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1 Introduction

One of the early milestones of space physics was Störmer’s theoretical analysis
of charged particle motion in a purely magnetic dipole field [1,2]. This seminal
study provided the basic physical framework that led to the understanding of
the radiation belts surrounding the Earth and other magnetized planets. The
radiation belts are now known to be composed of individual ions and electrons
whose motion is often well described by magnetic forces alone. These classical
results are also relevant to the dynamics of charged dust grains in planetary
magnetospheres. However, the much smaller charge-to-mass ratios produce
a more complex dynamics, as planetary gravity and the corotational electric
field must also be taken into account [3-6].

In a series of recent papers [7-10] equilibrium and stability conditions
were derived for charged dust grains orbiting about Saturn. These orbits can
be highly non-Keplerian and include both positively and negatively charged
grains, in prograde or retrograde orbits. The first article was restricted to equa-
torial orbits, while the second treated nonequatorial “halo” orbits, i.e. orbits
which do not cross the equatorial plane. Both assumed Keplerian gravity, an
ideal aligned and centered magnetic dipole rotating with the planet, and con-
comitant corotational electric field. The third paper dealt with the effects of
planetary oblateness (J2), magnetic quadrupole field, and radiation pressure.
While the first two forces were found to have a negligible effect on particle
confinement, the effects of radiation pressure could be large for distant orbits.
Interestingly, J2 and radiation pressure can act synergistically to select out
one-micron grains in the E-Ring [11]. The final paper in this series allowed the
surface potential of a grain, and hence its charge, to adjust to local photoelec-
tric and magnetospheric charging currents. It was concluded that stable halo
orbits were mostly likely to be composed of rather small (≈ 100nm) positively
charged grains in retrograde orbits. A dust grain “road map” was drawn for
the Cassini spacecraft now en route to Saturn, showing where to expect dust
grains of a given composition and radius.

This paper presents a more comprehensive treatment of dust grain dynam-
ics, but under the simplified assumptions of Keplerian gravity, pure dipole
magnetic field, and no radiation pressure. Some of the results were already
presented in the letters [7,8], here we fill in the details of the necessary calcula-
tion and also present new results. Our goals are a mathematically rigorous yet
simplified derivation of equilibrium and stability conditions which highlights
the relative importance of the several different forces acting on an individual
grain.

As is well known, there are no stable equilibrium circular orbits for the pure
Störmer problem of charged particle motion in a pure dipole magnetic field. It
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is the addition of planetary gravity and spin that gives rise to stable families
of equatorial and nonequatorial orbits. We begin with a general discussion of
charged particle motion in axisymmetric geometry, which is then specialized
to the motion of charged grains in a planetary magnetosphere. Equilibrium
conditions are derived first for equatorial orbits, then for halo orbits. Next
we take up the issue of stability for each family of equilibrium orbits. Results
are presented for four distinct problems: the Classical Störmer Problem (CSP)
in which a charged particle moves in a pure dipole magnetic field, the Rota-
tional Störmer Problem (RSP), with the electric field due to planetary rotation
included, the Gravitational Störmer Problem (GSP), with Keplerian gravity
included but not the corotational electric field, and the full system (RGSP)
including both fields. For each case one must also consider each charge sign in
prograde or retrograde orbits. Our results may be summarized as follows:

CSP: As is well known, no stable circular orbits, equatorial or nonequatorial
exist. However, under adiabatic conditions important families of guiding
center orbits confined to a potential trough called the Thalweg exist.
Such trajectories lie outside the scope of the present paper.

RSP: Stable equatorial equilibria exist for both charge signs. There are no
halo orbits.

GSP: Stable equatorial equilibria exist for both charge signs. Positive halos
are retrograde and negative halos are prograde. Both types are stable
wherever they exist.

RGSP: Stable equatorial equilibria exist for both charge signs. There is a
range of positive charge-to-mass ratios without stable equatorial equi-
libria. Negative halos are prograde, while positive halos can be pro- or
retrograde. For stability the frequency must be sufficiently different from
twice the rotation rate of the planet.

Therefore halo orbits do exist with and without the corotational electric field.
However, the corotational electric field is required in order to sustain stable
positive prograde halos.

2 Charged particle dynamics in axisymmetric

geometry

The equations of motion of a particle of mass m and charge q in R3, r =
(x, y, z)t, are

mr̈ =
q

c
B× ṙ−∇U(r) ,
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where the potential U(r) generates the forces of gravity and perhaps corota-
tional electric field. Denote by R a rotation around the z axis and assume that
the magnetic field B and the potential U are symmetric with respect to this
rotation:

B(Rr) = RB(r), ∇U(Rr) = R∇U(r) .

In particular this is true for the field B = ∇×A of a centered magnetic dipole
of strengthM and dipole axis the z axis, for which the vector potential is, in
the Coulomb gauge,

A(r) =M(y,−x, 0)t/r3, r2 = x2 + y2 + z2 .

The equations of motion can be transformed to a rotating coordinate sys-
tem using a rotation matrix R corresponding to the angular velocity Ω =
(0, 0, Ω)t which rotates around the z-axis with with angular speed Ω. For
given angular velocity Ω the z axis is chosen in the same direction, so that Ω
is positive. Note that the magnetic moment M can be positive or negative.
Direct differentiation then gives

r = Rq, ṙ = R(q̇ + Ω× q), r̈ = R(q̈ + 2Ω× q̇ + Ω× (Ω× q)) .

so that

mq̈ = (
q

c
B− 2mΩ)× q̇−mΩ× (Ω× q) +

q

c
B× (Ω× q)−∇U(q) ,

where −2mΩ× q̇ is the Coriolis force and −mΩ× (Ω× q) is the centrifugal
force. Following the standard argument the term q

c
B× (Ω× q) is not present

in a frame rotating with the planet, because there is no additional electric
field. Therefore there must be the same term in ∇U in order to cancel it. In
particular we model the situation inside the corotating plasma, for which this
assumptions is reasonable. Transforming back to the rest frame this addition
to the potential gives the corotational electric field observed in the rest frame.
The corresponding potential is obtained from

E =
q

c
B× (Ω× r) = γΩ∇Ψ, Ψ =

x2 + y2

r3
,

where γ = qM/c. The electric field E is unipolar, i.e. its curl is zero, and
therefore it is not induced by a changing magnetic field. Moreover, it is per-
pendicular to the magnetic field, E ·B = 0. The divergence of this field is not
zero; instead we find ∇ · E = 2γΩ(2z2 − x2 − y2)/r5, so that there is a space
charge distribution originating from the rotation of the plasma.

3



In an inertial frame the potential now reads

U(r) = −σg
µm

r
+ σrγΩΨ ,

where the parameters σg and σr serve as markers of the gravitational and
electric forces in order to track the origin of the various terms after scaling away
excess parameters. Usually we consider σr = σg = 1; the classical Störmer
problem [1] has σr = σg = 0. The case σr = 0 and σg = 1 has also been studied
by Störmer [1,2]; we shall refer to it as the “Gravitational Störmer Problem.”
While it is simpler than our case, it will turn out that the most important
physical effects can already be seen in this subcase. Another interesting special
case is σg = 0 and σr = 1. This takes into account the effect of the electric field
in the rotating plasma, but the particle is still massless. We call this case the
“Rotational Störmer Problem.” It will turn out that in this case halo orbits
do not exist.

The Hamiltonian of the above equations of motion is

H =
1

2m

(
p− q

c
A(r)

)2

+ U(r) . (1)

Owing to the symmetry of the problem the z axis is an invariant set. Because
it is singular in coordinates adapted to the symmetry of the problem it is
best analyzed in cartesian coordinates. The magnetic field is parallel to this
axis, so that for motion on this axis there is no Lorentz force. For initial
conditions in the set x = y = px = py = 0 the equations of motion in cartesian
coordinates show that the derivatives of x, y, px, py are zero; hence it is an
invariant set, on which the Hamiltonian is purely gravitational, Hz = p2

z/2m−
µm/z. Depending on the initial conditions in the invariant set a particle either
collides with the planet or escapes to infinity; there are no stationary points
on this axis.

In cylindrical coordinates (ρ =
√

x2 + y2, φ = arctan(y, x), z) H becomes

H =
1

2m

(
p2

ρ + p2
z +

1

ρ2
(pφ − γΨ)2

)
− σg

µm

r
+ σrγΩΨ , (2)

with the dipole stream function Ψ = ρ2/r3. For systems with S1 symme-
try a stream function Ψ independent of φ can always be introduced. The
corresponding vector potential is (sinφ,− cos φ, 0)tΨ/ρ, the magnetic field is
(xΨz, yΨz,−ρΨρ)

t/ρ2, and the electric field is Ω(xΨρ, yΨρ, ρΨz)
t/ρ.

We may distinguish three types of constants in the problem:

• Parameters describing the planet’s mass µ = GM and spin rate Ω. They
are the most fixed parameters.
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• Parameters describing the dust particle’s mass m and charge, measured
by γ = qM/c.

• The angular momentum pφ and total energy h = H are constants of
the motion determined by the initial conditions. Fixing both h and pφ

defines a region of possible motion in configuration space.

We now introduce a convenient scaling to reduce the number of parame-
ters. Time is measured by the inverse frequency of the planetary spin rate Ω.
Distances are measured in terms of the radius of the Keplerian synchronous
orbit

R = (µ/Ω2)1/3

while mass is measured in units of the particle mass m. The scaled Hamiltonian
is then

Ĥ =
1

2

(
p̂2

ρ + p̂2
z +

(
p̂

ρ̂
− δ

ρ̂

r̂3

)2
)
− σg

r̂
+ σrδ

ρ̂2

r̂3
, (3)

where the variables with hat are measured in the new scale. From now on we
drop all hats. The essential dimensionless parameters are

p = pφ
Rδ

γ
and δ =

Ωγ

mµ
=

q

m

M
c

Ω

GM
=

ωcΩ

ω2
k

where ωc = qB0/mc is the cyclotron frequency, B0 is the planetary magnetic
field on the equator, ωk =

√
GM/R3

s is the Kepler frequency, with Rs the
planetary radius, and the parameter p is just the angular momentum pφ mea-
sured in the new units. The single parameter for the dust grain is δ, which is
essentially the charge-to-mass ratio. Recall that the z axis is oriented so that
Ω > 0. In the following we will loosely talk about positive/negative charge
when we mean positive/negative δ. This correspondence is correct if the mag-
netic dipole momentM is positive, i.e. the spin and the field are aligned. This
is true for Saturn, the main application that we have in mind. Our results are
valid in both cases.

3 Equilibria

3.1 Equatorial Orbits

Here we shall find it advantageous to work in spherical coordinates (r =√
ρ2 + z2, θ = arccos(z/r), φ), rather than the cylindrical coordinates of Ref

5



[7,8]. The Hamiltonian becomes

H =
1

2

(
p2

r +
p2

θ

r2

)
+ Ueff , (4)

where the effective potential Ueff is the part of the Hamiltonian independent
of the non-constant momenta pr and pθ:

Ueff(r, θ, p) =
(pr − δ sin2 θ)2

2r4 sin2 θ
− σg − σrδ sin2 θ

r
. (5)

The equations of motion are then

ṙ = pr, θ̇ = pθ, φ̇ = ∂pUeff , (6)

ṗr = −∂rUeff , ṗθ = −∂θUeff , ṗφ = 0 . (7)

In order to facilitate the calculation of the partial derivatives of Ueff we intro-
duce the frequency

ω(r, θ) = φ̇ = ∂pUeff =
p

r2 sin2 θ
− δ

r3
. (8)

In analyzing circular equilibrium orbits it is preferable to employ ω rather
than pφ as parameter, as it is the sign of ω that determines whether the orbit
is rotating in the same direction as the planet (prograde) or opposite to it
(retrograde). Recall that in the scaled variables frequencies are measured in
terms of Ω; hence ω = 1 means synchronous motion. From now on we will
eliminate p in favour of ω = ω(r, θ) in the potential to get

Ueff =
1

2
ω2r2 sin2 θ − σg

r
+

σrδ sin2 θ

r
. (9)

It is important to notice that when calculating derivatives of Ueff with respect
to r and θ we have to treat ω as a function of r and θ. The derivatives of ω
(re-expressed in terms of ω) are

∂rω = −2
ω

r
+

δ

r4

∂θω = −2 cot θ

(
ω +

δ

r3

)
,

so that

∂rUeff = −ω2r sin2 θ +
1

r2
(δ(ω − σr) sin2 θ + σg) (10)

∂θUeff = −1

r
cos θ sin θ(ω2r3 + 2ωδ − 2σrδ) . (11)
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If all partial derivatives with respect to r, θ, and p are zero there is no
motion at all. The latter is just ω, which we set to zero. Then (11) requires
θ = π/2. The other possibility θ = 0, π is the coordinate singularity, and it has
already been treated using Hz. The uncharged case δ = 0 is not of interest here.
For θ = π/2 and ω = 0 (10) reduces to σg = σrδ. Therefore particles at rest can
occur anywhere in the equatorial plane but only when δ = σg/σr. Therefore
δ = 1 can be considered as the case where electrical and gravitational forces
are balanced. In the classical Störmer problem σr = σg = 0 both equations
are automatically satisfied once ω = 0. In this case we can place a particle at
rest anywhere in space; since there is no potential there are no forces if there
is no motion. In any case it is true that for these trivial solutions at rest the
angular momentum p is nonzero; from ω = 0 and (8) we find p = δ/r. The
energy is zero for all these equilibrium points.

The system has a discrete symmetry: the equations of motion are invariant
under the map (θ, pθ) → (π − θ,−pθ). The set that is invariant under this
map is the equatorial plane with no transverse momentum, (θ, pθ) = (π/2, 0).
As always this is also an invariant set for the dynamics. The physical reason
for this is that B(r) is parallel to the z axis if r = (x, y, 0), so that for motion
within the equatorial plane there is a Lorentz force, however, with direction
in the plane. Moreover, E(r) is perpendicular to B(r), and therefore E(r)
lies in the equatorial plane if r = (x, y, 0). The Hamiltonian restricted to the
equatorial plane reads

Hxy =
1

2

(
p2

r +
1

r2

(
p− δ

r

)2
)
− σg − σrδ

r
.

This is an integrable system with one effective degree of freedom that can be
solved in terms of elliptic functions. The effective potential in the equatorial
plane is

Uxy(r) =
1

2

(
p

r
− δ

r2

)2

− σg − σrδ

r
=

1

2
ω2r2 − σg − σrδ

r
.

The minima re of Uxy(r) correspond to circular orbits in the equatorial plane
because the right hand sides of all the equations of motion except φ̇ = ω are
zero. The calculation of critical points of Uxy(r) leads to the solution of a cubic
polynomial in r given by r2∂rUxy. If instead we eliminate p in favour of ω we
obtain a much simpler polynomial

P (r, ω) = ω2r3 − ωδ + σrδ − σg . (12)

Solving P = 0 for r yields a generalization of Kepler’s 3rd law for equatorial
orbits:

re(ω)3 =
σg + δ(ω − σr)

ω2
. (13)
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Figure 1: Existence of equatorial orbits

which for δ → 0 reduces to the ordinary Kepler’s law. The corresponding
angular momentum p can be calculated from (8) and is pe = ωr2

e − δ/re. The
radius re is positive if

ω ≤ σr −
σg

δ
and δ ≤ 0, or (14)

ω ≥ σr −
σg

δ
and δ ≥ 0 . (15)

For negative δ there are always pro- and retrograde orbits. For positive δ
this is only true for δ < σg/σr, while for δ > σg/σr all orbits are prograde.
In Fig. 1 the possible combinations of ω and δ for which circular equatorial
orbits exist are shaded grey. The horizontal asymptotes have ω = σr. The
hyperboloidal boundaries and the limit ω →∞ correspond to zero radius. In
the Störmer case σr = σg = 0 all equatorial circular orbits of negatively charged
particles (δ < 0) are retrograde (ω < 0), while positively charged particles have
prograde orbits. The gravitational and/or electric field perturbations create
small regions of the opposite behaviour for some δ. In addition some motions
for large positive δ and small positive ω are made impossible by switching on
the additional fields.

The equation for equatorial orbits, P = 0, can be solved for δ in order to
give δ as a function of ω for given r:

δ =
r3ω2 − σg

ω − σr

.

These curves are shown in Fig. 2 and 3. Note the two straight lines with
r = 1, which in our scaling is the radius of the synchronous orbit in the Kepler
problem. The horizontal one corresponds to the synchronous orbits (ω = 1)
which exist for any δ. Hence the synchronous Kepler orbit is not affected
by the addition of both fields. This is not true for the three Störmer cases,
see below. Another prominent feature is the point (δ, ω) = (1, 0), which is
intersected by hyperbolas with all r. It corresponds to the equilibrium points
discussed above.
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Figure 2: Curves of constant radius r = 0.1i, i = 1, . . . , 20 for equatorial orbits.
The thick lines have r = 1.
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Figure 3: Curves of constant radius for equatorial orbits of the a) classical (σr =
σg = 0), b) gravitational (σr = 0, σg = 1), and c) rotational (σr = 1, σg = 0) Störmer
problem. Thick lines have r = 1.
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Let us briefly discuss the corresponding diagrams for the three Störmer
cases shown in Fig. 3. In the classical case ω and δ are proportional. Small
slope means large r. The relation breaks down for the line ω = 0 for which
all radii are possible. There are only two other types of equatorial orbits:
positively charged prograde and negatively charged retrograde. In the gravi-
tational Störmer case the relation between ω and δ is quite similar, but now
there are also small regions of the two types of motions: positively charged
retrograde and negatively charged prograde. In the rotating Störmer case the
positive retrograde orbits have disappeared again. The main new feature is the
appearance of orbits of small negative charge with small ω and small radius.

3.2 Halo Orbits

Our goal is the calculation of periodic orbits that encircle the planet in a
plane parallel to the equatorial plane but entirely above/below it. Circular
orbits correspond to critical points of Ueff , i.e. points (r0, θ0) at which both
derivatives of Ueff vanish. This is so because at (r, θ, pr, pθ) = (r0, θ0, 0, 0) the
right hand sides of Hamilton’s equations are zero, except for φ̇. They are given
by the minima of Ueff . Their stability will be calculated in the next section.

Circular orbits are given by the solution of ∂rU = 0 and ∂θU = 0 for
arbitrary ω, see (10,11). The second equation has the solution θ = π/2,
which gives the equatorial orbits we already analyzed. Also the solutions with
θ = 0, π have already been described using the reduced Hamiltonian Hz. The
remaining solutions are given by Q = 0 with

Q(r, ω) = ω2r3 + 2ωδ − 2σrδ , (16)

which describe the nonequatorial (or halo) orbits. The equation Q = 0 can be
solved for r3, which can then be eliminated from (11) resulting in an angular
equation A = 0 with

A(θ, ω) = σg + 3δ(ω − σr) sin2 θ . (17)

The functions Q and A completely describe the halo orbits. In particular
these equations can easily be solved for r and θ, so that all circular orbits are
obtained in parametric form, with ω as a parameter. Explicitly we find

rh(ω)3 = 2δ
σr − ω

ω2
(18)

sin2 θh(ω) =
σg

3δ(σr − ω)
. (19)

grains [4]. The second equation clearly shows that without the gravitational
forces (σg = 0) there are no halo orbits. In particular in the classical Störmer
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Figure 4: Existence of halo orbits

problem there are no halo orbits (except for the trivial equilibrium points
discussed above). Adding the electric field alone there still are no halo orbits.
In both equations it is obvious that the electric field merely shifts the frequency
ω of circular halo orbits. We conclude that the electric field is not essential for
the existence of halo orbits.

For halo orbits the essential condition for their existence is that sin2 θ ≤ 1,
which implies

ω ≥ σr −
σg

3δ
and δ ≤ 0, or (20)

ω ≤ σr −
σg

3δ
and δ ≥ 0 . (21)

These conditions automatically imply that the corresponding radius rh is posi-
tive. Note that the ordering of the ω inequalities is reversed compared with the
equatorial case (14,15). Hence for negative charge only prograde orbits exist
while for small positive charge only retrograde orbits exist. Only if σr �= 0 and
for δ > σg/3σr can both types of orbits exist. The electric field does make a
difference for the existence of synchronous halo orbits: If σr = 1 then ω = 1 is
impossible for finite δ. If σr = 0 synchronous halo orbits exist for δ < −σg/3.
Note that ω = σr (in particular a synchronous orbit if σr = 1) is impossible for
finite δ. Without the electric field there do exist synchronous halo orbits with
negative charge. In order for (q/c)B × ṙ to balance gravitation for positive
charge we have to reverse ṙ, hence ω = −1.

To get an overview of all possible halo orbits we plot curves of constant r
and θ in the δ-ω plane. The family of curves of constant radius is given by

δ =
r3ω2

2(σr − ω)
.

The family of curves of constant azimuth θ is given by

δ =
σg

3(σr − ω) sin2 θ
.
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Figure 5: Curves of constant r and θ for halo orbits. Thick lines have r = 1.
r = 0.2i, sin θ = 0.1i, i = 1, . . . , 10
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Figure 6: Curves of constant r and θ for halo orbits in the gravitational Störmer
problem. Thick lines have r = 1. r = 0.2i, sin θ = 0.1i, i = 1, . . . , 10
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Both families are shown in Fig. 5 for σr = σg = 1 and in Fig. 6 for the Störmer
problem with gravitation.

The regions of existence in the δ-ω-plane for equatorial and halo orbits
only overlap in a small region bounded by hyperbolae. They are in a sense
connected at the hyperboloidal boundary of the halo orbits, because in the
next section we will find that this line marks a pitchfork bifurcation of an
equatorial orbit changing its stability and creating halo orbits.

4 Stability

In Ref [7-8] explicit stability boundaries for both equatorial and halo orbits
were calculated. Here we obtain these boundaries more directly using the
fact that all circular orbits may be parameterized by ω. A circular orbit is
stable if it corresponds to a local minimum of U , for which we need the second
derivatives of U . Using the chain rule gives

∂2
rU =

(
3 ω2 − 2δ

3 ω − σr

r3
+

δ2

r6

)
sin2 θ − 2σg

r3

∂2
θU =

(
2 r2ω2 + 4δ

ω + σr

r
+ 4

δ2

r4

)
cos2 θ + r2ω2 + 2δ

ω − σr

r

∂r∂θU = 2

(
rω2 + δ

2ω − σr

r2
− δ2

r5

)
cos θ sin θ.

4.1 Equatorial Orbits

For equatorial orbits we insert θ = π/2 and r = re(ω) as given above. The
mixed derivative vanishes and the other two are

∂2
rU |e = −1

2

(
ω

σg + δ(ω − σr)

)2

((2ωδ − σrδ + σg)
2 − 3(σrδ − σg)

2)

∂2
θU |e = σg + 3δ(ω − σr) .

The radial derivative diverges for those ω that correspond to r = 0. It vanishes
for ω = 0; however, the corresponding radius re is not finite (except for δ =
σg/σr, the case of equilibrium points). There are two nontrivial factors that
correspond to tangent bifurcations of equatorial orbits with

ω±e =
1±
√

3

2

(
σr −

σg

δ

)
.

The vanishing of the second θ derivative indicates the loss of transverse sta-
bility. Because of reflection symmetry θ → −θ this results in a pitchfork
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Figure 7: Regions of stability for equatorial orbits are dark. Overlay Fig. 2

bifurcation with

ωPF = σr −
σg

3δ
.

All three curves are hyperbolas in the space of (δ, ω) shown in Fig. 7. The
intersection of the curves ωPF and ω±e occurs at

δ±e =
σg

σr

5± 2
√

3

3
.

Using the above formulas for the second derivatives it is easy to check that
stability only holds in the following ω ranges (compare Fig. 7).

δ < 0 : ω−e < ω < ωPF

0 < δ < δ−e : ωPF < ω < ω−e
δ > δ+

e : ωPF < ω < ω+
e .

For the first two ranges ω = 0 is (partially) included, which means that the
corresponding family of orbits exists for arbitrary large radius. The radius re

as given by (13) as a function of ω is a monotone function for most of these
orbits except for unstable orbits with δ > 1. This gives the additional curve
in the diagram. The fact that the radius is not monotonic can already be seen
in Fig. 2, where the turning points are marked by a gray line.

For comparison we also show the diagrams in the two nonclassical Störmer
cases, see Fig. 8. In the classical Störmer problem with σr = σg = 0 the deriva-
tive ∂2

rUeff |e is always negative, hence there are no stable equatorial orbits. In
the purely gravitational case stable orbits exist between the pitchfork curve
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Figure 8: Regions of stability for equatorial orbits of the a) gravitational, and b)
rotating Störmer problem are dark. Overlay Fig. 3

and the tangent bifurcation corresponding to ω−e . The curve ω+
e always is out-

side the region of existence. In the rotational Störmer problem the pitchfork
curves and the existence curves coincide at ω = 1. The stable region for δ < 0
is between ω−e and 1, while for δ > 0 it is between 1 and ω+

e . Comparing these
pictures with Fig. 7 one clearly observes that for large |δ| (i.e. small mass)
the systems behaves like the rotating case, while for small |δ| (i.e. large mass)
the behaviour is dominated by gravity and looks like the gravitational case.
In the gravitational case there exist stable pro- and retrograde orbits for any
δ; the system is symmetric with respect to change of sign of ω and δ. In the
rotational case this symmetry is broken and both pro- and retrograde orbits
only exist for negative charge. Trying to interpolate between the large and
small δ behaviour the full system creates an interval [δ−e , δ+

e ] of charge-to-mass
ratios for which no stable equatorial circular orbits exist.

4.2 Nonequatorial Orbits

In Ref [8] the stability of halo orbits was analyzed by examining the zeros of
a quintic in ρ. Here we obtain similar results more directly. For nonequatorial
orbits the calculation is essentially the same as for their equatorial cousins,
except that all three second derivatives are nonzero and we have to calculate
the determinant and the trace of the Hessian, which turn out to be

detD2Ueff |h = σg
2ω2(ω2 − 4ωσr + σ2

r)(σg + 3δ(ω − σr))

3δ(ω − 1)3

trD2Ueff |h = −σg
ω2(13ω2 − 16ωσr + 4σ2

r)

12δ(ω − σr)3
− 2(ω − 2σr)

2(σg + 3δ(ω − σr))

3rh(ω)(ω − σr)2
.
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The determinant vanishes in three cases: 1) For ω = 0, which again for δ �= 1
does not correspond to finite orbits. Since ω appears squared there is no change
in stability when orbits go through infinity. 2) In the case that the last factor
is zero, which reproduces the condition ω = ωPF . 3) There are two new critical
ω given by the remaining factor as

ω±h = σr(2±
√

3) .

These frequency values correspond to tangent bifurcations of halo orbits. The
corresponding horizontal lines are also shown in Fig. 7. A pair of stable and
unstable orbits is created for this frequency. The lines only extend up to the
intersection with the pitch fork curve, which occurs at

δ±h =
σg

σr

1±
√

3

6
.

For δ < 0 the upper curve extends up to δ−h , the lower curve is valid for δ > 0
and extends from δ+

h to infinity. For δ < 0 halo orbits have to be above the
pitchfork line. Inserting into the invariants of the Hessian we find that they
are stable if they are above ω = ω+

h and unstable otherwise. In the unstable
family there occurs a maximum in radius at ω = 2. Otherwise the radius
is a monotonous function of ω. For δ > 0 stability is reversed: orbits exist
below the pitchfork line and are stable if ω < ω−h . At passage through ω = 0
the radius goes to infinity, so that (sufficiently) positively charged retrograde
halo orbits exist for all large radii. Hence we obtain the following ω ranges of
existence of stable halo orbits:

δ < δ− : ω > ω+

δ− < δ < 0 : ω > ωPF

0 < δ < δ+ : ω < ωPF

δ > δ+ : ω < ω−

A simple way to characterize Fig. 9 is to say that halo orbits with frequencies
too close to synchronous are unstable. However, the range of unstable frequen-
cies is centered around orbits with ω = 2, i.e. orbits that go around twice for
one revolution of the planet. Halo orbits with frequencies further away than√

3 from this are stable. Note that the equatorial orbits behave approximately
in the opposite way. For them only orbits with small ω are stable (except for
small δ). This can also be interpreted in terms of the pitchfork bifurcation:
once equatorial orbits become too fast, they become unstable and create stable
nonequatorial orbits. The corresponding picture for the gravitational Störmer
problem is not shown, because it is trivial: in this case every halo orbit is
stable, as can be seen from the above expressions for determinant and trace of
the Hessian.
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Figure 9: Regions of stable halo orbits are dark. Overlay Fig. 5

5 Stable Halo Orbits in Space

Considering Fig. 5 we see that the curves of constant r and θ transversely
intersect each other in the regions of existence. This means that the transfor-
mation from (r, θ) to (δ, ω) is invertible, which we will now show. Instead of
transforming to spherical coordinates (r, θ) we directly transform to cylindrical
coordinates. Equations (18) and (19) can be considered as a transformation
from (z, ρ) = (r cos θ, r sin θ) to (δ, ω). For each of the four types of orbits
distinguished by pro/retrograde and positive/negative charge this is a global
transformation because the Jacobian is

det
∂(z, ρ)

∂(δ, ω)
=

2

9δω3r sin θ cos θ
,

which is only singular when ω, δ, r, or sin 2θ is zero. We already know that the
latter two are only zero at the boundaries of the valid region in (δ, ω) space.
The inverse of the transformation is given by

ω2 =
2

3

1

r3 sin2 θ
(22)

δ =
1

3

1

(σr − ω) sin2 θ
. (23)

The first is a generalization of Kepler’s 3rd law for halo orbits, which surpris-
ingly is independent of the electric field. Compared to the usual law it has
effective frequency

√
3/2ω sin θ. From the second equation the corresponding

charge to mass ratio can be calculated. These two equations give a precise pre-
diction about what dust particles with what velocities should be observable at
a given nonequatorial position (r, θ).
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Figure 10: (δ, ω) grid in (ρ, z) space for halo orbits in the gravitational Störmer
problem. (top left to right ±ω = −2 −

√
3,−1,−0.5,−2 +

√
3,−0.15,−0.1,−0.08,

bottom ±δ = 0.1, 0.5, 1, 2, 3, 4, 5, 6)
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Figure 11: (δ, ω) grid in (ρ, z) space for retrograde positive halo orbits. (ω as in
Fig. 10, bottom left to right, then up δ = 0.05, 0.1, 0.2, 0.3, 1

3 , 0.5, 1, 2, 3, 5, 10)

18



1 2 3 4 5
ρ

0.5

1

1.5

2

2.5

3

z

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
ρ

0.5

1

1.5

2

2.5

3

z

Figure 12: (δ, ω) grid in (ρ, z) space for a) prograde positive (ω = 2 −√
3, 0.15, 0.1, 0.08, left top to bottom δ = 1.5, 1, 0.8, 0.6, 0.5, (1 +

√
3)/6, 0.4, 0.37),

and b) prograde negative (ω = 15, 8, 5, 2 +
√

3, right top to bottom δ =
−50,−25,−10,−3,−1,−0.3, (1−

√
3)/6,−0.06,−0.03) halo orbits.

To get an idea about what particles to expect at what position we now plot
the curves of constant ω and δ on the ρ-z plane. The simplest way to do this is
to use (18,19) to generate a parametric form of these curves in the ρ-z plane:

(ρ, z) = (rh sin θh, rh cos θh).

In the gravitational Störmer case the formulas are

(ρ, z) =

(
−2δ

ω

)1/3 (√
−1/(3δω),

√
1 + 1/(3δω)

)
.

δ and ω have to be restricted to the range of existence, respectively stability,
which is the same in the present case. The resulting diagram is shown in
Fig. 10. Because there is no coupling to the rotation, prograde and retrograde
orbits are the same up to the sign of ω.

For the full system there is an additional region of prograde orbits with
δ > 0, see Fig. 12. In this case only (δ, ω) values from the stable regions are
taken to draw the grids. This is the reason for the cutoffs in the prograde case.
Note that all the retrograde halo orbits are stable, and therefore for every point
in the (ρ, z) plane there exists a unique halo orbit.

Note that all four figures share the same set of lines ω = const. This is a
result of the fact that the generalized 3rd Kepler’s law (22) is independent of
σr, δ, and independent of the sign of ω. Using the transformation from (r, θ)
to (ρ, z) we can convert this equation into

z2 =
9

4

(
ω

ρ

)4

− ρ2 ,
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which is the explicit form of the curves ω = const in all four figures. A similar
explicit form for the curves δ = const can only be obtained with σr = 0. Then
we find z2 = (−

√
6δρ)4/5 − ρ2. With σr = 1 the curves in (ρ, z) are described

by a polynomial of degree 5 in z2 and ρ2, so that the above parametric form
is the most convenient representation.

Our most important conclusion is that the dependence on ω is the same
with or without the electric field. The distribution of grain sizes as given by
the curves of constant δ is significantly changed. The changes are fairly small
for stable retrograde positive orbits. In both cases they exist at any point in
space. The prograde negative orbits need quite high angular velocity and only
survive close to the z axis. Stable prograde positive halo orbits do not exist
at all without an electric field. With the field they need to have a minimal
distance of a little more then twice the synchronous radius, and δ must be
around (1+

√
3)/6 in order to be able to be close to the planet. It follows that

retrograde positive orbits are the most likely candidates for halo orbits.

6 Discussion

We have calculated explicit equilibrium and stability conditions for arbitrary
circular orbits in an axisymmetric combination of gravitational, magnetic and
corotational electric fields. The equilibrium and stability boundaries were con-
veniently parametrized by the charge-to-mass ratio δ and the orbital frequency
ω. The individual effects of planetary gravitational field, magnetic field and
corotational electric field on the existence and stability of charged dust grain
orbits were elucidated.

Our principal result is that halo orbits cannot exist without inclusion of
gravitational forces. Without the corotational electric field all halo orbits are
stable. The distribution of orbital frequencies of stable halo orbits in space is
the same with- and without the corotational electric field, which is the content
of a generalized Kepler’s 3rd law (22). The inclusion of the corotational electric
field alone does not give halo orbits at all. Adding it to the gravitational
field does not have a strong effect on positive retrograde orbits, which are
still all stable. It destabilizes negative prograde orbits with small frequencies.
Adding the corotational electric field has a surprisingly strong effect on the
character of both equatorial and nonequatorial (halo) orbits. In particular,
prograde positively charged halos require a corotational electric field for their
very existence.

For halo orbits lying several Saturn radii above the equatorial plane the
typical surface potential of a dust grain is expected to be around +5V , due to
the low plasma density there and resultant dominant photoelectric charging.
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If stable retrograde grains are present, even the very small grains predicted by
our theory should be detected by the CDA experiment on board the Cassini
orbiter due to arrive in 2004.
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