

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288388013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

131

Hodgson

Introduction

This paper is concerned with the quality of
educational software which is available to teachers
of Design and Technology in schools. It considers
the ways in which teachers and learners may take
advantage of this software and the need to merge
the views of teachers and software writers in order
to make more effective use of computing resources.

Software in schools has always been open to
criticism. Educational software has only a relatively
small market and must be provided on a small
budget and at low cost to the end user. Until
recently, it was characterised by “cut-down” existing
commercial packages, which aim to emulate
computer use in the “work place”, or by amateur
programs created by well-meaning teachers who
have become frustrated by a lack of educationally
appropriate software. The paper written by Self 1

five years ago is typical of the criticism which software
has received. His paper, “The Institutionalisation of
Mediocrity and the Influence of Outsiders”, was
particularly pessimistic about the future of
educational software. It began by stating that

. . . most educational software is of poor quality

. . . and many others have come to the same
conclusion . . . although the castle-building
‘teacher programmer’ will, in fact, detect many
signs that his products are of high quality.

Many would agree with Self, suggesting that teachers

have neither the time nor experience to write
effective software and that commercial software
development often fails to take account of
educational needs. If we are to move away from
these criticisms and towards the development of
computer software which makes effective use of IT
in Design and Technology, then we should consider
some of the issues which must guide its development
and determine how they may be incorporated in
that development.

Educational context

Software which is developed specifically for an
educational purpose should take full account of the
educational context in which it will be used.
Inevitably, this will include consideration of the
curriculum and its subjects, the potential for
computer applications to aid learning and the role
of teacher and learner when using IT resources. We
might expect the school curriculum area described
as “Design and Technology” to be adequately
covered by the statutory orders for Technology in
the National Curriculum. They are, however, the
subject of some controversy and much mis-
understanding. In fact, I believe that many more
conferences and much re-writing will be required
before National Curriculum documents describe
fully, or accurately, the nature of design and
technological activity in schools. Fortunately,
interim reports of the working group which
developed the orders provide a useful description.

. . . view technology as that area of the curriculum

Developing computer software applications for use in
Design and Technology Education

A R Hodgson
Department of Design and Technology, Loughborough University of Technology

Abstract
There is little doubt that design work provides a natural focus for Information Technology (IT) activities
and that both profile components of National Curriculum Technology are intended to be centred upon
real applications and real situations.

Despite a plethora of computer software applications which might be considered relevant in the context
of Design and Technology work, few are rarely designed to meet the needs of pupil learners and so it is
not surprising that few are used effectively. If IT is to become an effective tool in education, there is an
urgent need to consider how pupils and students learn through interaction with computer media, and
ways in which the teacher’s role might be developed. These issues are quite different from, but no less
important than, those considered by the software engineer, who is predominantly concerned with
providing elegant program code and sophisticated program facilities.

This paper discusses how these two sets of, often contradictory, matters may be corporately considered
to provide more effective software design. In particular, it considers how research, development and
evaluation, concerned with computer applications, might take more effective account of educationalists’
views, teachers’ requirements and pupils’ needs.

132

Hodgson

in which pupils make useful objects or systems,
thus developing their ability to solve practical
problems . . . They should be taught the
principles and practice of good design, the
application of theoretical knowledge and, within
that context, the practical skills for realising
their designs in wood, metal, plastics, textiles
and other materials 2

Technology in the National Curriculum has moved
pupil activity away from the acquisition of making
skills for their own sake towards the development
of design-based activities in which these skills are
developed in order to “realise” a design. In this
approach the acquisition of “making skills” should
be viewed quite differently from that which may be
associated with more traditional or vocational needs.
Pupils may require skills which are specific to their
individual needs and which may be irrelevant to the
rest of their group - all of whom are also following
individual design work. Design and Technology
teachers need to consider alternatives to the “class-
teaching” styles which were characterised by the
whole group receiving instructions, describing how
to make specific objects, and yet must still be
concerned overtly with the development of skills
and concepts.

Significantly, little specific content or few specific
manufacturing skills are identified within the
Technology document. It chooses, instead, to
describe a design process and general capability.

The Design and Technology profile component
challenges teachers to consider the nature of design
and technological activity in order to determine
what content, skills, knowledge and teaching styles
might be appropriate in its delivery. It is important
that learning activities are based on real situations
(in the pupils’ eyes!) so that pupils may see that
there is a real need for decisions and a real purpose
for their work.

The IT profile component clearly applies to all
teachers across all curriculum areas and subjects,
but shares a similar ethos and rationale to the four
Design and Technology attainment targets.
Information Technology should not be taught simply
for its own sake, but through the need to apply it to
real situations, which could be identified by pupils
working in any area of the curriculum. This approach
is supported by HMI who describe some aims of IT
in schools thus

It has a critical role in enhancing the learning
process at all levels and across a broad range of
activities Through the use of IT in the curriculum,
schools will be helping pupils become

knowledgeable about the nature of information,
comfortable with the new technology and able to
exploit its potential. . . . Using the technology to
support collaborative working, independent study
and re-working of initial ideas as well as to enable
pupils to work at a more demanding level by
obviating some routine tasks. 3

The two profile components, and the five attainment
targets of Technology, describe an area of teaching
and learning which is characterised by a “holistic
approach” to studies, through “context-led” activities
which aim to focus upon the “progression of
individual pupil capability”. For many schools and
teachers this is a new approach to learning, and the
role which they adopt is crucial to the successful
teaching of Design and Technology. It does not
mean that all work should be entirely open, entirely
pupil directed or content free. It will require teachers
to consider, amongst other things, the relationship
between “designing” and “making” activities; the
balance between structured or focused and open
project work; the extent to which pupil autonomy
might be fostered; and how real pupil progression
might be developed. These issues are at the heart
of Design and Technology implementation but,
perhaps more importantly, help us to focus upon
the ways in which Information Technology might
help to enhance designing and making activities in
schools. The thoughtful application of IT to Design
and Technology should help to overcome some of
the difficulties encountered by teachers now charged
with the task of National Curriculum delivery, and a
clear understanding of the nature of Design and
Technology in schools must be conveyed to those
who develop software which is aimed to support
pupil learning.

The potential for IT in Design and
Technology

A clearer identification with established classroom
practice may help the software writer to identify
desirable features for inclusion or to prevent the
repetition of past bad practice. The potential for IT
in Design and Technology can be categorised
through typical use rather than learning style. A
range of such categories might be :

Graphic communication
Computer Aided Design and Manufacture
Research / Data Collection and Presentation
Control applications.

These are an appropriate starting point because
they represent some of the ways in which computers
have been used to aid designing and making in
recent years. There is a need to identify the ways in
which they may more positively aid designing and

133

Hodgson

teachers can identify some of the elements required
in educational software, have led me to outline
some key criteria for Design and Technology
software.

The software should enable learning within an
identified context.

The extent of software “flexibility” should be
appropriate to the intended application.

The software documentation and support should
be aimed specifically at pupils and teachers in
schools.

It should be possible to operate the software
effectively after a minimum of teacher
instruction.

The quality of output material should be
consistent with the required attributes of design
and technological activity.

The most important criterion, in my view, is that a
system should enable learning within an identified
context. Although many other criteria may help to
measure the system’s suitability, there is a need for
the teacher or student to identify the role, need or
purpose of the software and then to relate these to
the identified options or features which the software
may provide. For example, it may be more
appropriate to use a word processor designed for
primary school pupils when introducing basic
concepts of text manipulation to older students,
rather than to make use of a sophisticated “office”
system which has been designed to mail - merge,
multi - task and communicate with spreadsheet
systems. Identifying the learning context, and
specifying appropriate software requirements, is an
important first step which helps to clarify the
relevance and priority of any further criteria used
for development and evaluation.

The flexibility of software is a feature which is often
considered with little reference to my first criterion,
particularly by writers of software. A large element
of flexibility, characterised by provision of many
complex options, may not be appropriate and might
even detract from the learning process. For example,
students may wish to generate stylised text for use
on a product package by using a computer aided Art
or DTP system. Many of the features which are
normally associated with these systems are irrelevant
to their needs, and could confuse or divert from the
task in hand. It may be useful in these situations, to
provide an option for the teacher to “de-select”
some features or aim software at specific tasks in a
more overt manner.

making in schools, and to provide some guide lines
for software developers.

Graphics applications are one of the most obvious,
and certainly most common applications, in Design
and Technology. Many 2D art and line drawing
packages allow detailed colour images to be
developed via the keyboard and/or mouse, and the
advent of more powerful 16 and 32 bit computers
has improved both the quality and realism of these
images. However, the use of these applications
should go well beyond the coloured “folio cover” or
alternative “presentation drawing”, so often a feature
of their application in school. Their restriction to
these types of application raises two particular
questions :

Do computer graphics packages really make it
easier or quicker to draw images than more
traditional techniques?

What are the distinctive advantages of computer
graphics packages over the other techniques
which are used to develop and present ideas?

The first question is easily answered by any teacher
who moves away from testing the attractive facilities
of “graded tones” and “edge detection”, to try and
draw an image of a relatively complicated, realistic
object instead. It is more difficult to draw freehand
images with a mouse than with a pencil, and it takes
longer to draw detailed component drawings by
computer than by hand - particularly when the
software operation has to be learnt as well. Most of
us have come to realise that whilst it might, at first
sight, appear to be attractive use of the computer,
it is not realistic to draw images in this way simply to
be printed out once and used to enhance folio
presentation. It is only when these images are
manipulated by the computer, or applied in a variety
of ways, that the potential of graphics applications
may be exploited. Good examples of their use
exploit the software’s ability to flip, rotate and
mirror images; to alter their colour easily; or to
make amendments to design detail without having
to re-draw whole views.

Similar examples of the potential for computer
applications may be applied to my other categories
of potential use, and it is clear that teachers (not
software developers) must take responsibility for
ensuring the effective application of computer
software in an appropriate learning environment.

Criteria for Software Development

Consideration of the nature of Design and
Technology, subjective evaluation of potential versus
actual application of IT, and an awareness that only

134

Hodgson

The software documentation and support is of
vital importance for educational users of software.
It must address a range of quite different needs and
the inevitable compromise is often disappointing.
Although it is difficult to generalise, since the learning
context might determine some very specific needs,
I would identify three types of support as a minimum
requirement :-

An overview of the software’s features, options
and aims. This may be provided through
exemplar material and/or an outline of
educational rationale.

Detailed or technical information which will
enable the more experienced user to take full
advantage of the software or, in the case of a
teacher, to “tailor” the software to more specific
needs.

Simple guides, reference or tutorials which
enable “naive users” to make effective use of the
software. This would include information related
to the loading and running of the software.
These elements of support might more
appropriately be produced by teachers rather
than software developers.

Although the criterion that it should be possible to
use software effectively, after a minimum of teacher
instruction, might relate to many areas of the
curriculum, it is one which I believe is particularly
important for the subject area of Design and
Technology. The National Curriculum has identified
the role of the teacher a an “enabler / advisor” rather
than “trainer / instructor”, with pupils taking greater
control of their own learning. One outcome will be
a wider variety of learning routes and needs within
a single teaching group and the opportunity for
teachers to explain how software operates to a
“whole class” may disappear. Information generated
by the software itself (possibly in the form of screen
displays / instructions) together with relevant
documentation and additional resources may be
the only “instruction” which a learner receives.

Another criterion which may be specific to Design
and Technology is that the quality of output
material should be consistent with the required
attributes of design and technology activity. This
subject area will often use software to produce “end
products” directly. For example, advertising projects
may use DTP or CAD output directly on packages,
products or posters, and CNC knitting machines
may be used to design and make a garment.
Consequently, software of this type must be capable
of producing output which is accurate and precise

enough to be used in a realistic end product or
artefact.

These five criteria may usefully form the basis of
software development and evaluation in Design
and Technology.

The way forward

Schools already possess computer hardware which
will serve as a platform for powerful and sophisticated
software applications. At a time when increasing
emphasis is being placed on “Technology and
Industry”, we must not allow these new platforms
simply to run the software of industry and commerce.
There is a need for software development to take
account of the criteria outlined above, and in
particular, to take greater account of teachers’ views
and experiences.

As the hardware becomes more powerful, the
teacher cannot, and should not, expect to become
accomplished “programmers” themselves. Their
role of advising, enabling and evaluating is vital,
however, and we must find ways and means of
combining their educational experience with that
of the software engineer / developer. Whilst this
already happens in a few instances of good practice,
the quality and range of software available for Design
and Technology teachers is generally poor, and I
would offer the following suggestions as possible
ways forward :

Teachers should be involved, significantly, in the
development and evaluation of software - particularly
the formative evaluations which lead to the final
version. This need not detract from normal
classroom teaching or involve substantial teacher
time. For example, pupil interaction with a software
application may be recorded on video, allowing
teachers to work normally in the studio / workshop
and evaluate software features at another time.

Teacher training should highlight how fourth
generation programming tools may be used to
ease the development of software resources, or
to modify existing software so that it becomes
more suitable for a specific learning situation.
For example, “HyperCard” or “Genesis” systems
are easily accessible to the computer - literate
teacher, and do not require the knowledge of
expert programmers to be used effectively.

Software should allow more opportunity for teachers
to “tailor” or “configure” its features / operation to
meet specific educational needs. For example,
more complex features may be “hidden” from the
user, complex notation written in more familiar

135

Hodgson

terms and sensible “default settings” all determined
by the teacher through a simple software option or
facility.

Good examples of computer software already feature
significant teacher involvement in their development
and teachers of Design and Technology are ideally
suited to adopt a more positive role in software
development. They already possess background in
design and development, are usually quite
accomplished software users and are used to
developing much of their own teaching resources.

References

1 Self, J in: Scanlon, E and O’Shea, T (Ed.)
Educational computing. Wiley (1987) p 221

2 DES National Curriculum : Design and
Technology Working Group. Interim report.
HMSO (1989) pp 86-87

3 DES Information Technology from 5 to 16 :
Curriculum matters 15. HMSO (1989) p 2

Bibliography

DES Technology in the National Curriculum.
HMSO (1990)

DES Craft Design and Technology from 5 to 16
: Curriculum matters 9. HMSO (1987)

Barber, J and Tucker, R The Interactive learning
revolution. Kogan Page (1990)

Fothergill, R Implications of new technology for
the school curriculum. Kogan Page (1988)

