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I Introduction. 

Micro-organisms are important for both human health and to industry so the 

fed-batch cultivation of microbial strains, often over expressing recombinant or 

natural proteins, to high cell density has become an increasingly important technique 

throughout the field of biotechnology, from basic research programmes to large-scale 

pharmaceutical production processes (Hewitt et al., 1999). The scale-up of such a 

process is usually the final step in any research and development programme leading 

to the large-scale industrial manufacture of such products by fermentation (Einsele, 

1978). It is important to understand that the process of scaling-up a fermentation 

system is frequently governed by a number of important engineering considerations 

and not simply a matter of increasing culture and vessel volume. Therefore, it is 

perhaps surprising when the large-scale does not perform as well as the small-scale 

laboratory process. It is often observed that the biomass yield and any growth 

associated products are often decreased on the scale-up of an aerobic process (Enfors 

et al., 2001). For Saccharomyces cerevisiae, the biomass yield on molasses increased 

by 7% when the process was scaled-down from 120 m3 to 10 l even when a seemingly 

identical strain, medium and process were employed (George et al., 1993). In an E. 

coli fed-batch recombinant protein process, the maximum cell density reached was 

found to be 20% lower when scaling-up from 3l to 9 m3 and the pattern of acetic acid 

formation had changed. (Bylund et al., 1998). During another study (Enfors et al., 

2001), the performance of a recombinant strain of E. coli during fed-batch culture was 

found to vary on scale-up from the lab-scale to 10-30 m3 industrial bioreactors. This 

included lower biomass yields, recombinant protein accumulation and surprisingly 

perhaps a higher cell viability. These findings are typical of those found when scaling-
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up most fermentation processes yet only a few mechanisms have been presented that 

can satisfactorily explain these phenomena.  

 

In this Chapter, we will briefly discuss the main engineering considerations 

involved in fermentation scale-up and then critically review those mechanisms 

thought to be responsible for any detrimental change in bioprocessing at the larger-

scale. Though it addresses mainly E. coli fed-batch fermentations, much of the 

discussion also applies to batch and other single celled aerobic microbial 

fermentations too.  

 

II Engineering Considerations Involved in Scale-up 

A. Agitator Tasks in the Bioreactor. 

 

       The agitation system in the bioreactor provides the liquid motion that enables many 

different tasks to be fulfilled.  An example of a typical stirred bioreactor is shown in 

diagrammatic form in Figure 1. It is important to understand the interaction between the 

fluid motion, the agitator speed and the power input into the bioreactor and these tasks.  

It is also necessary to know how a change of scale affects these relationships.  Many of 

these aspects can be studied without carrying out a specific bioprocess and these 

physical aspects most relevant to bacterial fermentations are listed in Table 1.  Table 2 

sets out those aspects that are specific to the organism being grown and will usually be 

different for each case. The more important of these aspects with respect to scale-up are 

discussed later. 

 

       The physical aspects in Table 1 have been discussed extensively for conditions 

relevant to a wide range of organisms elsewhere (Nienow, 1996; Nienow, 1998; 
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Nienow and Bujalski, 2004).  Here, their relevance to microbial fermentations for 

which the viscosity essentially does not go much higher than that of water is discussed, 

e.g. bacteria and yeast. Thus viscous polysaccharide and filamentous systems are 

excluded from consideration in this Chapter. With such low viscosities, the flow in the 

fermenter is turbulent from a 5 L bench bioreactor to the largest scale, i.e. Reynolds 

number, Re = LND2/ > ~ 104 where L is the growth medium density (kg/m3),  is its 

viscosity (Pa s), D is the impeller diameter (m) and N, its speed (rev/s).  For scale-up 

purposes, as long as the flow is turbulent, the actual value of the Reynolds number does 

not matter and turbulent flow theories can be used to analyse the fluid mechanics in the 

bioreactors across the scales.  The topics listed in Table 1 will be considered first for 

such flows.  

 

1. Mass Transfer of Oxygen into the Broth and Carbon Dioxide out. 

 

The transfer of oxygen into a fermentation broth has been studied since the 

1940s when ‘submerged fermentations’ were first established. The topic was recently 

reviewed by Nienow (2003). The overall oxygen demand of the cells throughout the 

batch or fed-batch fermentation must be met by the oxygen transfer rate and the 

demand increases as long as the number of cells is increasing. Roughly, for every 

mole of O2 utilised, 1 mole of CO2 is produced, i.e the respiratory quotient, RQ  1 

(Nienow, 2006). Thus, a maximum oxygen transfer rate must be achievable and this 

rate depends on the mass transfer coefficient, kLa (1/s), and the driving force for mass 

transfer, C, since 

OUR= kLa. C    Eq. 1 
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The value of kLa is similar for both O2 transfer from air to the broth and CO2 

from it. For oxygen transfer, the driving force conceptually is the difference between 

the oxygen concentration in the air bubbles and that in the broth, which must always 

be held above the critical dO2 value throughout the fermenter for the duration of the 

process. In a similar way, the dCO2, must be kept below that which will lead to a 

reduction in fermentation rate or productivity.  

 

It has been shown many times (Nienow, 2003) that in low viscosity systems, 

kLa is only dependent on two parameters. These are, firstly, the total mean specific 

energy dissipation rate imposed on the system, gT )( (W/kg) and secondly vs (m/s), 

the superficial air velocity (= (vvm/60)(volume of broth)/(X-sectional area of the 

bioreactor). gT )( and vs must together be sufficient to produce the necessary kLa 

where,  

     )()( sgTL vAak     Eq. 2 

 

This equation applies independently of the impeller type and scale and  and  are 

usually about 0.5  0.1 whatever the liquid. On the other hand, A is extremely 

sensitive to growth medium composition (Nienow, 2003) and the addition of antifoam 

which lowers kLa or salts which increase it, may lead to a 20 fold difference in kLa for 

the same values of gT )(  and vs. Typical values of gT )(  are up to ~ 5 W/kg and for 

the air flow rate about 1 volume of air per volume of growth medium (vvm). Since the 

value of kLa is similar for both O2 and CO2 transfer, provided scale-up is undertaken 

at constant vvm (or close to it), the driving force for transfer in of O2 and of CO2 out 

will remain essentially the same across the scales. In this case, since vvm scales with 
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fermenter volume and vs scales with its cross-sectional area, vs increases. There is 

some debate as to whether gT )( should include a contribution from the sparged air ( 

vsg where g is the acceleration due to gravity (9.81 m2/s)), which only becomes 

significant on scale-up at constant vvm. This approach should also eliminate problems 

with high dCO2 on scale-up (Nienow, 2006). 

 

2. Heat Transfer 

 

The oxygen uptake rate (OUR in (mol O2 /m
3/s)) largely determines the metabolic heat 

release Q (W/m3) (RQ  1) which is proportional to it (Van't Riet and Tramper 1991), 

i.e., 

Q  4.6  105 OUR   Eq. 3 

 

This cooling load has to be removed by heat transfer at an equivalent rate given by, 

 

 Q = U A     Eq. 4 

 

where U is the overall heat transfer coefficient (which is hardly affected by the agitation 

conditions),  is the difference between the temperature of the cooling water and the 

broth temperature (it being critical to control the latter) and A is the heat transfer area 

available. At the commercial scale, heat transfer is often a problem as Q scales with the 

volume of the reactor, i.e., for geometrically-similar systems with T3 (bioreactor 

diameter, T m)  whilst cooling surface area scales with T2.  Hence, on the large-scale for 

such systems, cooling coils are often required and sometimes cooling baffles. The 

inability to meet the cooling requirements at the large-scale (especially for example, in 
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high cell density (>50g/L dry cell weight) fed-batch fermentations) is a very serious 

problem because it is extremely expensive to resolve.  

 

B.  Unaerated Power Draw P (or Mean Specific Energy  

Dissipation Rate, T W/kg). 

 

These parameters are both dependent on the impeller power number, Po 

(dimensionless). Po depends on the agitator type, and in the turbulent regime for any 

one type, it is essentially constant, regardless of the diameter, D (m), relative to the 

bioreactor diameter, T or the speed, N and of the bioreactor size (scale) provided 

geometric similarity is maintained across the scales (Nienow, 1998).  The power input, 

P (W), into the bioreactor imparted by the impeller is given by, 

 

 53DNPoP L    Eq. 5 

 

 The mean specific energy dissipation rate, )( T  (W/kg) from the impeller is the given 

by, 

 

 VP LT  /)(     Eq. 6 

 

where V is the volume of growth medium in the reactor (m3).  The maximum local 

specific energy dissipation rate, max)( T , is close to the impeller, is very high relative to 

the mean and depends on the agitator type.  Also, the Kolmogoroff or micro-scale of 

turbulence, K, which is often considered as an indicator of the potential for mechanical 

damage to cells (see below for more details) is given by, 
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 4/1)/)((   TK    Eq. 7 

 

where )( T is the local specific energy dissipation rate and  is the kinematic viscosity, 

 10-6 m2/s when the cell/medium suspension is water-like. 

 

 The traditional impeller for fermentation processes has been the Rushton turbine 

(Figure1) and it has a relatively high power number ( ~ 5). Recently, it has been clearly 

shown to have many weaknesses (Nienow, 1996) and it is being superseded by the 

impellers shown in Figure 2, each of which can be considered an example of a generic 

type (Nienow, 1996; Nienow and Bujalski, 2004). All these impellers have lower Po 

values and so can easily replace a Rushton turbine running at the same speed, torque 

and power by one of a larger diameter which gives certain processing advantages as set 

out below. 

 

C. Aerated Power Draw Pg (or Aerated gT )( W/kg) 

 

Particularly with the Rushton turbine, upon aeration at around 1 vvm, the 

power Pg, (and therefore )/( 53DNPPo Lgg   and )/()( VP LggT   ) falls 

significantly, typically by 50%. The relationship with D/T, scale and impeller speed is 

very complex and difficult to predict (the commonly-used Michel and Miller 

correlation is dangerously inappropriate (Nienow, 1998; Middleton and Smith, 2004), 

especially at large-scale and with multiple impellers (Nienow, 1998)). Thus, it is 

difficult to obtain gT )( , which is a critical requirement for calculating mass transfer 

on scale-up. Also, it has safety implications since, if air flow is lost, the power drawn 

by the impeller doubles. Therefore, often a much more powerful motor is installed in 
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order to cope with this possibility. The advantage of the up-pumping, high solidity 

ratio (SR = plan area of impeller/ area of circle swept out by its blade tips) hydrofoil 

(Figure 2b) and the hollow blade impeller (Figure 2c) is that impellers of both these 

types lose very little if any power on aeration (Nienow, 1996; Middleton and Smith, 

2004; Nienow and Bujalski, 2004). Thus, they finesse the problem of the loss of 

power found with the Rushton impeller. Finally, it is worth noting that during the 

earlier stages of a fermentation, lower gT )(  values will suffice for achieving the 

required O2 transfer, so a variable speed drive motor for the impeller gives additional 

flexibility and a reduction in running costs. 

 

D. Flow Close to the Agitator-single Phase and Air-liquid 

 

The turbulent flow field close to the agitator depends on its shape and 

determines its power number and the mechanism by which the air is dispersed and 

hence the aerated power draw too. This process is described in detail elsewhere 

(Nienow, 1998; Middleton and Smith, 2004) and is beyond the scope of this Chapter.  

 

E. Variation in Local Specific Energy Dissipation Rates, T W/kg 

 

The region of max)( T  where mechanical damage due to agitation is most 

likely to occur is also close to the agitator and )/()( max TT   is similarly 

dependent on the agitator type. It is difficult to determine and values of the order of 

about 20 to 70 have been reported for Rushton turbines with similar values for other 

impellers (Nienow, 1998; Kresta & Brodkey, 2003). The significance of max)( T  for 

damage to micro-organisms is discussed below. Well away from the agitator,  is 
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much less than 1. These differences in  have important implications for the feed 

location of nutrients, pH control chemicals, etc., as discussed below. 

 

F. Air Dispersion Capability 

 

 The flow close to the agitator also determines whether the agitator speed is 

sufficient to disperse the air. A variety of air dispersion conditions can be usefully 

identified (Figure 3). If the air flow rate is too high, the air flow dominates the bulk 

flow pattern and the air is poorly dispersed (Figure 3a). This condition is known as 

flooding and is to be avoided. For Rushton turbines, the correlation (Nienow, 1998), 

 

    (FlG)F = 30(D/T)3.5(Fr)F   Eq. 8 

 

enables the minimum agitator speed required to prevent flooding, NF to be calculated.  

In this equation, Fr is the dimensionless Froude number, N2D/g, proportional to the 

ratio of the inertial to buoyancy forces; and FlG is the dimensionless gas flow number, 

QG/ND3, proportional to the ratio of the air flow rate, QG (m3/s), from the sparger to 

the pumping capacity of the agitator.  This correlation also works quite well for 

hollow blade agitators too but because of their lower Po, to draw the same power at 

the same speed, a larger diameter must be used so that they can handle much more air 

before flooding (Nienow, 1996, 1998). It can also be shown that on scale-up at 

constant T  and vvm, impellers are much more likely to be flooded. A similar 

equation, which leads to similar conclusions (Nienow, 1998), applies to the complete 

dispersion condition, NCD (Figure 3c). 
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For axial flow hydrofoil impellers, a similar correlation has  not been 

established. However, down pumping high solidity hydrofoils (Figure 2a), made of a 

larger diameter as described above, are somewhat similar to the Rushton turbine; 

whilst the large diameter up-pumping configurations (Figure 2b) perform similarly to 

the hollow blade impellers and are significantly better than Rushton turbines, 

especially as NCD  NF (Nienow and Bujalski, 2004). 

 

G. Bulk Fluid- and Air-phase Mixing 

 

The mixing of the air (gas) phase is important for mass transfer (Nienow, 

2003) but is beyond the scope of this chapter. On the other hand, the ability of the 

agitator to mix the contents of very large (up to 400 m3) fermenters with multiple 

impellers compared to the bench-scale is the most challenging and important of all the 

scale-up issues. A measure of this difference is the parameter, the mixing time m (s), 

which indicates after the addition of a tracer how long it takes to be evenly dispersed 

throughout the fermenter. For a fermenter containing broth to a height H (m) =T, 

 

        3/13/1
T

3/2
m T/DT9.5     Eq. 9 

 
 

Equation 9 also holds for aerated conditions if gT )(  is used. It implies for fermenters 

with broth up to an aspect ratio, AR = 1, at constant gT )( , all impellers of the same 

D/T ratio give the same mixing time which larger D/T ratios can reduce. Most 

importantly, m increases with (linear scale)2/3. For fermenters with AR > 1, with 

multiple impellers (Nienow, 1998),  
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43.2)/( DHm      Eq. 10 

 

Equation. 10 indicates the great sensitivity of mixing time to fill height and this 

increase in m would be even greater with fed batch fermentations when towards its 

end, a large portion of the broth often does not experience any direct agitation 

(Nienow, 2005). The use of multiple high solidity ratio axial flow hydrofoils reduces 

the mixing time by about a factor of 2 compared to radial flow impellers and this has 

led to their use (Nienow, 2005). Unfortunately, in the down-pumping mode (Figure 

2a), they lose power (though not by as much as the Rushton impeller) and more 

importantly, they are prone to two-phase flow instabilities which leads to a large 

variable loading of the impeller drive motor. These problems are eliminated by the 

use of up-pumping configurations (Nienow and Bujalski, 2004), which also helps 

reduce foam formation (Boon et al., 2002). The implications for this loss of 

homogeneity on scale-up and small-scale experiments to mimic it are discussed 

below. It is also important to consider where additions are made. Though ‘final’ 

mixing time does not depend on where addition is made, addition near the impeller in 

the regions of  >> 1 dramatically reduces the maximum concentration of the 

additive as it mixes whilst addition onto the top surface where  << 1 and which is 

much easier and therefore preferred industrially, results in very high local 

concentrations of additives for some considerable time before they are dissipated 

(Nienow, 2006). The latter feed position magnifies the lack of homogeneity at the 

large-scale and significantly increases the chances of a different biological 

performance compared to the small.  
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H Main Differences Across the Scales 

 

If these considerations are assessed for the changes that occur across the scale, the 

following points emerge. Firstly, mass transfer requirements can be met at similar or 

even lower specific power inputs or gT )( . Thus, 
max,

)( gT  will be the same or less 

and since even at the bench scale, the cells are very small compared to the size of the 

bioreactor, if ‘shear damage’ is not an issue at the small scale, then it should not be on 

scale-up. This aspect is discussed in more detail below. Heat transfer is not an issue 

provided sufficient area for cooling is provided. However, the mixing time is always 

very significantly longer and therefore the spatial and temporal homogeneity is 

generally much worse on scale –up. Again, this aspect is discussed in detail below.  

 

III Process Engineering Considerations for Scale-up 

 

A. Fluid Mechanical Stress or so Called ‘Shear Damage’. 

 

Anecdotal reference to the damaging effects on cells of fluid mechanical stress 

or so called 'shear damage' are frequently made to explain poor process performance 

when mechanical agitation and aeration are introduced into a bioreactor as compared 

to the non-agitated and non-sparged conditions in a shake flask or microtitre plate 

(Thomas, 1990).  Thomas (1990) suggested that cells might be considered to be 

unaffected by fluid dynamic stresses if they were of a size smaller than the 

Kolmogoroff microscale of turbulence, K.  The microscale of turbulence is related to 

the local specific energy dissipation rate T by Eq. 7. Therefore, if T is 1 W/kg in a 

water like medium, K ~ 30 m.  However, even though bacterial cells, of size ~1 - 
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2m, are well below the Kolmogoroff microscale of turbulence, it has been reported 

that the mean cell volume of two strains of E. coli and of two other species of 

bacteria, increased linearly with impeller speed during continuous cultivation with a 

concomitant increase in intracellular potassium and sodium ion concentration (Wase 

and Patel, 1985; Wase and Rattwatte, 1985).  Toma et al. (1991) also studied the 

effect of mechanical agitation on two species of bacteria, Brevibactarium flavium and 

Tricherderma reesii. In each case, they found that under conditions of high agitation 

intensity during batch culture, both growth and metabolism, were inhibited.  They 

even coined the term 'turbohypobiosis' to describe this phenomenon and suggested 

that excessive turbulence may cause this inhibition by damaging the membranes of 

the cell. However, in these cases, the results are difficult to interpret because any 

changes in agitation and aeration rate will also effect levels of dissolved oxygen (dO2) 

via Eqs. 1 and 2 and depending on the critical dO2 value, this parameter may also 

affect biological performance.  Thus, any experimental protocol for investigating the 

impact of fluid dynamic stress on cell response should be undertaken under steady 

state (continuous culture) conditions, including the control of dO2, if the cause of the 

change is to be determined conclusively.  Therefore in the cases discussed above the 

results were probably based on poor experimental design and their controversial 

findings may have been due to the lack of controlled dO2 (Wase and Patel, 1985; 

Wase and Rattwatte, 1985) or the use of the constantly changing conditions 

experienced during batch culture (Toma et al., 1991).   

 

Recently, studies concerning the impact of agitation and aeration (because 

animal cells are potentially more easily damaged by bursting bubbles rather than 

rotating impellers (Nienow, 2006)) on microbial fermentations have been carried out. 
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in a stirred tank bioreactor. The bioreactor was operated as a chemostat, with blending 

of sparged air and nitrogen to control the driving force. Thus, again via Eqs. 1 and 2, 

the dOs was controlled to a constant value. Firstly, the impact of high levels of 

agitation and aeration intensity (fluid mechanical stress) on E. coli fermentation 

performance were addressed as measured by standard microbiological techniques and 

the physiologically sensitive technique of multi-parameter flow cytometry (Hewitt 

and Nebe-von-Caron 2001, 2004; Hewitt et al., 1998). The initial work in glucose 

limited continuous culture at the 5L scale showed that agitation intensities, expressed 

as mean specific energy dissipation rates, T , up to 30 W/kg and aeration rates up to 3 

vvm, served only to strip away the outer polysaccharide layer (endotoxin) of the cells 

but did not lead to any significant change in the physiological response of individual 

cells which could lead to a detrimental change in bioprocessing. Estimates of the 

Kolmogoroff microscale of turbulence based on T , at 30 W/kg gives K = 13.5 m, 

well above the size of the cell (~ 1-2 m).  Even if the maximum local specific energy 

dissipation rate is used (~ 30 T ,), to estimate K, a value of ~ 6 m is obtained, still 

greater than the cell size. This agitation intensity is an order of magnitude or more 

greater than those typically found on the industrial scale and the range of aeration 

rates tested was much higher than those normally used, thus eliminating the 

possibility that damage due to fluid mechanical stresses may occur under the normal 

range of operating conditions. 

 

Further studies were also undertaken during continuous cultivation with the 

Gram +ve bacterium Corynebacterium glutamicum (Chamsartra et al., 2005) with 

essentially similar results.  In this case, it was shown that variations in agitation, 

aeration rate, or dO2 concentrations down to ~1% of saturation do not cause a 
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significant change in physiological response of C. glutamicum even though the mean 

cell size was slightly reduced (Figure 4 and 5). 

 

Similar work with the larger (~7 m) Saccharomyces cerevisiae showed that 

under steady state conditions, specific power inputs in the range 0.04 to 5kW/m3 (K 

= 16 m) were found to have little effect on either cellular morphology or physiology 

even though at the upper end of the agitation range there was a small, but transient 

measurable effect on cell division (Boswell et al 2002). This was probably because 

budding cells may be more susceptible to hydrodynamic stress or that as a cell 

increases in size during division (~10-12 m) it approaches the scale at which the 

Kolmogoroff microscale of turbulence may have an effect. Since the microscale of 

turbulence decreases with increasing power input and impeller speed, it is expected 

that such an effect is more likely at high impeller speeds. With this system, at the 

highest impeller speed used, the microscale is less than 20 m i.e. within the range 

that might interact with budding yeast cells. Therefore this work indicates that the 

potentially deleterious effects of high agitation rates can again be discounted provided 

T  < ~ 5.0 kW/m3) for propagation cultures. 

 

All three of these studies concluded that any change in the biological 

behaviour of non-filamentous microbial cells within the T  range representing the 

normal operating window for mechanical agitation found in bioreactors as compared 

to the relatively-gentle behaviour found in shake flasks (Buchs et al., 2001) is not due 

to fluid dynamic stresses, whether arising from agitator generated turbulence or 

bursting bubbles. In all cases, any changes in biological performance were only found 

under the most extreme of agitation intensities at values far above the normal 
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operating range required to satisfy the mass transfer requirements. A recent review of 

the issues involved in large scale, free suspension animal cell culture in stirred 

bioreactors reached essentially the same conclusions (Nienow, 2006). 

 

It is also worth noting that the work reported above was carried out with 

Rushton turbines, so-called high shear impellers. Even so damage was not found. It is 

also now understood that many of the so-called low shear impellers have higher 

values of )/()( max TT   than Rushton turbines. The concept of ‘low shear 

impellers’, a description which is intended to imply that they cause less damage to 

cells than other impellers, is essentially a manufacturers sales pitch (Simmons et al, 

2007). Overall, since all non-filamentous cell types have been demonstrated 

experimentally not to be ‘damaged’ by the fluid mechanical stresses found in 

bioreactors, an alternative explanation for any detrimental change in bioprocessing 

performance at the large-scale must be found.  

 

B. Operational Constraints at the large-scale 

 

The fed-batch, high cell density cultivation of microbial strains is the preferred 

industrial method for increasing the volumetric productivity of such bacterial products 

as nucleic acids (Elsworth et al., 1968), amino acids (Forberg and Haggstrom, 1987) 

and heterologous recombinant proteins (Riesenberg and Schulz, 1991). The salient 

feature of this type of process is the continuous feed of a concentrated growth limiting 

substrate, usually the carbon source, characterised by an ever increasing level of 

energy limitation and an ever decreasing specific growth rate. This type of feeding 

regime avoids problems associated with catabolic regulation, oxygen limitation and 
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heat generation that can occur during unlimited batch processes (Minihane and 

Brown, 1986). Importantly, the build up of toxic concentrations of metabolic bi-

products via so-called 'overflow' metabolic routes can also be avoided. Overflow 

metabolism has been reported for Saccharomyces cerevisiae. (George et al., 1993) as 

well as for Escherichia coli and occurs at glucose concentrations above ~30 mg/L. 

For E. coli, an accumulation of an inhibitory concentration of acetic acid occurs via 

the redirection of acetyl CoA from the Krebbs cycle, during fast aerobic growth when 

a rapidly metabolisable carbon source, such as glucose, is available in excess 

(Andersson, 1996). For S. cerevisiae, overflow metabolism is known as the ‘Crabtree 

Effect’ and the inhibitory bi-product is ethanol but produced in a similar way to 

acetate in E. coli. In batch fermentation, overflow metabolism can be avoided by the 

use of a slowly metabolisable carbon source such as glycerol (Elsworth et al., 1968), 

but the preferred method is the use of a fed-batch process where growth can easily be 

controlled by substrate feed rate (see Lee, 1996, for a comprehensive review). 

 

Although the optimal position for the addition of any feed in order to ensure 

its subsequent rapid dispersal is in the region near to the impeller of max)( T  which 

leads to the rapid reduction of the high concentrations in the feed towards the desired 

mean value, (Nienow, 1998, 2006), most large-scale industrial processes still use 

surface additions (because of concern for contamination, pipe blockage, mechanical 

stability and so on (Nienow, 1998)). Further, bioreactor configurations have 

traditionally been  designed to satisfy  oxygen mass transfer using radial flow Rushton 

turbines, with the inherent assumption that they were well mixed or if not, it was not 

important. Indeed, such a view is easy to understand as on-line measurements and 
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control actions appear to show near to steady state conditions or slow progressive 

changes in those parameters being measured.  

 

Around the mid-1980s, Kossen and co-workers using the concept of ‘regime 

analysis’, where the rate of oxygen uptake is compared with that of oxygen transfer 

and the level of dO2, suggested that, at the large scale, differences in dO2 would be 

found in batch fermentations (see Oosterhuis et al., (1985) for example).  Sometime 

later in the early 1990s, Enfors and co-workers came to similar conclusions for fed-

batch fermentations with respect to the nutrient feed (see for example, George et al. 

(1993)).  At around this time, it was shown that replacing Rushton turbines by high 

solidity ratio hydrofoil impellers which enhanced bulk mixing (spatial homogeneity) 

improved fermentation performance (Buckland et al., 1988),  

 

Only fairly recently, however has it been established experimentally that 

spatial and temporal chemical gradients exist in large-scale fed batch bio-reactors (Xu 

et al., 1999) where additions of a concentrated, often viscous, carbon source at a 

single point onto the top surface of the growth medium means that mixing times are 

high (>~50s even at the 20m3 scale (Vrabel et al., 2000)). Studies using computational 

fluid dynamics (CFD) based on Large Eddy Simulation (LES) also showed that 

considerable glucose gradients could be expected even when a standard 500 g/L 

glucose solution was fed to the liquid surface in a 22 m3 bioreactor fitted with four 

Rushton turbines (Enfors et al., 2001).  Such studies also showed that the region 

(compartment) around the top impeller would have a much higher glucose 

concentration when compared with the bulk (remainder) of the vessel (Figure 6). The 

use of LES also shows the temporal as well as the spatial concentration fluctuations of 
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the glucose concentration in the vicinity of the feed point. Indeed, this was confirmed 

experimentally showing that cells were frequently exposed to peak glucose 

concentrations several times higher than the mean in the addition zone (Xu et al., 

1999) and that spatially dependent concentration gradients exist in large-scale fed-

batch fermentation processes with a declining glucose concentration found with 

increasing distance from the feed point (Bylund et al., 1998). In laboratory scale 

bioreactors on the other hand, where much development work is done, mixing times 

are low (<~5s) and essentially significant temporal or spatial variations in 

concentration do not exist (Nienow, 1998). 

 

Additionally, at the large-scale, any pH controlling action is often based on the 

point measurement of local pH by a single probe situated adjacent to an impeller and 

hence in a well mixed, high )( T  region.  By contrast, the controlling agent, like the 

feed components, is usually added at the poorly mixed surface of the liquid.  

Additionally, the amount of controlling agent added is not continuous but added as a 

pulse, the volume of which is largely dependent on biomass concentration and  its 

relative metabolic activity and hence will vary throughout the duration of the process, 

whether batch or fed-batch.  The inherent inertia in such a system can lead to over 

feeding of the pH controlling agent and therefore zones of high and low pH, again 

with temporal fluctuations superimposed on the spatial ones. Indeed, such regions of 

fluctuating high and low pH have now been measured in 8 m3 bioreactors for animal 

cell culture (Langheinrich and Nienow, 1999).  

 

It is our contention that the composition of a cell’s micro-environment is a 

product both of the fluid dynamics and a cell’s physiological response to it, so cells 
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circulating around a large-scale bioreactor will experience rapidly changing micro-

environments. Therefore knowledge of if/how a cell reacts to such changes is 

essential if we are to understand the problems associated with bioprocessing on scale-

up.  

 

C. The Physiological Response of Cells to the Large-scale Environment. 

  

Complex networks of regulatory systems often known physiologically as the 

so called ‘stress responses’ are phenomena that have evolved to help micro-organisms 

withstand conditions when their immediate environment becomes sub-optimal for 

growth (Wick and Egli, 2004). However, descriptions and discussions regarding such 

responses are usually confined to the mainstream microbiological literature. It is only 

now that it is being understood that the chemical and physical heterogeneities found 

within a poorly-mixed large-scale bioreactor can cause microbial cells to alter their 

physiology as a response to these environmental stimuli (Enfors, 2004) and that this 

can have a detrimental effect on bioprocessing. Until recently any physiological 

response of microbial cells to changes in environmental conditions within a bioreactor 

was mostly measured indirectly by measurement of external variables outside of the 

cell. However, recent developments in the so called “omics” analytical technologies 

have allowed the direct measurement of internal variables within the cell. So it has 

now been shown that E. coli cells respond very quickly to changes in local glucose 

concentration known to exist within a large-scale bioreactor by the fast transcriptional 

induction of an alternative set of genes (Schweder et al., 1999). mRNA molecules 

associated with the expression of stress proteins, sensitive to oxygen limitation, are 

synthesised rapidly, when a cell passes through a local zone of high glucose 
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concentration (Figure 7). At the 20m3 scale, the overall biomass yield was reduced by 

approximately 24% as compared to an otherwise identical laboratory scale process 

and formate accumulated, to 50 mg/L. In this case, it was concluded that a high local 

glucose concentration induced local oxygen limitation so that acetate synthesis was 

not due to overflow metabolism but to mixed acid synthesis through fermentative 

metabolic pathways. Fermentative metabolism in E. coli differs in comparison to 

overflow metabolism in that formate, D-lactate, succinate and ethanol are produced in 

addition to acetate under anaerobic conditions. However, both acetate and D-lactate 

are re-assimilated much more quickly than formate when E. coli cells re-enter an 

oxygen sufficient zone, leading to an accumulation of formate in the culture medium. 

It was concluded that the repeated synthesis and consumption of these mixed acids in 

response to a cells exposure to oxygen sufficient/oxygen deficient zones was 

responsible for the lower biomass yields experienced at the large-scale (Xu, 1999).  

 

Proteomic and metabolomic techniques can also be used which can reveal 

post-transcriptional or post-translational events in cells, which cannot be revealed by 

transcriptomics alone. Using such sensitive molecular biological techniques 

investigations have shown that under such poorly mixed conditions, E. coli cells may 

induce one of a number of interlinked regulatory stress response pathways 

characterised by rapid increases in the concentration of certain intracellular signalling 

molecules, such as ppGpp and cAMP, as well as the induction of alternative sigma 

factors such as RpoS (Hoffman and Rinas, 2004; Schweder et al., 2004).  These 

changes often result in the transcription and expression of a number of stress proteins, 

the consequences of which can include the inhibition of DNA replication initiation, a 

reduction in rRNA synthesis and protein production.  In addition, glycolytic activity, 
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DNA metabolism and the synthesis of structural components may be greatly reduced 

allowing cells to survive conditions sub-optimal for continued growth leading 

inevitably to low biomass and product yields at the large-scale.  

 

D.  Small-scale Experimental Simulation Models of the Large-scale 

 

It has long been the goal of biochemical engineers to be able to quantitatively 

model and predict large-scale process performance from data obtained from small-

scale laboratory experiments. However, in general, mathematical models that are 

currently used to predict biomass production and protein synthesis during the scale-up 

of laboratory scale fermentation processes (Anderson et al., 1994) make two basic 

assumptions. Firstly, that throughout the course of a fermentation, a bacterial 

population is homogenous with respect to its physiological state and its ability to 

divide. Secondly, that the physiological state of a bacterial population is independent 

of the scale of cultivation. Such assumptions have now largely been shown to be 

invalid (Hewitt and Nebe-von-Caron 2001, 2004). The latter would still hold true if 

the large and the small-scale had identical process conditions but for the reasons 

discussed earlier this is very rarely the case. Techniques such as multi-parameter flow 

cytometry that make measurements on individual cells have now shown unequivocally 

that different physiological sub-populations exist and evolve throughout the course of 

many microbial fermentation processes (Hewitt et al.,1999, 2000; Enfors et al., 2001; 

Onyeaka et al., 2003; Sundstrom et al., 2004; Lopes da Silva et al., 2005; Reis et al., 

2005). For example, it was shown that during a 40 hr 5l laboratory-scale fed-batch 

process to grow E. coli W3110 to high cell density (>50g/L dry cell weight) that there 

was a progressive change in cell physiological state with respect to cytoplasmic 
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membrane potential and permeability (Figure 8). With ~16% of the population 

characterised as being dead at the end of the process and ~5% being in a fluctuating 

dormant state throughout (Hewitt et al., 1999). Other work has demonstrated a 

catastrophic drop (to ~ zero) in the number of cfu/ml in the middle of a fed-batch 

recombinant fermentation whilst all other measurements showed that the majority of 

the cells were viable and metabolising as normal (Sundstrom et al., 2003).  Therefore 

this type of study casts doubt on the use of mathematical models with the above 

assumptions for the reliable prediction of  biomass production and product yield on 

scale-up. So the only definitive way of finding out how an industrial process is going 

to perform remains to carry out actual large-scale trials of the final process which are 

often difficult and expensive to carry out. Additionally, when the results differ from 

the bench-scale, they are often difficult to interpret. Therefore, equipment and 

techniques that allow large-scale studies to be simulated at small-scale have become 

important research tools.  

 

For simulating the phenomenon of poor spatial and temporal homogeneity at 

the large-scale, a technique used is to divide the large-scale reactor into two 

compartments, firstly by Kossens and co-workers (Oosterhuis et al., 1985) and later by 

Enfors and co-workers (George et al., 1993).  The conditions established in each 

compartment depend on the type of poor mixing situation on the large-scale that is to 

be simulated. For fed-batch fermentations and for pH control heterogeneities 

associated with feed streams, these two compartments can represent an addition zone 

where the most severe pH and nutrient concentration gradients exist and the bulk 

region where the system can be considered to be essentially well mixed, so therefore at 

a much lower concentration with respect to the nutrient feed and pH. The relative size 
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of the addition zone in the simulation should be of the order of size of the region in 

which higher concentrations exist at the large-scale.  The size of this region may be 

estimated by intuition, by flow visualisation (again on the small-scale) or by 

computational fluid dynamics (Enfors et al., 2001). Typically, in the small-scale 

simulation, the addition zone is represented by a relatively small plug-flow reactor 

(PFR), and the bulk region by a stirred tank reactor (STR) (Amanullah et al., 2003). 

The volumetric ratio between these two reactors is equal to the estimated ratio of the 

addition zone to the bulk region in the large-scale reactor with the rate of circulation 

between them related to the circulation time of cells in the broth at the large scale due 

to agitation. 

 

 A similar approach is to use two stirred vessels side by side (STR-STR). This 

method has been particularly used to simulate dO2 inhomogeneities associated with 

the slow rate of mixing compared to oxygen utilisation. In this case, the volume of the 

well oxygenated region is typically made of the order of 25% of the poorly 

oxygenated region. The STR-STR and STR-PFR have been compared for batch 

fermentations of Bacillus subtilis with respect to pH and dO2 fluctuations (Amanullah 

et al., 2003). In both cases, significant differences were found compared to the well 

mixed case, which depended on the relative size of the 2 zones and the recirculation 

rate between them. However, it is not possible to say which is the best technique and 

both are only rather crude approximations of the real variations actually seen by the 

cells at the large-scale. 
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E.  Results from Small-scale Experimental Trials of  

Large-scale E. coli Fed-batch Processes. 

 

1. Experimental Set-up 

 

Recently, we have carried out a number of small-scale simulation studies of large-

scale fed-batch fermentations with E. coli. For this work a two-compartment reactor 

system (Hewitt et al., 2000; Onyeaka et al., 2003) was used (Figure 9). This system 

consisted of a stirred tank reactor (STR, the 5L fermenter) linked in series to a plug 

flow reactor (PFR). The STR consisted of a 5L cylindrical glass bioreactor (162 mm 

diameter x 300 mm total height), with an initial working volume of 2.5L rising to 4L 

at the end of the fermentation. The vessel was fitted with two 82 mm, six bladed radial 

flow paddle type impellers which were 80 mm apart, with the lower impeller situated 

80 mm above the bottom of the vessel. The vessel was also fitted with three equally 

spaced baffles, width 15 mm. The PFR was made up of a glass cylinder consisting of 

five equally sized sections each containing a set of removable stainless steel static 

mixer modules, each with 24 individual mixer elements to give a total of 120 mixing 

elements and a liquid volume of 544 ml (~14 – 22% of the total working volume).  

These elements were included in order to reduce radial concentration gradients, 

enhance oxygen transfer (where appropriate) and to encourage plug flow. Provision 

was made so that either the pH controlling agent, or the substrate or air, or all three, 

could be introduced at the inlet of the PFR as well as into the STR.  Medium was 

pumped through the PFR (the residence time in the PFR could be varied between 60 – 

110s) via a short length of silicone tubing. The PFR was thermally insulated along its 

length to avoid temperature gradients. All additions were made at 90o to the PFR flow, 
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again in order to minimise disturbances, via energy input, to the plug-flow 

characteristics of the reactor (George et al., 1993). Large-scale fermentations were 

carried out in a 30m3 cylindrical stainless steel bioreactor (2090 mm diameter x 9590 

mm total height), with an initial working volume of 20m3 rising to 22m3 at the end of 

the fermentation. The vessel was fitted with four Rushton turbines (diameter 690 mm) 

which were 1460 mm apart with the lower impeller 1110 mm above the bottom of the 

vessel. The vessel was also fitted with four baffles 90o apart, width 170 mm. 

Laboratory scale fermentations were started as batch cultures and an exponential 

feeding profile was calculated in order to maintain the growth rate below 0.3 /h from 

the following equation, 
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   Eq.11 

 

where F is the feed rate (L/h), s is the substrate concentration in the feed solution 

(g/L),  is the required specific growth rate (/h), Yxs is the maximum biomass yield on 

the limiting substrate (g/g), Xo is the total amount of biomass (g) at the start of 

feeding, m is the maintenance coefficient (g/g/h) and t is the time after feeding 

commences (h). Exponential feeding was started when the initial glucose had been 

exhausted. When the DOT had fallen to the 20% saturation level in the STR in all the 

small-scale cases, the feed rate was held constant for the remainder of the experiment. 

Large-scale fermentations were started as batch cultures and an exponential feed 

profile calculated as above was started 1 h after inoculation and continued for 8.5 hrs. 

This corresponded to a final feed rate of 180 L/h which was continued for a further 2.5 

hrs. This was then reduced to 170 L/h for the remainder of the fermentation. For all 
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fermentations, a synthetic medium (Hewitt et al., 1999; 2000) was used and they all 

ran for ~ 40 hrs. 

 

2. Experimental Results 

 
Firstly (Table 3), we compared the results obtained from a small-scale, well-

mixed, 5L E. coli W3110 fed-batch fermentation with those found from carrying out a 

similar fermentation at the 20 m3 scale where the pH and dO2 were controlled at the 

same values (Hewitt et al., 2000). However, at the 20 m3 scale, at similar levels of 

agitation intensity (expressed as W/kg), mixing times are much longer compared to 

the small-scale (see Eqs. 9 and 10 and for results in this 20 m3 bioreactor, Vrabel et 

al., 2000).  Thus, the spatial and temporal heterogeneity of the environment in the 

vessel increases and locally higher glucose concentrations are found near the addition 

point with concomitant lower dissolved oxygen concentrations (Enfors et al., 2001).  

Differences in pH were also observed between the region close to the addition point 

of the pH controlling agent and the bulk environment where pH is often measured.  At 

the 20m3 scale, counter-intuitively, relatively very few dead cells (as measured by 

flow cytometry) were found (< 0.5%) but the level of biomass was significantly less 

compared to the 5L scale (32 g/L compared to 53 g/L respectively). These differences 

in cell biomass and viability were ascribed to the physiological effect on the cells of 

the combination of the three main heterogeneities, viz., dO2, glucose and pH that 

occur simultaneously at the large-scale but not at all at the small-scale.   

 

In support of this explanation, the poor mixing was mimicked on the small-scale by 

using the STR-PFR scale-down experimental model (Table 4), the PFR representing 

the poorly mixed addition zone and the STR, the well mixed zone in the region of the 
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impeller. The ratio of the size of the PFR to the STR and the circulation time between 

them was based on the results from large-scale physical mixing time trials (Vrabel et 

al., 2000).  This scale-down configuration gave very similar results to those found at 

the large-scale when all three major heterogeneities, dO2, glucose (Hewitt et al., 2000) 

and pH (Onyeaka et al., 2003) were introduced into the PFR simultaneously (Table 

3).  From all of these studies, it was concluded that the STR-PFR scale-down model 

enabled the impact of the inherently poorer mixing found in large-scale fermenters to 

be satisfactorily mimicked at the bench-scale.   

 

However, these studies were carried out using the untransformed wild-type bacterial 

strain, E. coli W3110. So the work did not take into account the additional 

physiological stress imposed on a cell by having to synthesize a foreign protein when 

studying process performance on scale-up. It is known that the synthesis of foreign 

proteins at high concentrations exerts a severe metabolic stress on the host cell (Borth 

et al., 1998; Lewis et al., 2004). Therefore, it was decided to carry out a similar study 

with a recombinant E. coli BL21 (MSD3735) which contains a plasmid coding for an 

isopropylthiogalactopyranoside (IPTG) inducible, model mammalian protein, AP50. 

This recombinant system is further complicated because under normal growth 

conditions as used here, the protein is misfolded, accumulating in the form of 

insoluble, biologically inactive inclusion bodies in the cytosol of the cell. Relatively 

low values of agitation intensity, T  (~ 1 W/kg) and aeration rate (~1 vvm) were used 

so that it could be realistically assumed that none of any of the observed effects on 

biomass or viability could be ascribed to fluid mechanical stresses in the system. In 

this way, the effect of any physiological or physical stress imposed by the synthesis of 
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AP50 in addition to that imposed by scale of operation could be investigated (Hewitt 

et al., 2007).  

.  

It is clear that the expression of AP50 as insoluble inclusion bodies exerts a 

profound physiological stress on the host cell during high cell density fed-batch 

cultures; and that the extent of these effects are dependent on which combinations of 

the three major spatial heterogeneities associated with large-scale bio-processing (pH, 

glucose and dissolved oxygen concentration) are imposed (Table 5). However, the 

detrimental effect of AP50 production on viability and physiological response can be 

reduced by the introduction of a spatial or temporal chemical heterogeneity, the extent 

of which is again dependent on the number and type of heterogeneities imposed. This 

result is again probably related to the induction of the one of the interlinked regulatory 

so called ‘stress responses’ by a proportion of the cells as they pass through the 

chemically heterogeneous zone of the PFR, such that the resultant dormant cells have 

a reduced capability for AP50 production and are hence protected from the associated 

physical or physiological stresses (Hewitt et al., 2007).  

 

In the earlier work, simulating at the small-scale the impact of such heterogeneities on 

the large-scale performance of a fed-batch fermentation, data from an equivalent 20 

m3 commercial fermenter were available for comparison. For this work, such 

commercial scale data are not available. Therefore, it is not possible to say which of 

the three scale-down configurations best mimics performance at the large-scale.  
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IV Conclusions and Future Perspective 

 

The scale-up of single celled aerobic microbial fermentation processes is complicated 

and unpredictable process performance can result. However, this is not due to the 

introduction of fluid dynamic generated stresses (or so called ‘shear damage’), 

whether arising from agitator generated turbulence or bursting bubbles, rather it is 

because the large-scale fed-batch bioreactor provides a very dynamic environment 

with large spatial and temporal heterogeneities. Such environmental heterogeneities 

can induce multiple physiological responses in cells. These responses consume energy 

and resources such that biomass concentration as well as product yields can be 

reduced. These phenomena are not observed in well-mixed homogeneous laboratory-

scale reactors where much process development is done and their effects are difficult 

to model mathematically. Actual large-scale trials are expensive to carry-out and often 

not available to the small business or university. Therefore the  ability to obtain data 

on how a recombinant laboratory process may perform at the large-scale, dependent 

on feeding regime employed or controlling action taken, is invaluable for any detailed 

and informed development programme. From the work discussed here, it is clear that 

the scale-down two-compartment model can be used to study the impact of any range 

or combination of potential heterogeneities known to exist at the large-scale at 

relatively low cost. Unfortunately, such experiments cannot give precise predictions 

because the spatial and temporal heterogeneities are only a rather crude 

approximation of the real ones found at the large scale. It is probable that with 

increasingly sophisticated CFD becoming available, knowledge of the detailed 

concentration fields on the large-scale will become available (Schütze and Hengstler, 

2006). However, such information will be of limited use until there is either a much 
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increased knowledge of how cells will respond to such an environment or such 

conditions can be mimicked on the small-scale. The authors believe that for the 

foreseeable future, the experimental modelling approach set out here or a variant on it 

offers the best way forward. 
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Figure Legends. 

 

Figure 1. Schematic representation of multiple Rushton turbine impellers in a 

fermenter. 

 

Figure 2. Newer impellers: a) ‘Down-pumping, high solidity ratio hydrofoil’ 

Lightnin’ A315 (Po = 0.85); b) ‘Up-pumping, high solidity ratio hydrofoil’ Haywood 

Tyler B2 (Po = 0.85); c) ‘Hollow-blade’ Scaba 6SRGT (Po = 1.5).  

Figure 3. The flooding-loading-complete dispersion transitions for a Rushton turbine. 

a) -flooded; b) -loaded; c) -completely dispersed (Nienow, 1998). 

 

Figure 4. Operating parameters (agitator speed (rpm), aeration rate (vvm), %dO2,) 

during continuous cultivation of C. glutamicum MCNB 10025 and the resulting 

OD600nm, CDW g/L and c.f.u./ml (Chamsartra et al., 2005). 

 

Figure 5.  Scanning electron micrographs of samples taken from different conditions 

of ‘fluid mechanical stress’ during continuous cultivation:  (a) cells grown under 

‘standard’ operating conditions after 15 h (stirred at 410 rpm ( T = 1 W/kg), 1 vvm, 

40% dO2); (b) cells from a sample taken during growth under high intensity agitation 

at 33 h (stirred at 1,200 rpm ( T = 20 W/kg), 1 vvm, 40% dO2) and (c) cells from a 

sample taken during growth under high aeration rates at 51 h (stirred at 410 rpm ( T = 

1 W/kg), 3 vvm, 40% dO2) (Chamsartra et al., 2005).  
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Figure 6. Large Eddy Simulation of instantaneous glucose concentration in a 22 m3 

bioreactor fed with a 500 g/L solution at a rate of 180 L/h typically used in large-scale 

fed-batch processes. Four Rushton turbines and the location of the feed point are 

indicated. The simulation did not include the microbial consumption  of the glucose 

and can therefore only be used to illustrate mixing efficiency (Enfors, et al., 2001). 

 

Figure 7. Analysis of mRNA concentrations of four stress sensitive genes at three 

levels of the 22 m3 fed-batch culture of E. coli. The concentrations averaged from 

quadruplicate samples were normalized to 100% at the bottom port (Enfors, et al., 

2001). 

 

Figure 8. Density plots of cell samples taken at times 5hrs (a), 16hrs (b) and 36hrs (c) 

during a high cell density fed-batch fermentation with E. coli W3110 stained with 

propidium iodide (635nm) and bis-oxanol (575 nm) and analysed using multi-

parameter flow cytometry. Three main sub-populations of cells can be distinguished, 

corresponding to healthy cells (A), no staining, cells with no cytoplasmic membrane 

potential (B), stained with bis-oxanol; and cells with permeablised cytoplasmic 

membranes (C), stained with both propidium iodide and bis-oxanol (Hewitt et al., 

1999). 

 

Figure 9. Experimental set-up for scale-down simulation studies.  a) Large scale STR.  

Va is the addition zone where the most extreme concentration gradients are known to 

exist and Vb is the bulk region which can be considered to be well-mixed.  b) Scale-

down simulation equipment.  Here Va is represented by a 0.544L PFR and Vb is 

represented by a 4L STR (Hewitt et al., 2000). 
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Table 1. Physical aspects of the agitation/agitator requiring consideration (Nienow 

1998). 

 

Table 2. Biological aspects that are system specific (Nienow 1998). 

 

Table 3. Experimental protocol and summary of the results for the effect of dO2, 

glucose and pH fluctuations on fed-batch fermentations with E. coli W3110 (data 

from Onyeaka et al., 2003). 

 

Table 4. Summary of the  scale-down conditions for all of the PFR simulation studies. 

(Onyeaka et al., 2003). 

 

Table 5. Experimental protocol and summary of the results for the effect of dO2, 

glucose and pH fluctuations on fed-batch fermentations of the recombinant E. coli 

strain BL21 (MSD3735) (Hewitt et al., 2006). 



 45

Table 1.  

 

1) Mass transfer performance 

2) Heat transfer  

3) Unaerated power draw (or mean specific energy dissipation rate, T W/kg)  

4) Aerated power draw (or aerated gT )( W/kg)  

5) Flow close to the agitator-single phase and air-liquid  

6) Variation in local specific energy dissipation rates, T W/kg 

7) Air dispersion capability  

8) Bulk fluid- and air-phase mixing 
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Table 2. 

 
1) Growth and productivity 

2) Nutrient and other additive requirements including oxygen. 

3) CO2 evolution and RQ 

4) Sensitivity to O2 and CO2 concentration.  

5) pH range and sensitivity. 

6) Operating temperature range. 

7) ‘Shear sensitivity’. 
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Table 3.  

 
 

 
Experiment 

Glucose 
Feed 
Point 

NH4 
Feed 
Point 

Final 
% 

Viability** 

 

Final Dry 
Cell 

Weight 
g/L 

Air Feed 
to PFR at  

1 vvm* 

Residence 
time in 

PFR 

Well Mixed  
5L 

 
STR 

 
STR 

 
84% 

 
55 

 
- 

 
- 

PFR1 STR STR 95% 38 Yes 50s 
PFR2 PFR STR 97% 52 Yes 50s 
PFR3 PFR STR 89% 50 Yes 25s 
PFR4 PFR STR >99% 37 No 50s 
PFR5 PFR PFR 99% 32 No ~50s 
PFR6 PFR PFR 94% 16 No ~110s 
PFR7 PFR PFR/ST

R 
97% 24 No ~110s 

Large Scale STR STR >99% 35 - - 
 
In all cases the STR was also sparged at 1 vvm and agitated to keep dO2 in it >20%, a 
dO2 level which was also maintained everywhere in the well-mixed 5L and in the 
large-scale fermentation at the dO2 electrode. 
 

*1 vvm with respect to the PFR 
**With respect to cytoplasmic membrane permeability 
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Table 4.  

 

PFR1   -   a region of low glucose: pH~7. 

PFR2   -   a region of high glucose/ dO2: pH~7. 

PFR3   -   a region of high glucose/ dO2 but experienced for a shorter time: pH~7. 

PFR4   -   a region of high glucose/ low dO2: pH~7. 

PFR5   -   a region of high glucose/ low dO2: pH>7. 

PFR6   -   as PFR5 but for a longer time. 

PFR7   -   as PFR6 initially and after 28hrs reverting to PFR4. 

PFR8   -   a region of low glucose: pH~7. 

PFR9   -   a region of high glucose/ low dO2: pH~7. 

PFR10   -   a region of high glucose/ low dO2: pH>7. 
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Table 5.  
 

 
Experiment 

Glucose 
Feed 
Point 

NH4 Feed 
Point 

Final % 
Viability* 

 

Final Dry Cell 
Weight g/L 

Well Mixed 5L  
 not induced 

STR STR 95.1 48 

Well Mixed 5L 
induced OD550nm ~15 

STR STR 75 18 

PFR8 not induced 
 

STR STR 100 36 

PFR8 
induced OD550nm ~15 

STR STR 100 15 

PFR9 not induced 
 

PFR STR 99.9 41 

PFR9 
induced OD550nm ~15 

PFR STR 82.9 14 

PFR10 not induced 
 

PFR PFR 100 34 

PFR10 
induced OD550nm ~15 

PFR PFR 82.5 14 

In all cases the PFR was unaerated whilst the STR was sparged at 1 vvm and agitated 
to keep dO2 in it >20%. The residence time in the PFR was 60s 
*With respect to cytoplasmic membrane permeability. 
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Figure 1. 
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Figure 5. 
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Figure 7. 
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Figure 9. 

 

 

 

 

 

 

 

 

 


