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Abstract

We consider, using linear water-wave theory, three-dimensional problems con-
cerning the interaction of waves with structures in a fluid which contains a layer
of finite depth bounded above by a free surface and below by an infinite layer of
fluid of greater density. For such a situation time-harmonic waves can propagate
with two different wavenumbers K and k. In a single-layer fluid there are a number
of reciprocity relations that exist connecting the various hydrodynamic quantities
that arise, and these relations are systematically extended to the two-fluid case.
The particular problems of wave radiation and scattering by a submerged sphere in
either the upper or lower layer are then solved using multipole expansions.

1 Introduction

This paper represents an extension to three dimensions of the work of Linton and McIver
(1995), hereafter referred to as LM, in which a two-dimensional linear scattering theory
was developed to study the interaction of water waves with obstacles in fluids consisting
of a layer of finite depth bounded above by a free surface and below by an infinite layer
of denser fluid. The motivation for this work came from a plan to build an underwater
pipe bridge across one of the Norwegian fjords, bodies of water which typically consist of
a layer of fresh water about 10m thick on top of a very deep body of salt water.

Very little work has been done on wave/structure interactions in such fluid regions,
except by approximating the free surface by a rigid lid. With this simplifying assumption
Sturova (1994), for example, has studied the radiation of waves by an oscillating cylinder
which is also moving uniformly in a direction perpendicular to its axis. With the correct
linear free surface boundary condition, but in the absence of obstacles, Lamb (1932) Art.
231 showed that the appropriate dispersion relation for this two-layer configuration has
two solutions for a given frequency, one corresponding to waves where the majority of the
disturbance is close to the free surface and the other to waves on the interface between
the two fluid layers. More recently, Iooss (1999) has studied nonlinear periodic travelling
waves in two dimensions, again in the absence of any obstacles.

When a wave is scattered by an obstacle there is the possibility that the wave energy
will be transferred between the two possible modes and computations in LM demonstrate
this for the case of a submerged horizontal cylinder in either the upper or the lower layer.
In this paper we will develop a general three-dimensional linear scattering theory and
then illustrate it by solving problems involving submerged spheres. Again the transfer of
energy between the two different wave modes will be apparent.

General relations exist between various quantities that arise in water wave radiation
and diffraction problems. For a single-layer fluid these can be derived systematically using
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Green’s theorem (see, for example, Mei 1983) and they were extended to two-layer fluids
in two dimensions in LM. In section 2 below, the equivalent relations are derived for the
three-dimensional two-fluid case. The heave and sway radiation problems for a submerged
sphere, in either the lower and upper layer, are solved using multipole expansions in section
3 and in section 4 the scattering problem is solved for such bodies.

2 Three-dimensional radiation and scattering in two-

layer fluids

We take the origin of coordinates in the undisturbed interface between the upper (lighter)
fluid and the lower (denser) fluid. Both fluids are assumed to be inviscid and incom-
pressible. Horizontal coordinates are x and y whilst the vertical coordinate z is measured
upwards. The undisturbed free surface is z = d. Cylindrical polar coordinates defined by

x = R cos α, y = R sin α, (2.1)

are also be used.
The upper fluid, 0 < z < d, is referred to as region I, whilst the lower fluid, z < 0,

is region II. The potential in the upper fluid (of density ρI) is φI and that in the lower
fluid (of density ρII > ρI) is φII . The motion is assumed to be irrotational and so both
φI and φII satisfy Laplace’s equation:

∇2φI = ∇2φII = 0. (2.2)

The ratio of the densities of the two fluids ρI/ρII(< 1) will be denoted by ρ and then the
linearized boundary conditions on the interface and free surface are

φI
z = φII

z on z = 0, (2.3)

ρ(φI
z − KφI) = φII

z − KφII on z = 0, (2.4)

φI
z = KφI on z = d, (2.5)

where K = ω2/g, the time-dependence of e−iωt having been suppressed. The boundary
conditions (2.3) and (2.4) represent the continuity of normal velocity and pressure at the
interface respectively.

Solutions to these equations which represent waves with wavenumber u can be found
provided u is a solution of the dispersion relation, given by

(u − K)(K(σ + e−2ud) − u(1 − e−2ud)) = 0, (2.6)

where σ = (1 + ρ)/(1 − ρ). It follows that either u = K or u = k, where

K(σ + e−2kd) = k(1 − e−2kd). (2.7)

There is precisely one positive root k which lies in the range

Kσ < k <
K(σ + 1)

1 − e−2Kdσ
. (2.8)
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The general form for outgoing cylindrical waves in such a situation can easily be
derived. The velocity potential takes a different form in the upper and lower regions
which can be characterized by their far-field forms:

φI
i ∼

(
2

πKR

)1/2

eiKR−iπ/4eKzAi(α) +
(

2

πkR

)1/2

eikR−iπ/4g(z)Bi(α) (2.9)

φII
i ∼

(
2

πKR

)1/2

eiKR−iπ/4eKzAi(α) +
(

2

πkR

)1/2

eikR−iπ/4ekzBi(α) (2.10)

as Kr → ∞, where

g(z) =
Kσ − k

K(σ − 1)
ekz +

K − k

K(σ − 1)
e−kz (2.11)

=
ρ−1

1 − e2kd
ekz +

ρ−1 − 1 + e2kd

1 − e2kd
e−kz. (2.12)

An incident plane wave with wavenumber k making an angle αinc with the positive x-axis
has the form

φI
inc = g(z)eikR cos(α−αinc) (2.13)

φII
inc = ekzeikR cos(α−αinc), (2.14)

whereas an incident wave of wavenumber K has the form

φinc = eKzeiKR cos(α−αinc) (2.15)

in both the upper and lower fluids.
Now consider a situation in which there are a number of bodies, some in the upper

layer, some in the lower layer, and some straddling the two. The boundaries of those
bodies in the upper fluid will be denoted by BI and those in the lower fluid by BII .
Assume that φ and ψ are solutions to two different problems, both satisfying (2.2)–(2.5)
with ∂φ/∂n and ∂ψ/∂n given on the boundaries BI and BII . If we apply Green’s theorem
we obtain

∫
S

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
ds = 0, (2.16)

since φ and ψ are harmonic functions. Here S is the boundary of a fluid region completely
contained in one of the fluid layers and ∂/∂n is the derivative with respect to the outward
normal. In region I, S is composed of the free surface, the boundary of the bodies BI ,
the interface and a cylinder SI

∞ whose radius is sufficiently large for the asymptotic forms
of the potentials to be used. In region II, S is composed of a surface parallel to the
interface whose depth will be made to tend to infinity, the boundary of the bodies BII ,
the interface and a cylinder of large radius SII

∞ .
It follows from (2.3) and (2.4) that

ρ

(
φI ∂ψI

∂z
− ψI ∂φI

∂z

)
= φII ∂ψII

∂z
− ψII ∂φII

∂z
on z = 0. (2.17)
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If we apply Green’s theorem in region I and in region II the resulting formulas can be
added so that the integral along the interface vanishes because of (2.17). This yields

ρ
∫

BI

(
φI ∂ψI

∂n
− ψI ∂φI

∂n

)
ds +

∫
BII

(
φII ∂ψII

∂n
− ψII ∂φII

∂n

)
ds

= −ρ
∫

SI∞

(
φI ∂ψI

∂n
− ψI ∂φI

∂n

)
ds −

∫
SII∞

(
φII ∂ψII

∂n
− ψII ∂φII

∂n

)
ds. (2.18)

By using this equation with radiation and scattering potentials for φ and ψ we can obtain
a number of relations between various hydrodynamic quantities.

2.1 Two Radiation Potentials

First we consider the case of two radiation potentials. Let φ = φi and ψ = φj be two
radiation potentials whose behaviour in the far field is given by (2.9) and (2.10) and which
satisfy the body boundary conditions

∂φi

∂n
= ni,

∂φj

∂n
= nj on SB, (2.19)

where ni is the component of the inward normal to the body in the i-th mode of motion
and SB is the body boundary, which for simplicity we will assume is entirely contained
within region I or region II. Now, using (2.7) we can show that

ρ
∫ d

0
eKzg(z) dz = −

∫ 0

−∞
e(K+k)z dz (2.20)

and it follows that the right-hand side of (2.18) is zero leaving∫
SB

(φinj − φjni) ds = 0. (2.21)

The added-mass and damping matrices, µ and ν respectively, are real and defined by

−iωµij + νij = −iωρIIδ
∫

SB

φinj ds, (2.22)

where δ = ρ if the bodies are in fluid I or δ = 1 if they are in fluid II. Thus (2.21) states
that the added mass and damping matrices are symmetric.

Suppose now we use ψ = φj. The function φj satisfies the conjugate of the equations
governing φj and describes an incoming cylindrical wave far from the body. Thus, using
the fact that the ni are real, (2.18) becomes

δ
∫

SB

(φinj − φjni) ds =
2i

π

(
JK

∫ 2π

0
Ai(α)Aj(α) dα + Jk

∫ 2π

0
Bi(α)Bj(α) dα

)
, (2.23)

where

JK =
1

K
+ 2ρ

∫ d

0
e2Kz dz, Jk =

1

k
+ 2ρ

∫ d

0
[g(z)]2 dz. (2.24)

In particular

νii =
ρIIω

π

[
JK

∫ 2π

0
|Ai(α)|2 dα + Jk

∫ 2π

0
|Bi(α)|2 dα

]
, (2.25)

showing that the diagonal elements of the damping coefficient matrix are proportional to
the energy radiated away from the body.
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2.2 A radiation and a scattering potential

Suppose now we use a scattering potential φ = φinc + φS (i.e. ∂φ/∂n = 0 on the body
boundary) and a radiation potential ψ = φi, where φinc is an incident plane wave. Since
both φi and φS are outgoing cylindrical waves in the far field, the contribution to the
right-hand side of (2.18) from the products of these terms will be zero in exactly the same
way as when we considered two radiation potentials above. Thus (2.18) becomes

δ
∫

SB

φni ds = lim
KR→∞

[
− ρ

∫ d

0

∫ 2π

0

(
φI

inc

∂φI
i

∂R
− φI

i

∂φI
inc

∂R

)
R dθ dz

−
∫ 0

−∞

∫ 2π

0

(
φII

inc

∂φII
i

∂R
− φII

i

∂φII
inc

∂R

)
R dθ dz

]
. (2.26)

If we consider the case of an incident wave of wavenumber K making an angle αinc with
the positive x-axis we obtain

δ
∫

SB

φni ds = lim
KR→∞

[
− iJK

(
KR

2π

)1/2

e−iπ/4

×
∫ 2π

0
(1 − cos(α − αinc)) eiKR(1+cos(α−αinc))Ai(α) dα

]
(2.27)

= −2iJKAi(αinc + π), (2.28)

the last step being justified through stationary phase arguments. For an incident wave of
wavenumber k similar arguments reveal that

δ
∫

SB

φni ds = −2iJkBi(αinc + π). (2.29)

The hydrodynamic force on the body in the ith mode of motion can be written Fi(t) =
Re{fie

−iωt} where fi is found by integrating the dynamic pressure times the appropriate
component of the normal over the body surface. In other words

fi = iρIIδω
∫

SB

φni ds, (2.30)

which when combined with (2.28) gives the exciting force in the i-th direction due to an
incident wave of wavenumber K as

fi = 2ρIIωJKAi(αinc + π). (2.31)

When the incident wave has wavenumber k we obtain

fi = 2ρIIωJkBi(αinc + π). (2.32)

In both cases the exciting force is related to the amplitude of the radiated wave with the
same wavenumber as the incident wave in the direction opposite to that of the incident
wave. These formulas represent extensions to two-layer fluids of the Haskind relations
(see Newman 1976).
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2.3 Two scattering potentials

If φ and ψ in (2.18) are both scattering potentials then the body surface integrals will be
zero leaving

−ρ
∫

SI∞

(
φI ∂ψI

∂n
− ψI ∂φI

∂n

)
ds −

∫
SII∞

(
φII ∂ψII

∂n
− ψII ∂φII

∂n

)
ds = 0. (2.33)

We will use the notation φ(u, αi) to represent a scattering potential for which the incident
wave has wavenumber u and makes an angle αi with the positive x-axis. In the far field
such a potential takes the form

φI(u, αi) ∼ φI
inc +

(
2

πKR

)1/2

eiKR−iπ/4eKzA(i)
u (α) +

(
2

πkR

)1/2

eikR−iπ/4g(z)B(i)
u (α)

(2.34)

φII(u, αi) ∼ φII
inc +

(
2

πKR

)1/2

eiKR−iπ/4eKzA(i)
u (α) +

(
2

πkR

)1/2

eikR−iπ/4ekzB(i)
u (α)

(2.35)

with the appropriate form for the incident wave depending on its wavenumber.
Using (2.33) with φ = φ(K, α1) and ψ = φ(K, α2) we obtain

A
(2)
K (α1 + π) = A

(1)
K (α2 + π) (2.36)

and with φ = φ(k, α1) and ψ = φ(k, α2) we get

B
(2)
k (α1 + π) = B

(1)
k (α2 + π). (2.37)

In other words, if we have two incident waves of wavenumber K (k) the amplitude of
the first scattered wave with wavenumber K (k) towards the second incident wave is the
same as that of the second scattered wave towards the first. With φ = φ(K, α1) and
ψ = φ(k, α2), (2.18) reduces to

A
(2)
k (α1 + π) = JB

(1)
K (α2 + π), (2.38)

where J = Jk/JK . Equations (2.36)–(2.38) are the three-dimensional analogues of equa-
tions (2.27)–(2.32) from LM.

The complex conjugate of a scattering potential satisfies the same condition on the
body boundary and so (2.18) still applies if either or both of φ and ψ are of this form.
With φ = φ(K, α1) and ψ = φ(K, α2) we obtain, after considerable algebra,

πA
(2)
K (α1) + πA

(1)
K (α2) +

∫ 2π

0
A

(1)
K (α)A

(2)
K (α) dα + J

∫ 2π

0
B

(1)
K (α)

(2)
K (α) dα = 0 (2.39)

and with φ = φ(k, α1) and ψ = φ(k, α2) the result is

πJB
(2)
k (α1) + πJB

(1)
k (α2) +

∫ 2π

0
B

(1)
k (α)B

(2)
k (α) dα + J

∫ 2π

0
B

(1)
k (α)B

(2)
k (α) dα = 0.

(2.40)

Finally, with φ = φ(K, α1) and ψ = φ(k, α2) we get

πA
(2)
k (α1) + πJB

(1)
K (α2) +

∫ 2π

0
A

(1)
K (α)A

(2)
k (α) dα + J

∫ 2π

0
B

(1)
K (α)B

(2)
k (α) dα = 0. (2.41)
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These last three relations are the three-dimensional analogues of equations (2.38)–(2.43)
from LM.

To complete the reciprocity relations the two-layer equivalent of the three-dimensional
Bessho-Newman relations can be derived. The potential φi − φi, where φi is a radiation
potential whose behaviour in the far field is given by (2.9) and (2.10) and which satisfies
the body boundary condition given in (2.19), has zero normal derivative on the body
boundary (since ni is real) and is thus an appropriate potential to use in (2.33). We apply
(2.33) to the potential φ = φi−φi and each of the scattering potentials ψ = φ(K, αinc) (for
which the scattering amplitudes will be labelled AK(α) and BK(α)) and ψ = φ(k, αinc)
(for which the scattering amplitudes will be labelled Ak(α) and Bk(α)) in turn. The
three-dimensional equivalents of LM, equations (2.69)–(2.72), can thus be shown to be

πAi(αinc + π) + πAi(αinc) +
∫ 2π

0
AK(α)Ai(α) dα + J

∫ 2π

0
BK(α)Bi(α) dα = 0 (2.42)

and

∫ 2π

0
Ak(α)Ai(α) dα + J

(
πBi(αinc + π) + πBi(αinc) +

∫ 2π

0
Bk(α)Bi(α) dα

)
= 0. (2.43)

3 Radiation problems for a submerged sphere

To illustrate the general theory of three-dimensional wave/structure interactions in two-
layer fluids we will solve various problems involving submerged spheres. Radiation and
scattering problems for such geometries can be solved using multipole expansions, the
technique having been used to solve similar problems in unstratified fluids by Srokosz
(1979) (deep water) and Linton (1991) (finite depth). The centre of the sphere will be
at x = y = 0, z = f so that if f < 0 the sphere is in the lower layer, whereas if f > 0
the sphere is in the upper layer. We will use spherical coordinates (r, θ, α) centred on the
sphere defined by

x = r sin θ cos α, y = r sin θ sin α, z − f = r cos θ, (3.1)

with r = a being the sphere surface. If f < 0 we require a < |f |, whereas if f > 0 we
need a < min(d − f, f).

3.1 Sphere in lower fluid layer

In the present context, multipoles are solutions of the governing equation which are
singular at the centre of the sphere, satisfy all the boundary conditions of the prob-
lem except that on the sphere surface and behave like outgoing cylindrical waves at
large horizontal distances from the singularity. These can be constructed using the
method devised by Thorne (1953). A solution of Laplace’s equation singular at z = f
is r−n−1Pm

n (cos θ) cos mα, n ≥ m ≥ 0, and this has the integral representation, valid for
z > f ,

Pm
n (cos θ)

rn+1
cos mα =

cos mα

(n − m)!

∫ ∞

0
une−u(z−f)Jm(uR) du. (3.2)

Note that the definition of Pm
n used here corresponds to that in Thorne’s paper: Pm

n (cos θ) =
sinm θ dmPn(cos θ)/d(cos θ)m, which differs by a factor of (−1)m from that used by some
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other authors. We look for solutions to (2.2)–(2.5) in the form φm
n cos mα where (in an

obvious notation)

φIm
n =

an+1

(n − m)!

∫ ∞

0
un[AL(u)euz + BL(u)e−uz]Jm(uR) du (3.3)

φIIm
n =

(
a

r

)n+1

Pm
n (cos θ) +

an+1

(n − m)!

∫ ∞

0
unCL(u)euzJm(uR) du, (3.4)

and in order to satisfy the boundary conditions on the interface and free surface we find,
exactly as in LM, that

AL(u) = K(1 + σ)(u + K)eu(f−2d)/(u − K)h(u), (3.5)

BL(u) = K(1 + σ)euf/h(u), (3.6)

CL(u) = (u + K)euf [(u + Kσ)e−2ud − u + K]/(u − K)h(u), (3.7)

where

h(u) = (u + K)e−2ud − u + Kσ. (3.8)

The function h is zero at u = k, from (2.7), and so the integrands in (3.3) and (3.4) have
poles at u = K and u = k. In order that the multipoles behave like outgoing waves as
R → ∞, the path of integration is indented to pass beneath these two poles.

The far-field form of φm
n , in the lower fluid, is then

φIIm
n ∼ −(−i)m+1an+1

(n − m)!

(
2π

R

)1/2 (
Kn−1/2eiKRCK

L eKz + kn−1/2eikRCk
Lekz

)
e−iπ/4 (3.9)

as KR → ∞, where CK
L and Ck

L are the residues of CL(u) at u = K and u = k respectively,
which are given by

CK
L =

2K(1 + σ)eK(f−2d)

2e−2Kd − 1 + σ
(3.10)

and

Ck
L =

(K + k)ekf
[
(Kσ + k)e−2kd − k + K

]
(k − K) [(1 − 2d(K + k))e−2kd − 1]

. (3.11)

The multipoles defined by (3.3) and (3.4) can be expanded about r = 0 in spherical
coordinates by using the identity (see Thorne 1953)

e±u(z−f)Jm(uR) = (±1)m
∞∑

s=m

(±ur)s

(s + m)!
Pm

s (cos θ). (3.12)

This gives

φIIm
n =

(
a

r

)n+1

Pm
n (cos θ) +

∞∑
s=m

Am
ns

(
r

a

)s

Pm
s (cos θ), (3.13)
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where

Am
ns =

a

(n − m)!(s + m)!

∫ ∞

0
- (au)n+seufCL(u) du. (3.14)

For computational purposes we note that the contour integral in the above expression can
be written ∫ ∞

0
− (au)n+seufCL(u) du + πi(Ka)n+seKfCK

L + πi(ka)n+sekfCk
L

and that the principal-value integral can easily be evaluated using the method described
in Linton and Evans (1992), section 2.

The solutions to the problems of heave and sway will be denoted by φ0 and φ1 respec-
tively. In the case of heave the body velocity is given by U 0 = Re{Ue−iwt}k, where k is
a unit vector in the z-direction, whereas in sway the body velocity is U 1 = Re{Ue−iwt}i,
where i is a unit vector in the x-direction. Hence, since P 0

1 (cos θ) = cos θ and P 1
1 (cos θ) =

sin θ, we have the following body boundary conditions for the heave and sway problems:

∂φm

∂r
= UPm

1 (cos θ) cos mα on r = a, 0 ≤ θ ≤ π, 0 ≤ α < 2π, m = 0, 1. (3.15)

An appropriate multipole expansion for the velocity potential φm is

φm = Ua cos mα
∞∑

n=1

bm
n φm

n m = 0, 1, (3.16)

for some unknown coefficients bm
n . Note that the n = 0 term which could appear in the

expansion for φ0 has been omitted since this term corresponds to a point source, which is
physically unacceptable as it would imply an instantaneous flux of fluid across the surface
of the sphere.

The expansion (3.16) satisfies all the conditions of the problem except that on the
body surface, (3.15). By applying this condition and using orthogonality relations for
associated Legendre functions (Abramowitz and Stegun 1965, eqns 8.4.11 & 8.4.13) we
obtain the infinite system of linear equations

bm
s − s

s + 1

∞∑
n=1

Am
nsb

m
n = −δ1s

2
s ≥ 1, m = 0, 1, (3.17)

where δns is the Kronecker delta, for the unknown coefficients bm
n . This system can be

solved numerically by truncating it to an N×N system and increasing N until the solution
converges to the required degree of accuracy. One of the advantages of the multipole
method for solving problems of this type is that the truncation parameter required to
achieve accurate results is very small; in the computations presented below a value of
N = 4 was used.

The added-mass and damping coefficients µ and ν (the diagonal entries in the added-
mass and damping matrices, non-dimensionalized with respect to the mass of the fluid
displaced by the sphere, M , and the maximum acceleration of the sphere, Uω) are given
by (2.22) as

µm + iνm = − ρII

MU

∫ 2π

0

∫ π

0
φm(a, θ, α)Pm

1 (cos θ) cos mα a2 sin θ dθ dα m = 0, 1.

(3.18)
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Using (3.13) and (3.16), we can reduce this to

µm + iνm = −bm
1 −

∞∑
n=1

Am
n1b

m
n (3.19)

which can be further simplified by using (3.17) with r = 1 to give

µm + iνm = −1 − 3bm
1 m = 0, 1. (3.20)

The far field form for φm, in the lower fluid layer, can be written

U−1φm ∼
(

2

πKR

)1/2

eiKR−iπ/4eKzAm(α) +
(

2

πkR

)1/2

eikR−iπ/4ekzBm(α) (3.21)

as KR → ∞ and from (3.9) and (3.16) we have that

|Am(α)|2 =

∣∣∣∣∣
∞∑

n=1

(Ka)nbm
n

(n − m)!

∣∣∣∣∣
2

(πa2CK
L cos mα)2 (3.22)

|Bm(α)|2 =

∣∣∣∣∣
∞∑

n=1

(ka)nbm
n

(n − m)!

∣∣∣∣∣
2

(πa2Ck
L cos mα)2. (3.23)

Any numerical results produced by solving (3.17) can then be checked against the identity

Im(bm
1 ) = −πa

4


JK

∣∣∣∣∣CK
L

∞∑
n=1

(Ka)nbm
n

(n − m)!

∣∣∣∣∣
2

+ Jk

∣∣∣∣∣Ck
L

∞∑
n=1

(ka)nbm
n

(n − m)!

∣∣∣∣∣
2

 , (3.24)

which follows by computing the left- and right-hand sides of (2.25) using (3.20) and
(3.22)–(3.23) respectively.

Curves of added-mass and damping coefficients for spheres in the lower fluid layer in
both heave and sway are shown in figures 1–4. In all the curves ρ (= ρI/ρII) is 0.95 and
the ratio of the depth of the upper fluid layer to the radius of sphere, d/a, is 2.0. Each
plot shows the results obtained for four different submersion depths, f/a, of the sphere,
−1.1, −1.5, −2 and −3. The case f/a = −1.1 represents a sphere close to the interface
between the two fluid layers, with |f/a| increasing as the sphere becomes more deeply
submerged.

Figures 1 and 2 show the damping coefficients for heave and sway respectively and it
can be seen that in each case there are two local maximums. These occur near ka = 1,
which corresponds to Ka ≈ 0.025, and Ka = 1 and in order to satisfactorily illustrate
both of them on the same figure we have plotted the results (here and subsequently) on a
log scale. The damping coefficient is proportional to the radiated energy, see (2.25), and
the local maximum around ka = 1 corresponds to the sphere’s increased ability to make
waves on the interface near this frequency, whereas the local maximum around Ka = 1
corresponds to the sphere’s increased free surface wave-making ability (see, for example,
Linton 1991). As one would expect, the closer the sphere is to the interface the greater the
wave-making capability and hence the greater the damping coefficient. Since the sphere
is in the lower layer it affects the interface a lot more than the free surface and so the
variation in the damping coefficient near ka = 1 is greater than that near Ka = 1. In all
cases the heave damping coefficient is greater than the sway damping coefficient, just as
was reported by Srokosz (1979) for the single-layer fluid case.
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Figure 1: Damping coefficient ν0 (heave) plotted against Ka for a submerged sphere at
different depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0.

Figures 3 and 4 show the added-mass coefficients for heave and sway respectively. As
the immersion depth increases the added-mass curves tend towards the constant value of
1/2, which is the added-mass of a sphere oscillating in an infinite expanse of fluid. When
the sphere is close to the interface, the deviation from 1/2 is greater in the case of heave.
It is again noticeable that there is an effect due to the presence of the interface near
ka = 1 and a much smaller effect due to the presence of the free surface near Ka = 1. In
the limit as Ka → 0, the interface boundary conditions (2.3) and (2.4) reduce to φII

z = 0
and we get the same results in the long-wave limit as if the interface were the free-surface
in a single-layer fluid. Thus the solid curve in figure 2 of Linton (1991) tends to the same
value as Ka → 0 as the f/a = −1.5 curve in figure 3 here.

3.2 Sphere in upper fluid layer

For problems involving a sphere in the upper fluid layer we need to develop multipoles
singular at z = f > 0. This can be done in much the same way as for the case f < 0 and
the details will be omitted. Suitable multipoles are

φIm
n =

(
a

r

)n+1

Pm
n (cos θ) +

(−1)m+nan+1

(n − m)!

∫ ∞

0
- un[AU(u)euz + BU(u)e−uz]Jm(uR) du

(3.25)

φIIm
n =

(−1)m+nan+1

(n − m)!

∫ ∞

0
- unJm(uR)CU(u)euz du, (3.26)

where

AU(u) = (u + K)e−2ud[(−1)m+n+1(u − Kσ)euf − (u − K)e−uf ]/(u − K)h(u), (3.27)

BU(u) = [(−1)m+n+1(u + K)eu(f−2d) − (u − K)e−uf ]/h(u), (3.28)

CU(u) = K(1 − σ)BU(u)/(u − K), (3.29)
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Figure 2: Damping coefficient ν1 (sway) plotted against Ka for a submerged sphere at
different depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0.

with h(u) given by (3.8) as before. The multipoles are expanded about r = 0 by using
(3.12), giving

φIm
n =

(
a

r

)n+1

Pm
n (cos θ) +

∞∑
s=m

(
r

a

)s

Bm
nsP

m
s (cos θ) (3.30)

where

Bm
ns =

(−1)m+na

(n − m)!(s + m)!

∫ ∞

0
- (au)n+s[eufAU(u) + (−1)m+se−ufBU(u)] du. (3.31)

The far field form of φm
n , in the lower fluid, is given by

φm
n ∼ (−1)nim+1an+1

(n − m)!

(
2π

R

)1/2 [
Kn−1/2eiKRCK

U eKz + kn−1/2eikRCk
Uekz

]
e−iπ/4 (3.32)

as KR → ∞, where

CK
U =

(−1)m+n+12K(1 − σ)eK(f−2d)

2e−2ud − 1 + σ
, (3.33)

Ck
U =

K(1 − σ)[(−1)m+n+1(K + k)ek(f−2d) − (k − K)e−kf ]

(k − K)[(1 − 2d(K + k))e−2kd − 1]
. (3.34)

The velocity potential can be expanded in terms of these multipoles exactly as in
(3.16) and then application of the body boundary condition leads to the infinite system
of linear equations

bm
s − s

s + 1

∞∑
n=1

Bm
nsb

m
n = −δ1s

2
s ≥ 1 m = 0, 1 (3.35)
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Figure 3: Added mass coefficient µ0 (heave) plotted against Ka for a submerged sphere
at different depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0.

for the unknown coefficients bm
n . Once this system has been solved, the non-dimensional

added mass and damping coefficients are given by (3.20) exactly as before. The identity
relating the damping coefficient to the radiated energy, which serves as a numerical check
on the results, is now

Im(bm
1 ) = −πa

4


JK

∣∣∣∣∣
∞∑

n=1

(−Ka)nbm
n CK

U

(n − m)!

∣∣∣∣∣
2

+ Jk

∣∣∣∣∣
∞∑

n=1

(−ka)nbm
n Ck

U

(n − m)!

∣∣∣∣∣
2

 . (3.36)

Note that the residues of CU are included in the summations because they depend on n.
Curves of added mass and damping coefficients for spheres in the upper fluid layer

are shown in figures 5–8. In all the curves ρ is 0.95 and d/a is 4.0. Each plot shows the
results obtained for four different submersion depths, f/a, of the sphere. The values of
f/a have been chosen so there are results for a sphere close to the interface (f/a = 1.1),
close to the free surface (f/a = 2.9) and at two intermediate values (f/a = 1.7 and 2.3).

Figures 5 and 6 show the damping coefficients for heave and sway motion respectively.
The two cases lead to similar results, but those for heave motion are greater than those
obtained for sway. As with the results for the sphere in the lower region there are two local
maximums, one near ka = 1 which corresponds to waves being generated on the interface
and one near Ka = 1 which corresponds to waves on the free surface. When the sphere
is close to the interface (f/a = 1.1) the first local maximum is greater as more waves
are generated on the interface than on the free surface. As the sphere approaches the
free surface the ability to make waves on the interface decreases whilst it becomes easier
to generate waves on the free surface; thus the first maximum decreases and the second
increases. The maximum value of the damping coefficient is greater when f/a = 2.9 (when
the distance from the free surface is 0.1a) than for the case f/a = 1.1 (when the distance
from the interface is 0.1a) showing that the ability to make waves on the free-surface is
greater than that on the interface. It is also noteworthy that the range of values of Ka

13
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Figure 4: Added mass coefficient µ1 (sway) plotted against Ka for a submerged sphere
at different depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0.

over which there is a noticeable effect on the free surface is an order of magnitude bigger
than the range for which the interface is affected.

The added-mass coefficients for heave and sway are shown in figures 7 and 8 respec-
tively and again the deviations from the infinite fluid value of 1/2 are greater for heave
motion than for sway motion. The effect of the interface is pronounced when f/a = 1.1
as can be seen by the fact that large variations occur in the added-mass around ka = 1
(Ka ≈ 0.025) whereas for f/a = 2.9 it is the free-surface effect which dominates with
large variations around Ka = 1. In the limit as Ka → 0 the problem reduces to that
of a sphere oscillating between parallel planes and so we get the same limiting value for
f/a = 1.1 and 2.9 (as in each case the sphere is a distance 0.1a from one of the walls)
and similarly the same limiting value is obtained for f/a = 1.7 and 2.3 (in each case
the sphere is 0.7a from one of the walls). Though not present on these figures, negative
added-mass can occur for the heave problem when the sphere is either very close to the
free surface or to the interface. This phenonmenon, which does not appear to occur for
sway, or when the sphere is below the interface is discussed by McIver and Evans (1984).

4 Scattering problems

In this section we will solve the problem of the scattering of an incident plane wave, of
wavenumber either K or k, by a submerged sphere, first situated in the lower layer and
then above the interface. In each case the total scattering potential can be decomposed
into two parts:

φ = φinc + φS, (4.1)

where φinc is the potential representing the incident plane wave (given, up to an arbitrary
multiplicative constant by (2.15) if the incident wave has wavenumber K and by (2.13) and
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Figure 5: Damping coefficient ν0 (heave) plotted against Ka for a submerged sphere at
different depths in the upper fluid layer; ρ = 0.95 and d/a = 4.0.

(2.14) if the incident wave has wavenumber k) and φS therefore must satisfy (2.2)–(2.5),
the body boundary condition

∂φS

∂r
= −∂φinc

∂r
on r = a, (4.2)

and behave as an outgoing cylindrical wave far from the sphere. Without loss of generality
we can assume that the incident wave is from x = −∞ so that αinc = 0.

4.1 Sphere in lower fluid layer

First we consider an incident plane wave of wavenumber K and amplitude A on the free
surface (z = d) whose potential can be expanded in spherical polar coordinates using
Abramowitz and Stegun (1965), eqns (9.1.44), (9.1.45), and (3.12) above, to give

φinc = − igA

ω
eK(z−d)eiKR cos α (4.3)

= − igA

ω
eK(f−d)

∞∑
m=0

εmim cos mα
∞∑

s=m

(Kr)s

(s + m)!
Pm

s (cos θ), (4.4)

where ε0 = 1, εm = 2 for m ≥ 1.
For the radiation problems considered in the previous section the dependence on the

azimuthal angle α was known, but here it is not (apart from the fact that it is even) and
so we must use a more general multipole expansion. We write

φS = − igA

ω

∞∑
m=0

∞∑
n=m1

cm
n φm

n cos mα, (4.5)

where m1 = max(m, 1) and φm
n is given (in the lower fluid layer) by (3.13). If we then

apply the boundary condition (4.2) and use the orthogonality of the associated Legendre
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Figure 6: Damping coefficient ν1 (sway) plotted against Ka for a submerged sphere at
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functions and the functions cos mα we can derive an infinite system of equations for the
sets of coefficients cm

n , n ≥ m1 for each m ≥ 0, which is

cm
s − s

s + 1

∞∑
n=m1

Am
nsc

m
n =

εmims(Ka)seK(f−d)

(s + 1)(s + m)!
, s ≥ m1. (4.6)

These systems can be solved by truncation as before, but now there is an additional
truncation parameter, namely the number of systems that are solved. In the computations
presented below two 4 × 4 systems were solved.

The vertical and horizontal exciting forces on the sphere, f 0
K and f 1

K , can be calculated
from (2.30). We obtain

f 0
K = −4

3
πa2ρIIgA

(
Ka eK(f−d) + c0

1 +
∞∑

n=1

A0
n1c

0
n

)
(4.7)

and

f 1
K = −4

3
πa2ρIIgA

(
iKa eK(f−d) + c1

1 +
∞∑

n=1

A1
n1c

1
n

)
. (4.8)

These can be simplified using (4.6) with s = 1, giving

f 0
K ≡

∣∣∣∣∣ f 0
K

a2ρIIgA

∣∣∣∣∣ = 4π|c0
1|, f 1

K ≡
∣∣∣∣∣ f 1

K

a2ρIIgA

∣∣∣∣∣ = 4π|c1
1|. (4.9)

The vertical and horizontal exciting forces are related to the heave and sway radiation
problems through (2.31). We find that

c0
1 = − JK

2
e−KdCK

L

∞∑
n=1

b0
n(Ka)n

n!
, (4.10)

c1
1 = − iJK

2
e−KdCK

L

∞∑
n=1

b1
n(Ka)n

(n − 1)!
, (4.11)
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Figure 7: Added mass coefficient µ0 (heave) plotted against Ka for a submerged sphere
at different depths in the upper fluid layer; ρ = 0.95 and d/a = 4.0.

where the coefficients bm
n are the solutions of (3.17). These identities were used as a

numerical check on the results obtained from the radiation and scattering problems.
Next we consider the case of an incident plane wave of amplitude A on the interface

(z = 0) and wavenumber k, described by

φI
inc = − igAK

ωk
g(z) eikR cos α, φII

inc = − igAK

ωk
ekz eikR cos α. (4.12)

The analysis is very similar to that given above for an incident wave of wavenumber K.
We use the same expansion for φS as before, equation (4.5), but denote the unknown
coefficients by dm

n and we obtain the infinite system of equations

dm
s − s

s + 1

∞∑
n=m1

Am
nsd

m
n =

εmimsKa(ka)s−1ekf

(s + 1)(s + m)!
, s ≥ m1, (4.13)

for each m ≥ 0.
The expressions for the vertical and horizontal exciting forces are

f 0
k ≡

∣∣∣∣∣ f 0
k

a2ρIIgA

∣∣∣∣∣ = 4π|d0
1|, f 1

k ≡
∣∣∣∣∣ f 1

k

a2ρIIgA

∣∣∣∣∣ = 4π|d1
1| (4.14)

and the formulas connecting this scattering problem to the heave and sway radiation
problems are now, from (2.32),

d0
1 = − Jk

2
Ck

L

∞∑
n=1

b0
nKa(ka)n−1

n!
, (4.15)

d1
1 = − iJk

2
Ck

L

∞∑
n=1

b1
nKa(ka)n−1

(n − 1)!
, (4.16)
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Figure 8: Added mass coefficient µ1 (sway) plotted against Ka for a submerged sphere
at different depths in the upper fluid layer; ρ = 0.95 and d/a = 4.0.

where the coefficients bm
n are the solutions of (3.17).

Equations (3.20), (4.9)–(4.11), (4.14)–(4.16) can be combined with (3.24) with m = 0
and 1 to give

νm =
3a

16π

(
e2Kd

JK

fm
K

2
+

k2

K2Jk

fm
k

2

)
(4.17)

which relates the heave and sway damping coefficients to the vertical and horizontal
exciting forces respectively.

Figures 9–12 show curves of f 0 and f 1 plotted against Ka for both scattering problems
considered above. In each figure there are four curves corresponding to different immersion
depths of the sphere in the lower region. These immersion depths, f/a = −1.1, −1.5,
−2 and −3 are the same as those used in the section 3.1, as are the values ρ = 0.95
and d/a = 2.0. Figures 9 and 10 show, respectively, the non-dimensionalized vertical and
horizontal exciting forces on the sphere due to an incident wave of wavenumber K. The
two sets of curves are very similar and show that, as one would expect, the forces increase
the closer the sphere is to the interface (and hence to the free surface).

Figures 11 and 12 show curves for the case of an incident wave of wavenumber k. Again,
the figures for the vertical and horizontal forces look similar but the results obtained for
f 0

k are greater that those for f 1
k . The exciting forces increase as the surface of the sphere

approaches the interface. The incident wave in figures 9 and 10 is associated with the free
surface, but here it is associated with the interface which is much closer to the sphere; as
a result the forces are rather larger than those in the previous case. Also, the maximum
forces occur for much longer waves than for an incident wave of wavenumber K.
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Figure 9: Non-dimensionalized vertical exciting force f 0
K plotted against Ka for different

submersion depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0.

4.2 Sphere in upper fluid layer

An incident plane wave of wavenumber K and amplitude A on the free surface (z = d)
has the same form in the upper layer as in the lower layer, given by (4.4). The potential
φS can again be expanded using (4.5), but we now use the multipole expansions developed
for the upper fluid layer, (3.30). The details of the solution procedure will be omitted.
For each m ≥ 0 the coefficients cm

n satisfy the infinite system of equations

cm
s − s

s + 1

∞∑
n=m1

Bm
nsc

m
n =

εmims(Ka)seK(f−d)

(s + 1)(s + m)!
, s ≥ m1. (4.18)

and the non-dimensional vertical and horizontal exciting forces on the sphere are given
by

f 0
K ≡

∣∣∣∣∣ f 0
K

a2ρIgA

∣∣∣∣∣ = 4π|c0
1|, f 1

K ≡
∣∣∣∣∣ f 1

K

a2ρIgA

∣∣∣∣∣ = 4π|c1
1|. (4.19)

The solution is related to the heave and sway radiation problems for a sphere in the upper
fluid through the equations

c0
1 = −JK

2ρ
e−Kd

∞∑
n=1

b0
nC

K
U

n!
(−Ka)n, (4.20)

c1
1 =

iJK

2ρ
e−Kd

∞∑
n=1

b1
nC

K
U

(n − 1)!
(−Ka)n, (4.21)

where the coefficients bm
n are the solutions of (3.35).

For the case of an incident wave of wavenumber k (and amplitude A on the interface
z = 0) we note that in region I this takes the form

φI
inc = − igAK

ωk
g(z) eikR cos α = − igAK

ωk

[
Kσ − k

K(σ − 1)
ekz +

K − k

K(σ − 1)
e−kz

]
eikR cos α, (4.22)
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Figure 10: Non-dimensionalized horizontal exciting force f 1
K plotted against Ka for dif-

ferent submersion depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0.

which can be expanded in spherical polar coordinates, giving

φinc = − igA

ωk(σ − 1)

∞∑
m=0

εmim cos mα

×
∞∑

s=m

[
(Kσ − k)ekf + (−1)m+s(K − k)e−kf

] (kr)s

(s + m)!
Pm

s (cos θ). (4.23)

For each m ≥ 0 the coefficients dm
n in the expansion for φS satisfy the infinite system of

equations

dm
s − s

s + 1

∞∑
n=m1

Bm
nsd

m
n

=
εmims(ka)s

(s + 1)(s + m)!

(Kσ − k)ekf + (−1)m+s(K − k)e−kf

k(σ − 1)
, s ≥ m1, (4.24)

and the non-dimensional vertical and horizontal exciting forces on the sphere are given
by

f 0
k ≡

∣∣∣∣∣ f 0
k

a2ρIgA

∣∣∣∣∣ = 4π|d0
1|, f 1

k ≡
∣∣∣∣∣ f 1

k

a2ρIgA

∣∣∣∣∣ = 4π|d1
1|. (4.25)

We also have the relations

d0
1 = −KJk

2ρk

∞∑
n=1

b0
nC

k
U

n!
(−ka)n, (4.26)

d1
1 =

iKJk

2ρk

∞∑
n=1

b1
nC

k
U

(n − 1)!
(−ka)n, (4.27)
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Figure 11: Non-dimensionalized vertical exciting force f 0
k plotted against Ka for different

submersion depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0.

where the coefficients bm
n are the solutions of (3.35), and

νm =
3aρ2

16π

(
e2Kd

JK

fm
K

2
+

k2

K2Jk

fm
k

2

)
. (4.28)

Figures 13–16 show curves of f 0 and f 1 plotted against Ka for incident wavenumbers
K and k when ρ = 0.95 and d/a = 4.0. For each figure there are four curves corresponding
to the immersion depths f/a = 1.1, 1.7, 2.3 and 2.9. These immersion depths are the same
as those used in section 3.2 Figures 13 and 14 show, respectively, the non-dimensionalized
vertical and horizontal exciting forces on the sphere due to an incident wave of wavenumber
K. The values obtained for f 0

K are larger than those for f 1
K and the curves are very similar

(apart from the Ka values) to those shown in figures 11 and 12 in which the incident wave
is associated with the interface and the sphere is in the lower layer. As one would expect,
the forces are greater the closer the sphere is to the free surface. Figures 15 and 16 show
curves for the case of an incident wave of wavenumber k. Again, the values obtained
for the vertical forces are greater than those for the horizontal force but now the forces
increase as the the sphere approaches the interface.

5 Conclusion

In this paper we have examined the relationships that exist between the solutions to
three-dimensional radiation and scattering problems in two-layer fluids where the upper
fluid is bounded above by a free surface and the lower (denser) fluid is infinite in extent.
In such a situation propagating waves can exist at two different wavenumbers for any
given frequency. A systematic derivation, using Green’s theorem, of all the reciprocity
relations for such problems has been carried out including extensions to the two-fluid case
of the Haskind and Bessho-Newman relations. We have then used multipole expansions
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Figure 12: Non-dimensionalized horizontal exciting force f 1
k plotted against Ka for dif-

ferent submersion depths in the lower fluid layer; ρ = 0.95 and d/a = 2.0.

to solve radiation and scattering problems for a sphere situated entirely within either the
upper or lower fluid layer.

One of the approximations that has been made is to model the interface between the
two layers as being sharp, with a discontinuous density variation. A possible extension to
the work described above would be to model the interface as a layer of finite thickness in
which the density varies very rapidly. Such a layer is called a pycnocline. Some work in
this direction using multipoles has been carried out by Gavrilov, Ermanyuk, and Sturova
(1999) for the two-dimensional case of a two layer fluid which is bounded above and below
by rigid walls and contains a horizontal circular cylinder.
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Figure 14: Non-dimensionalized horizontal exciting force f 1
K due to an incident wave of

wavenumber K, plotted against Ka for different submersion depths in the upper fluid
layer; ρ = 0.95 and d/a = 4.0.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ka

fk
0

___

f/a = 1.1
f/a = 1.7
f/a = 2.3
f/a = 2.9
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wavenumber k, plotted against Ka for different submersion depths in the upper fluid
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24



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ka

fk
1

___

f/a = 1.1
f/a = 1.7
f/a = 2.3
f/a = 2.9

Figure 16: Non-dimensionalized horizontal exciting force f 1
k due to an incident wave of

wavenumber k, plotted against Ka for different submersion depths in the upper fluid
layer; ρ = 0.95 and d/a = 4.0.
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