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Abstract

Four possible aggregation models in surfactant solutions are considered. It is shown
that only the model taking into account interactions between clusters of sub-micellar

size shows a transition to the micelles formation at a concentration above the CMC.
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Introduction

Surfactants are widespread in nature, industry and everyday life [1-5]. They
play an important role in many technological applications, such as dispersion
stabilization, enhanced oil recovery, and lubrication. It may be argued that surfactants
are the most widely spread chemicals in the world.

Surfactant molecules are diphilic, with a hydrophilic head and a hydrophobic
tail. That is why they preferably adsorb on interfaces. They are soluble both in oil and
aqueous phase with solubility depending on their hydrophile-lipophile balance (HLB)
[6]. At low concentrations surfactant molecules are believed to exist in the solution
mainly as single molecules. If the concentration increases and reaches some critical
value, CMC, the surfactant molecules form new objects referred to as micelles [6-13].
In aqueous solutions hydrophobic tails are collected inside the micelle and only
hydrophilic heads are exposed to the aqueous phase.

In spite of the clear understanding of thermodynamic background of the
micelles formation [7,14], there is no kinetic theory at present, which can predict both
cluster formation (doublets, triplets and so on) below CMC and transition to the
micelle formation above the CMC in surfactant solutions based on their
aggregation/disaggregation rates.

Aggregation and disaggregation of single molecules and clusters of surfactant
molecules is a complex phenomenon, which is still to be understood. The theory of
aggregation (coagulation) of colloids was proposed by Smoluchowsky [15] and
further developed in [16], where disaggregation of colloids was introduced.
Application of such approach to surfactant solutions is referred to as a quasi-chemical
approach [13].

Theoretical models have been suggested, which allow evaluation of the
relaxation times associated with micellar solutions. A two-state model [17-18]
considers a monomeric state and an associated state consisting of all species larger
than the monomer unit. This model describes only the fast process (temperature-jump,
pressure-jump, stopped flow) and makes the assumption that the rate constant for
association and dissociation of the monomer from the micelle is independent of the
size of micelles. A theory of relaxation applicable for both slow and fast processes has
been developed [19-21] using a quasi-chemical approach. However, transition process
from monomolecular to micellar state in surfactant solutions was not considered in

these publications: it was taken for granted that the micelles formation already took



place. It was a reason why the value of CMC has not been determined in [19-21]
based on the aggregation/disaggregation model adopted in [19-21].

The aim of this paper is to establish the aggregation model, which predicts the
formation of clusters (doublets, triplets and so on) in non-ionic aqueous surfactant
solutions below the CMC and micelles formation above the CMC. The quasi-
chemical approach is used below.

In this part we briefly summarize the known theoretical results relevant to the
quasi-chemical approach of the micelles formation [13], [16], [22]. The terminology

used in [16], [22] is adjusted below for the consideration of surfactant solutions.

Let n,?), i=1,2,3,...be the number concentration of clusters with 7,2,3, ...
initial molecules at the moment 7. The rate of aggregation of two clusters of sizes i

and j in one bigger cluster of size itj is a, mn;, where a;;, i, j =1,2,3,... are

corresponding aggregation rates. The rate of disaggregation of the cluster of size i+j

into two smaller clusters of sizes i and j, respectively, is b, .n, ., where b;; i, j

i,j i)
=1,2,3,...are disaggregation rates. Aggregation/disaggregation rates satisfy the
following symmetry conditions: a;;=a;; i, j =1,2,3,..., b;=b;; i, j =1,2,3,....
Using the above notations development over time of cluster concentrations can
be written as [16], [22]:
dn,

k-1

1 0
dt E;\Pi,k—i _;\Pk,ii k= 1,2,3,..., (1)

where ¥, =a, nn, —b, n, .

The first sum in the right hand side of Eq. (1) represents all
aggregation/disaggregation events with cluster those sizes range from / to k-7 (the
total flux to the state £ from all possible states i<k), while the second sum in the right
hand side represents all aggregation/disaggregation events with clusters those sizes
range from k to oo (the total flux from the state £ to all states i>k).

System of differential equations (1) can be rewritten in a more conventional

form as

k-1 k-1 w ©
n
k _
a,.nn._, — bi ki _nkzak,ini +zbk,ink+i9 k= 192’39“' - (2)

1
dt 20 7 . 25 7 i=1 i=1

It is possible to show that the latter system of differential equations satisfies

the condition of conservation of the total number of surfactant molecules in the



system under consideration at any aggregation/disaggregation rates a;j, i, j =1,2,3,...,

bij, i,j =1,2,3,..., which satisfy the symmetry conditions:
D kn =N, (3)
k=1
where N is the initial number concentration of single surfactant molecules.
Let n= an be the total number of aggregates. Using Eq. (2) it is possible to
k=1
conclude that
_:__Z(aljnlnj 1] l+j) (4)

ljl

Let us consider the steady state solution of the system of Egs. (2), that is,

lkl k-1

0=— 2 azk MMy _%Zbik i Zakznl +Zbk1nk+z’ - 1’2’3"" (5)

i=1 i=1 i=1

The important conclusion obtained in [13], [22] is as follows: the steady state
solution of the system (5) corresponds to the minimum of the free energy of the

system under consideration.

Models of aggregation/disaggregation

Below we distinguish between clusters (doublets, triplets, and so on, with
number of surfactant molecules smaller than in micelles) and micelles itself. Four
different aggregation/disaggregation models are considered below. It is shown that
only one of these models, Model C, results in a transition from low sized cluster
formation to the micelles formation at and above some critical concentration of
surfactant molecules. All other models show a continuous increase in averaged cluster
size with the increase of the surfactant concentration.

Model A (Fig. 1, Al and A2): aggregation/disaggregation of surfactant
molecules according to this model occurs via exchange by one molecule at the time
between clusters/micelles as shown in Fig. 1 (A1 and A2) there only single molecules
can be connected/disconnected to/from any cluster (including micelles if any). This
model corresponds to that proposed in [19-21] and generally accepted now.

According to Model B (Fig. 1, B1 and B2), aggregation/disaggregation of

clusters of any size can take place.



Connection/disconnection of clusters/individual surfactant molecules go in a
symmetrical way according to Models A and B.

With Model C aggregation/disaggregation of clusters (or micelles if any)
occurs asymmetrically: clusters of any size can aggregate but only single molecules
can leave clusters or micelles. Fig. 1 (C1 and C2) shows that clusters of different sizes
can be connected into a new bigger cluster/micelle but only single molecules can
disconnect from the cluster/micelle.

Usually Models B and C are excluded from the consideration arguing that
there is a strong bimodal distribution (single molecules and equilibrium micelles) in
surfactant solutions above the CMC, concentration of submicellar clusters is small
and therefore contribution of cluster/cluster interaction could be neglected. It is true
for solutions close to equilibrium at concentrations far above the CMC. However, we
consider the equilibration process, which started from the solution, where only
monomers are present. Therefore, presence of small clusters is inevitable and should
be taken into account. Moreover, even in the solutions close to equilibrium at
concentrations close to CMC the contribution from the small clusters in the relaxation
processes is sometimes very important [23,24].

With Model D aggregation/disaggregation of clusters (or micelles if any)
occurs also asymmetrically: only single molecules can join clusters but clusters of any
size can disaggregate. Fig. 1 (D1 and D2) presents this situation.

Being aware that the probability of realization either Model B or D is rather
small, because in this case several intermolecular bonds should be broken
simultaneously, we still consider these Models for the sake of completeness.

Analytical solutions and numerical simulations below show, that in the case of
Models A, B, and D equilibrium distribution of doublets, triplets and so on develops
continuously with concentration and does not undergo a transition to the micelles
formation at any concentration.

Situation is completely different (see below) in the case of the Model C (Fig.
1, C1 and C2): equilibrium distribution of low sized clusters (doublets, triplets, and so
on) is possible only at concentrations below some critical. Above this critical
concentration the system undergoes a transition to the micelles formation which
results in the formation of a new very distinct bimodal distribution. The latter means

that this critical concentration is the CMC.



In the case of pure Brownian aggregation «, ,, i,j=/,2,3,...are determined by

Smoluchowsky [15,25] as

=2"—T[i+iJ(ai va,), ©)
Y 3ula a

where k is the Boltzmann constant, T is the absolute temperature, p is the dynamic
viscosity of dispersion medium or solvent in the case of surfactant solutions.
Following Smoluchowsky [15,25] it is assumed further that in Models B and C
collisions occurs mainly between particles of close sizes and therefore for these
models a;;=apc=8kT/3u. Obviously for Models A and D collision occurs mainly
between particles of different size. It was assumed that in this case a;;=const=a,>apc.

Disaggregation rates b, ., i,j=1,2,3,...depend solely on the interaction energy

iy
between clusters and these coefficients are also assumed independent of the cluster
size. That is, in all four models below aggregation/disaggregation rates are assumed to
be constant, a; and by, respectively, independently of the cluster size.

Model A.

According to this model only single molecules can connect/disconnect to/from

clusters.

All possible events with a cluster of size k, k=1,2,3,4,... are as follows:

e connection of one molecule to a cluster of k-7 size, which results in an increase of
n; value; the reaction rate of this process is a4. However, at k=2 the reaction rate

1S 2ay ;

e disconnection of one molecule from a cluster of size k+7, which results in an

increase of n; value; the reaction rate of this process is b, or 2b,4 at k=1,

e disconnection of one molecule from a cluster of size &, which results in a decrease

of ni value; the reaction rate of this process is b ;

e connection of one molecule to a cluster of size &k, which results in a decrease of ny

value; the reaction rate of this process is a4 or 2a4 at k=1.

Taking all these events into consideration the following system of equations

can be deduced from the general system (2)



dn

71 =—-amn— aAnlz +b,(n—n)+b,n,

d; (7
d_lk = a i+ bAnk+1 - bAnk—aAnknl, k= 2’374""

with conservation condition of conservation of the total number of particles (3).

Under steady state conditions the left hand sides of Eqgs. (7) should be set to
zero. Let fi=ny/N, k=1,2,3, ... be the fraction of clusters of size k, and a=a,N/b, be
the dimensionless concentration. Using these notations system of Eqgs. (7, 3) under

steady state conditions takes the following form

O=of \f\+ fin =SS S, k=23, ... (8)
Skf, =1 ©)

Solution to system of Egs. (8), (9) is deduced in Appendix 1 (Egs. (A1.10)-(A1.11)):

1

Ji= a+05++a+0.25

k-1
a

Ji= ,k=2,3,...
Y la+05+a+025]

It is possible to conclude using Eq. (11) that f,(a), k=2,3,4,...dependencies go

(10)

(11)

from zero at @=0 to zero at @¢—»co via the maximum value (see Appendix 1 for details)

at

2
_kl k=234,. (12)

a
k ,max H
4

and that maximum value is equal to

(k _ l)kfl

W, k:2,3,4,... (13)

fk,max = 4
Dependencies fi(a), k=1, 2, 3, ... according to Egs. (10, 11) are shown in Fig.
2. Note, a is the dimensionless concentration. Fig. 2 shows that there is no restriction

on concentration in the Model A. Let us introduce F(a) =73} f, . It is easy to see that
k=1

the average cluster size, <k>=1/F(a). Using Egs. (8)-(9) we can conclude that the

averaged cluster size in the case under consideration is <k >=0.5++/a +0.25 . That



is, <k> is an increasing, convex function of the dimensionless concentration, o, and

this dependency does not have any inflection point.

That is, there is no CMC and there is no transition to the micelles

formation in the Model A.
Model B.
All possible events with a cluster of size k are as follows (Fig. 1, B1 and B2):

e connection of one cluster of size i to a cluster of k-i size (i=1,2,...k-1), which

results in an increase of n; value; the reaction rate of this process is ap;

e disconnection of a cluster of size k from a higher cluster, k+i, i=1,2,..., which
results in an increasing of n; value; the reaction rate of this process is bp. If i=k
then this reaction results in a formation of 2 clusters of k size, this means this

reaction rate is 2bp in this case;

e disconnection of cluster of any size from the cluster k size, i=1,2,.., k-1; reaction
rate is bg. However, at i=k/2 the reaction rate is 2bp. Hence, the cases of even and

odd k should be considered separately;

e connection of clusters of size k and i and i=1,2, ... reaction rate is a. If clusters are

of the same size &, then reaction rate is 2ag.

Eq. (2) now can be rewritten as

dn < 2 -
1 _
> =-—n,a, E n.—agzn, +by, E n, —byn, +byn,
i=1 i=1

2k-1

dny _ 4y nn,  +Bn? _kbn, —a.n wn—an2+b wn—b 2kn+bn
d - 2 i 2k—i 2 k B"" 2k B""2k i B""2k B i B i B4k
t i=1 i-1 i—1 io1

dl’l a 2k o0 5 o0 2k+1
2%l _ 9s _ _ _ _
g 2 Znin2k+1—i kbgn,, ., aBn2k+lzni Aghyyyy + bBZni by zni +bgny, .,
t i1 i=1 i=1 i=1
k=1,2,3,... (14)

with the conservation condition of the total number of particles (3) satisfied.

Under steady state conditions and using fraction of clusters of size &, fy=ni/N,
k=1,2,3, ... and the dimensionless concentration, a=agN/bp, as in the Model A, the

latter system becomes:



O=—of f ~of + [~ fi+f,

0= S S fot 5 Mo =S =+ [ =2+

2k+1

a 2
0= Ezfifzkn—i _kf2k+1 _ngzkuf _%“12 + f - Zf, + f4k+2
i=1 i=1

k=1,2.3,... (15)
with the conservation law (9).

The system of Egs. (15), (9) has exactly the same solution as the Model A,
which is given by Egs. (10), (11). The latter can be checked by the direct substitution
of Egs. (10), (11) into system of Egs. (15), (9).

The latter means that there is no restriction on concentration in Model B. That
is, there is no CMC and there is no micelles formation according to both Model B
and Model A.

Model C.

According to this model any two clusters of different sizes can be connected in

a new bigger cluster but only single molecules can leave clusters (Fig. 1, C1 and C2).
All possible events with a cluster of size k, k=1,2,... are as follows:

e connection of one cluster of size k-i to a cluster of i size (i=1,2,..., k-1), which

results in an increase of n; value; the reaction rate of this process is ac=asz;

e disconnection of one molecule from a cluster of size k+1, which results in an
increase of n; value; the reaction rate of this process is bc=b,. Disconnection of
one molecule from any doublet results in a creation of 2 single molecules, this

means, the reaction rate of this process is 2b¢;,

e connection of a cluster of size k to any other cluster of i size (i=1,2,3,...), which
results in a decrease of n; value; the reaction rate of this process is ac. If i=k then

the reaction rate is 2ac;

e disconnection of one molecule from a cluster of size £, which results in a decrease

of nyvalue; the reaction rate of this process is bc.

System (2) in this case transforms into



dn = =
1 _ 2
= =—acn, E n,—agn, +b, E n,+b.n,,
i=l1 i=2

dn, 1 & 1+ (=1 <
d_k =4 > nn,_ + ac#ni —beny —acn, Y n;—acn; +beny, k>1
t i=1 i=1

(16)

Under steady state condition system (14) can be rewritten as

0= —acnIZni —aen? +b.(n—n)+b.n,,
- ; (167)

& LR G
0= EaCZnink_i —b.n, —a.nn _T"cnk +ben,,,, k>1
i=1

where n = Zni is the total number of clusters including single molecules (clusters of
i=1

size 1). Using dimensionless concentrations introduced as

z, =Nnya./2b. = f,a/2, k=123,.. the latter system of equations and the

conservation law (3) can be rewritten as:

0=-22z-22"+(z-2)+z,
S 3-(=D*
O:ZZIAZ]H—Z]C—2ZkZ—(—)Z§+ZkH, k>1 (17)
i=l1
0 . a
iz, =—
L i=1 2
where Z=ZZ£..

i=1
Below system of algebraic Eqs. (17) is simplified as follows: it is ignored that
the aggregation of two equal sized clusters results in a twice higher reaction rate, that

k
3= .
2

. are omitted in first and second equations of the

. 2
is, terms 2z,

system of Eqgs. (17), respectively. This is done to make it possible to get an analytical
solution of Egs. (17). Using direct numerical simulation of the system of Egs. (16) we
show (see below) that our conclusions based on a simplified the system of Eqgs. (16)

remain valid.

Using these simplifications the system of Eqs. (17) becomes:

10



=) zz —z —2zz+z.,, k>1 (18)

Note, both systems of Egs. (17) and (18) independently satisfy the

conservation condition of the total number of particles.

Second equations of the system of Eqs. (18) can be summarized over & from 2

to infinity, which results in

o [k
0= Z(Zzizki —Zp T 2ZkZ + Zk+1) =

=2 \i-l (19)
z’ —(Z—Zl)—ZZ(Z—Zl)+(Z—Zl —Z2)=—ZZ +2zz -z,
Using Eq. (19) the system of Egs. (18) can be rewritten as
2
zZy\=zZz—zZ
z, =2zz, —(z—zl)
k-1
Zpn =2, 122,z _ZZ,‘Z/H‘a k>1 (20)

i=1

i=1

Let us try to find the solution of the system of Egs. (20) in the following form

k+1

+8,.z", k=123,.., (21)

Z, ==8,.2

where §,, k=123,... are unknown coefficients. Substitution of expressions (21)

into first three equations of the system of Egs. (20) shows, that (a) solution in the
suggested form (21) really exists and (b) unknown coefficients should satisfy the

following relation
k-1

Se =288, k=234,.. (22)
i=l

with the initial condition:

Sl :1: (23)

11



which follows from the first Eq. (20) (see Appendix 2 for details).

Let us multiply both sides of Eq. (22) by 2*, k=1,2,3,.. . After summation over

k from 1 to infinity this gives:

o k-1

S.z" = ZZ(Siz")(Sk_izkf"): Y (z)+z.

0
k=1 k=1 i=1

where Y(z)= ZS .z" . The latter equation can be rewritten as
k=1

o0

Y(z)=Y2(z)+z (24)

If we take into account condition Y(0)=0, which follows from the definition of Y(z),

then the solution of Eq. (24) is
Y(z):l— 1. (25)

This solution is defined only if
2<0.25. (26)

Let us substitute solution in the form (21) into the last equation of the system
(20), which gives after some transformations (see Appendix 2): Y(z) =%, or, using
Eq. (25),
1-4z=1-« (27)
It is easy to see from the latter equation that solution exists only if & <1, or

n<be
ac

If N>b¢/ac then the equilibrium solution does not exist and formation of clusters of an

infinite size starts. That means,

be _ cme (28)

ac
in this model.

That is, the Model C results in the existence of CMC, which is determined

by Eq. (28). Below CMC equilibrium clusters form: doublets, triplets and so on and

12



cluster size distribution is similar to that in the Models A and B. Above CMC system
under consideration can not be any more in equilibrium and formation of micelles

starts.

Distribution of fraction of clusters below CMC calculated according to Egs.
(A2.6) is given in Fig. 3. The average cluster size, <k>, is as follows:

<k>:£: L
2z 1—-al/2

. The latter dependency is an increasing but concave function at

concentrations below CMC. As soon as concentration reaches CMC, cluster size
changes from 2 to infinity. That is, CMC can be considered as an “inflection point”

and this gives an important hint for the subsequent consideration.

According to the consideration above the formation of micelles of an infinite
size starts above CMC. In our computer simulation below we introduce an
equilibrium number of individual surfactant molecules in a micelle, X, which is used

as a parameter in our calculations below.
Model C: computer simulations.

Computer simulations are carried out to solve the kinetic Egs. (2) in the case

of the Model C:

dfk = f;{ k-1 o o
d_T = EZ;; Ai,k—ififk—i - 7; Bi,k—i - % Z;; Ak,ifi +ZI: Bk,ifk+z‘ > k= 1’293"'

(29)
where t=tb is the dimensionless time, with initial conditions

£0)=1, £(0)=0,i=234,.. (30)

Coefficients Aij and Bij are selected as follows:

I, if i<\, J<¥N, and i# ],

4, =42, if i=j, and <N, (31)
0, if >N, or  j=N,

and
1, if i=1, or j=1, and i+#],

B, =12, if i=1l, and j=1, , (32)

2
0, if i>1, and j>1.

13



where X is the equilibrium number of individual surfactant molecules in a micelle.
The latter choice of coefficients means that any two clusters of size below & can
aggregate, however, if the resulting cluster includes more than N surfactant molecules
then this cluster is not equilibrium one and surfactant molecules can only leave this
cluster one at the time until the equilibrium number of molecules in the cluster, ¥, is
reached.

Transient behavior and equilibrium solution (at #—) of Egs. (29)-(32) are
discussed below. Solutions depend on both the dimensionless concentration of
surfactant molecules, ¢, and the equilibrium number of molecules in micelles, X .

Transient behavior of dimensionless concentration of clusters is presented in
Fig. 4, calculated according to Egs. (29)-(32) at the dimensionless concentration a=15
and the equilibrium number of individual molecules in micelles, N=200.
Concentration a=15 according to our previous consideration should be well above the
CMC.

Fig. 4 shows the time evolution of cluster sizes according to Model C. After initial
lag time a bi-modal size distribution forms, which develops in time.

In Fig. 5 the equilibrium distribution of dimensionless concentration of clusters on
dimensionless concentration of surfactant molecules is presented calculated according
to Egs. (29)-(32) at NX=200. Calculations are carried out at a=1.5 (close to the
dimensionless CMC), a=15 (the same as in Fig. 4), a=150. Concentrations of
micelles progressively increases with concentration, while the distribution of low

sized clusters remains almost unchanged.

In Figs. 6 and 7 dependences of averaged cluster size on dimensionless
concentration are presented for two cases =200 (Fig. 6) and N=50 (Fig. 7). In both
figures these dependences have an inflection point between 1 and 1.5, which

corresponds to the CMC in dimensionless units.
Model D.
All possible events with a cluster of size k are as follows:

e connection of one molecule to a cluster of k-7 size, which results in an increase of

ni value; the reaction rate of this process is ap=ay;

14



e disconnection of a cluster of size k from a higher cluster, k+i, i=1,2,..., which
results in an increasing of n; value; the reaction rate of this process is bp=bp. If

i=k then this reaction rate is 2bp;
e disconnection of cluster of any size from the cluster k size; reaction rate is bp;

e connection of one molecule to a cluster of size k, which results in a decrease of n;

value; the reaction rate of this process is ap.

Eq. (2) now can be written as

dn
1 _ 2
I —apn, —apnn—>byn, +byn, +byn
dﬂ 2k
2k —
” =apnn,, ,—kbpyn,, —ayn,n, +bDn—bDZni +b,n,, k=1,2,3,...(33)
i=l
dl’l 2k+1
2k+1 __
dr apmny, —kbpny, . —aphy, . n +byn—b, zni +bphy s
i=1

with the conservation condition of the total number of particles (3).

Using fraction of clusters of size k&, fi=mi/N, k=1,2,3, ..., dimensionless
concentration, a=apN/bp and the dimensionless time 7 =tb the latter system

becomes:

ji——af A f LA S f(0)=1

P fos M=ol fi+ f =SS+ fue Su@=0

dfzk“ ~f, fo Ko oS+ S =S fans Fun©=0

k= 1,2,3,...

with the conservation law (9).

Direct numerical solution of this system of differential equations was
undertaken. Only equilibrium solution of the latter system (that is solution at 7 — ©0)

are discussed below.

Figs. 8 and 9 show results of our calculations. In Fig. 8 dimensionless
concentration of clusters is presented. This figure shows that according to the Model

D the concentration of clusters goes via its maximum value at n=2 (doublets),

15



concentration of doublets increases and the distribution becomes wider with
concentration. However, there is no transition to micelle formation at any

concentration.

In Fig. 9 dependence of the averaged cluster size on concentration is
presented. This dependence is the convex function and does not have any inflection
point in the whole range of concentrations. The latter observation confirms that there

is no transition to micelle formation according to the Model D.
Conclusions

Four possible models of cluster formation in surfactant solutions are
considered. It is shown that only one of these models shows a transition to the
micelles formation at concentration above some critical, which corresponds to CMC.
Three other models show a continuous increase in an averaged cluster size with

concentration and do not show transition to micelles formation.

Model A (Fig. 1, Al and A2): aggregation/disaggregation of surfactant
molecules occurs via exchange by one molecule at the time between clusters/micelles.

Model B (Fig. 1, B1 and B2), aggregation/disaggregation of clusters of any
size can take place.

Connection/disconnection of clusters/individual surfactant molecules go in a
symmetrical way according to Models A and B. The equilibrium cluster
concentrations are identical in the case of these two models and do not show transition
to the micelles formation at any concentration.

With Model C (Fig. 1, C1 and C2) aggregation/disaggregation of clusters (or
micelles if any) occurs asymmetrically: clusters of any size can aggregate but only
single molecules can leave clusters or micelles.

With Model D (Fig. 1, D1 and D2) aggregation/disaggregation of clusters (or
micelles if any) occurs also asymmetrically: only single molecules can join clusters
but clusters of any size can disaggregate.

Solutions and numerical simulation below show, that in the case of Models A,
B, and D equilibrium distribution of doublets, triplets and so on develops continuously
with concentration and do not undergo transition to the micelles formation at any

concentration.
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Situation is completely different in the case of the Model C (Fig. 1, C1 and
C2): equilibrium distribution of low sized clusters (doublets, triplets, and so on) is
possible only at concentrations below some critical. Above this critical concentration,
CMC, the system undergoes a transition to the micelles formation. If the surfactant
concentration is above the CMC then the system does not have an equilibrium
solution and shows a transient behavior, which results in the formation of a new very
distinct bimodal distribution: low sized clusters (single molecules, doublets, triplets

and so on) and micelles.
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Appendix 1
Model A. Solution of system of Egs. (6,7).

Let us determine

f=>r (Al.1)

k=1

Taking definition (A1.1) into account and

['e]

Shi=ffi Sha=f=fi-fo Lha=f

k=2
after summation of all Egs. (6) over k from 2 to infinity the following equation is

obtained

fr=aof’ (A1.2)

From Egs. (6) at k=2 one can conclude using Eq. (A1.2)
fi=a’f? (A1.3)
From Egs. (6) at k=3 one can conclude using Eq. (A1.3)
fi=a’f? (A1.4)

From Egs. (A1.2)-(A1.4) using Egs. (6) it is possible to conclude that for any k=2,3,4,

fi=a'fr, k=23.. (A1.5)

and the only unknown value is f; , which should be found using Egs. (7) and (AL.5).

Combination of these equations results in
D ka* fF =1 (A1.6)
k=1

Differentiation of Eq. (A1.6) with respect to a shows that f;'(a)<0 that is f;(@) is a

decreasing function of dimensionless concentration ¢. It is easy to see that f;(0)=1

should be satisfied.
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Solution of Eq. (A1.6). In order to solve Eq. (A1.6) the following function Q(x) is

k

0 0 k=
introduced Q(x) =Y x =—"—, Q'=>k
k=1 k=1

b
- X

1

Using of; as x results in

Q) =Y @) =% (A7)
and
Q’zgk(afl)"" =%gka Lk =%, (A1.8)

where at the last step Eq. (A1.6) is used.
It is easy to calculate the first derivative using Eq. (A1.7) in a different way as

1

Q=——— (A1.9)
(1-af)’

Comparing Egs. (Al1l.8) and (A1.9) results in the following equation for f;

determination

dT_ v

f 1 (I_OJ 1)2

Solution to the latter equation, taking into account that f;=1 at a=0 results in

1
= Al.10
U a+0.5+va+0.25 ( )
Now from Egs. (A1.5) and (A1.10)
ak—l
k=234,. (A1.11)

Ji = ,
“ e +05+Ja+0.25]"

The total number of particles and the averaged number of particles in clusters are

N

and <k>=0.5++a+0.25, respectively.
0.5+ +0.25

From Eq.(A1.11) we conclude, that f;, £=2,3, ...dependencies on & go from

zero at =0 via maximum value to zero at ¢—co. Maximum values are reached at
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2 —
O ax :u, k=23,..
’ 4

and that maximum value is equal to

) (k- l)k—l
maxfk (a) - fk (ak,max) - (k + 1)k+1 ’

k=23,..

(A1.12)

(A1.13)
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Appendix 2
Model C. Solution of the system of Egs. (18).
In this section we show that expressions (19)-(21) give the solution of the
system of Egs. (18).
Let us compare
z, ==8,,2"+8.z", k=123,. (A2.1)
at k=1 with the first equation of the system (18)
z,=z-2" (A2.2)

1
Comparison gives S, =1 and §, = ZSiSi =1. Hence, expression (A2.1) and

i=1
k-1
S, =288, k=234,.. (A2.3)
i=1

is valid at k=1 and the first equation of system (18) is satisfied.
Substitution of the Eq. (A2.1) into the second equation of system (18)

Z,2, (A2.4)

k-1
=z, +2zz, —

i=1

gives

k+2 k+1 _ k+1 k k+2 k+1
=8,,2" + 8,z ==8,,z +8,z" =25,z +25,z" —

k-1 k-1 k-1 k-1
k+2 k+l1 k+1 k
ZSi+1Sk—i+IZ + ZSHlSk—iZ + zSiSk—i+1Z _ZSiSk—iZ :
i=l

i=1 i=1 i1
or

k-1 k-1 k=1
Zz{_ S 285, +2Si+1Sk—i+lj|+Z|:2Sk+l -25, _zSi+1Sk—i _ZSiSk—i+l:|+

i=1 i=1 i=1

(A2.5)
The latter equation should be zero at any z, this means that all three expressions in
square brackets should be equal to zero. Expression in the third square brackets is
equal to zero according to the definition Eq. (A2.1).

The expression in the first square bracket of Eq. (A2.5) can be rewritten as:
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= k
=Sy T 28, + ZSi+1Sk—i+1 = =8, +285, + ZSjSk—j+2 =
i=1 j=2
k+1
= =8 +28,, + szSk—j+2 =280 = =S84y 28, + 84, =285, =0
j=1
The expression in the second square bracket of Eq. (A2.5) can be rewritten as

k-1 k-1 k k-1

28,25, _ZSHlSk—i _ZSiSk—H—l =28, -25, _szSk—jH _ZSiSk—H—l =
i=1 i=1 j=2 i=1
k k k
= 2Sk+1 _2Sk _ZSjSk—jJrl +Sk _zSiSk—m +Sk = 25k+1 _ZZSjSk—jH =0
=1 i=1 =1

according to Eq. (A2.3). This means that solution of system (18) is really given by
Egs. (19)-(21).
Substitution of relations (A2.1) into the left hand side of the third equation of

system (18) gives

i kz, = i k(— S,z +8.z" ) = —i k(S,lek+1 )+ i k(Skzk ) =

k=1 k=1 k=1 k=1

= —i (k—1)(S,2* )+ ik(Skzk)z - ik(Skzk )+ i(Skzk )+ ik(Skzk):
k=2 k=1 k=2 k=2 k=1

(Skzk): F(z)

=S12+i(Skzk)=

k=2 k=1
From system (18) we can now find

2 2 3 3 4
zy=z-z", z,=z"-2z°, z;=2z"-5z

or

fi=2(z-2)/a, f,=20z"-22")a, f =22z -5")a (A2.6)
2

wherez =-2"%

Distribution of volume fraction of clusters below CMC is given in Fig. 3.
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FIGURE LEGENDS

Fig. 1

Disaggregation/aggregation kinetics according to Models A (Al and A2), B (B1 and
B2), C (C1 and C2) and D (D1 and D2).

Model A

Al: disaggregation A, —>A,TA;, n=2,34...

A2: aggregation Ay+A1— Ap, n=1,2,34...

Model B
B1: disaggregation A;+j—>Ai+A;, 1,j=1,2,3,4...

B2: aggregation Ai+A;—>Ajj, 1,j=1,2,3,4...

Model C
C1: disaggregation Ap+1—>AntA|, n=2,3,4...

C2: aggregation Ai+A;—A;j, 1,j=1,2,3,4...

Model D
D1: disaggregation A1 —>Ait+A;, 1,j=1,2,3,4...

D2: aggregation A,+A;—> Api, n=1,2,34...

Fig.2
Models A and B. Fractions of clusters f,, k=1,2,3,4according to Egs. (8)-(9) as
function of dimensionless concentration, o, under equilibrium conditions. No
restriction on concentration.
1 11, single molecules,
2 />, doublets,
3 f3, triplets,
4 f4, quadruplets.

Fig.3

Model C. Fractions of clusters f,, k =1,2,3according to Eqs. (A2.6) as functions
of dimensionless concentration, a, under equilibrium conditions at concentrations
below CMC (CMC=1 in dimensionless units).

1 /1, single molecules,

2 />, doublets,
3 13, triplets,

Concentration in the range 0<a<l1.
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Fig. 4
Model C. Transient behavior of dimensionless concentration of clusters, af  , at

different moments of dimensionless time, 7. Dimensionless concentration a=15 and
the equilibrium number of molecules in micelles X=200.

1 =1

2 =10
3 =18
4 =26
5 =38
6 =57.5
Fig. 5

Model C. Equilibrium distribution of concentration of clusters on dimensionless

concentration of surfactant molecules,o, at =200

1 a=1.5 (close to the dimensionless CMC)
2 a=15 (the same as in Fig 4)
3 a=150

Fig. 6

Model C. Averaged cluster size on dimensionless concentration. Inflection point is
close to 1.5 and corresponds to the dimensionless CMC. X=200

Fig. 7

Model C. Averaged cluster size on dimensionless concentration. Inflection point is
close to 1.3 and corresponds to the dimensionless CMC. X=50

Fig. 8
Model D. Dimensionless concentration of clusters on the dimensionless concentration,
a.
1 a=1
2 a=10
3 a=100
4 o=1000
Fig. 9

Model D. Dependence of averaged cluster size on concentration, o.

26



Fig. 1

D2

27



0.15 -

0.1 -

0.05

Fig. 2

28



Fig. 3

L

I I

0 01 02 03.04 05 06 07 08 09 1

29



30



o,

0.05 -
0.045 -
0.04 -
0.035 -
0.03 -
0.025 -+
0.02 -
0.015
0.01 4
0.005 -

™.

Fig. 5

101

201

301

31



<k>

Fig. 6

32



<k>

Fig. 7

00

33



51

41

31

21

1"

Fig. 8

34



<k>

Fig. 9

30

25

20

15

10

35



