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Abstract 
 
Fault Tree Analysis is a commonly used technique to predict the causes of a specific system failure mode and to 
then determine the likelihood of this event. Over recent years the Binary Decision Diagram (BDD) method has been 
developed for the solution of the fault tree. It can be shown that this approach has advantages in terms of both 
accuracy and efficiency over the conventional method of analysis formulated in the 1970’s. The BDD expresses the 
failure logic in a disjoint form which gives it an advantage from the computational viewpoint. Fault Trees, however, 
remain the better way to represent the system failure causality. Therefore the usual way of taking advantage of the 
BDD structure is to construct a fault tree and then convert this to a BDD. It is on the fault tree conversion process 
that this paper will focus. 
 
In order to construct a BDD the variables which represent the occurrence of the basic events in the fault tree have to 
be placed in an ordering. Depending on the ordering selected an efficient representation of the failure logic can be 
obtained or if a poor ordering is selected a less efficient analysis will result. Once the ordering is established one 
approach is to utilise a set of rules developed by Rauzy which are repeatedly applied to generate the BDD. An 
alternative approach can be used whereby BDD constructs for each of the gate types are first formed and then joined 
together as specified by the gates in the fault tree. Some comments on the effectiveness of these approaches will be 
provided. 
 

Introduction 
 
The binary decision diagram (BDD) method “(ref. 1)” has been developed as an alternative to conventional methods 
for performing qualitative and quantitative analysis of fault trees. This method appears to be a more efficient means 
of analysing a system and does not need to take advantage of the approximations used in the traditional approach of 
kinetic tree theory “(ref. 2)”. 
 
Rather than analysing the fault tree directly the BDD method first converts the fault tree to a binary decision 
diagram, which represents the Boolean equation for the top event. However, problems may occur with the 
conversion process of the fault tree to the BDD. If the ordering of the basic events is not chosen suitably, the size of 
the final BDD can grow exponentially. It is not possible to identify an optimum scheme for producing BDDs for all 
fault trees. In this paper an alternative conversion method is presented where BDDs for each of the gate types are 
formed and then joined together according to the type of the parent gate in the fault tree.  
 
The effectiveness of this approach is compared with Rauzy’s method using different efficiency measures, while 
working on the optimum connection technique. 
 

Binary Decision Diagrams 
 
A BDD is a directed acyclic graph, i.e. all paths through the BDD are in one direction and no loops can exist. The 
BDD is composed of terminal and non-terminal vertices (nodes) which are connected by branches. Terminal vertices 
correspond to the final state of the system, failure (1) or success (0), and non-terminal vertices correspond to the 
basic events of the fault tree. Each non-terminal vertex has a 1 branch, which represents basic event occurrence, and 
a 0 branch, which represents basic event non-occurrence. The fault tree and its equivalent BDD are presented in 
“figure 1”. The BDD encodes system failure logic function in a disjoint form. 
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Figure 1 – Example of a Binary Decision Diagram 
 

BDD Quantification 
 
All paths through the diagram start at the root vertex and proceed to a terminal vertex, which marks the end of the 
path. Each path that terminates in a 1 state gives a cut set of the fault tree, as that particular combination of 
component failures which, if they all occur, will result in system failure. Only vertices that lie on the “1” branches of 
these paths are included in the cut sets. For example, in the BDD shown in “figure 1” there are two possible paths 
that terminate in 1 state. These are: 

1. a 
2. cba ,,  

This gives the two corresponding cut sets: 
1. {a} 
2. {b, c}. 

In this example the BDD is in its minimal form and so generates only minimal cut sets (cut sets with both necessary 
and sufficient elements). However, this is not always the case. In order to obtain minimal cut sets the BDD has to 
undergo a minimisation procedure, introduced in “reference 1”, after which a new BDD is created that encodes only 
the minimal cut sets of the fault tree. 
 
Since paths through the BDD are disjoint (mutually exclusive), the probability of occurrence of the top event, SYSQ , 
can be expressed as the sum of the probabilities of the disjoint paths through the BDD. Each disjoint path represents 
a combination of working and failed components which leads to system failure. Therefore, events lying on both the 
1 and 0 branches are included in the probability calculation. The probability of system failure for the BDD shown in 
“figure 1” is: 
 
      ( ) cbaaSYS qqqqQ −+= 1           (1) 
 
Other probabilistic properties of the system, such as the unconditional failure intensity and component importance 
measures, can also be calculated “(ref. 4)”. 
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BDD/FT Features 
 
Fault Tree Analysis is the most widely used tool in system safety and reliability assessment. This technique analyses 
the causal relationships between component failures and system failure. The fault tree itself provides a visual 
representation of engineering failure logic and produces a complete description of the causes of system failure. 
However, even for moderate sized problems the calculation of minimal cut sets can be a time consuming task and 
the system failure probability is calculated by applying approximations.  
 
Rather than analysing the fault tree directly the BDD method first converts the fault tree to a binary decision 
diagram. The BDDs are difficult to construct directly from the engineering system and they do not provide clear 
documentation of the system failure causes. When the quantitative analysis is performed, the BDD has the 
advantage that, due to the structure of the logic equation, exact probabilities can be calculated. There are no 
requirements to calculate minimal cut sets as an intermediate phase. However, the qualitative analysis of BDDs can 
be performed and minimal cut sets obtained “(ref. 5)”. The BDD method has been developed and used to overcome 
inaccuracy and inefficiency problems with conventional methods. It does however require an effective method to 
convert the fault tree structure into the BDD form. Two methods are now considered. 
 

Construction method 1 – Rauzy 
 
A commonly used method of constructing BDDs was developed by Rauzy “(ref. 1)” and proceeds by applying an if-
then-else (ite) technique to each of the gates in the fault tree. The ite  structure derives from the Shannon’s formula 
“(ref. 3)” such that if ( )xf  is the Boolean equation for the top event, then by pivoting about any variable X  the 
Shannon formula can be written as: 
 
      ( ) 21 fXXfxf +=           (2) 
 
where 1f  and 2f  are Boolean equations, known as the residues of f , with 1=X  and 0=X  respectively. The 
corresponding ite structure is ( )21,,ite ffX , which means that if X fails then consider 1f , else consider 2f . 
Therefore, in the BDD structure 1f  lies below the 1 branch of the node encoding  X and 2f  lies below the 0 branch. 
 
Once a variable ordering has been established, the following procedure can be implemented to construct the BDD. 
Let J and H be two nodes in the BDD where ( )21,,ite ffXJ =  and ( )21,,ite ggYG = .  

 
1. if YX < (i.e. X  appears before Y in the variable ordering) then 

      ( )GopfGopfXGopJ ><><=>< 21 ,,ite .       (3) 
 

2. if YX = then 
      ( )2211 ,,ite gopfgopfXGopJ ><><=>< .       (4) 

 
where >< op corresponds to a Boolean operation of the gates in the fault tree. 
 
An advantage of the ite algorithm is that the method automatically uses sub-node sharing. This not only reduces the 
computer memory requirements, as each ite structure is only stored once, but it also increases the efficiency, since 
once an ite structure has been calculated the process does not need to be repeated. 
 
The ite method can be demonstrated by an example in “figure 2”. The ordering c < a < d < b represents a simple 
top-down left-right traversal of the fault tree. Applying “equation 3” gives the expression for gates G1, G2 and Top:  
 

      ( ) ( ) ( )
( )( )( ).0,1,ite,1,ite,1,ite

0,1,ite0,1,ite0,1,ite
1

dac
dac

dacG

=
++=

++=
        (5) 
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Figure 2 – BDD obtained using the ite technique 

Construction method 2 – Component Connection method 
 
The second method considered “(ref. 6)” uses the observed structure that results when a BDD is formed for an 
“AND” gate or an “OR” gate. In this way BDDs are constructed for fault trees initially without considering when 
basic events in the fault tree are duplicated (repeated). The resulting BDD then undergoes simplification to produce 
the final structure for analysis. This section of the paper describes the connection and simplification rules, with some 
alternative strategies, for producing a BDD for any fault tree. The basic event ordering, as required in Rauzy’s 
method, does not necessarily need to be established because the method can work without following any 
predetermined ordering scheme for the whole system. However, before the construction process can be implemented 
a selection scheme has to be specified which will govern the way in which gate inputs, either basic events or BDDs, 
are selected and combined.  
 
In the approach presented gate inputs to any parent gate are considered in a left-right way so that this provides some 
ordering to consider basic events and also the BDD for a subtree of the left-most gate is built before considering the 
remaining gate inputs. When all BDDs, representing gate inputs of a parent gate, have been formed they are merged 
to obtain the BDD of the parent gate. This bottom-up process is over when the BDDs, representing gate inputs of the 
top-event, are combined. The following connection rules are used. 
 

1. If two inputs in a fault tree are inputs to an “AND” gate, their representing nodes on a BDD are connected 
to each other through the 1 branch of the node. A similar statement holds true for the “OR” gate, i.e. the 
nodes are connected through the 0 branch. 

2. If there are two BDDs, which represent two gate inputs of a parent gate, one of them is set to be the main 
BDD, according to the rule of selection. Then, 

a) If two BDDs are inputs to an “AND” gate, the secondary BDD is connected to every terminal 1 
node of the main BDD. 

b) If two BDDs are inputs to an “OR” gate, the secondary BDD is connected to every terminal 0 
node of the main BDD. 
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After every connecting operation we need to check for the repetition of basic events on any path through the BDD. 
If there is at least one repeated event, two simplification rules will be applied: 
 

1. Each path starting at the node that represents the first occurrence of a repeated event in a path, and 
proceeding to a terminal vertex, must be adjusted in order to avoid the contradictory states of the repeated 
event in the BDD. The node, that represents the second occurrence of the event, needs to be replaced by the 
events below it on either its “working” branch or “failed” branch depending on the component state as 
specified by its first occurrence in the path. For example, if we traverse the BDD starting with the 1 branch 
of a node, the second appearance of that node should be replaced by the BDD structure below the 1 branch 
of this second node for consistency.  

2. If the state of the system is the same regardless of the basic event occurrence or non-occurrence, the 
insignificant vertex must be removed. In other words, if the BDD structures below both branches of the 
node are the same, the node is irrelevant and needs to be replaced by the structure below either one of the 
branches.    

 
To demonstrate this method it has been applied to the fault tree illustrated in “figure 2”. The resulting process is 
presented in “figure 3”. In this example the selection scheme used is that when combining BDDs representing inputs 
for any gates they are considered in a left-right manner and the left-most BDD is set to be the main BDD to which 
the other is joined. A left-right variable ordering for every gate in a fault tree is also adopted and the fault tree 
traversed in a bottom-up manner. First of all, gates G1 and G2 are constructed, shown in “figure 3(i)” and “figure 
3(ii)” respectively, building two BDDs, which are both “OR” chains. Then the top event (“AND” gate) is 
considered. The left-most BDD “(figure 3(i))” is selected as the main BDD. Then the BDD, illustrated in “figure 
3(ii)”, is connected to every available 1 branch of the main BDD. The resulting BDD is presented in “figure 3(iii)”. 
Finally, the simplification rules are applied. The repeated event a is removed from the path F1-F2-F6-F7 replacing 
node F6 by the terminal node 1, since the path traverses the 1 branch of node F2, the first occurrence of the repeated 
event. In the same way the repeated event a is removed from the path F1-F2-F3-F8-F9, replacing node F8 by a 
direct connection to node F9. The final BDD is shown in “figure 3(iv)”. 
 
No system-wide variable ordering was explicitly presented in this example, i.e. basic events were connected 
according to the order that they appear in the list of gate inputs. However, it is possible to apply a defined ordering 
scheme for the nodes which will be used in the construction method.  
 
In forming the BDD of a parent gate the BDDs of its input events are merged together, one at a time. In this example 
BDDs were selected according to the order that gate inputs are listed, i.e. the BDD, presenting the left-most gate, is 
set to be the main BDD. Other selection schemes can be used which will, to some degree, affect the efficiency of the 
process. For example, BDDs can be ordered according to the position of their root vertex in an ordering scheme 
defined for the basic events or to minimise the number of available branches where connections will be made. The 
efficiency of different strategies can be analysed comparing the number of nodes in the final BDD and the 
processing time. 
 
Both qualitative and quantitative analysis can be carried out on BDDs as in the first method. However, this method 
does not use sub-node sharing, therefore, there are some parts in the structure that are identical. This might lead to 
the inefficient memory usage. For example, in “figure 3(iv)” there are two identical nodes F5 and F9, which are not 
duplicated in Rauzy’s method.  
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Figure 3 – BDD obtained using the Component Connection method 

Comparison of methods 
 
The performance of a method for fault tree conversion to the BDD form will be dependent upon the structure of the 
fault tree. An indication of the merit of a method can only be gauged over a large range of problems. As a 
comparison between the two BDD construction methods presented they have both been applied to a library of 12 
fault trees. The characteristics of test fault trees are summarised in “table 1”. The first column is a label to identify 
the example fault tree, then the next three columns present the complexity of a fault tree in terms of the number of 
gates, the number of basic events and the number of repeated events. The last column presents the number of 
minimal cut sets. For each of the two methods, what are considered as effective variable ordering schemes and gate 
combinations input selection schemes have been used. The variable ordering that was applied for basic events is the 
modified top-down left-right approach “(ref. 7)”.  
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Number of a 
test FT 

Number of 
gates 

Number of 
basic events 

Number of 
repeated 
events 

Number of cut 
sets  

1 48 94 38  6391 
2 51 53 44  764 
3 52 47 41  122 
4 46 64 39  423 
5 95 150 80  2621 
6 48 114 27  66083 
7 45 100 21  3344 
8 46 84 40  1633 
9 49 98 21  8113 

10 48 72 43  493 
11 38 58 26  898 
12 37 77 17  45505 

 
Table 1 – Complexity of test fault trees 

 
The measurements that were chosen for the comparison of the two methods are the number of nodes in the final 
BDD and the processing time. The results obtained by applying the two methods to the fault trees in the library are 
shown in “table 2”. 
 

Number of nodes  Processing time 
Number of 
a test FT 

Method 1 Method 2 
Method 1 as a 

fraction of  
Method 2 (%)

Method 1 Method 2 
Method 1 as a 

fraction of  
Method 2 (%)

1  12470     104214 12  4.125  5.563 74 
2  860  2105 41  0.047  0.187 25 
3  368  975 38  0.032  0.156 21 
4  1472  2614 56  0.078  0.844 9 
5  14109  590269 2  11.89  2018.188 1 
6  18460  95650 19  9.609  1.625 591 
7  16797  141588 12  8.531  3.203 266 
8  1726  6650 26  0.078  1.094 7 
9  1945  3850 51  0.109  0.875 12 

10  1618  2921 55  0.078  0.484 16 
11  1701  11751 14  0.078  0.64 12 
12  1006  8629 12  0.047  0.234 20 

 
Table 2 – Comparison of two construction methods by the number of nodes and the processing time 

 
The first construction method resulted in smaller BDDs for all the example fault trees. The processing time was also 
shorter for almost all example fault trees, except two examples, (6) and (7). Therefore, Rauzy’s method has a big 
advantage over the Component Connection method. This is due at least partly to its capability to use sub-node 
sharing. 
 

Conclusions 
 
This paper presents two alternative techniques by which fault trees are converted to BDDs. The first method is 
Rauzy’s ite method, the second is the Component Connection method. Example fault trees have been used and the 
results for both methods compared. Processing time and number of nodes were used as efficiency measures while 
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working on what were considered efficient connection techniques for both methods. It has been shown that the 
Component Connection approach has a high demand for memory space since the identical parts in the BDD 
structure are repeated but not shared. It is shown that as a general fault tree to BDD conversion technique the 
method proposed by Rauzy performs best. If the Component Connection method is to compete with Rauzy’s method 
then it must be capable of incorporating sub-node sharing. 
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