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Abstract

This paper addresses a tracking problem for general nonlinear systems using model

predictive control (MPC). After approximating the tracking error in the receding hori-

zon by its Taylor series expansion to any specified order, an analytic solution to the

MPC is developed and a closed-form nonlinear predictive controller is presented. Dif-

ferent from other nonlinear model predictive control (NMPC), there is a built-in in-

tegral action in the developed scheme and the implementation issues are discussed.

Further more, it is pointed out that the proposed NMPC derived using approximation

can stablise the original nonlinear systems if certain condition, which can be met by

properly choosing predictive times and the order for Taylor expansion, is satisfied.

Simulation demonstrates the effectiveness of the proposed NMPC.
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1 Introduction

Approximation of nonlinear systems by series expansion provides a powerful technique

to tackle nonlinear systems. Series expansion linearisation theory is well established

but is strictly confined to dynamic analysis, locally to a single trajectory or an equi-

librium operating point, of smooth nonlinear systems. Frozen-input technique extends

local linearisation theory from a single equilibrium point to a family of equilibrium

points. This lays the foundation for several widespread control methods for nonlinear

systems such as gain scheduling. However there are two main shortcomings in these

techniques: One is that the linearisation is restricted to around equilibria, and the

other is that the stability property is mainly considered and little insight into other

dynamic behaviours is provided [1]. It was pointed out that while indicating stability,

the linearisation provides, in general, somewhat poor indication of the time response

of the original nonlinear system. Several approaches have been proposed to overcome

these shortcomings such as local model networks [2], local control networks [3, 4] and

velocity based linearisation [5]. In these approaches, the linearisation can be carried

out not only on equilibria but also on any operating point, and the transient dynamics

can be improved.

To develop model predictive control (MPC) for nonlinear systems, another ap-

proach to approximation of dynamics behaviours of a nonlinear system was adopted

in [6, 7], where instead of linearisation of a nonlinear system around equilibria or off-

equilibria, the output of a nonlinear system is approximated by high series expansion.

Although approximation of the output of a nonlinear system rather than the non-

linear system itself might render the stability analysis of the nonlinear system more

difficult, it can provide direct insight into other dynamic properties like transient re-

sponse. A nonlinear MPC (NMPC) algorithm was developed in [6, 7] using Taylor

series expansion.

Similar to other NMPC algorithms (for example, see [8, 9, 10]), a differential op-

timisation problem has to been solved for the NMPC algorithm developed in [6, 7],

which imposes two main obstacles in engineering implementation. One is the opti-

mality of the online optimisation and the other is the sampling time restriction. In

general, the on-line optimisation involved in NMPC is non-convex, which implies that

the optimisation procedure might be terminated at a local minimum. Consequently
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poor performance even instability might be resulted after the control sequence yielded

by the on-line optimiser is implemented. The on-line nonlinear optimisation also im-

poses heavy computational burden, which requires extensive computing power and

long sampling time in engineering implementation. For a system with fast dynamics,

this problem becomes even more challenging due to the fast sampling requirement.

The best way to address these difficulties arising in predictive control of nonlinear

systems is to pursue analytic approach, where it is intended to develop a closed form

NMPC and online optimisation is not required. In the NMPC algorithm in [7], the

optimality condition gives a set of highly nonlinear equations in terms of control and

various derivatives of control (depending on the order for Taylor series expansion). It

is very unlikely (if not impossible) to find the analytic optimal solution and actually

it is also very difficult to find numerical optimal solution by using nonlinear optimiza-

tion algorithms since it is, in general, non-convex. To obtain an analytic solution,

the constraint on the order of Taylor series expansion is imposed, that is, the control

order is limited to be zero, or the nonlinear system is only expanded by Taylor series

expansion to its relative degree [6]. In this case, the control effort appears linearly

in the optimality condition and there are no derivatives of the control effort due to

zero control order. Then the analytic solution for nonlinear MPC was found, and it

is also found that the nonlinear system is linearised by the derived analytic MPC law

and the relationship between this analytic nonlinear control law and feedback lineari-

sation was established in [11]. Similar idea was employed in [12, 13] independently

to develop analytic NMPC using Taylor expansion and the relationships between the

analytic control laws they developed and the feedback linearisation technique were also

explored. In all these studies, the control order is restricted to be zero and there is no

stability analysis for the developed algorithms.

The drawback of restricting the control order being zero is obvious. This implies

the control effort to be optimized in the receding horizon is constant, which is a very

restrictive requirement. In many cases, this implies that the nonlinear system can only

be approximated by Taylor series expansion to its relative degree. With this limitation,

it is understandable that poor performance might be resulted. Actually [14] shown

that a nonlinear system with high relative degree under the NMPC law developed in

this way is unstable, no matter how small the receding horizon is chosen.
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The first attempt to develop analytic solution of NMPC for arbitrary control order

was made in [6]. Since a set of highly nonlinear equations derived from the optimality

condition have to be solved to find analytic solution for MPC, two simplifications are

used: one is the control weighting is not included in the performance index and the

other is that control order is chosen as the difference between the order for Taylor ex-

pansion and the relative degree (the price for these two simplifications is that, unlike

the original NMPC algorithm [7], the analytic MPC law is not applicable for nonlinear

systems with unstable zero dynamics). Then an analytic NMC was derived on the as-

sumption that the control variables appear in the optimality condition linearly, which,

unfortunately, is not true for arbitrarily chosen Taylor expansion order. To find the

analytic solution for NMPC, a set of very complicated nonlinear coupling equations in

terms of control effort and its derivatives, which is derived from the optimal condition,

still has to be solved. The analytic solution of the nonlinear coupling equations and

then the closed-form NMPC for nonlinear systems approximated by Taylor series ex-

pansion to arbitrarily chosen order was found in [14]. Furthermore, the stability result

for analytic NMPC was first established, and the influence of the control order and

predictive horizon on the transient performance was investigated. This also implies

that the closed form MPC developed based on the Taylor series expansion can ap-

proach to the optimal MPC for original nonlinear systems with any specified accuracy.

This work was further extended to nonlinear systems with ill-defined relative degree

[15]. All the existing analytic NMPC algorithms are confined to affine systems.

This paper further develops a closed-form NMPC for general nonlinear systems

using the above output approximation technique. An analytic solution to NMPC for

the tracking problem of general nonlinear systems is presented, where the tracking

error in the receding horizon is approximated by its Taylor series expansion to any

order. Stability of the proposed NMPC is established. Different from the NMPC

schemes for affine systems, there is a built-in integral action in the control structure

proposed in this paper and the implementation issues are discussed.

4



2 Predictive control of general nonlinear systems

To simplify the notation and concentrate on the main contribution of this paper, only

single-input-single-output (SISO) nonlinear systems are considered and most of the

results developed in this paper are ready to extend to multivariable general nonlinear

systems. An SISO general nonlinear system can be described by




ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))
(1)

where x ∈ Rn, u ∈ R and y ∈ R are state, input and output respectively.

For the sake of simplicity, the following notation is introduced in this paper:

Dfx
h(x) =

∂h(x)
∂x

f(x, u) (2)

Dk
fx

h(x) =
∂Dk−1

fx
h(x)

∂x
f(x, u), for k > 1 (3)

and

DuDk
fx

h(x) =
∂Dk

fx
h(x)

∂u
, (4)

To develop our results, the following assumptions are imposed on the system (1):

A1: The general nonlinear system (1) is sufficiently differentiable with respect to time

to any order;

A2: f(0, 0) = 0;

A3: DuDk
fx

h(x) = 0, for k = 1, . . . , µ− 1, and DuDµ
fx

h(x) 6= 0, for all x and u

Assumption A1 implies that the nonlinear system (1) can be approximated by its

Taylor series expansion to any specified accuracy. Assumption A2 means that the

origin is an equilibrium of the nonlinear system when there is no control. Assumption

A3 is similar to the well defined relative degree for affine nonlinear systems, although,

as will be shown later, the derivative of the control is used in controller design for

general nonlinear systems.

Different from most of the conventional NMPC algorithms for nonlinear systems

[8, 9, 10], the tracking problem is considered in this paper, following [7, 14]. That

is, a predictive controller is designed such that the output, y, optimally follows an
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reference signal ω in terms of a given performance index. The most widely used

quadratic performance index is adopted in this paper, given by

J =
1
2

∫ T2

T1

e(t + τ)2dτ (5)

where T1 and T2 are the lower and upper predictive times respectively. e is the tracking

error, defined as

e(t + τ) = y(t + τ)− ω(t + τ) (6)

3 Tracking error approximation

Suppose that the output of the nonlinear system in the prediction horizon is approxi-

mated by its Taylor series expansion up to order r ≥ µ. One has

y(t + τ) ≈ y(t) + τ ẏ(t) + . . . +
τ r

r!
y[r](t), T1 ≤ τ ≤ T2 (7)

The derivatives of the output required in the approximation are given by

ẏ(t) =
∂h(x)

∂x
ẋ

=
∂h(x)

∂x
f(x, u)

= Dfx
h(x) (8)

and

ÿ(t) =
∂

∂x
(
∂h(x)

∂x
f(x, u))ẋ +

∂

∂u
(
∂h(x)

∂x
f(x, u))u̇

= D2
fx

h(x) (9)

The last equality follows form the notation in (2), (3) and Assumption A3. Similarly,

one has

y[k](t) = Dk
fx

h(x), for k = 3, . . . , µ (10)

and

y[µ+1](t) =
∂Dµ

fx

∂x
f(x, u) +

∂Dµ
fx

∂u
u̇

= Dµ+1
fx

h(x) +DuDµ
fx

h(x)u̇ (11)

6



Differentiation of y[µ+1] with respect to time t and substitution of the system’s dy-

namics gives

y[µ+2](t) =
∂Dµ+1

fx
h(x)

∂x
f(x, u) +

∂Dµ+1
fx

h(x)

∂u
u̇ +

∂DuDµ
fx

h(x)

∂x
f(x, u)u̇ +

∂DuDµ
fx

h(x)

∂u
u̇2 +DuDµ

fx
h(x)ü

= Dµ+2
fx

h(x) +DuDµ
fx

h(x)ü + z1(x, u, u̇) (12)

where

z1(x, u, u̇) =
∂Dµ+1

fx
h(x)

∂u
u̇ +

∂DuDµ
fx

h(x)

∂x
f(x, u)u̇ +

∂DuDµ
fx

h(x)

∂u
u̇2 (13)

Repeating the above procedure, the higher order derivatives can be calculated until

the rth order derivative, which is given by

y[r](t) = Dr
fx

h(x) +DuDµ
fx

h(x)u[r−µ] + zr−µ−1(x, u, u̇, . . . , u[r−µ−1]) (14)

where zr−µ−1(x, u, u̇, . . . , u[r−µ−1]) is a complicated nonlinear fucntion of x, u, u̇, . . . , u[r−µ−1].

Invoking (8-14) into (7), the output in the receding horizon is approximated by its

Taylor expansion to the order r as

y(t + τ) ≈ τY , T1 ≤ τ ≤ T2 (15)

where

τ =
[

1 τ . . . τr

r!

]
(16)

and

Y (t) =
[

y[0](t) y[1](t) · · · y[µ](t) y[µ+1](t) y[µ+2](t) · · · y[r](t)
]T

=




h(x)

Dfx
h(x)
...

Dµ
fx

h(x)

Dµ+1
fx

h(x)

Dµ+2
fx

h(x)
...

Dr
fx

h(x)




+




0

0
...

0

DuDµ
fx

h(x)u̇

DuDµ
fx

h(x)ü + z1(x, u, u̇)
...

DuDµ
fx

h(x)u[r−µ] + zr−µ−1(x, u, u̇, . . . , u[r−µ−1])




(17)
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In the same fashion, the command ω(t + τ) in the receding horizon can also be

approximated by its Taylor series expansion to order r as

ω(t + τ) = τω (18)

where

ω(t) =
[

ω[0](t) ω[1](t) · · · ω[µ](t) ω[µ+1](t) · · · ω[r](t)
]T

(19)

4 Nonlinear predictive controller

After approximating the output of the nonlinear system (1) and the reference to be

tracked by series expansion, the tracking error then can be calculated by

e(t + τ) = y(t + τ)− ω(t + τ)

≈ τ (Y (t)− ω(t)) (20)

Thus the predictive control performance (5) can be approximated by

J ≈ 1
2

∫ T2

T1

(
Y (t)− ω(t)

)T
τT τ

(
Y (t)− ω(t)

)
dτ

=
1
2
(
Y (t)− ω(t)

)T
∫ T2

T1

τT τdτ
(
Y (t)− ω(t)

)

=
1
2
(
Y (t)− ω(t)

)T T (
Y (t)− ω(t)

)
(21)

where

T =
∫ T2

T1

τT τdτ

=




T2 − T1
T 2
2−T 2

1
2 · · · T r+1

2 −T r+1
1

(r+1)!

T 2
2−T 2

1
2

T 3
2−T 3

1
3 · · · T r+2

2 −T r+2
1

r!(r+2)

· · · · · · · · · · · ·
T r+1

2 −T r+1
1

(r+1)!
T r+2

2 −T r+2
1

r!(r+2) · · · T 2r+1
2 −T 2r+1

1
r!r!(2r+1)




(22)

At the time t, MPC attempts to find the optimal control profile in the receding

horizon, u(t + τ), 0 ≤ τ ≤ T2, to minimise the tracking error. After the nonlinear

system (1) is approximated by its Taylor series expansion up to the order r, the
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highest derivative of the control required is r − µ. Hence all the control profile in the

receding horizon can be parametrarized by

u(t + τ) = u(t) + τ u̇(t) + · · ·+ τ r−µ

(r − µ)!
u[r−µ](t) (23)

Therefore, instead of minimising the performance index J in terms of the control

profile u(t + τ), 0 ≤ τ ≤ T2 directly, the performance index J can be minimised

in terms of variables u(t), u̇(t), . . . , u[r−µ](t). However, for a general nonlinear under

consideration as in (1), the control u does not appear in a linear manner and it is

difficult to give the explicit solution for u. To avoid this problem, the control u is

considered as a new state variable, and the performance J is minimised in terms of

u̇(t), . . . , u[r−µ](t). In the later of this paper, we will discuss the implementation issue

for the proposed controller.

The necessary condition for the optimality is given by

∂J

∂u
= 0 (24)

where

u =
[

u̇(t), . . . , u[r−µ](t)
]T

(25)

Theorem 1: Consider a general nonlinear system (1) satisfying Assumption A1-A3

and with the tracking performance index (5). When the tracking error is approximated

by its Taylor series expansion up to order r ≥ µ, the NMPC is given by

u(t) =
∫

u̇(σ)dσ (26)

where

u̇(σ) = −(DuDµ
fx

h(x)
)−1(

KMµ(σ) +Dµ+1
fx

h(x)− ω[µ+1](σ)
)

(27)

Mµ(σ) =




h(x)− ω(σ)

D1
fx

h(x)− ω[1](σ)

. . .

Dµ
fx

h(x)− ω[µ](σ)




, (28)

and K ∈ Rµ+1 is the first row of the matrix T −1
rr T T

µr,

T µr =




T µ+2
2 −T µ+2

1
(µ+1)!(µ+2) · · · T 2µ+2

2 −T 2µ+2
1

µ!(µ+1)!(2µ+2)

...
...

...
T r+1
2 −T r+1

1
(r+1)! · · · T r+µ+1

2 −T r+µ+1
1

µ!r!(r+µ+1)


 , (29)
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T rr =




T 2µ+3
2 −T 2µ+3

1
(µ+1)!(µ+1)!(2µ+3) · · · T r+µ+2

2 −T r+µ+2
1

(µ+1)!r!(r+µ+2)

...
...

...
T r+µ+2
2 −T r+µ+2

1
(µ+1)!r!(r+µ+2) · · · T 2r+1

2 −T 2r+1
1

r!r!(2r+1)


 , (30)

Proof: See Appendix.

Remark 1: Theorem 1 presents an analytic solution to the NMPC problem for

general nonlinear systems using approximation and the NMPC is given in a closed-

form. The existing results for analytic NMPC is extended from affine nonlinear systems

to general nonlinear systems. This controller overcomes the difficulties imposed by the

on-line nonlinear optimisation involved in NMPC such as attaining local minimum and

long sampling time requirement. The NMPC developed in this paper is suboptimal

for the original NMPC problem. Since there is no restriction on the order for Taylor

series expansion, theoretically the analytic solution developed by approximation can

approach to the solution to the original NMPC in any specified accuracy.

4.1 Structure of predictive control

Since the closed-form NMPC for the general nonlinear system is derived, there is no

on-line optimisation required. Actually from the control law (26) and (27), one can

see that it is a nonlinear state variable feedback control law. After the order for Taylor

series expansion, the order µ and the predictive times T1,T2 are chosen, the control

gain K can be calculated off-line.

The block diagram of the proposed NMPC scheme is shown in Figure 1. Different

from previous analytic nonlinear predictive control schemes for affine systems, the

derivative of the control action is calculated using the control law (27) based on the

state variable, the current control and the reference, and then the control action is

obtained by integrating it with respect to time.

4.2 The choice of the initial control

In the implementation of the above control strategy for general nonlinear systems, the

initial control u(0) should be specified. Suppose that at the initial state, the system is

at its equilibrium. It follows form Assumption A3 that the initial control u(0) should

be chosen as zero.
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x
u

Figure 1: Structure of predictive control for general nonlinear systems

5 Stability Analysis

Substituting the control law (27) into (11) gives

y[µ+1](t) = Dµ+1
fx

h(x)− (
KMµ(t) +Dµ+1

fx
h(x)− ω[µ+1](t)

)
(31)

which implies that

y[µ+1](t)− ω[µ+1](t) + KMµ(t) = 0 (32)

Eq.(28) is used for calculating the control law which explicitly shows that u̇(t) depends

on the state and the current control u(t). Using the relationship in (8-10), Eq. (28)

can also be written as

Mµ =




y(t)− ω(t)

ẏ(t)− ω[1](t)

. . .

y[µ] − ω[µ](t)




=




e(t)

ė(t)

. . .

e[µ](t)




(33)

Invoking (33) into the error dynamics (32) obtains

e[µ+1](t) + kµ+1e
[µ](t) + · · ·+ k2ė(t) + k1e(t) = 0 (34)

where

K =
[

k1 · · · kµ+1

]
(35)

T rµ and T rr in (29) and (30) can be written as

T µr = diag{ Tµ+2
2

(µ + 1)!
,

Tµ+3
2

(µ + 2)!
, . . . ,

T r+1
2

r!
}




1−T1
T2

µ+2

µ+2 · · · 1−T1
T2

2µ+2

2µ+2

...
...

...
1−T1

T2

r+1

r+1 · · · 1−T1
T2

r+µ+1

r+µ+1




diag{1, T2, . . . ,
Tµ

2

µ!
}, (36)
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and

T rr = diag{ Tµ+2
2

(µ + 1)!
,

Tµ+3
2

(µ + 2)!
, . . . ,

T r+1
2

r!
}




1−T1
T2

2µ+3

2µ+3 · · · 1−T1
T2

r+µ+2

r+µ+2

...
...

...
1−T1

T2

r+µ+2

r+µ+2 · · · 1−T1
T2

2r+1

2r+1




diag{ Tµ+1
2

(µ + 1)!
,

Tµ+2
2

(µ + 2)!
, . . . ,

T r
2

r!
}, (37)

Let

Mm =




1−T1
T2

µ+2

µ+2 · · · 1−T1
T2

2µ+2

2µ+2

...
...

...
1−T1

T2

r+1

r+1 · · · 1−T1
T2

r+µ+1

r+µ+1




(38)

and

Mn =




1−T1
T2

2µ+3

2µ+3 · · · 1−T1
T2

r+µ+2

r+µ+2

...
...

...
1−T1

T2

r+µ+2

r+µ+2 · · · 1−T1
T2

2r+1

2r+1




(39)

Then one has

T −1
rr T rµ = diag{T−(µ+1)

2 (µ + 1)!, T−(µ+2)
2 (µ + 2)!, . . . , T−r

2 r!}M−1
n Mm

diag{1, T2, . . . ,
Tµ

2

µ!
} (40)

Let m = [m1,m2, . . . , mµ+1] denote the first row of the matrix M−1
n Mm. Since the

gain K is determined by the first row of the matrix T −1
rr T rµ, it follows from (40) and

(35) that

ki = miT
−µ−2+i
2

(µ + 1)!
(i− 1)!

, i = 1, . . . , µ + 1 (41)

where 0! = 1. Substituting the gains into the error dynamics (34) yields

e[µ+1](t) + mµ+1T
−1
2 (µ + 1)e[µ](t) + mµT−2

2 (µ + 1)µe[µ](t) + · · ·+
+m2T

−µ
2

(µ + 1)!
1!

ė(t) + m1T
−µ−1
2 (µ + 1)!e(t) = 0 (42)

One can conclude that the stability of the error dynamics is determined by the poly-

nomial

sµ+1 + mµ+1T
−1
2 (µ + 1)sµ + mµT−2

2 (µ + 1)µsµ−1 + · · ·+
+mµT−µ

2 (µ + 1)!s + m1T
−µ−1
2 (µ + 1)! = 0 (43)
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i.e.,

Tµ+1
2 sµ+1 + mµ+1(µ + 1)Tµ

2 sµ + mµ(µ + 1)µTµ−1
2 sµ−1 + · · ·+

+m2(µ + 1)!T2s + m1(µ + 1)! = 0 (44)

Now using the transform s̃ = T2s, the above polynomial becomes

s̃µ+1 + mµ+1(µ + 1)s̃µ + mµ(µ + 1)µs̃µ−1 + · · ·+
+m2(µ + 1)!s̃ + m1(µ + 1)! = 0 (45)

The error dynamics (34) is stable if and only if all roots of the polynomial in (45)

have negative real parts since the transform s̃ = T2s does not change the sign of the

roots. Therefore, the stability of the error dynamics only depends on the coefficients

mi, i = 1, . . . , µ + 1, i.e., the first row of the matrix M−1
n Mm.

However, to ensure the stability of the overall closed-loop system, the stability

of the error dynamics alone is not enough. All the driven zero dynamics under the

reference signal ω should be stable. One can conclude that under the assumption

that the internal zero dynamics of the system (1) driven by ω are defined for all

t ≥ 0, bounded and uniformly asymptotically stable, the general nonlinear system (1)

is stable under the NMPC (27) if all the roots of the polynomial (45) have negative

real parts [16].

The foregoing stability analysis is summarised in Theorem 2:

Theorem 2: Consider a general nonlinear system (1) satisfying Assumptions A1-

A3 and suppose that its internal zero dynamics driven by the reference ω are defined

for all t ≥ 0, bounded and uniformly asymptotically stable. The nonlinear system (1)

under the NMPC (26), (27) is asymptotically stable if all the roots of the polynomial

(45) have negative real parts.

Test of the stability of the error dynamics can be performed as follows: After the

predictive times T1 and T2 are chosen and the order for Taylor expansion of the general

nonlinear system is determined, calculate the matrix Mn and Mm according to (38)

and (39). Then the first row of the matrix M−1
n Mm can be determined and, after

substituting these coefficients to the polynomial (45), the stability can be tested.

The stability of the closed-loop system under the developed nonlinear control de-

pends on the predictive times T1 and T2, the order µ that relates to the physical

13



characteristics of the nonlinear system, and the order of Taylor series expansion. Fur-

ther more, when T1 is chosen as zero, it follows from (38) and (39) that the coefficients

in the polynomial (45) do not depend on the predictive time T2. This implies that

in this case, the stability only depends on µ and the Taylor expansion order r. In

general, the stability can be achieved by using a large r, i.e., approximating a general

nonlinear system with Taylor series expansion to a high order [14].

Remark 2: The relationship between the analytic NMPC with the feedback lin-

earisation for affine systems has been discussed in [12, 13, 7]. This paper shows that the

general system (1) is also linearised by the developed analytic NMPC. This provides

a new method to linearise general nonlinear systems using feedback, while minimising

certain quadratic tracking performance specification.

6 Illustrative example

The NMPC developed in this paper is illustrated by a second order general nonlinear

system, which was taken from [6, 7]




ẋ1(t) = x2(t) + tanh(u(t))

ẋ2(t) = −x1(t) + x2
2(t) + u(t)

(46)

with the output

y(t) = x1(t) (47)

In order to design the NMPC developed in this paper, first the order µ needs to be

calculated.

Dfx
h(x) =

∂h(x)
∂x

f(x, u)

=
[

1 0
]

 x2(t) + tanh(u(t))

−x1(t) + x2
2(t) + u(t)




= x2(t) + tanh(u(t)) (48)

DuDfx
h(x) =

1
cosh2(u)

(49)

which is not equal to zero for all x and u. Hence µ = 1.

It follows from Theorem 1 that the NMPC law is given by

u̇(t) =
1

cosh2(u)

(
−(−x1(t) + x2

2(t) + u) + ω[2](t) + k2(ω̇(t)− ẏ(t)) + k1(ω(t)− y(t))
)

(50)
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Figure 2: The tracking performance under the nonlinear NMPC with series expansion

to different orders

where k1 and k2 are control gains determined by (41).

To investigate the performance of the NMPC developed using approximation, the

first test is to fix the predictive times but approximate the nonlinear system with Taylor

series expansion to different order. Control performance with the Taylor expansion

order r=2,3,4,5 are shown in Figure 2 and 3, where the predictive times are chosen as

T1 = 1(s) and T2 = 2(s).

The second test is to investigate the influence of the choice of the predictive times.

The order for Taylor series expansion is chosen as r = 5 for all the simulation and

various predictive times are considered. The tracking performance and the control

profile are shown in Figure 4 and 5. In the simulation study, the length of the predictive

horizon is kept as the same, i.e., T2 − T1 = 1(s). It can be seen from Figure 4 and 5

that with the same order for Taylor series expansion, the rising time increases with the

increase of the predictive times, while the control effort decreases with the increase of

the predictive times.
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Figure 4: The tracking performance with 5th order Taylor series expansion and differ-

ent predictive times
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7 Conclusion

For a general nonlinear system, an analytic solution to NMPC was developed in this

paper by tracking error approximation. In this setting, the tracking performance is

defined by a receding horizon performance index in terms of the tracking error and

then the tracking error is approximated by its Taylor series expansion. Since there is

no restriction on the order for series expansion, theoretically the analytic solution pre-

sented in this paper can approach to the original nonlinear predictive control problem

in any specified accuracy. The implementation issues including the controller structure

and the choice of the initial control action are discussed. It is shown that the NMPC

derived using approximation can stabilise the original general nonlinear system if cer-

tain condition is satisfied. Since no online optimisation is required, this provides an

easy to implement suboptimal NMPC for general nonlinear systems, in particular, for

nonlinear systems with fast dynamics.
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Appendix

A 1: Proof of Theorem 1

It follows from (17) and (19 that

Y (t)− ω(t) =


 Mµ(t)

H(u(t))


 . (51)

Mµ =




h(x)− ω

D1
fx

h(x)− ω̇
...

Dµ
fx

h(x)− ω[µ]




(52)

and

H(u) =




Dµ+1
fx

h(x) +DuDfx
h(x)u̇− ω[µ+1]

...

Dµ+1
fx

h(x) +DuDfx
h(x)u[r−µ] + zr−µ−1(x, u, u)− ω[r]


 (53)

Differentiating H(u) in (53) with respect to u gives

∂H(u)
∂u

=




DuDµ−1
fx

h(x) 0 0 · · · 0

× DuDµ−1
fx

h(x) 0 · · · 0
...

...
...

...
...

× × · · · × DuDµ−1
fx

h(x)




(54)

where ‘×’ denotes the nonzero element in the matrix ∂H(u)
∂u .

The necessary condition for the optimal control u is given by

∂J

∂u
= 0 (55)

Partition the matrix T in (22) into the submatrices

T =


 T µµ T µr

T T
µr T rr


 (56)

where

T µµ ∈ Rµ×µ, T µr ∈ Rµ×(r+1), T rr ∈ R(r+1)×(r+1)
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Differentiating the performance index J in (21) with respect to control vector u and

using the notations in (17), (52) and (54) yields

∂J

∂u
=

(
∂(Y − ω)

∂u

)T

T (Y − ω)

=


 0

∂H(u)
∂u




T

T (Y − ω)

=
[

0
(

∂H(u)
∂u

)T
] 

 T µµ T µr

T T
µr T rr





 Mµ

H(u)


 (57)

It can be shown that the necessary condition (55) can be written as
(

∂H(u)
∂u

∣∣∣∣
u=u∗

)T

T T
µrMµ +

(
∂H(u)

∂u

∣∣∣∣
u=u∗

)T

T rrH(u∗) = 0 (58)

where u∗ denotes the solution satisfying the necessary optimality condition. Since

DuDµ−1
fx

h(x) is invertible according to Assumption A3, then ∂H(u)
∂u in (54) is also

invertible. Note that the matrix T rr is positive definite. Eq. (58) implies

H(u∗) = −T −1
rr T T

µrMµ (59)

Following (53), the first equations in (59) can be written as

DuDµ
fx

h(x)u̇(t)∗ + KMµ +Dµ+1
fx

h(x)− ω(t)[µ+1] = 0 (60)

where K denotes the first row of the matrix T −1
rr T T

µr. The optimal u̇(t)∗ can be

uniquely determined by

u̇(t)∗ = −(DuDµ
fx

h(x)
)−1(

KMµ(t) +Dµ+1
fx

h(x)− ω[µ+1](t)
)

(61)

since this is the only solution to Eq. (59) and thus optimal condition (55).

In the moving time frame t + τ located at time t, differentiating u(t + τ) in (23)

with respect to τ gives

du(t + τ)
dτ

= u̇(t)∗ + τ ü(t)∗ . . . +
τ [r−µ−1]

r − µ− 1!
u[r−µ](t)∗, 0 ≤ τ ≤ T2 (62)

In the implementation of NMPC,

u̇(t) =
du(t + τ)

dτ
for τ = 0 (63)

The control law (27) is obtained by combining (62), 63) and (61).
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A2: Optimal control vector u(t)

Although in the implementation of the NMPC, only the optimal u̇ is required, all

variables to be optimised in u(t) can be uniquely determined by Eq. (59). Following

(53), (12) and (13), the second equations in (59) can be written as

DuDµ
fx

h(x)ü(t)∗ + z1(x, u(t), u̇(t)∗) +Dµ+2
fx

h(x)− ω[µ+2](t) = −K2Mµ (64)

Hence the optimal ü(t)∗ is determined by

ü(t)∗ = −(DuDµ
fx

h(x)
)−1

(
K2Mµ + z1(x, u(t), u̇(t)∗) +Dµ+2

fx
h(x)−ω[µ+2](t)

)
(65)

where K2 denotes the second row in the matrix T −1
rr T T

µr. After the optimal control

u̇(t)∗ is obtained from (61), ü(t)∗ can be calculated by substituting (61) into (65).

Recursively, optimal u[3](t)∗, . . ., u[r−µ](t)∗ also can be uniquely determined from the

other equations in (59).
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