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Abstract: The linearized theory of water waves is used to study the diffraction of an incident wave

by a gap in a permeable breakwater. Under the assumption that the wavelength is much greater

than the thickness, the breakwater is replaced by a thin barrier and a suitable boundary condition

applied on the barrier to model the permeability. A new Green’s function is used in an application

of Green’s theorem to obtain an integral equation which is solved numerically to obtain the flow

field. An approximate solution valid for large gaps is also given. Results are presented to illustrate

the effects of permeability and changes in the angle of wave incidence.

Introduction

This paper is concerned with the diffraction of monochromatic water waves by a permeable break-

water standing in fluid of constant depth. The breakwater is assumed to be straight and to have

uniform properties along its length. When the wavelength of the incident wave is much greater than

the thickness of the breakwater, then the breakwater may be modelled as a thin vertical barrier

which is a geometry more amenable to theoretical investigation. The depth dependence in the flow

field is readily factored out so that the problem is reduced to one in two dimensions.

The two-dimensional problem of diffraction of waves by solid (i.e. non-permeable) thin barriers

has interpretations in acoustics and electromagnetic waves and has attracted considerable attention

in the literature. There is an exact solution for a semi-infinite barrier and this is given in many

text books (e.g. Noble, 1988, Chapter 2). For an infinitely-long solid barrier with a gap there is

also an exact solution (Carr and Stelzriede, 1952), but this is in terms of Mathieu functions which
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makes computation of the solution rather inconvenient. Consequently, a number of authors (e.g.

Gilbert and Brampton (1985), Porter and Chu (1986), Hunt (1990)) have formulated the problem

in terms of an integral equation which has then been solved numerically.

Recently attention has turned to the problem of diffraction by a permeable breakwater. Yu

(1995) used an approximate procedure to solve the problem of diffraction of a normally-incident

wave by a semi-infinite permeable breakwater using a boundary condition based on the formulation

of Sollitt and Cross (1972) for time-harmonic motion within a porous medium. Subsequently,

McIver (1999) showed that the problem considered by Yu (1995) has an exact solution for all

angles of wave incidence. More recently, Lynett et al. (2000) have used numerical and experimental

methods to examine the interaction of a solitary wave with a porous breakwater.

Yu and Togashi (1996) considered the diffraction of waves by a permeable breakwater with a gap.

Unfortunately, their solution is in error as they assumed that the asymptotic form of the solution

at large distances along the barrier applied along the whole length of the barrier. In the present

work, this breakwater-gap problem is formulated in terms of an integral equation obtained by an

application of Green’s theorem that involves a new Green’s function for permeable barriers. The

integral equation is solved numerically and the solution is used to obtain the diffraction coefficient

which describes the far-field behaviour of the scattered waves. The efficiency of the solution is

improved by the use of a so-called “embedding” formula which gives the solution for any arbitrary

angle of incidence in terms of the solution for one angle of incidence. Further, an approximate

solution valid when the gap is much longer than the incident wavelength is presented and compared

with the full solution.

Formulation

Cartesian coordinates x, y and z are chosen with origin in the mean free surface so that the x- and

y-axes lie in a horizontal plane and the z axis is directed vertically upwards. The breakwater is of

thickness b and stands in water of constant depth h. It is aligned with the x axis and has a gap

of width 2a so that the breakwater occupies the region |x| > a, |y| < b, −h < z < 0. Horizontal

polar coordinates (r, θ), defined in the standard way, will also be used (see figure 1). The fluid

motion is assumed to be time harmonic with angular frequency ω and to be of sufficiently small

amplitude for linear theory to be applicable. Exterior to the breakwater the water is assumed to

be inviscid and incompressible and the motion to be incompressible and hence it may be described
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Figure 1: Coordinate systems for the breakwater-gap problem.

by a velocity potential.

An incident wave with wave number k propagates in y > 0 at an angle α to the x axis, where

k is related to the frequency ω through the dispersion relation

ω2/g = k tanh kh (1)

where g is the acceleration due to gravity. The length of the incident wave is assumed to be much

greater than the breakwater thickness, so that kb � 1, and then the thickness may be neglected

and the breakwater modelled as a thin permeable barrier. The model of such a breakwater used

here is based on the work of Sollitt and Cross (1972) and is described in detail by Yu (1995); it is

also used in related work by McIver (1999). The velocity potential for the flow is written as

Φ(x, y, z, t) = Re
{
φT(x, y) cosh k(z + h)e−iωt

}
(2)

where the complex-valued function φT(x, y) satisfies the Helmholtz equation

∂2φT

∂x2
+

∂2φT

∂y2
+ k2φT = 0 (3)

in the fluid domain exterior to the breakwater, while the boundary conditions to be satisfied on

the breakwater are

∂φT

∂y
(x, 0+) =

∂φT

∂y
(x, 0−) = β

[
φT(x, 0+)− φT(x, 0−)

]
, y = 0, |x| > a. (4)

Here the superscript “+” indicates a limit taken from y > 0 and the superscript “−” indicates a

limit taken from y < 0. The parameter

β =
−iε

b(f − is)
(5)
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where ε is the porosity of the breakwater, f is a non-dimensional friction coefficient, and s is a

non-dimensional inertia coefficient.

The total potential φT is decomposed as

φT (x, y) = e−ikr cos(θ−α) + Rαe−ikr cos(θ+α) + φ+ (x, y) , y > 0, (6)

and

φT (x, y) = Tαe−ikr cos(θ−α) + φ− (x, y) , y < 0, (7)

where

Rα =
−ik sinα

2β − ik sinα
and Tα = 1−Rα =

2β

2β − ik sinα
. (8)

The first term on the right-hand side of (6) is the incident wave, the second term is the field due

to the reflection of the incident wave from an infinitely-long permeable barrier, and the final term

is the correction to the field in y > 0 due to diffraction by the gap. The first term on the right-

hand side of (7) is the field due to the transmission of the incident wave through an infinitely-long

permeable barrier, and the second term is the correction to the field in y < 0 due to diffraction by

the gap. The reflection and transmission coefficients for an infinite barrier, Rα and Tα respectively,

are given by Yu and Togashi (1996) and also arise in the solution for a semi-infinite barrier obtained

by McIver (1999). The diffracted fields φ+ and φ− satisfy the radiation conditions

lim
r→∞

r
1
2

(
∂φ±

∂r
− ikφ±

)
= 0 (9)

Continuity of potential in the gap requires that

2Rαe−ikx cos α + φ+ (x, 0) = φ− (x, 0) , |x| < a, (10)

and continuity of velocity in the gap requires

∂φ+

∂y
(x, 0) =

∂φ−

∂y
(x, 0) ≡ Uα (x) , |x| < a. (11)

The breakwater boundary conditions (4) reduce to

∂φ+

∂y
(x, 0) =

∂φ−

∂y
(x, 0) = β

{
φ+ (x, 0)− φ− (x, 0)

}
, |x| > a. (12)

Derivation of an integral equation

In Appendix I a Green’s function φ0(x, y; ξ, η) is derived that is logarithmically singular at the

source point (ξ, η), satisfies the Helmholtz equation, the barrier conditions (4) on y = 0 for all x,
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and a radiation condition that specifies outgoing waves. With the source point at (ξ, η), η > 0,

an application of Greens theorem to φ+ and φ0 around a contour consisting of the y axis and an

enclosing large semi-circle in y > 0 gives

φ+ (ξ, η) =
i
4

∫ ∞
−∞

[
φ+ (x, 0)

∂φ0

∂y
(x, 0+; ξ, η)− φ0

(
x, 0+; ξ, η

) ∂φ+

∂y
(x, 0)

]
dx, (13)

and an application of Greens theorem to φ− and φ0 with the contour consisting of the y axis and

an enclosing large semi-circle in y < 0 gives

0 = − i
4

∫ ∞
−∞

[
φ− (x, 0)

∂φ0

∂y
(x, 0−; ξ, η)− φ0

(
x, 0−; ξ, η

) ∂φ−

∂y
(x, 0)

]
dx. (14)

The Green’s function has been constructed to satisfy the same radiation condition as the diffraction

potential, and so the corresponding contributions to the integrals in Green’s theorem do not appear

in (13)–(14). Addition of (13) and (14) and the use of the continuity of velocity conditions in

equations (11), (12) and (45) yield

φ+ (ξ, η) =
i
4

∫ ∞
−∞

[(
φ+ (x, 0)− φ− (x, 0)

)
∂φ0

∂y
(x, 0; ξ, η)

− (φ0

(
x, 0+; ξ, η

)
− φ0

(
x, 0−; ξ, η

)
)
∂φ+

∂y
(x, 0)

]
dx. (15)

Finally, equations (12) and (46) are used to eliminate the integrals over the barrier in |x| > a, and

equations (10) and (11) are used to rewrite the terms involving the diffraction potential, so that

φ+ (ξ, η) = − i
4β

∫ a

−a

∂φ0

∂y
(x, 0; ξ, η)

[
2βRαe−ikx cos α + Uα (x)

]
dx, η > 0, (16)

which is an integral representation for the diffracted field in y > 0 in terms of the corresponding

velocity in the breakwater gap. Similar applications of Green’s theorem with the source point at

(ξ,−η), η > 0, yield with the aid of (61) that

φ− (ξ,−η) =
i

4β

∫ a

−a

∂φ0

∂y
(x, 0; ξ, η)

[
2βRαe−ikx cos α + Uα (x)

]
dx, η > 0, (17)

and therefore

φ− (ξ,−η) = −φ+ (ξ, η) . (18)

Substitution of the above expressions for φ± into the potential continuity condition (10) gives the

integral equation ∫ a

−a
h (|x− t|)Vα (t) dt = fα (x) (19)

5



for Vα, where

h (|x− t|) =
i

4β

∂φ0

∂y
(t, 0;x, 0) , (20)

Vα (t) = 2βe−ikt cos α +
Uα (t)
Rα

(21)

and

fα(x) = e−ikx cos α. (22)

An integral representation for the kernel h follows from equation (59).

In the solid barrier limit β → 0 then

Rα → 1, Vα → Uα, (23)

and from equations (59) and (50)

h(|x− t|)→ i
2
H

(1)
0 (k|x− t|), (24)

where H
(1)
0 denotes a Hankel function of the first kind, so that the integral equation (19) reduces

to the equation for the solid barrier given, for example, by Porter and Chu (1986, equation 2.1).

The diffraction coefficient

Of particular interest is the behaviour of the diffracted field at large distances from the gap. Appli-

cation of an asymptotic result given by Noble (1988, equation 1.71) gives, after a change of notation

in (59),
∂φ0

∂y
(t, 0;x, y) ∼ 2β

(
2k

πr

) 1
2 ei(kr− 3π

4 )−ikt cos θ

2β − ik sin θ
sin θ as kr →∞, (25)

and hence it follows from (16) that

φ+(x, y) ∼ ei(kr− 3π
4 )

(2πkr)
1
2

G (θ, α) as kr →∞ (26)

where

G(θ, α) = RθRαH (θ, α) , 0 < θ < π, (27)

and

H (θ, α) =
∫ a

−a
Vα (t) fθ (t) dt. (28)

Thus, once the integral equation (19) has been solved for Vα the so-called “diffraction coefficient”

G(θ, α) follows from (27). The diffraction coefficient describes the angular variation of the diffracted
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waves in the far field. Note that the above calculation is for the waves in the upper-half plane; the

field for the lower-half plane follows from (18).

From its definition and the properties of the integral equation (19)

H (θ, α) =
∫ a

−a
Vα (t) fθ (t) dt

=
∫ a

−a
Vα (t)

{∫ a

−a
h (|x− t|)Vθ (x) dx

}
dt

=
∫ a

−a
Vθ (x)

{∫ a

−a
h (|x− t|) Vα (t) dt

}
dx

=
∫ a

−a
Vθ (x) fα (x) dx = H (α, θ) (29)

from which follows the reciprocity relation

G(θ, α) = G(α, θ). (30)

That is, the far-field form of the diffracted waves in the direction θ due to waves incident at angle

α is the same as the far-field form in the direction α due to waves incident at angle θ

The difference-kernel integral equation (19) and the function H(θ, α) have the same structure

as the equivalent objects in the problem of diffraction of waves by a gap in a solid breakwater.

One consequence of this is that, for a fixed ka, the solution for any angle of wave incidence can be

calculated entirely in terms of the solution for one angle of wave incidence (Porter and Chu, 1986).

In particular, H(θ, α) may be expressed in terms of H(θ, 0) and so the integral equation need only

be solved for α = 0. It follows immediately from such a so-called embedding formula (Porter and

Chu, 1986, equations 2.15–2.16) that the diffraction coefficient

G (θ, α) = RθRα
Ĥ (α) Ĥ (θ)− Ĥ (π − α) Ĥ (π − θ)

2H (0, 0) (cos α + cos θ)
(31)

where

Ĥ (θ) = (1 + cos θ)H (θ, 0) . (32)

Equation (31) is undefined for θ = π − α, but an application of L’Hôpital’s rule yields

G (π − α, α) = −R2
α

Ĥ (α) Ĥ ′ (π − α) + Ĥ (π − α) Ĥ ′ (α)
2H (0, 0) sinα

. (33)

One feature of the embedding formulae obtained by Porter and Chu (1986) for diffraction by

a gap in a infinite barrier is the role of the problem of diffraction by an insular barrier, that is an

isolated barrier of finite length. When the barriers are solid, the insular barrier problem may be
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formulated in terms of an integro-differential equation which is “complementary” to the integral

equation for the gap problem, in the sense that the solution of the integral equation for the gap

problem with zero angle of incidence is sufficient to obtain the solutions for both the gap problem

and the insular barrier problem for any angle of incidence. For the permeable barrier problems

this is not the case. There is a complementary integro-differential equation to the integral equation

(19) but, as far as the authors are aware, it has no meaningful physical interpretation except in the

limit β → 0.

Numerical solution

The integral equation (19) may be solved numerically as follows. In the integral equation make the

changes of variables x = a cos u and t = a cos v to get

i
4β

∫ π

0

∂φ0

∂y
(a cos v, 0; a cos u, 0)Wα (u) dv = e−ika cos u cos α, (34)

where

Wα (u) = aVα(a cos u) sinu. (35)

Divide the interval [0, π] into N elements with end-points {ui = (i− 1)π/N ; i = 1, 2, . . . , N + 1}
and mid-points

{
ûi =

(
i− 1

2

)
π/N ; i = 1, 2, . . . , N

}
and collocate at the mid-points to get

i
4β

N∑
j=1

Wα (ûj)
∫ uj+1

uj

∂φ0

∂y
(a cos v, 0; a cos ûi, 0) dv = e−ika cos ûi cos α, i = 1, 2, . . . , N. (36)

The integrals appearing in (36) must be evaluated numerically; the evaluation of the integrand is

discussed in Appendix II.

Equations (36) may now be readily solved for each Wα (ûj) and the diffraction coefficient follows

directly from (27) and is

G (θ, α) ≈ RθRα

N∑
j=1

Wα (ûj)
∫ uj+1

uj

e−ika cos v cos θ dv, 0 < θ < π. (37)

An alternative is to calculate the Wα (ûj) for angle of incidence α = 0 and then use

H (θ, 0) ≈
N∑

j=1

W0 (ûj)
∫ uj+1

uj

e−ika cos v cos θ dv, 0 < θ < π, (38)

in the embedding formulae (31) and (33) to calculate the diffraction coefficient for any angle of

incidence. The wave field at any point in the fluid domain may be computed from (16) and (18).
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Large-gap approximation

A large-gap (or, equivalently, a high-frequency) approximation to the breakwater gap problem may

be derived under the assumption that the ends of the gap are sufficiently far apart, on the scale

of the wavelength, to be non-interacting. This approach was adopted by Penney and Price (1952)

for the solid breakwater with a gap. With polar coordinates (r±, θ±) defined as in figure 1, the

approximation to the total potential is (Jones, 1986, §9.25)

φT(r, θ;α) ≈ e−ir cos(θ−α) + eika cos αφ(r−, θ−;α) + e−ika cos αφ(r+, θ+;π − α) (39)

where φ(r, θ;α) is the solution for diffraction of a wave incident at an angle α to the x axis, by

a semi-infinite barrier that occupies the negative x axis. An approximation to the diffraction

coefficient G(θ, α), defined in (26), is obtained from examination of the far-field forms of the last

two terms in (39) which follow from results given by McIver (1999). As r/a→∞ for 0 < θ < π

r± ∼ r ∓ a cos θ, θ− ∼ θ, θ+ ∼ π − θ, (40)

and so, after substitution from McIver (1999, equation 19), it is found that

G(θ, α) ≈ ik sin θ sinα

(cos θ + cos α)(2β − ik sin θ)

{
eika(cos θ+cos α) K+(k cos(π − θ))

K+(k cos α)

− e−ika(cos θ+cos α) K+(k cos θ)
K+(k cos(π − α))

}
, 0 < θ < π, (41)

where

K+(z) =
(

1 +
z

q

)1/2 (
q + 2β

k

) i
2π

log
[

q−z
q+z

]
exp

{
2iβ
πk

∫ cos−1(z/k)

π/2

θ′ cos θ′ dθ′

cos2 θ′ − (q/k)2

}
, (42)

the principal branch of the natural logarithm is to be taken and

q2 = k2 + 4β2, 0 < arg q < π. (43)

Due to the appearance of complex quantities, computer algebra systems like Maple or Mathematica

are particularly suitable for computing (41).

Results

Graphical results are now presented in figures 2 and 3 to illustrate the effects of permeability on

the diffraction coefficient defined in equation (27) and the accuracy of the large-gap approximation
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given in equation (41). In the figures results for a solid barrier, that is β = 0, are compared with

those for a permeable barrier with β/k = (1− i)/4. This last value of the permeability parameter

β was one of those used by both Yu (1995) and McIver (1999).

The effect of permeability is to give a general decrease in diffraction effects. It should be born in

mind that the permeability also affects the reflection and transmission coefficients appearing in the

full solutions of equations (6) and (7); the diffraction coefficient describes the far-field behaviour of

only the last terms in these equations. One feature of the results is that as θ approaches zero or π

the diffraction coefficient tends to zero for a permeable barrier but the limit is non-zero for a solid

barrier. This behaviour is confirmed in the large-gap solution (41).

These, and other computations, suggest that the large-gap approximation performs least well

for the solid barrier and the agreement is worse for shallow angle of incidence relative to the barriers.

The agreement improves as ka increases which can be interpreted as the gap width increasing for

a fixed incident wavelength, or as the incident wavelength decreasing for a fixed gap width.
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Appendix I Derivation of the Greens function

Here logarithmically singular solutions (that is Green’s functions) of the Helmholtz equation are

derived that satisfy the boundary conditions (12). Thus, it is required to construct solutions

φ0(x, y; ξ, η) of the Helmholtz equation

∂2φ0

∂x2
+

∂2φ0

∂y2
+ k2φ0 = 0 (44)

that are logarithmically singular at (ξ, η) and satisfy

∂φ0

∂y
(x, 0+; ξ, η) =

∂φ0

∂y
(x, 0−; ξ, η), for all x, (45)

∂φ0

∂y

(
x, 0+; ξ, η

)
= β

{
φ0

(
x, 0+; ξ, η

)
− φ0

(
x, 0−; ξ, η

)}
, for all x, (46)

and the radiation condition

lim
kr→∞

r
1
2

(
∂φ0

∂r
− ikφ0

)
= 0. (47)
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Here the correct singularity is obtained by requiring

φ0 ∼ H
(1)
0 (kR) as kR→ 0, (48)

where H
(1)
0 (kR) is the fundamental source solution for the Helmholtz equation in an unbounded

medium and

R =
[
(x− ξ)2 + (y − η2)

]1/2 (49)

is the distance between the source point (ξ, η) and the field point (x, y). For future use it is noted

that the Helmholtz source has the integral representation (McIver and Bennett, 1993)

H
(1)
0 (kR) =

1
πi

∫ ∞
−∞

e−iα(x−ξ)−γ|y−η|

γ
dα (50)

where γ =
(
α2 − k2

) 1
2 = −i

(
k2 − α2

) 1
2 .

First of all let the singular point P be at (ξ, η), η > 0. Denote by P ′ the image point (ξ,−η)

and by Q the field point (x, y) and the distance between P ′ and Q by

R′ =
[
(x− ξ)2 + (y + η)2

] 1
2
. (51)

Write

φ0 (x, y; ξ, η) = H
(1)
0 (kR) +

1
πi

∫ ∞
−∞

A+ (α) e−iαx−γy dα, y > 0, (52)

φ0 (x, y; ξ, η) =
1
πi

∫ ∞
−∞

A− (α) e−iαx+γy dα, y < 0, (53)

each of which satisfy the Helmholtz equation by construction. Application of the barrier conditions

(45) and (46) and use of the integral representation (50) yields

A+ (α) =
eiαξ−γη

2β + γ
(54)

and

A− (α) =
2βeiαξ−γη

γ (2β + γ)
(55)

and therefore

φ0 (x, y; ξ, η) = H
(1)
0 (kR) +

sgn (y)
πi

∫ ∞
−∞

e−iα(x−ξ)−γ(|y|+η)

(2β + γ)
dα, for all y. (56)

Alternative representations are

φ0 (x, y; ξ, η) = H
(1)
0 (kR) + H

(1)
0

(
kR′

)
− 2β

πi

∫ ∞
−∞

e−iα(x−ξ)−γ(y+η)

γ (2β + γ)
dα, y > 0, (57)
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and

φ0 (x, y; ξ, η) =
2β

πi

∫ ∞
−∞

e−iα(x−ξ)+γ(y−η)

γ (2β + γ)
dα, y < 0, (58)

and it is also noted that

∂φ0

∂y
(x, 0; ξ, η) =

2β

πi

∫ ∞
−∞

e−iα(x−ξ)−γη

2β + γ
dα. (59)

A similar calculation with the source point at (ξ,−η), η > 0, gives

φ0 (x, y; ξ,−η) = H
(1)
0

(
kR′

)
− sgn (y)

πi

∫ ∞
−∞

e−iα(x−ξ)−γ(|y|+η)

(2β + γ)
dα, for all y. (60)

It may readily be confirmed that

∂φ0

∂y
(x, 0; ξ,−η) = −∂φ0

∂y
(x, 0; ξ, η). (61)

Appendix II Numerical evaluation of the kernel

When solving (36) for Wα (ûj), it is useful to calculate the kernel by writing

∂φ0

∂y
(x, 0; ξ, 0) = β

{
φ0

(
x, 0+; ξ, 0

)
− φ0

(
x, 0−; ξ, 0

)}
= 2β

{
H

(1)
0 (k|x− ξ|)−K (α)

}
, (62)

where equations (46), (57) and (58) have been used. Here

K (α) =
2β

πi

∫ ∞
−∞

e−iα(x−ξ)

γ (2β + γ)
dα =

4β

πi

∫ ∞
0

cos (αX)
γ (2β + γ)

dα

=
4β

πi

{∫ k

0

i cos (αX)
µ (2β − iµ)

dα + I (X)
}

=
4β

πi

{∫ k

0

2βi cos (αX)
µ (4β2 + µ2)

dα−
∫ k

0

cos (αX)
(4β2 + µ2)

dα + I (X)
}

(63)

where X = x− ξ, γ =
(
α2 − k2

) 1
2 = −i

(
k2 − α2

) 1
2 = −iµ, and

I (X) =
∫ ∞

k

cos (αX)
γ (2β + γ)

dα =
∫ ∞

0

cos (α|X|)
α (2β + γ)

dγ = Re
∫ ∞

0

eiα|X|

α (2β + γ)
dγ. (64)

An application of Cauchy’s theorem in the first quadrant and some manipulation gives

I (X) = Re
∫ i∞

0

eiα|X|

α (2β + γ)
dγ = Re

∫ ∞
0

ieiα|X|

α (2β + iσ)
dσ

= Re
∫ k

0

(
2iβ + σ

4β2 + σ2

)
eiα|X|

ρ
dσ + Re

∫ ∞
k

(
2β − iσ
4β2 + σ2

)
eiα|X|

δ
dσ

=
∫ k

0

σ cos (ρX)
ρ (4β2 + σ2)

dσ − 2β

∫ k

0

sin (ρ|X|)
ρ (4β2 + σ2)

dσ + 2β

∫ ∞
k

e−δ|X|

δ (4β2 + σ2)
dσ

=
∫ k

0

cos (αX)
(4β2 + µ2)

dα− 2β

∫ k

0

sin (µ|X|)
µ (4β2 + α2)

dα + 2β

∫ ∞
k

e−γ|X|

γ (4β2 + α2)
dα (65)
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where ρ =
(
k2 − σ2

) 1
2 , δ =

(
σ2 − k2

) 1
2 and γ = iσ so that

K (α) =
8β2

πi

{∫ k

0

i cos (αX)
µ (4β2 + µ2)

dα−
∫ k

0

sin (µ|X|)
µ (4β2 + α2)

dα +
∫ ∞

k

e−γ|X|

γ (4β2 + α2)
dα

}
(66)

which is straightforward to evaluate numerically. In each of the integrals in (66) the limit of

integration k may be changed to unity by scaling the integration variable.
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Figure 2: Modulus of the diffraction coefficient |G(θ, α)| vs. θ for α = π/2: full solution (———),

large-gap approximation (– – – –).

15



0 0.25Π 0.5Π 0.75Π Π
Θ

0

5

10

�G�

Solid barrier

ka � Π
����
2

Α � Π
�������
12

0 0.25Π 0.5Π 0.75Π Π
Θ

0

5

10

�G�

Solid barrier

ka � Π

Α � Π
�������
12

0 0.25Π 0.5Π 0.75Π Π
Θ

0

5

10

�G�

Solid barrier

ka � 2 Π

Α � Π
�������
12

0 0.25Π 0.5Π 0.75Π Π
Θ

0

5

10

�G�

Solid barrier

ka � 4 Π

Α � Π
�������
12

0 0.25Π 0.5Π 0.75Π Π
Θ

0

5

10

�G�

Permeable barrier

ka � Π
����
2

Α � Π
�������
12

0 0.25Π 0.5Π 0.75Π Π
Θ

0

5

10

�G�

Permeable barrier

ka � Π

Α � Π
�������
12

0 0.25Π 0.5Π 0.75Π Π
Θ

0

5

10

�G�

Permeable barrier

ka � 2 Π

Α � Π
�������
12

0 0.25Π 0.5Π 0.75Π Π
Θ

0

5

10

�G�

Permeable barrier

ka � 4 Π

Α � Π
�������
12

Figure 3: Modulus of the diffraction coefficient |G(θ, α)| vs. θ for α = π/12: full solution (———),

large-gap approximation (– – – –).
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