 and so the
wave can pass through this critical point without destruction. But then, for
a relatively short distance (from 42 to 48km) the cubic coefficient µ1 grows
by a factor of 10, inducing a large amplification in the wave amplitude (a
factor of 2). The tail behind the solitary wave forms mainly at this stage.
Between the next set of critical points at 59, 61km where µ = 0 but µ1 > 0,
we see that the the leading wave can again avoid complete desruction, but
the tail has grown substantially and has formed a negative pulse behind the
main wave. Then, after passage through the critical point at 68km where
the cubic coefficient µ1 changes sign from positive to negative, both negative
solitary-like waves disappear forming dispersive wave packets; this is to be
expected as when µ > 0, µ1 < 0 only positive solitary waves are allowed (see
the upper panel of Figure 2) and so the negative pulses must disperse. But
because here the dispersive waves are energetic enough, a group of solitary
waves of positive polarity is ultimately generated, and are visible at 85km.

The simulation shown in Figure 8, together with many other similar simu-
lations and observations demonstrate the key role played by the coefficients of
the extended vkdv equation (5). Hence, in Figure 9, we display world maps of
these coefficients, based on the long-term mean annual hydrologic data with
one-degree latitude-longitude resolution given by Levitus and Boyer (1994).
As expected, the linear phase speed c and the linear dispersive coefficient
scale approximately with h1/2 and h5/2 respectively, and hence, as is well-
known, the largest amplitude internal solitary waves will generally be found
in the shallow seas of the coastal zones. However, the quadratic and cubic
coefficients µ and µ1 show considerable variability, with many sign changes,
thus emphasising again the importance of critical points. Analogous maps
for specific regions of interest have been developed by Ivanov et al (1994) for
the Black Sea, by Pelinovsky et al (1995) for the coast of Israel, by Talipova
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Figure 7: Coefficients of the extended vKdV equation (5) for the North West
Shelf (NWS) of Australia, plotted as distance across the shelf from the initial
point at a depth of 416m.
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Figure 8: Transformation of a solitary wave with initial amplitude 10m across
the NWS. The plots show the time evolution at the indicated locations. The
oscillations at the right-hand side of the plot at 85km are a consequence of
the periodic conditions used in the simulations.
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Figure 9: World maps of the coefficients of the extended vKdV equation (5)
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et al (1998) for the Baltic Sea, and by Poloukhin et al (2003, 2004) for the
Arctic Sea (the last paper also took account of background currents).

Our focus in this survey article has been on modeling the deformation of
oceanic internal solitary waves as they propagate through a variable medium,
such as that provided by the topography of the continental shelf and the
changing hydrography from deep to shallow water. For this purpose we have
used the variable-coefficient extended Korteweg-de Vries equation (6), since
on the one hand it is a valid and much-used model in this context, and on
the other hand it allows for a quite detailed analysis. However, we should
mention that there have been many numerical simulations of internal solitary
waves, using a variety of other model systems, ranging from Boussinesq-type
equations to the full Euler equations. But, relatively few of these simula-
tions have focussed directly on the issue of how an internal solitary wave
deforms over the continental shelf. More often they examine the genera-
tion process due to the interaction of a current with topography, together
with the propagation over topography, and hence cannot easily identify the
deformation processes alone. Nevertheless, it is pertinent to note here the
simulations of the full Euler equations by Lamb (2002, 2003) whose concern
was to distinguish between the conditions which lead to the formation of
large-amplitude “table-top” waves, and those conditions which lead instead
to wave breaking and the consequent formation of large-amplitude solitary
waves with recirculating cores. In a similar vein Vlasenko and Hutter (2002)
used numerical simulations of the full Euler equations to study the breaking
of internal solitary waves over a slope-shelf configuration appropriate for the
Andaman and Sulu seas. Recently Vlasenko and Stashchuk (2006) examined
the adiabatic deformation of small-amplitude internal waves over topography
in the presence of a (conservative, that is ν = 0) barotropic current, again
using numerical simulations of the full Euler equations.

We acknowledge support from INTAS project, 06-1000013-9236, and from
RFBR, 06-05-64232, for Talipova.
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