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In this paper a general method is presented for optimising system parameters and inputs.  The 
Generalised Optimal Control technique involves iterative resimulation of system states, but is 
applicable to any (smoothly) nonlinear system, and can be operated using non-quadratic cost functions.  
Here it is applied to find optimal steer and torque inputs for a 2DOF vehicle handling model with a 
(combined slip) nonlinear tyre model.  System parameters for centre of gravity and yaw inertia are 
simultaneously optimised, and hence the validity of some handling control assumptions – particularly 
the benefits of zero sideslip – is examined.  The results are satisfactory, and they are mainly in keeping 
with expectation.  The method is proven to be effective, though computationally rather expensive !  
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1. INTRODUCTION 

 Researchers who consider algorithms for 
controlling race-car handling, must make assumptions 
about what behaviour is desirable in the vehicle.  For 
example, they frequently consider that zero sideslip 
velocity is desirable during steady-state cornering, and 
so design the vehicle to exhibit neutral steer behaviour 
and / or prescribe control algorithms about this 
reference (examples are [1] and [2]).  Another 
assumption is that a particular ‘magic’ ratio between 
mass and yaw inertia increases control of yaw 
transients, and hence yields competitive advantage.  
However, the validity of these assumptions can be 
strongly influenced by combination effects between 
driver or automated control inputs, vehicle setup and 
driver dynamics. 
 In this paper we consider a way to combine the 
choice of control sequence and selected vehicle 
parameters in an optimisation technique which can test 
these assumptions, within a fairly simple model of 
driver capability.  A Generalised Optimal Control 
(GOC) technique is applied; the process operates 
iteratively, solving a two point boundary value 
problem over a fixed time interval, using Pontryagin’s 
Minimum Principle.  The method has advantages over 
standard optimal control techniques in that it can be 
applied to any (smoothly) nonlinear plant, and the cost 
model is not restricted to quadratic functions.  The only 
limitation is that model / simulation complexity must 
be kept at a suitably simple level, as the method uses 
multiple simulations to converge on optimal behaviour. 

 Here the technique has been adapted and extended 
from earlier work (eg in [3] and [4]), so that model 
parameters can be selected as additional control inputs, 
which remain constant over time; in this way the final 
solution can provide vehicle setup as well as control 
information.  The revised GOC method is presented in 
Section 2. 
 The simulations use a two degree-of-freedom yaw 
/ sideslip handling model with a stiff suspension model 
which allows meaningful load transfer to four 
independent tyre models; the tyres employ combined 
slip Pacejka ‘magic’ formulae to impose realistic 
friction limits.  The time sequence of acceleration / 
braking and steering inputs are optimised along with 
the vehicle parameter for centre of gravity position or 
yaw inertia, with a cost function set to reflect the 
simple objective of minimum time taken over a 
simulated section of race track. 
 The model, implementation detail and cost 
functions are described in Section 3, and a series of 
tests are conducted in Section 4 which illustrate the 
capability of the method, and present some basic 
findings in combined optimisation of vehicle set-up 
and control. 



2. GENERALISED OPTIMAL CONTROL 

 The control optimisation is a nonlinear 
formulation of LQR; controls are sought to minimise a 
Hamiltonian which is prescribed in terms of a 
(nonlinear) system of costate equations over a fixed 
time period.  Given a cost function of time, L and a 
residual cost associated with final states, LT : 

    dtttLTLJ
T

T )(),()(
0

uxx   (1) 

Adding constraint equations to this with a vector of 
Lagrange multiplier functions, p(t) : 
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where g is given by the system equations, 
 )(),( ttg uxx  .  The lagrange multipliers can be 

formed as a so-called costate system, and the 
Hamiltonian function can then be defined (see for 
example [5]) as 
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Eqn. 2 can now be integrated by parts to give, 
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Considering small changes J in the dynamic cost 
caused by small changes in the controls u(t) and in 
the states x(t) : 
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and costates can be chosen such that J depends only 
on changes in the controls by imposing the following 
conditions : 
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As we seek an open loop series of controls to minimise 
the dynamic cost J for constant conditions, x(0) = 0, 
and the minimum cost must therefore exist where  
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In [6] an approximation to the continuous solution is 
found using a discrete sequence of controls, each held 
constant for a small time dt.  Within the time period for 
each control, the cost gradient can then be identified as 
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So it is feasible to establish a gradient based iteration 
optimisation of a sequence of discrete controls 
spanning the required time frame (Fig 1).   
 Note that, provided the control remains constant 
for its discretisation period, the method is valid 
irrespective of the duration.  Also, independent 
controls can take different discretisations.  Coupling 
this with the fact that in the nonlinear model, any 
variable can be designated a control, it is 
straightforward to include model parameters within the 
optimisation.  These are defined simply as controls 
which remain constant over the entire simulation 
period, and whose gradients are thus computed as 
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Figure 1 provides a summary of the algorithm which 
can be used to conduct the GOC optimisation. 

2

1

4 T0
t

3

u

sequence of
discrete

controls, ui

parameter
control, u

 Figure 1 : Summary of GOC algorithm 
 
1   :  Using the current discrete control sequence, 

integrate the state-space system from x(0) and 
evaluate J[0,T]. 

2   :  Evaluate the residual cost LT and hence p(T) from 
Eqn. 6. 

3   :  Integrate the costate system and H/u in reverse-
time from the initial condition p(T).  Calculate 
cost gradients from Eqn 9.  

4   : Update the control sequence by a line search 
optimisation along the steepest descent or 
successively conjugate gradients to minimise J 
(evaluated by repeating Stages 1 & 2). 

Repeat Stages 1-4 until suitable convergence of cost 
and controls, and reduction of cost gradients is 
achieved. 



3. SIMULATION 

 The GOC algorithm has significant benefits in 
flexibility, but it can be computationally expensive; the 
need to calculate partial derivatives of the Hamiltonian 
with respect to each state, coupled with iterative 
simulations should caution the user to favour relatively 
simple, low order models.  (Prior papers [3,4] have 
used two degree of freedom ride and torsional 
vibration models.)  However, by astute use of compiled 
code and automated code generation, in this paper we 
stretch the method’s capability to a full vehicle 
handling model, with four independent combined slip 
tyre force models.  This allows investigation of 
independent steer and torque, whilst ensuring 
acceptable accuracy. 
3.1 Vehicle Handling Model 
 The well known normalised combined slip 
Pacejka model (eg [7]) is used to determine 
longitudinal and lateral tyre forces (Fx and Fy 
respectively in the SAE vehicle convention) :  

  iiiyixi ZwrvuhFF ,,,,,,   (11) 

 Tyre vertical loads, Z are determined using a ‘stiff 
suspension’ model which imposes equilibrium 
conditions on (unmodelled) roll, pitch and bounce 
degrees of freedom (see also [8]).  Assuming a ratio  
between the front and rear suspension roll moments, 
the effect of both pitch and roll load transfer is 
accommodated via : 
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and the friction coefficient is modified with respect to 
load, according to the simple expression : 
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The system equations are then, for the rigid vehicle 
body: 
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and first order lag functions are employed to simulate 
tyre force generation and impose a simple driver / 
vehicle bandwidth limitation on torque and steer inputs 
at the wheels : 
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Control inputs u and u are applied equally to both 
wheels at either the front and/or rear axle. 
 

States, x 

u forward velocity (m/s) 

v sideslip velocity (m/s) 

r yaw angular velocity (rad/s) 

 roll angle (rad) 

X,Y position of vehicle centre of gravity (m)  

wi rotation speed of wheel i (rad/s)  

fi, Fi lagged, unlagged tyre force from tyre i (N) 

i, ui lagged, unlagged steer angle of wheel i (rad) 

i, ui lagged, unlagged torque applied to wheel i (Nm) 
 

parameters, default values 

M mass (1400 kg) 

Izz yaw moment of inertia (2300 kgm2) 

Iw wheel moment of inertia (0.8 kgm2) 

a longitudinal Distance of CofG to front axle (1.2m) 

b wheelbase (2.7 m) 

c half track (0.7 m) 

h C of G height above roll axis (0.4 m) 

rr wheel rolling radius (0.3 m) 

 roll moment distribution factor (0.5) 

 tyre friction coefficient  (0.9) 

t tyre delay time constant (100)  

 steer input delay time constant (30) 

 torque input delay time constant (30) 

 Pacejka tyre model shape coefficients   
(0.714, 1.4, 1.0, -0.2) 

 zero lateral slip cornering stiffness  (50 kN) 

 zero longitudinal tyre slip rate  (60 kN) 

Table 1 : Model nomenclature & parameters 
 
3.2 Implementing the Optimisation 
 The costate system (Eqn 6) for the vehicle model 
is prohibitively complex to establish by hand, so three 
techniques are employed to create accurate, yet 
efficient simulation code.  Firstly, the equations are 
manipulated using an analytical math processor – the 
Matlab® Symbolic toolbox.  Direct evaluation of the 
partial derivatives is then possible, but the resultant 
formulae are long and inefficient (eg H/u leads to an 
equation comprising 134,386 characters !).  These 
direct formulae are thus only used to validate the final 
code, which is generated by first breaking each partial 
derivative into its component parts, eg 
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where H is the Hamiltonian written in terms of the tyre 
forces fi, and ufi   is further broken down in to 

component derivatives of the Pacejka formulae.  The 
resulting derivatives are then converted into lines of 



computer code by an iterative extraction of common 
terms, to produce the shortest possible function. 
 To increase the efficiency of time integration of 
the states and costates, a discrete-time integration 
algorithm is employed; this is the Cash/Karp 5th/6th 
order algorithm (described in [9]).  The timestep is 
kept constant within each control (ui) time interval, and 
to ensure accuracy the code is written to monitor state 
errors and adjust the timestep duration accordingly.  
Finally, the integration and derivative codes are 
compiled to achieve the fastest possible simulation 
execution time. 
 One further modification is made to improve 
optimisation of the handling model; although the (ui)  
controls remain functions of time, they are held 
constant for a specific distance which the vehicle 
travels – this improves the speed of convergence when 
steer and torque inputs are to be optimised 
simultaneously. 
3.3 Cost Functions 
 In all these simulations the target is to gain 
maximum distance in a given direction, whilst 
maintaining yaw (velocity and angle) control of the 
vehicle.  The residual, final cost function is set as : 
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with XG set at some large, unattainable distance (in this 
case 200m).  The coefficients are chosen to ensure that 
the maximum distance term dominates by a factor of 
approximately ten. 
 The time varying cost is dominated by track 
following terms : 
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where  is the perpendicular distance of the vehicle to 
the track centre, which is defined using straight-line 
segments.    is the half track width, set   = 2.5.  An 
additional term is also set, at a relatively low level, to 
guard against excessive wheel spin, such that 
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4. EXPERIMENTS 

4.1 Steer only 
 First consider a simple 90 turn; the vehicle sets 
off at 20m/s in the positive X direction ((0) = 0), and 
the distance objective is to maximise Y (with no 
‘track’).  Figures 2 compares two conditions.  In the 
first, front steer angle is optimised, with rear steer and 
all torque inputs set to zero.  The parameter control 
seeks the best fore / aft centre of gravity position, u= 
a.  The experiment is then repeated with both front and 
rear steer (and a) optimised. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 : Optimised performance – steer only 

 
In the front steer case, a high steer angle (7°) is first 
applied to drive the vehicle into a limit friction yaw 
rate (the normalised slip plot shows the front steer 
case).  This is recovered using a small opposite steer 
action around 5 sec.  The centre of gravity optimises 
well ahead of the centre of the vehicle (acentre=1.35), 
though this provides good balance given that the roll 
moment distribution is set to induce oversteer (=0.5).   
 The dual steer vehicle adopts less dramatic 
steering, achieving a greater distance to the right (see 
vehicle path) with less vehicle sideslip.  The centre of 
gravity is slightly further back here, which is 
intuitively sensible as the rear steer prevents terminal 
oversteering, allowing a more even weight distribution. 
4.2  Combined steer and torque – lanechange 
 Here we introduce a torque input, at the rear; this 
should alter the optimal fore/aft balance – we might 
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expect a larger value of a to increase acceleration 
capacity.  Figure 3 shows how the model tackles a 
track-imposed lane-change manoeuvre over four 
seconds, with the initial speed again set to 20m/s.  The 
results are again presented with and without the 
inclusion of rear steer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 : Optimised performance – lane change 
 
Here the dual steer vehicle achieves greater distance 
due to a slightly increased torque at the rear wheels, 
but note that the transient vehicle sideslip trace is very 
similar to the front steer car.  Interestingly, with the 
exception of the inner rear, the tyres remain well 
within their friction limits through both turns.  This is 
true for both cases, though again only the front steer 

vehicle is shown here.  As expected the centre of 
gravity position has converged further back – almost at 
the centre of the vehicle in both cases. 
4.3 Yaw inertia experiment 

If a realistic driver model were included in the 
system to be optimised, it might be possible to examine 
the performance value of tuning the ratio of yaw inertia 
to mass (the dynamic index).  A ratio of 0.92 is thought 
by many to offer a good compromise between rapid 
vehicle yaw response and driver controllability.   

Here we have rather too basic a driver model to 
make a judgement, but it is interesting to note the 
results of optimisation on Izz; Figure 4 shows how the 
parameter and cost converges against iteration number 
for a test which is again executed on the lane-change 
track, though in this instance with only front wheel 
drive and steer. 

 
 
+ steer capability.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 : Optimised performance – varying Izz 

 
Note how Izz changes within only around 200 
iterations, remaining almost unchanged during the 
other iterations; this occurs (although to a lesser extent) 
with all the optimisations – the time varying controls 
converge almost independently of u until they become 
‘aligned’ in such a way that cost gain can be achieved 
by change in all controls.   
 The bottom plot of Figure 4 shows how lower Izz 
has allowed more rapid change in control, with the first 
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steer event delayed, allowing for a longer period of 
acceleration initially, and hence lower cost.  This might 
be a pathological case for the method, as the controlled 
parameter has a relatively small effect on cost.  It does 
serve to caution the user to diligence in the monitoring 
of convergence however; this should principally be 
based on successive iterations yielding consistently 
low control gradients. 

5. CONCLUDING REMARKS 

These results show the scope of this adapted GOC 
method for examining optimal behaviour, though the 
relatively small set of scenarios do not provide strong 
enough insight into specific vehicle set-up or sideslip 
requirements.  The drawback with the method (in this 
guise) is in its very slow convergence.   
 For these simulations each iteration took 
approximately 30 seconds on a modern (1.5GHz) PC, 
so some of the results needed more than one day to 
converge.  The convergence issue is also exacerbated 
when the tyres are close to, or beyond their limit of 
friction; this makes it inefficient to carry out ‘follow-
on’ optimisations – for example using the front steer 
results as a basis on which to optimise the dual steer 
case.  As a result it was necessary to re-optimise all the 
cases presented above, from very simple initial 
conditions. 
 The method is effective if not efficient however, 
so further research is planned to reduce computational 
load in handling optimisations.  Simplification of the 
tyre model, perhaps by spline fitting the magic 
formula, is one possibility.  Another is to further 
reduce the control’s dependence on time, by restating 
the two point boundary value problem in terms of 
distance travelled.  If each control action is posed as a 
function of x rather than t, the torque and steer 
controls will be more successfully decoupled. 

REFERENCES 

1. Abe, M., Ohkubo N., and Kano, Y., “Comparison 
of 4WS and Direct Yaw Moment Control (DYC) 
for Improvement of Vehicle Handling 
Performance,” proceedings from the 2nd 
International Symposium on Advanced Vehicle 
Control (AVEC), Tsukuba, Japan, October 1994, 
pp 159-164. 

2. Ryu, J., Lee, J. and Kim, A., “Evaluation of a 
Direct Yaw Moment Control Algorithm by Brake 
Hardware-in-the-loop,” proceedings from the 4th 
International Symposium on Advanced Vehicle 
Control (AVEC), Nagoya, Japan, September 1998, 
pp 231-236. 

3. Best M.C., “Nonlinear Optimal Control of Vehicle 
Driveline Vibrations,” proceedings from the 
UKACC International Conference on CONTROL 
’98, Swansea, UK, September 1998, pp 658-663. 

4. Gordon T.J. and Sharp R.S. “On Improving the 
Performance of Automotive Semi-Active 
Suspension Systems Through Road Preview” 
Journal of Sound and Vibration,’ Vol 217(1), pp 
163-182, 1998. 

5. Bryson A.E. and Ho, Y.C., “Applied Optimal 
Control: Optimisation, Estimation and Control,” 
Hemisphere, New York, 1975. 

6. Marsh C., “A Nonlinear Control Design 
Methodology for Computer-controlled Vehicle 
Suspension Systems,” PhD Thesis, Loughborough 
University, 1992. 

7. Milliken W.F. and Milliken D.L., “Race Car 
Vehicle Dynamics” SAE International, 1995 

8. Gordon T.J and Best M.C., “Stability 
Augmentation of Handling Dynamics for 
Uncertain Road Friction,” proceedings from the 4th 
International Symposium on Advanced Vehicle 
Control (AVEC), Nagoya, Japan, September 1998, 
pp 105-110. 

9. Press, W.H. Teukolsky, S.A. Vetterling W.T. and 
Flannery, B.P., “Numerical Recipes : The Art of 
Scientific Computing,” Cambridge University 
Press, Cambridge, 1992. 

 

 


