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Abstract: 
The introduction of terminal penalty in the performance index and the usage of the 

concept of terminal regions now become common practice in Model Predictive Control 

(MPC) for guaranteeing its stability. However, it is quite difficult and conservative to 

propagate the influence of disturbances and uncertainties from an initial state to the 

terminal state, in particular, when the predictive horizon is long. This paper presents a 

new stable MPC algorithm where the additional weighting on the first state rather than on 

the terminal state in the horizon is imposed. Furthermore, a new tuning knob is 

introduced in the performance index, which can be used to trade off between disturbance 

attenuation/robustness and stability. It is shown that in the absence of disturbances and 

uncertainties, the new MPC algorithm achieves the similar performance as current 

terminal weighting based MPC algorithms. However, it exhibits much better disturbance 

attenuation ability and robustness against uncertainties. The proposed method is 

favorably compared with terminal weighting based MPC algorithms by a numerical 

example.  

  

Keywords:  Model Predictive Control, Robustness, Disturbance Attenuation, Linear 

Matrix Inequalities, Stability. 

 

 

1. Introduction 

Model Predictive Control (MPC) has been widely adopted in industry (Garcia et al, 

1989, Clarke, 1994, Mayne et al, 2000 and Maciejowski 2002). Stability has been one of 

the main problems in MPC since early MPC was criticized for its loss of stability, see 

Bitmead et al (1990). After two decades’ study, stability of MPC is now reaching its pre-

mature stage and many methods have been presented. As discussed in Mayne et al 

(2000), the core idea behind most of these methods is to add a terminal weighting term in 

the performance index and impose constraints on the state in the end of the horizon, i.e., 

the terminal state, being within a region, referred to as a terminal region, to address 

stability and feasibility. The MPC algorithms developed based on this concept are 

referred to as terminal weighting based MPC (TW-MPC) in this paper. This idea has also 



- 3 - 

been extended from linear systems to nonlinear systems (see Mayne and Michalska, 

1990, Rawlings and Muske, 1993 and Chen et al, 2000). How to choose the terminal 

weighting term and determine the terminal region thus stability region have been 

discussed in Lee et al (1998) for linear systems and in Chen and Allgower (1998) and 

Chen et al (2001) for nonlinear systems. The importance of calculation of the stability 

region is significant since it provides a region where the MPC algorithm can work. 

Most of the engineering systems are subject to disturbances and uncertainties. When 

the TW-MPC algorithms are applied, it is quite difficult and conservative to propagate 

the influence of disturbances and uncertainties from an initial state to the terminal state, 

which should be within a terminal region determined by stability or feasibility 

requirements. This results in the difficulties and conservativeness in analysis and design 

of MPC for systems under disturbances or with uncertainties. 

The first purpose of this paper is to propose a new MPC scheme to overcome the 

above mentioned shortcomings of the TW-MPC algorithms. Unlike the TW-MPC 

algorithms where the stability is achieved by inspecting the terminal state, the algorithm 

proposed in this paper guarantees the stability by inspecting the first state in the 

predictive horizon. In other words, an extra weighting on the first state in the horizon is 

added in the performance index, which leads to that the first state holds certain properties, 

and then the stability is established based on this. This new MPC algorithm is referred to 

as first state weighting based MPC algorithm (FW-MPC). This is motivated by the 

observation that only the first control action in the control sequence yielded by online 

optimization is implemented in MPC, and as long as the first state holds certain 

properties, it is possible to establish stability for the whole MPC scheme. 

The idea to establish stability based on the first state in the horizon has appeared in 

the stability enforced MPC algorithms, where stability is achieved by enforcing the state 

to contract to the origin in each step, see e.g. Sznaier and Damborg (1990), Polak and 

Yang (1993), Bemporad (1998) and Kothare and Morari (2000). In order to do so, an 

extra constraint (usually, a Lyapunov function alike) is added in the online optimization 

problem. To this end, perhaps the earliest algorithm is due to Sznaier and Damborg 

(1990), who employ an auxiliary Lyapunov function whose level set { 1)(| ≤xvx } is the 

state constraint set. An extra stability constraint )()),(( xvuxfv < is added to the optimal 
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control problem. Although the stability enforced MPC algorithms have their own 

advantages, in contrast to the widely used TW-MPC, it does not have methods to 

calculate the stability/feasibility region offline. Therefore, the region where the MPC 

algorithm is applicable/feasible is not known priori and no feasible initial control 

sequence is available. The latter is quite important for guaranteeing stability and 

performance of MPC when on-line optimization cannot be completed within a given 

sampling interval (Mayne, et al, 2000). The FW-MPC tries to retain the features of TW-

MPC and the performance index is modified to enforce the state to contract to the origin 

in each step. 

The robust MPC algorithm proposed in Kothare et al (1996) also combines some 

features of both TW-MPC and stability-enforced MPC, but in a different way as FW-

MPC does. An infinite horizon performance index is adopted by this MPC algorithm and 

the purpose of online optimization is to minimize the worst performance under 

uncertainties. Like other stability-enforced MPC algorithms, an additional constraint is 

imposed on the online optimization for the stability purpose, but the additional constraint 

is similar to those stabilizing conditions for TW-MPC algorithms. In view of the large 

amount of computational burden imposed by this algorithm, Kouvaritakis et al (2000) 

and Kouvaritakis et al (2002) refined this algorithm and developed much more 

computationally efficient MPC algorithms by shifting most of the computational burden 

from online to offline.  

When a system is subject to unknown disturbances, in general, asymptotic stability 

cannot be achieved by an MPC algorithm any more. In this case, not only the 

stability/feasibility region but also disturbance attenuation ability is concerned. The 

second purpose of this paper is to understand the influence of the design parameters on 

the disturbance attenuation ability and to provide a way to trade off between the stability 

region, performance and disturbance attenuation ability. Two indices are used to describe 

the disturbance attenuation ability of MPC: the allowable disturbances under which the 

MPC can maintain its stability and the level the MPC can attenuate the disturbance to. 

The latter is defined by a region where once state enters, it remains within it. 

This paper is organized as follows: In Section 2 the constrained MPC problem for 

linear systems is formulated and then the FW-MPC algorithm is proposed. The properties 
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of the FW-MPC are analyzed in Section 3 to 5, including stability, disturbance 

attenuation and robustness against uncertainties. The influence of the design parameters 

in the FW-MPC is discussed in Section 6. Simulation results are reported in Section 7 and 

the paper ends with conclusions in Section 8. 

 

2. FW-MPC algorithm 

Consider a linear discrete-time system 

⎩
⎨
⎧

=
+=+

0)0(
)()()1(

xx
kBukAxkx

                                                 (1) 

with control constraints 

miuu ii ,,1, L=≤                                                        (2) 

where k  is the discrete time index, nx R∈  represents the system state, mu R∈  is the 

input vector, and , 1, ,iu i m= L  is the input constraints. 

The original MPC performance index is given by 

∑
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where 0>Q  (or 0≥Q  and [ ]2/1,QA  is detectable) and 0>R  are state and control 

weighting matrices respectively, and N  is the length of the predictive horizon. 

Since MPC algorithm based on the performance index (3) may lose its stability, in 

TW-MPC algorithms, the stability is achieved by adding the weighting on the terminal 

state, )|( kNkx + , in the performance index )(kJ , that is,   

+++= )|()|()(1 kNkPxkNkxkJ T  
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where 0>P  is the terminal weighting matrix. 

Then the stability of the TW-MPC can be established if the terminal weighting term and 

the terminal state satisfy certain conditions. However, when the system (1) is subject to 

disturbances or (and) uncertainties, it is quite difficult and conservative to establish the 

stability by inspecting the behaviour of the terminal state )|( kNkx +  since the 
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disturbances and the uncertainties in the receding horizon, 1,, −+ Nkk K  have the 

influence on the terminal state in a quite complicated way.  

A new performance index, which emphasizes the first predicted state rather than the 

last one in the horizon, is proposed in this paper 

+++= )|1()|1()(2 kkMxkkxkJ T  

)|()|()|()|(
1

0
kikRukikukikQxkikx T

N

i

T ++++++∑
−

=

,                   (5) 

where M  is the weighting matrix for the first predicted state. 

Similar to the current TW-MPC algorithms, at each step, the performance index (5) is 

minimized on-line, that is,   

)(2
)|1(,),|(

min kJ
kNkukku −+L

                                                      (6) 

subject to (1) and (2) by using an optimization solver and the optimal control sequence 

)|1(,),|( ** kNkukku −+L is yielded. Then the MPC law is determined by  

)|()( * kkuku = .                                                          (7) 

 

3. Exponential Stability of FW-MPC 

Let the control effort in each time instant be given by 

)()()|( kxikKkiku +=+ , 1,,0 −= Ni K ,                                 (8) 

where )( ikK +  is the control gain at time instant ik + .  

Then the predicted state at time instant ik +  driven by the control sequence 

)|1(,),|( kNkukku −+K  from the state )(kx  can be expressed by 

[ ] NikxkKBABAAkikx i
ii ,,1),())(()|( 01 KL =⋅⋅+=+ −                (9) 

where 
TTT

i ikKkKkK ])1()([)( −+= L , Ni ,,1K= .                        (10) 

Substituting Eq. (9) into the performance index (5) gives 
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Definition 1: Stability region ν  refers to a set of all initial state 0x  from which the 

system state under the MPC stemming from the optimization problem (6) subject to 

constraints (2) approaches to the origin, i.e., 0)( →kx  as 0→k  in the absence of 

disturbance. 

Theorem 1: Suppose that there exist matrices 0>S , S and scalars 0>μ , 1>e  such 

that 
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hold where 
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N Q Γ=Γ 2/1)( ,                                   (18) 

NΦ , NΓ , NQ  and NR  are given in (12), (13) and (14). Then the FW-MPC with the 

predictive performance index (5) exponentially stabilizes the constrained linear system 

(1) for all initial states within the set  
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{ }μν ≤∈= ZxxRx Tn :                                                (19) 

if the extra weighting matrix for the first predicted state is chosen as 

QeZeM −=                                                       (20) 

where μ1−= SZ . 

Proof: Suppose that there exist 0>μ , 1>e , nnRZ ×∈<0 , )1(,),( −+ NkKkK K  

such that  
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Condition (22) implies that the state feedback control sequence, 

1,,0),()()|(~ −=+=+ NikxikKkiku K , satisfies the control constraints (2) if ν∈)(kx , 

i.e., μ≤)()( kZxkx T  ( Kothare et al, 1996). 

Let )|(~ kikx +  denote the predicted state under )|(~ kiku +  and )(~
2 kJ  denote the 

corresponding performance index. Similarly, )|(* kikx +  and )(*
2 kJ  denote the state 

under the optimal control sequence yielded by solving the on-line optimization problem 

and the corresponding performance index, respectively. It follows from the principle of 

optimality, Eqs. (11), (20) and condition (21) that 
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In MPC the first control action in the optimal sequence is executed. If there are no 

disturbances and no system uncertainties, one has 

)|1()1( * kkxkx +=+ . 

Hence (23) implies that 

)()()1()1( kZxkxkeZexkx TT ≤++ .                                (24) 

It follows from 1>e  that )1( +kx  contracts to the origin.  

Conditions (21) and (22) can be transferred into conditions (15) and (16) by using the 

transform 

μ1−= SZ , 1)( −= SSkK N , and 1)( −=+ SSikK i .                     (25) 

Since conditions (15) and (16) imply that condition (24) holds for any ,,1,0 K=k  it 

can be shown that for any initial state in the set ν , the trajectory of )(⋅x  converges to the 

origin exponentially. This completes the proof.                                                                 ٱ 

Remark 1: At each time instant, after the state is measured, the initial control 

sequence for the online optimization is chosen as )()()|(~ kxikKkiku +=+ , 

1,,0 −= Ni K , and the associated performance index is given by )(~
2 kJ . Even if the 

computational time runs out before the optimization is completed, the first predicted state 

)|1(~* kkx +  under the latest control sequence yielded by the optimizer and the 

corresponding performance index )(~*
2 kJ  still satisfy 

)()()(~)(~)|1(~)|1(~
2

*
2

** kZxkxkJkJkkxeZekkx TT ≤≤≤++ , 

which implies that the FW-MPC is always feasible and exponentially stable. 

Remark 2: According to Theorem 1, the system under the FW-MPC is exponentially 

stable when all states are available. For the output feedback case, by integrating a state 

estimator with exponential stability with the FW-MPC algorithm, as demonstrated in 

Scokaert et al (1997), asymptotic stability can be achieved.  

Remark 3: In Theorem 1 the weighting matrix M  on the first predicted state is 

determined by (20) and 1>e  is an extra design parameter introduced in this paper. As it 

will be seen, the parameter e provides a tuning knob to trade off between the stability 

region and disturbance attenuation/robustness of the FW-MPC. 
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4. Disturbance attenuation 

This section investigates the disturbance attenuation ability of the MPC algorithm 

proposed in Section 3. To this end, suppose that the constrained system (1) is subject to a 

bounded disturbance, that is,  

0

( 1) ( ) ( ) ( )
(0) , , 1, ,i i

x k Ax k Bu k Cd k
x x u u i m

+ = + +⎧
⎨ = ≤ =⎩ L

,                                      (26) 

where the disturbance is bounded by 

[ ] liDDkd iii ,,1,,)( K=∈ .                                           (27) 

It is obvious that it is impossible to achieve asymptotic stability for a MPC algorithm 

under disturbances. Furthermore, due to the constraints imposed on the system, different 

from unconstrained linear systems, the stability of the MPC may be destroyed by 

disturbances. Hence, the size of the stability region depends on the range of the 

disturbances.  

To establish our results, the following definitions are necessary.   

Definition 2 (Corless and Leitmann, 1981): System (26) under the FW-MPC and the 

bounded disturbance (27) is said to be uniformly ultimately bounded if there exists a 

neighborhood of the origin 0=x , Θ , such that the state trajectory enters it in finite time 

and remains within it thereafter. The set Θ  is referred to as Uniform Ultimate 

Boundedness Region (UUBR). The set of all the initial state 0x  from which the system 

(26) under the FW-MPC and the bounded disturbances (27) is uniformly ultimately 

bounded is referred to as the stability region under the disturbances.  

Definition 3: Maximum Allowable Disturbance Set (MADS) Φ  is referred to as a set 

of allowable bounded disturbances under which for all the states starting from the 

stability region ν , the system (26) under the FW-MPC remains stable. 

Theorem 2: Consider the constrained system (26), (27) with the MPC performance 

index (5), where M  is determined by (20). Suppose that there exist matrices 0>S , S  

and a scalar 0>μ  such that conditions (15) and (16) are satisfied. Then 

(1). the MADS is 
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where μ1−= SZ ; 

(2). when the disturbance belongs to the set (28), for any initial state ν∈0x  as 

defined in (19), the FW-MPC can steer the state into the UUBR 
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where )(ˆ kd  is the disturbance which maximizes )()( kZCdCkd TT  subject to (27). 

Proof: Similar to the proof of Theorem 1, it can be shown that in the absence of 

disturbances, the FW-MPC satisfying conditions (15) and (16) guarantees that 

)()()|1()|1( ** kZxkxkkeZexkkx TT ≤++                                (30) 

where )|1(* kkx + is the first predicted state under the control )|(* kku . 

Since 0>Z , it can be decomposed as UUZ T=  where U  is of full rank. Since 

0>e , using the transformation )()( ⋅=⋅ Uxx , Eq. (30) becomes 

222* )()|1( kxekkx ≤+ ⇒ )()|1(* kxekkx ≤+ .                     (31) 

When a bounded disturbance is present, the actual state )1( +kx  is different from the 

first predicted state, )|1(* kkx + , i.e., )()|1()1( * kCdkkxkx ++=+ , which implies  

)()|1()1( * kUCdkkxkx ++=+ .                                    (32) 

Combining (31) with (32) yields 

ekUCdekkxekUCdkkxekx )()|1()()|1()1( ** ++≤++=+  

ekdUCekkx )(ˆ)|1(* ++≤ ekdUCkx )(ˆ)( +≤  

ekdUCekxekx )(ˆ)1()()( +−+= .                                          (33) 

When 0)(ˆ)()1( <+− kdUCekxe , one has that )()1( kxkx <+  from (33). Since 

1>e , this implies that any state satisfying )(ˆ
1

)( kdUC
e

ekx
−

>  contracts to the region 
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Θ  until ˆ( ) ( )
1

ex k UCd k
e

≤
−

. Therefore, any state outside of the region Θ  in (29) will 

finally enter it.  

Now we prove that once the state enters the region Θ , it will remain in that region. 

Suppose that in time instant k , the state belongs to the region Θ  and hence satisfies the 

condition )(ˆ
1

)( kdUC
e

ekx
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≤ . It follows from (33) that 
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)(ˆ)(ˆ
1
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2
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e
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−

≤+⇒ .                                        (34) 

Therefore the state remains in the region Θ  once it enters. 

When the state trajectory starts from any initial state within the stability region ν , a 

sufficient condition for the system being stable under the disturbances is that the state in 

the next step still remains in the region ν . From the above proof, it can be seen that if the 

disturbance satisfies  

μ≤⎟
⎠
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⎜
⎝
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−
)(ˆ)(ˆ
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2

kdZCCkd
e

e TT , 

then for any vkx ∈)( , the state in the next step under the FW-MPC still remains in the 

stability region ν . This is because 

)1()1()1( +=++ kxkZxkx T μ≤⎟
⎠
⎞

⎜
⎝
⎛

−
=

−
≤ )(ˆ)(ˆ

1
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e

ekdUC
e

e TT . 

Hence the MADS and UUBR are determined by (28) and (29) respectively.              ٱ 

Remark 4: Since ZCC T  is semi-positive definite, the maximum of )()( kZCdCkd T  

achieves at a certain extreme point of )(kd . 

 

5. Robustness 

Robustness is another important property of control methods. This section addresses 

the robustness issue of the FW-MPC algorithm. It is supposed that there are uncertainties 

in the system matrix described by 

uo AAA +=                                                             (35) 
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where oA  is a nominal system matrix and uA  is the perturbation matrix which is within a 

given set  

Ω∈uA .                                                                (36) 

In general, it is reasonable to assume that the set Ω  is convex or can be covered by a 

convex hull of a set of extreme matrices ],,[ 1 uLu AA K  (Kothare et al, 1996). Thus, any 

Ω∈uA  can be represented by a linear combination of these extreme matrices  

∑
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1
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i
iα , 0≥iα .                                    (37) 

Theorem 3: Suppose that there exist matrices 0>S , S  and a scalar 0>μ  such that 

conditions (15) and (16) hold for the nominal system and 
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is satisfied. Then the FW-MPC with first predicted state weighting M , which is 

determined by (20), can asymptotically stabilize the uncertain system defined by (35) and 

(36) for all initial states in the region ν  in (19).  

Proof: Similar to the proof for Theorem 2, when conditions (15) and (16) hold for the 

nominal system, the first predicted state satisfies (30), and then (31) holds.  

In the presence of system uncertainties, the actual state, which is different from the 

first predicted state based on the nominal system, is given by  
*( 1) ( ) ( ) ( ) ( 1| ) ( )o u ux k A A x k Bu k x k k A x k+ = + + = + +  

)()|1()1( * kxUAkkxkx u++=+⇒ , 

which implies  

ekx )1( + ekxUAekkx u )()|1(* ++≤ ekxUAkx u )()( +≤ . 

If 0)()(1
<+

− kxUAkx
e

e
u , then one can conclude that )()1( kxkx <+ , which 

means that the state trajectory converges. Therefore any state satisfying  

)(
1

)( kxUA
e

ekx u−
>  converges to the origin. This condition is equivalent to 
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> ,                             (39) 

which is met if 

0)
1

( 2 >
−

− u
T
u ZAA

e
eZ .                                           (40) 

Using the transform μ1−= SZ , it is shown that condition (40) is equivalent to  

0
)1(

)(
2 >
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
− S
e

eSA

SAS

u

T
u

.                                           (41) 

Since Ω∈uA  and can be represented by (37), one has that (41) holds if (38) holds.  ٱ 

  

6. Design parameters in the FW-MPC algorithms 

A large e  means a heavy penalty imposed on the first predicted state, which implies a 

high convergence rate of the FW-MPC algorithm in the absence of system uncertainties 

and disturbances, or, in general, a good disturbance attenuation ability/strong robustness 

in the presence of disturbances/uncertainties. Unfortunately, a large e  also leads to a 

small stability region. Hence e should be chosen based on the trade off between the 

stability region and convergence rate/disturbance attenuation ability/robustness. 

After a proper e  is chosen, the matrix Z is determined by solving offline the  

optimization problem 

))log(det( 1

0,,0
min −

>>

S
SS μ

                                                 (42) 

subject to conditions (15) and (16). The largest stability region can be achieved under a 

desired convergence rate. Then the weighting matrix M is determined by (20) and a 

feasible initial control law can be determined according to (25). 

In the presence of disturbances, the MADS can be estimated by (28). If the given 

range of disturbances is within the MADS, then the FW-MPC algorithm is feasible and 

the UUBR can be estimated by (29). Otherwise, we can increase e  and then repeat above 

process until a feasible solution is found. 

For the case with system uncertainties, besides conditions (15) and (16), condition 

(38) must be satisfied when solving the optimization problem (42) offline. This is 

intended to maximize the stability region under a given range of uncertainties. If there is 
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no solution, we can increase e  and then repeat until a feasible FW-MPC algorithm is 

found.   

As shown in Lee and Kouvaritakis (1999) and Chen et al (2001), the stability region 

can be significantly enlarged by introducing μ . However, it should be chosen according 

to the trade-off between the size of the stability region and the achievable performance, 

which is defined by the integral part in the performance index (Chen et al, 2001).  

 

7. Simulation results 

Consider a second order system 

⎩
⎨
⎧

+=+
++=+

)(625.1)(375.0)1(
)()(125.1)(875.0)1(

212

211

kxkxkx
kukxkxkx

                                    (43) 

with control constraint 1≤u . It is an unstable plant with one pole outside the unit circle. 

The prediction horizon is chosen as 3=N  and the weighting matrices in the performance 

index (5) are chosen as  

1,
100
010

=⎥
⎦

⎤
⎢
⎣

⎡
= RQ .                                                 (44) 

 

7.1. The influence of e  

Firstly, influence of e  on stability and robustness properties of the new MPC 

proposed in this paper is investigated. The results are listed in Tab.1, where the volume of 

MADS is calculated when C in (26) is given by 

1 0
0 1

C ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

.                                                        (45) 

The second row in Tab.1 shows that the stability region is getting smaller, as e  

decreases. e  implies the convergence rate of the system state under the MPC algorithm. 

This is also illustrated in Figure 1 in a more intuitive way. A large e  implies that the state 

rapidly contracts to the origion. As shown in Fig.1, the volume of stability region reaches 

its maximum 11.0207 when 1.0001e = . When e  increases to a critical value, there will 

be no stability region for the system. This is easy to understand: in this critical case, even 
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the extreme control signal (due to the control constraints) cannot push the first predicted 

state into the sub-region determined by μ≤eZexxT .  

The third row in Tab.1 shows that the maximum allowable system uncertainty 

increases with e . However, when e  reaches certain value, e.g., 8.1=e  for this system, 

the maximum allowable system uncertainty does not increase significantly any more. 

The fourth row in Tab 1 illustrates the influence of e  on MADS. When e  is small, 

e.g., 2.1=e , although the stability region is relatively large, the corresponding MADS is 

small. A small e  implies the small ability to accommodate the influence of the external 

disturbance or uncertainties. In general, the MADS increases with e. However, as 

indicated in (28), the MADS depends not only on e  but also on Z , and, as shown in 

Figure 1, the stability region which is determined by matrix Z decreases with e. This 

causes that when e is larger than 1.8, increasing e actually reduces the allowable 

maximum disturbance. 

The last row in Tab 1 is to demonstrate the influence of e on the disturbance 

attenuation level of the FW-MPC algorithm. As shown in Tab 1, at the beginning, the 

UUBR reduces with e, which implies that the MPC algorithm can attenuate the persistent 

disturbance to a smaller region. However, since, similar to the MADS, both e and Z have 

the influence on UUBR as shown in (29), after e is larger than certain value, e.g., 8.1=e  

in this example, the UUBR does not reduce and might even increase.  

 

7.2  Online control performance 

This simulation is to compare the performance of FW-MPC algorithm proposed in 

this paper and TW-MPC algorithms. The FW-MPC algorithm is designed with 8.1=e  

while the TW-MPC algorithm is designed with the LMI-base method proposed by Lee 

(1998), and the terminal weighting matrix for the TW-MPC is determined as 

⎥
⎦

⎤
⎢
⎣

⎡
=

390.972191.3477
91.347732.2483

P .                                                (46) 

In order to fairly compare the performances of these MPC algorithms, the summing 

up cost, i.e., 
0

( ( ) ( ) ( ) ( ))
k

T T

i
x i Qx i u i Ru i

=

+∑ , ∞= ,,0 Kk , is introduced. 
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Fig. 2 illustrates the achieved performances of two MPC algorithms in the nominal 

case, i.e., without any system uncertainty or disturbance. Similar performances are 

achieved by FW-MPC and TW-MPC. 

Fig. 3 and Fig. 4 show the simulation results for the system with uncertainties. In 

general, the FW-MPC yields better performance under perturbation of the system matrix. 

In some cases, the system under the TW-MPC becomes unstable while the FW-MPC still 

exhibits promising performance, as shown in Fig. 4. 

The performance of FW-MPC and TW-MPC under bounded disturbances is 

compared in Fig. 5. When the bounded disturbances with time history shown in the third 

plot of Fig. 5 are applied to the system, the system under the TW-MPC becomes unstable 

but FW-MPC still stabilizes the system and attenuates the influence of the disturbance to 

a certain range, i.e., UUBR. Fig. 6 illustrates that (29) gives a very satisfactory estimate 

of the UUBR. It is clear in Fig. 6 that the FW-MPC steers the state into the estimated 

UUBR and then keeps the state within it thereafter under the bounded disturbnaces. 

 

8. Conclusion 

This paper presents a novel MPC algorithm with promising robustness and 

disturbance attenuation ability. Different from the most conventional MPC algorithms, 

where a terminal state weighting is added in the performance index to guarantee stability, 

the new algorithm employs an additional first predicted state weighting term in the 

performance index.  This provides an alternative way to design stability guaranteed MPC 

algorithms. As shown by theoretic analysis and numerical simulation, when there are no 

uncertainties and disturbances, similar stability and performance are achieved by this new 

algorithm and terminal weighting based MPC algorithms. In the presence of disturbance 

and uncertainty, the new MPC algorithm exhibits much better disturbance attenuation 

ability and robustness. 
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Table 1   The influence of e  

e  1.2 1.4 1.6 1.8 2.0 2.2 

Volume of stability region 8.7660 7.1082 5.6601 4.3145 3.1889 2.3289 

Maximum allowable uA  0%8 A±  0%14 A±  0%18 A± 0%22 A±  0%24 A±  0%25 A±  

Volume of MADS  0.2435 0.5803 0.7960 0.8522 0.7958 0.6929 

Volume of UUBR 8.7660 2.9422 1.8279 1.4848 1.4505 1.5684 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Stability regions  
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Fig. 2.  Online control performance: no system uncertainties or disturbances    
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Fig. 3.  Online control performance: with system uncertainty 02.0 AAu =     
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Fig. 4.  Online control performance: with system uncertainty ]15.00;005.0[=uA  
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Fig. 6.  Stability region (e =1.8), estimated UUBR and state trajectory 
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Fig. 5.  Online control performance under bounded disturbances 


