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Abstract: 
The concept of Receding Horizon Control (RHC) is introduced into Genetic 

Algorithm (GA) in this paper to solve the problem of Arrival Scheduling and 

Sequencing (ASS) at a busy hub airport. A GA based method is proposed for solving 

the dynamic ASS problem, and the focus is put on the methodology of integrating the 

RHC strategy into the GA for real-time implementations in a dynamic environment of 

air traffic control (ATC). Receding horizon and terminal penalty are investigated in 

depth as two key techniques of this novel RHC based GA. Simulation results show 

that the new method proposed in this paper is effective and efficient to solve the ASS 

problem in a dynamic environment.  
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1. Introduction 

Arrival sequencing and scheduling (ASS) is one of the standard problems in Air 

Traffic Control (ATC). Simply speaking, ASS is the function of generating efficient 

landing sequences and landing times for arrivals at the airport so that the safety 

separation between arrival aircraft is guaranteed, the available capacity at the airport 

is efficiently used and airborne delays are significantly reduced. [1] A simple way to 

perform ASS is to schedule arrival aircraft in a first-come-first-served (FCFS) order 

based on a predicted landing time (PLT) at the runway. Although FCFS scheduling 

establishes a fair order based on predicted landing time, it ignores other useful 

information which can be used to efficiently make use of the capacity of the airport, 

reduce airborne delays and/or improve the service to airlines. For example, “delay 

exchange” is introduced into the ASS problem in [2], and in [3], individual airline 

priorities among in-coming flights are taken into account and the concept of “priority 

scheduling” is then defined.  

The most widely accepted concept in the practices of ASS is “position shifting” 
[4]-[11], which is based on two facts: First, safety regulations state that any two co-

altitudinal aircraft must maintain a “minimum horizontal separation”, which is a 

function of the types and of the relative positions of the two aircraft; Second, the 

“landing speed” of a type of aircraft is generally different from that of another type of 



aircraft. As a consequence of the variability of the above parameters, the Landing 

Time Interval (LTI), which is the minimum permissible time interval between two 

successive landings, is a variable quantity. These differences in separation are 

mandatory and recognized by ATC regulations. For the sake of simplicity, like [10], 

aircraft waiting to land are classified into a relatively small number of distinct 

categories, according to speed, capacity, weight and other technical characteristics. 

Table 1 shows the minimum LTIs relative to main categories of commercial aircraft. 

In particular, 4 categories are considered: category number 1 identifies Boeing 747 

(B747), category number 2 corresponds to Boeing 727 (B727), category number 3 

identifies Boeing 707 (B707) and finally category number 4 corresponds to Mc 

Donnel Douglas DC9 (DC9).         
 

Table 1.   Minimum landing time intervals (LTI) [10] 
Category of following aircraft: j  Sij (seconds) 

1 2 3 4 
1 96 200 181 228 
2 72 80 70 110 
3 72 100 70 130 

Category of 
leading 
aircraft: 

I 4 72 80 70 90 
Note: 1=B747; 2=B727; 3=B707; 4=DC9. 
 

It is evident that the LTIs in Table 1 are asymmetric. For example, a minimum 

LTI of 200 seconds is required for a B727 to follow a B747, while a minimum LTI of 

only 72 seconds needs to be satisfied for the same pair of aircraft in reverse order. By 

taking advantage of the asymmetries of the LTIs, in other words, by shifting positions 

of aircraft in an FCFS landing sequence, it is possible to reduce delays and to improve 

the capacity of the airport. This paper focuses on the problem of “position shifting” 

based ASS. 

Many efforts have been made to study the problem of “position shifting” based 

ASS in the past decades, for example, the ASS problem is modeled as a Traveling 

Salesman Problem (TSP) and dynamic programming algorithms are developed, e.g., 

see [7], [8], [10] and [11]. The above papers mainly focus on developing effective 

static algorithms. Although the dynamic case is also discussed in [7], [8] and [10], the 

proposed dynamic algorithms are simple extensions of the associated main static 

results by introducing some constraints. In the real world of ATC, ASS is always 

carried out in a dynamic environment. Therefore, modeling and developing 



algorithms directly based on the dynamic feature of the ASS problem could bring 

advantages.  

In this paper, we propose a Receding Horizon Control (RHC) based Genetic 

Algorithm (GA) for solving the position-shifting based ASS problem in a dynamic 

ATC environment. As is well known, GA is a large-scale parallel stochastic searching 

and optimizing algorithm, and it is effective for solving NP-complete problems such 

as the ASS problem ([17] and [18]). The conventional way to apply GA to the 

dynamic case of the ASS problem is to simply use a GA to repeat optimizing the 

entire arrival flow during the rest of the operating day. Since a huge number of 

aircraft arrive at a busy airport every day, the GA used conventionally can hardly 

meet the need of real-time properties in practice. On the other hand, in a dynamic 

ATC environment, there is inevitably unreliable information in the predicted arrival 

flow. For example, some flights may be canceled while some unanticipated aircraft 

may ask for emergency landing. The conventional way of taking all aircraft into 

account can not necessarily result in actually optimal or even sub-optimal solutions. 

To overcome these drawbacks of a conventional GA, we introduce the concept of 

RHC to GA for the ASS problem. Simply speaking, RHC is an N-step-ahead online 

optimization strategy. At each time interval, based on current available information, 

RHC optimizes the particular problem for the next N intervals in the near future, but 

only the part of solution corresponding to current interval is implemented. At the next 

interval, RHC repeats the similar optimizing procedure for another N intervals in the 

near further based on updated information. Clearly, since not all arrival aircraft are 

considered in the optimization process of each time interval, the RHC strategy can 

effectively improve the real-time properties of GA and reduce the influence of 

unreliable information. However, the introduction of RHC could also make the new 

GA short-sighted. To guarantee the solution quality of RHC based GA, some 

techniques which are widely used by RHC algorithms in control engineering are 

applied in this paper. One of them is the terminal penalty technique. 

The remainder of this paper is organized as follows. The basic idea of RHC is 

briefly explained in Section 2, and then the novel RHC based GA for the ASS 

problem is proposed in Section 3. Section 4 reports some interesting simulation 

results. The paper ends with some conclusions in Section 5.    

 

 



2. The basic idea of RHC 

Receding horizon control has proved to be a very effective online optimization 

strategy in the area of control engineering, and is very successful when compared with 

other control strategies.[12] It is easy for RHC to handle complex dynamic systems 

with various constraints. It also naturally exhibits promising robust performance 

against uncertainties since the online updated information can be sufficiently used to 

improve the decision. Within this framework, decisions are made by looking ahead 

for N steps in terms of a given cost/criterion, and only the decision for the first step is 

actually implemented. Then the implementation result is checked, and a new decision 

is made by taking into account of updated information and looking ahead for another 

N steps. RHC has now been widely accepted in the area of control engineering. 

Recently, attention has been paid to applications of RHC to areas like management 

and operations research. For example, theoretical research work on how to apply 

MPC (model predictive control, another name for RHC) to a certain class of discrete-

event systems was presented in [13] and [14], and many practical implementations of 

RHC in the area of commercial planning and marketing were reported in [15]. 

However, as mentioned in [16], the research work on applying RHC to areas other 

than control engineering is just beginning.  

The basic idea of RHC for dynamical optimization problems is illustrated by the 

flow chart given in Figure 1. Figure 2 compares the RHC strategy with some other 

conventional optimization strategies in an intuitive way. It is evident that the offline 

optimization strategy, as shown in Figure 2.(a), is not suitable for dynamic 

optimization processes. However, most algorithms in literature on the ASS problem 

are mainly tested by using offline strategy, so-called static version, e.g., see [7], [8] 

and [10]. The one-step-ahead adjustment strategy in Figure 2.(b) is often used in the 

real practice of ASS, due to its simplicity. One-step-ahead adjustment can be 

considered a special case of RHC, i.e., the length of receding horizon is N=1. This 

special RHC is always criticized for being short-sighted. Those dynamic versions of 

algorithms for the ASS problem in literature follows the conventional dynamic 

optimization strategy shown in Figure 2.(c). This strategy often suffers from heavy 

online computational burden, and its performance is relatively too sensitive to 

disturbances and/or uncertainties included in the current information. Figure 2.(d) 

illustrates that the RHC strategy is the best natural trade-off. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.  The flow chart of RHC  

Determine parameters for RHC algorithm, e.g., set time interval and choose N (i.e., the 
receding horizon is N time intervals long). Let k=0.  

At the kth time interval, measure the current system states and collect the environment 
information in the period from the kth time interval to the (k+N)th time interval.   

Based on the current system states and environment information, make decisions for 
the period from the kth time interval to the (k+N)th time interval. 

Only carry out the decision for the kth time interval, and discard the rest decisions for 
the period from the (k+1)th time interval to the (k+N)th time interval. Let k=k+1. 

Is k the end point of the dynamic optimization problem? No 

Assess the performance of RHC algorithm. 

Yes 

 

 

 

 

 

 

(a). Offline optimization: Optimize arrival flow for the entire operating day based on the predicted 
information before the operating day and generate a static optimal solution. 

Start of operating day End of operating day 

(b). One-step-ahead adjustment: Make adjustment only for the current time interval based on the 
latest updated information and the static solution of the offline optimization. 

 

 

 

 

 

 

 

 

 

 

 

Start of operating day End of operating day Current time k k+1 

(c). Conventional dynamic optimization: Optimize arrival flow over the period from the 
current time k to the end of the operating day, and then execute the optimal solution over 
the period from k to k+1. At time k+1, repeat the same procedure based on new information. 
And so no. 

Start of operating day End of operating day Current time k k+1 

Start of operating day End of operating day 

(d). Receding Horizon Control (RHC): Optimize arrival flow over the predictive horizon 
(from the current time k to time k+N ), and then execute the optimal sub-solution over the 
period from k to k+1. At time k+1, repeat the same procedure based on new information. 
And so no. 

…
Current time k k+1 k+N 

Figure 2.  Some optimization strategies 



However, how to integrate the RHC strategy into GA to develop an effective and 

practicable method to solve the ASS problem in a dynamic ATC environment requires 

much more than simply to use whatever kind of GA as the online optimizer in the 

RHC. To make them work in harmony, in the first place, the GA based online 

optimizer should be designed from a dynamic point of view, more precisely speaking, 

from an RHC point of view. Therefore, unlike other literature, we do not have a so-

called static version of algorithms in this paper, but directly present our RHC based 

GA for solving the ASS problem in a dynamic ATC environment. As will be 

explained in depth later, some techniques, particularly terminal penalty, used by the 

RHC in control engineering are adopted to design the online GA based optimizer. 

 

3. RHC based GA for the ASS problem 

3.1  Formulation of the ASS problem  

A number of aircraft are supposed to land at the same runway of an airport during 

an operating day. Assume the number of the aircraft of concern is NAC, and the 

operating day is Trange-minute long. NAC and Trange can be used to estimate the degree 

of congestion at the runway of the airport. For the ith aircraft AC(i) in the original 

sequence, , there is a Predicted Landing Time (PLT) at the runway, 

denoted as t

ACNi ,,1K=

PLT(i). Based on this set of PLTs, i.e., tPLT(i), ACNi ,,1K= , an FCFS 

landing sequence can be directly worked out with respect to safety regulations. As 

mentioned in Section 1, the safety separation, i.e., minimum LTI, between a pair of 

successive aircraft, is a function of the type and of the relative positions of the two 

aircraft. The asymmetries of the LTIs in Table 1 imply that, by shifting positions of 

aircraft in an FCFS landing sequence, it is possible to reduce delays and to improve 

the capacity of the airport. The potential benefits resulting from position shifting, 

considering airborne delay, are illustrated by Figure 3, where tALT(i) is the Allocated 

Landing Time (ALT) given to the ith aircraft in the original landing sequence by an 

optimization process. Tdelay and Tlength are the total airborne delay and the length of an 

optimized landing sequence, respectively, and they are calculated as 

∑
=

−=
ACN

i
PLTALTdelay ititT

1

))()(( .                                                (1) 

( ) (1length ALT AC ALTT t N t= − ) ,                                                 (2) 



The goal of ASS is usually to minimize Tdelay. Tlength is sometimes also adopted as 

the index for optimization. The index Tdelay emphasizes the operating cost of airlines, 

while the index Tlength focuses on the capacity of the airport. In many cases, a 

minimum Tdelay occurs simultaneously along with a minimum Tlength. However, this 

does not mean they are equivalent to each other. Due to the space limit, proposed 

RHC based GA proposed in this paper will be described only based on the index 

Tdelay.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.  FCFS landing sequence and position shifting 

Time 

AC(1): B707 
tPLT(1)=0 

AC(2): B727 
tPLT(2)=105 

AC(3): B747 
tPLT(3)=140 

AC(4): DC9 
tPLT(4)=150 

The original sequence based on PLTs 

Time
i

Optimised landing sequence by shifting positions: Tdelay=212, Tlength=287 

Time
i

FCFS landing sequence with respect to safety regulations: Tdelay=292, Tlength=405   

AC(1): B707 
tALT(1)=0 

AC(2): B727 
tALT(2)=105 

AC(3): B747 
tALT(3)=177 

AC(4): DC9 
tALT(4)=405 

AC(1): B707 
tALT(1)=0 

AC(2): B727 
tALT(2)=105 

AC(4): DC9 
tALT(4)=215 

AC(3): B747 
tALT(3)=287 

 

3.2  RHC based GA 

The methodology of designing our RHC based GA follows the common practice 

of GA:- design the structure of chromosomes, choose fitness function, define genetic 

operators, and introduce some necessary heuristic rule. In addition for each step, we 

need to take an extra factor into account: how to integrate the concept of RHC.  
 



3.2.1  The structure of chromosomes 

In the RHC strategy, generally, not all aircraft in the current arrival flow will be 

included in the online optimization process at each time interval. Only those aircraft 

whose PLTs are within the receding horizon will be taken into account. Suppose at 

time interval k, the number of those aircraft whose PLTs are within the receding 

horizon is MAC(k), then each chromosome at time interval k has MAC(k) genes. Each 

gene stands for a certain aircraft. The structure of chromosomes is given in Figure 4, 

where ai is the serial number in the original landing sequence for the aircraft 

represented by the ith gene in the chromosome, and (.|k) means the associated 

variable is predicted or calculated at the kth time interval.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.  Structure of chromosomes 

AC( ( )ACM ka
 |k) 

(b). A chromosome: a1 … ai … 
 ( )ACM ka

  

… … … … … 
AC(1|k) AC(a1|k) AC(ai|k) AC(MAC(k)|k) AC(MAC(k)+1|k) AC(NAC(k)|k) 

Aircraft whose PLTs are within the receding horizon Aircraft outside the receding horizon 

(a). The original landing sequence predicted at time interval k: 

… … 
AC(a1|k) AC(ai|k) 

AC( ( )ACM ka
 |k) 

(b). The landing 
sequence defined 
by the above 
chromosome: 

 

Each chromosome defines a possible landing sequence over the receding horizon. 

Based on the landing order determined by the chromosome and the LTIs listed in 

Table 1, the ALT for each aircraft in the possible landing sequence is calculated by 

following FCFS principle. If k=0, tALT(a1|k)= tPLT(a1|k); otherwise, tALT(a1|k) must 

make sure that the LTI between AC(a1|k) and the last aircraft cleared in the (k-1)th 

time interval is satisfied. With the ALTs, the airborne delay of the possible landing 

sequence is calculated by 
( )

1

( ) ( ( | ) ( | ))
ACM k

delay ALT PLT
i

T k t i k t i k
=

= −∑ .                              (3) 

 

 



3.2.2  Fitness function 

After the airborne delay of a possible landing sequence is calculated according to 

(3), the fitness of the associated chromosome can be simply defined as 

max max( ( )) /delayf T T k T= −                                                (4) 

where Tmax denotes the maximum airborne delay in a certain generation of 

chromosomes. However, due to the concept of RHC, the possible landing sequence 

probably does not include all aircraft in the original sequence. The implementation of 

this possible landing sequence will obviously have a certain influence on the 

scheduling and sequencing of those aircraft outside the current receding horizon. 

Neither Eq. (3) nor Eq. (4) does anything to assess this influence. This could end up 

with a short-sighted algorithm.  

In our RHC based GA, the idea of using terminal penalty in the RHC of control 

engineering is borrowed to defined a novel fitness function as           

)
)(

/()
))(,1min(

)(~)(
))((~)((

)(
)(

)()(~
N

kM
NkKK

kMkN
kMkN

kM
kT

kTkT ACACAC
ACAC

AC

delay
delaydelay +−−

−
−+= α

,(5) 

max max( ( )) /delayf T T k T= −% % %                                                (6) 

where 0α ≥  is a weighting coefficient, K is the discrete-time index corresponding to 

the end of operating day, )(~ kM AC  is the number of those aircraft whose ALTs are 

within the receding horizon, and  denotes the maximum  in a certain 

generation of chromosomes.  

maxT% ( )delayT k%

The second term on the right side of Eq. (5) is the terminal penalty, which 

assesses the influence of the current landing sequence on those aircraft outside the 

receding horizon. From Eq. (5), it can be seen that the terminal penalty is a function in 

terms of the average delay and the density of those aircraft whose PLTs are within the 

receding horizon, and the number and the density of those aircraft which are outside 

the receding horizon after the current run of the online optimization routine. A larger 

average delay usually means less aircraft will be cleared during the current time 

interval, and therefore more aircraft will be left for future optimization processes. 

)(~ kM AC , the number of those aircraft whose ALTs are within the receding horizon, is 

probably different from , the number of those aircraft whose PLTs are within 

the receding horizon, particularly at a busy airport. Basically, a smaller 

)(kM AC

)(~ kM AC  



means more aircraft are delayed for future scheduling and sequencing. If more aircraft 

are left for future optimization, or if the density of such aircraft, i.e. 

))(,1min(/())(~)(( NkKKkMkN ACAC +−−− , is larger than the density of those 

aircraft whose PLTs are within the receding horizon, i.e. , the quality of 

the current solution determined by the chromosome will have a stronger negative 

influence on the future. 

NkM AC /)(

α  is a constant weighting coefficient, which determines the 

contribution of the terminal penalty to . ( )delayT k% α  needs to be chosen carefully. If the 

predicted information is more reliable, α  can be set relatively larger to avoid short-

sighted performance. However, if α  is too large, the influence of uncertain 

information in the future will become unnecessarily significant. The choice of α  also 

depends on the maximum . Specially, for given a ( )ACN k α , if the maximum  

is very large, then the algorithm could also become sensitive to uncertainties. 

Basically, for each different airport, extensive simulation studies or experiments are 

necessary to find a proper value for 

( )ACN k

α . In this paper, we set α =0.01 for . ( ) 30ACN k ≤

From Eq. (6), one has that if  is smaller, the fitness of the corresponding 

chromosome is larger, and consequently, it is relatively more likely to survive through 

the evolution and get more chance to reproduce offspring.    

( )delayT k%

 

3.2.3  Genetic operators 

Basically, there are two kinds genetic operators in GA: crossover and mutation. 

As pointed out in [19], there has long been a strong debate about the usefulness of 

crossover, and the general agreement today is that the answer is problem-dependent. 

In the ASS problem, each aircraft can appear only once in a chromosome. When 

information is exchanged between two chromosomes during crossover, an additional 

checking process has to apply to make sure that no aircraft appears more than once in 

any offspring chromosome. Actually, if more than 3 genes are exchanged randomly 

between two chromosomes, the offspring chromosomes are very likely invalid. If only 

two genes are exchanged, then the effect of crossover will be quite similar to that of 

mutation.  Therefore, with the structure of chromosomes given in Section 3.2.1, it is 

difficult to define an effective crossover operator. In our RHC based GA for the ASS 

Problem, we only adopt mutation operation, which is illustrated by Figure 5. 

 



 

 

 

 

 

 

 

3.2.4  Heuristic rules for setting algorithm parameters 

To improve the solution quality as well as to increase the converging speed of 

GA, special problem-orient heuristic rules are always introduced for setting algorithm 

parameters in various practices of GA. The following are some heuristic rules 

proposed for our RHC based GA to resolve the position-shifting based ASS problem. 

• Mutation can increase the variety of chromosomes and therefore improve the 

solution quality of GA. However, if mutation is more often than necessary, 

besides the increase of computational burden, the solution quality could 

degrade since good chromosomes are likely to be destroyed. To achieve a 

good trade-off, we employ self-adjusting mutation probability. Assuming the 

basic mutation probability is Pb=0.3, the actual probability Pa for mutating 

between gene i and gene j (j>i) is calculated in steps as follows.  

(a). Firstly, set Pa=Pb.  

(b). If AC(ai|k) and AC(aj|k) belong to the same category, set Pa=0 and the 

calculation of mutation probability for these two genes is over.  

(c). Otherwise, if the LTI between AC(ai|k) and AC(aj|k)  is larger than the LTI 

between AC(aj|k) and AC(ai|k), let Pa= Pa+0.2.  

(d). Adjust Pa according to the difference between tPLT(ai|k) and tPLT(aj|k) 

100.2min(1, ) (200 | ( | ) ( | ) |)
| ( | ) ( | ) |a a PLT i PLT j

PLT i PLT j

P P sign t a k t a k
t a k t a k

= + − −
−

.                     

(7) 

(e). Adjust Pa according to |ai-aj| 

30.1min(1, ) (10 | |)
| |a a i j

i j

P P sign a a
a a

= + − −
−

.                   (8) 

The physical meaning in Eq. (7) and Eq. (8) is obvious: the closer two aircraft 

are to each other, the more likely they should change positions.   

Figure 5.  Mutation operation 

Mutation:  change the positions of any two 
genes in a chromosome.  

a1 ai … aj … … 
 ( 1)ACM ka   +

a1 aj … ai … … 
 ( 1)ACM ka   +



• The population in a generation Np and the maximum number of generations in 

evolution Ng are another two important parameters when we design a GA. 

Generally, large Np and Ng lead to high quality of solutions, but at the cost of 

heavy computational burden. A proper choice of Np and Ng should be a trade-

off between solution quality and computational efficiency. This usually 

depends on the size of solution space, in the ASS problem, the number of 

aircraft whose PLTs are within the receding horizon, i.e., MAC(k). Since 

MAC(k) changes in terms of k, Np and Ng should also change with k 

 .                     ,                         (9) 30 10( (max(0, ( ) 10) / 5))p ACN round M k= + −

20 10( (max(0, ( ) 10) / 5))g ACN round M k= + − .                       (10) 

From Eq.(9) and Eq.(10), one can see that more aircraft are included in the 

online optimization process, more chromosomes and more generations are 

needed to guarantee the solution quality. The parameters in Eq.(9) and Eq.(10) 

are chosen and tested through extensive simulation. In the case of  MAC(k) 30, 

they result in satisfactory solution quality and tolerable computational burden.   

≤

 

3.2.5  Flow chart of the RHC based GA 

With the above technical preparations, our RHC based GA for the ASS problem 

can be eventually developed by simply following the framework of common RHC 

algorithms, as illustrated by the flow chart in Figure 6.  

The successful design of the RHC based GA partially depends on a proper choice 

of the length of receding horizon, N. If N is too small, most useful information could 

be missed out, and therefore, the RHC algorithm could be short-sighted and exhibit 

poor performance. On the other hand, if N is too large, the computational burden will 

become very heavy, and in addition, much more unreliable information in the future is 

used and could degrade the solution quality of the algorithm. 

To assess whether a RHC based GA is properly designed as well as to fairly 

compare the new algorithm with other relevant literature, the last step in flow chart 

sums up the actual airborne delay occurring in the entire operating day. 

 
 
 
 
 According to the nature of ASS problem at the concerned airport, set time interval and 

choose N for the RHC based GA. Let k=0.   

At the kth time interval, predict the arrival flow in the rest of the operating day, and 
filter out those aircraft within the receding horizon. If k>0, record the ALT of the last 

aircraft cleared in the (k-1)th time interval.   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

4. Simulation results 

To fully investigate the performance of the RHC based GA proposed in this paper, 

which is hereafter denoted as RHC_GA, we compare it with two other algorithms 

based on conventional dynamic optimization (CDO) strategy: a conventional GA, 

denoted as CDO_GA, and the algorithm reported in [10], denoted as CDO_TSP. The 

algorithm in [10] is developed by modeling the ASS problem as a traveling salesman 

problem (TSP). Since the CDO_GA is based on the conventional dynamic 

optimization strategy, its chromosomes are usually longer than those in the RHC_GA, 

its fitness function is defined by Eq. (3) and (4), and wherever it is applicable, 

 used in the RHC_GA should be replaced by . All following 

simulation is conducted with a Pentium II (300MHz) based PC. 

)(kM AC )(kN AC

To illustrate how these three algorithms work, Table 2 gives the results of a 

realistic large scale problem with 30 aircraft. The data of the original arrival flow is 

borrowed directly from [10]. In order to compare with the data given in [10], no 

disturbances/uncertainties are considered at this stage. In Table 2, in the first three 

columns we list the aircraft serial number in the original sequence, categories and 

PLTs; in the second three columns, the actual sequence of landing aircraft, with their 



categories and ALTs, issued by the CDO_TSP; in the third three columns, the actual 

sequence of landing aircraft, with their categories and ALTs, issued by the CDO_GA; 

in the last three columns, actual the sequence of landing aircraft, with their categories 

and ALTs, issued by the RHC_GA with a receding horizon of 4 steps long. In the 

simulation, the operating interval TOI is set as 5 minutes. In Table 2, the landing 

sequence generated by the RHC_GA is better than that of the CDO_GA, and similar 

to that of the CDO_TSP. However, due to the nature of GA (a stochastic optimization 

method), no general conclusion regarding the performance of these three algorithms 

can be made from just Table 2, until more simulation studies are conducted.  

In [10], besides the original arrival flow used in Table 2, there are another two 

original arrival flows: an uncongested case and a congested case. We also apply the 

CDO_GA and the RHC_GA to them. To distinguish from the case in Table 2, we 

consider the case in Table 2 as a normal case. In either of these three cases, the total 

number of aircraft is 30, but they have different degrees of congestion. The detailed 

data of the original arrival flows can be found in [10]. We then introduce 20% 

uncertainties (the PLTs of 20% of the aircraft are not correct) into these three original 

arrival flows to simulate a dynamic ATC environment. In each case, the uncertainties 

are generated randomly for 50 times, and the data of uncertainties are saved in 50 

files. For the CDO_GA and RHC_GA, 10 simulation runs with the same data of 

uncertainties saved in each of 50 files are conducted. In total, simulation is conducted 

for 500 times in each case. Since the CDO_TSP is not a stochastic optimization 

method (refer to [10]), only one simulation run is conducted with the data in each of 

50 files, and therefore in total 50 simulation runs are conducted in each case. Due to 

limited space, we only list some key data of our simulation results in Table 3. From 

the data in Table 3, one can see that, regarding the average delay of each aircraft, the 

solution quality of the CDO_GA is the worst, while the RHC_GA achieves even 

better performance than the CDO_TSP. Although the CDO_GA and the CDO_TSP 

consider all aircraft in the original arrival flow, clearly they do not achieve the global 

optimal solution. There are two reasons for this. Firstly, because they both belong to 

the family of generate-and-test methods (for more details about CDO_TSP, see [10]), 

the quality of either CDO_GA or CDO_TSP is sensitive to the size of the solution 

space. Secondly, there are uncertainties in the predicted arrival flows. For the 

RHC_GA, the size of solution space for each online optimization routine is mainly 

determined by the length of receding horizon. By choosing a proper receding horizon, 



it is relatively easier to maintain the solution quality over the receding horizon at a 

certain level as well as to reduce the influence of uncertainties. By the nature of the 

ASS problem, small delay at each step usually results in a small total delay in the 

operating day. Therefore, the RHC_GA achieves the best performance. Although the 

CDO_TSP is much more effective than the CDO_GA, from the relevant data in Table 

3 (e.g., the landing orders for aircraft 15-17), one can see that the CDO_TSP 

sometimes makes unnecessary position-shiftings, which also explains why the 

RHC_GA is better even than the CDO_TSP. 

As for computational burden, thanks to the receding horizon strategy, the average 

computational time by an online optimization routine under the RHC_GA is the least. 

As the original arrival flow becomes more congested, RHC_GA requires more time 

for each online optimization routine, because more aircraft have PLTs within the 

receding horizon. The computational time consumed by CDO_GA or CDO_TSP is 

not sensitive to the degree of congestion of the original arrival flow, since all aircraft 

are taken into account at each step. According to the data of arrival flows in 

CDO_TSP, the operating day is shorter than 2 hours. From the computational time 

listed in Table 3, one can image the advantages of the RHC_GA against either 

CDO_GA or CDO_TSP regarding computational efficiency when the operating day 

becomes 8 hours long or even longer. 

Table 4 shows the influence of the length of receding horizon on the performance 

and the computational burden of the RHC_GA. From the data in Table 4, one can see 

that, in general, as N increases, the performance of the RHC_GA improves at first, 

and then degrades when N is too large. This is understandable. Due to the natures of 

the GA optimizer and of the ASS problem, the performance should degrade with the 

length of receding horizon. But a too short receding horizon could result in short-

sighted performance, e.g., when N=1. Clearly, in this simulation, the receding horizon 

should be within 2 to 4 to achieve the best performance. Online computational burden 

is no doubt increasing as N goes up. 



Table 2.  Results of CDO_GA and RHC_GA in a single test 
PAF  Scheduled by CDO_TSP  Scheduled by CDO_GA Scheduled by RHC_GA 

AC 
No. 

Cat. PLT (s) AC 
No. 

Cat. ALT 
(s) 

Delay 
(s) 

AC 
No. 

Cat. ALT 
(s) 

Delay 
(s) 

AC 
No. 

Cat. ALT 
(s) 

Delay 
(s) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1 
1     
1     
2     
1     
1     
2     
1     
2     
2     
1     
1     
3     
4     
2     
2     
2     
1     
1     
3     
1     
1     
4     
2     
1     
2     
3     
2    
1 
1 

0       
79      

144     
204     
264     
320     
528     
635     
730     
766     
790     
920     
1046    
1106    
1136    
1166    
1233    
1642    
1715    
1770    
2074    
2168    
2259    
2427    
2481    
2679    
2883    
2982    
3046    
3091 

1 
2 
3 
5 
6 
7 
4 
9 

10 
11 
12 
8 

17 
16 
15 
14 
13 
20 
18 
19 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1     
1     
1     
1     
1     
2     
2     
2     
2     
1     
1     
1     
2     
2     
2     
4     
3     
3     
1     
1     
1    
1     
4     
2     
1     
2     
3     
2     
1 
1 

0      
96     

192    
288    
384    
584    
664    
744    
824    
896    
992    
1088   
1288   
1368   
1448   
1558   
1628   
1770   
1842   
1938   
2074   
2170   
2398   
2478   
2550   
2750   
2883   
2983   
3055   
3151 

0       
17      
48      
24      
64      

380     
136     
14      
58      

261     
202     
168     
55      

202     
312     
452     
582     

0       
200     
223     

0       
2       

139     
51      
69      
71      
0       
1       
9       

60 

1 
2 
3 
5 
6 
4 
7 
9 
8 

11 
12 
10 
15 
16 
14 
13 
17 
18 
19 
21 
20 
23 
24 
26 
27 
22 
25 
29 
30 
28 

1     
1     
1     
1     
1     
2     
2     
2     
1     
1     
1     
2     
2     
2     
4     
3     
2     
1     
1     
1     
3     
4     
2     
2     
3     
1     
1     
1     
1    
2 

0       
96      

192     
288     
384     
584     
664     
744     
816     
912     
1008    
1208    
1288    
1368    
1478    
1548    
1648    
1720    
1816    
2074    
2255    
2385    
2465    
2679    
2883    
2955    
3051   
3147    
3243    
3443 

0       
17      
48      
24      
64      

380     
136     
14      

181     
122     
88      

442     
152     
202     
372     
502     
415     
78      

101     
0       

485     
126     
38      
0       
0       

787     
570     
101     
152     
461 

1 
2 
3 
5 
6 
4 
7 
9 

10 
8 

11 
12 
15 
16 
17 
13 
14 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1     
1     
1     
1     
1     
2     
2     
2     
2     
1     
1     
1     
2     
2     
2     
3     
4     
1     
1     
3     
1    
1     
4     
2     
1     
2     
3     
2     
1 
1 

0       
96      

192     
288     
384     
584     
664     
744     
824     
896     
992     
1088    
1288    
1368    
1448    
1518    
1648    
1720    
1816    
1997    
2074    
2170    
2398    
2478    
2550    
2750    
2883    
2983    
3055    
3151 

0       
17      
48      
24      
64      

380     
136     
14      
58      

261     
202     
168     
152     
202     
215     
472     
542     
78      

101     
227     

0       
2       

139     
51      
69      
71      
0      
1       
9       

60 
 

Table 3. Some key data of simulation results 
Normal case Uncongested case Congested case (Average 

results) Delay (s) Comp. time (s) Delay (s) Comp. time (s) Delay (s) Comp. time (s) 
CDO_TSP 142.1176 4.7032 60.7072 4.6137 436.5118 4.7482 
CDO_GA 158.5079 7.7441 67.9746 7.5059 466.0831 7.6825 
RHC_GA 137.4880 3.3051 58.7167 2.1524 435.6017 4.3651 

 

Table 4 The influence of the length of receding horizon on the RHC_GA 
Normal case Uncongested case Congested case  (Average 

results) Delay (s) Comp. time (s) Delay (s) Comp. time (s) Delay (s) Comp. time (s) 
1 141.9092  1.5114 65.2424 1.1536 438.9676 1.7516 
2 137.8345 2.0611 57.5146 1.4865 435.7356 2.8245 
3 136.4492 2.4928 57.8706 1.8085 437.1915 3.2649 
4 137.4880 3.3051 58.7167 2.1524 435.6017 4.3651 
5 144.7620 4.1705 61.0630 2.9405 442.5289 4.7476 

 
Length of 
receding 

horizon N 

6 152.3775 4.7062 60.4931 3.6436 450.5692 5.3862 
 

 

 



5. Conclusions 

Airports, especially busy hub airports, prove to be the bottlenecks in the air traffic 

control system. How to carry out arrival scheduling and sequencing effectively and 

efficiently is one of main concerns in improving the safety, capacity and efficiency of 

airports. This paper proposes a novel Receding Horizon Control (RHC) based Genetic 

Algorithm (GA) to help solve the problem of Arrival Scheduling and Sequencing 

(ASS) in a dynamic environment. The emphasis is put on the methodology of how to 

integrate the RHC strategy into GA, and special attention is paid to receding horizon 

and terminal penalty. The potential advantages of the proposed RHC based GA for the 

ASS problem, with regard to airborne delay and computational burden, are 

investigated. In general, it is found that for the ASS problem, the RHC based GA 

achieves much better performance than a pure GA, while requiring much less 

computational time.  

 

6.  Acknowledgements   

This work is supported by an ORS Award from the Overseas Research Students 

Awards Scheme, Universities UK. 

 

Reference 

[1] Pelegrin, M., “Towards Global Optimization for Air Traffic Management”, 

AGARD-AG-321, 1994. 

[2] Gregory, C.C., H. Erzberger and F. Neuman, “Delay exchanges in arrival 

sequencing and scheduling”, Journal of Aircraft, vol.36, no.5, pp. 785-791, 1999. 

[3] Gregory, C.C., H. Erzberger and F. Neuman, “Fast-time study of aircraft-

influenced arrival sequencing and scheduling”, Journal of Guidance, Control and 

Dynamics, vol.23, no.3, pp. 526-531, 2000. 

[4] Andreatta, G. and G. Romanin-Jacur, “Aircraft flow management under 

congestion”, Trans. Science, vol.21, pp. 249-253, 1987. 

[5] Bianco, L. and MM. Bielli, “System aspects and optimization models in ATC 

planning” in: Bianco, L. and A.R. Odoni (Eds.), Large Scale Computation and 

Information Processing in Air Traffic Control. Springer Verlag, pp. 47-99, 1993. 

[6] Dear, R.G., “The dynamic scheduling of aircraft in the near terminal area”, FLT 

R76.9, Flight Transportation Laboratory, M.I.T., Cambridge, 1976. 



[7] Psaraftis, H.N., “A dynamic programming approach to the aircraft sequencing 

problem”, FTL R78-4, Flight Transportation Laboratory, M.I.T., Cambridge, 

1978. 

[8] Psaraftis, H.N., “A dynamic programming approach for sequencing identical 

groups of jobs”, Opns. Res., vol.28, pp. 1347-1359, 1980. 

[9] Venkatakrishnan, C.S., A. Barnett and A.M. Odoni, “Landings at Logan Airport: 

Describing and increasing airport capacity”, Transp. Sci., vol.27, pp. 211-227, 

1993. 

[10] Bianco, L., P. Dell’Olmo and S. Giordani, “Scheduling models and algorithms 

for TMA traffic management” in: Bianco, L., P. Dell’Olmo and A.R. Odoni 

(Eds.), Modelling and Simulation in Air Traffic Management. Springer Verlag, 

pp.139-167, 1997.   

[11] Bianco, L., G. Rinaldi and A. Sassano, “Scheduling task with sequence-

dependent processing times”, Naval Res. Log., vol.35, pp. 177-184, 1988 

[12] CLARKE, D.W., Advances in Model-based Predictive Control, Oxford 

University Press, 1994. 

[13] De Schutter, B. and T. van den Boom, “Model predictive control for max-plus-

linear discrete event systems”, Automatica, vol.37, no.7, pp. 1049-1056, 2001.  

[14] Van Den Boom, T. and B. De Schutter, “Properties of MPC for max-plus-linear 

systems”, European Journal of Control, vol.8, pp. 453-462, 2002. 

[15] Chand, S., V.N. Hsu and S. Sethi, “Forecast, solution, and rolling horizons in 

operations management problems: a classified bibliography”, Manufacturing & 

Service Operations Management, vol.4, no.1, pp.25-43, 2002. 

[16] Chen, W.H., T. van den Boom and B. De Schutter, “Discussion on: ‘Properties of 

MPC for max-plus-linear systems’ by T. van den Boom and B. De Schutter”, 

European Journal of Control, vol.8, pp. 463-464, 2002. 

[17] Mitchell, M., An Introduction to Genetic Algorithms. Cambridge, MA: MIT 

Press, 1996. 

[18] Banzhaf, W., P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming-An 

Introduction, Morgan Kaufmann, San Francisco, CA, 1998. 

[19] Eiben, A.E., M. Schoenauer, “Evolutionary computing”, Information Processing 

Letters, Vol.82, pp.1-6, 2002. 

 


	 
	 
	Xiao-Bing Hu and Wen-Hua Chen 
	Abstract: 
	The concept of Receding Horizon Control (RHC) is introduced into Genetic Algorithm (GA) in this paper to solve the problem of Arrival Scheduling and Sequencing (ASS) at a busy hub airport. A GA based method is proposed for solving the dynamic ASS problem, and the focus is put on the methodology of integrating the RHC strategy into the GA for real-time implementations in a dynamic environment of air traffic control (ATC). Receding horizon and terminal penalty are investigated in depth as two key techniques of this novel RHC based GA. Simulation results show that the new method proposed in this paper is effective and efficient to solve the ASS problem in a dynamic environment.  
	 
	Key words: Receding Horizon Control, Genetic Algorithm, Air Traffic Control, Arrival Scheduling and Sequencing, Terminal Penalty. 
	The methodology of designing our RHC based GA follows the common practice of GA:- design the structure of chromosomes, choose fitness function, define genetic operators, and introduce some necessary heuristic rule. In addition for each step, we need to take an extra factor into account: how to integrate the concept of RHC.  
	3.2.1  The structure of chromosomes 
	In our RHC based GA, the idea of using terminal penalty in the RHC of control engineering is borrowed to defined a novel fitness function as           
	To assess whether a RHC based GA is properly designed as well as to fairly compare the new algorithm with other relevant literature, the last step in flow chart sums up the actual airborne delay occurring in the entire operating day. 
	Table 2.  Results of CDO_GA and RHC_GA in a single test

	PAF 
	Scheduled by CDO_TSP 
	Scheduled by CDO_GA
	Scheduled by RHC_GA
	AC No.
	Cat.
	PLT (s)
	AC No.
	Cat.
	ALT (s)
	Delay 
	(s)
	AC No.
	Cat.
	ALT (s)
	Delay 
	(s)
	AC No.
	Cat.
	ALT (s)
	Delay 
	(s)
	1 
	2 
	3 
	4 
	5 
	6 
	7 
	8 
	9 
	10 
	11 
	12 
	13 
	14 
	15 
	16 
	17 
	18 
	19 
	20 
	21 
	22 
	23 
	24 
	25 
	26 
	27 
	28 
	29 
	30
	1 
	1     1     2     1     1     2     1     2     2     1     1     3     4     2     2     2     1     1     3     1     1     4     2     1     2     3     2    1 
	1
	0          79         144         204         264         320         528         635         730         766         790         920         1046         1106        1136        1166        1233        1642        1715        1770        2074        2168        2259        2427        2481        2679       2883        2982        3046        3091
	1 
	2 
	3 
	5 
	6 
	7 
	4 
	9 
	10 
	11 
	12 
	8 
	17 
	16 
	15 
	14 
	13 
	20 
	18 
	19 
	21 
	22 
	23 
	24 
	25 
	26 
	27 
	28 
	29 
	30
	1     1     1     1     1     2     2     2     2     1          1     1     2     2     2     4     3     3     1     1     1    1     4     2     1     2     3     2     1 
	0          96         192         288         384         584         664         744         824         896         992         1088        1288        1368        1448        1558        1628        1770        1842        1938        2074        2170        2398        2478        2550        2750        2883        2983        3055        3151
	0          17          48          24          64         380         136         14         58         261         202         168         55         202         312         452        582        0        200        223        0           2        139         51         69        71         0           1           9         60
	1 
	2 
	3 
	5 
	6 
	4 
	7 
	9 
	8 
	11 
	12 
	10 
	15 
	16 
	14 
	13 
	17 
	18 
	19 
	21 
	20 
	23 
	24 
	26 
	27 
	22 
	25 
	29 
	30 
	28
	1     1     1     1     1     2     2     2     1     1     1     2     2     2     4     3     2     1     1     1     3     4     2         2     3     1     1     1     1    2
	0          96         192         288         384         584         664         744         816         912         1008         1208       1288        1368        1478        1548        1648        1720        1816        2074        2255        2385        2465        2679        2883        2955        3051        3147        3243        3443
	0          17          48          24          64         380          136         14         181         122         88         442         152         202         372         502        415         78        101        0         485        126        38          0            0        787        570        101        152        461
	1 
	2 
	3 
	5 
	6 
	4 
	7 
	9 
	10 
	8 
	11 
	12 
	15 
	16 
	17 
	13 
	14 
	18 
	19 
	20 
	21 
	22 
	23 
	24 
	25 
	26 
	27 
	28 
	29 
	30
	1     1     1     1     1     2     2     2     2     1          1     1     2     2     2     3     4     1     1     3     1    1     4     2     1     2     3     2     1 
	0          96         192         288         384         584         664         744         824         896         992         1088        1288        1368        1448        1518        1648        1720        1816        1997        2074        2170        2398        2478        2550        2750        2883        2983        3055        3151
	0          17          48          24          64         380         136         14         58         261         202         168         152         202         215         472        542        78        101       227        0           2        139         51         69        71         0           1           9         60
	 
	Table 3. Some key data of simulation results 
	Table 4 The influence of the length of receding horizon on the RHC_GA 



	Reference 



