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Abstract

A mathematical inertia model which permits the determination of personalized segmental inertia

parameter values from anthropometric measurements is described. The human body is modelled

using 40 geometric solids which are specified by 95 anthropometric measurements. A ‘stadium’

solid is introduced for modelling the torso segments using perimeter and width measurements. This

procedure is more accurate than the use of elliptical discs of given width and depth and permits a

smaller number of such solids to be used. Inertia parameter values may be obtained for body models

of up to 20 segments. Errors in total body mass estimates from this and other models are discussed

with reference to the unknown lung volumes.

INTRODUCTION

A computer simulation model of human airborne movement requires the input of information specifying
the initial motion, the changes in body configuration during flight and the mass distribution of the human
body. The initial motion and the time history of body configuration can be described using orientation
angles, while the mass distribution of the body can be described using length, mass and moment of
inertia descriptors of the body segments. From this input information a simulation model is able to
determine the resulting motion.

The values of the orientation angles used as input may describe a hypothetical movement, or may
be derived from film data of an actual performance as described in part I of this series (Yeadon, 1990a).
The values of the segmental inertia parameters may be chosen to be representative of an ‘average man’,
or may be personalized for a particular individual.

Segmental inertia parameters for an average man have been calculated using the mean values of
the anthropometric measurements given by Hertzberg et al. (1954) as input to the model of Whitsett
(1963). Daniels (1952) showed that if a subject is regarded as average for a particular anthropometric
measurement when his measurement lies between the 35th and 65th percentiles, then not one of the
4063 subjects of Hertzberg et al. (1954) was average in all of 10 selected linear measurements. This
indicates that an ‘average man’ may be representative of only a very small fraction of a population. As
a consequence, it will be necessary to consider a range of inertia values when attempting to generalize
results of computer simulations.

There are a number of experimental techniques for determining the inertia parameters of the body
segments of a living individual (Bouisset and Pertuzon, 1968; Hay, 1973; Hatze, 1975; Tichonov, 1976).
However, none of these techniques is suitable for determining moments of inertia of a central segment
such as the pelvis, or for determining the moment of inertia of a limb about its longitudinal axis.

Mathematical models which represent the body segments using a number of geometric solids are
capable of estimating values for all segmental inertia parameters. Such models have been developed by
Whitsett (1963), Hanavan (1964), Jensen (1976) and Hatze (1980). Although the detail with which body
segments are modelled can be quite complex, all of the above models make simplifying assumptions such
as uniform density over a given cross-section. It may be expected that these assumptions will lead to
systematic errors in the models. Such errors are difficult to identify since there are no criterion values of
the segmental inertia parameters with which to compare the calculated values.
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The mathematical model presented in this paper is also based upon simplifying assumptions and
may also be expected to contain systematic errors. Since the calculated inertia values will subsequently
be used as input to a simulation model, the effect of such errors can be evaluated and there exists
the possibility of adjusting the calculated values to minimize these errors. The model described below
should therefore be regarded only as an initial stage in the determination of accurate segmental inertia
parameter values.

THE HUMAN BODY MODEL

The inertia model described below has been designed to produce segmental values of an individual for
input into the 11 segment simulation model described in parts III and IV of this series (Yeadon, 1990b;
Yeadon et al., 1990). In the 11 segment simulation model it is assumed that the segments are rigid
bodies and that no movement occurs at the neck, wrists or ankles. Such assumptions may be regarded
as weaknesses of the model since they limit the versatility of the model. However, if it can be shown
that the agreement between simulations and performances of aerial movements is good despite these
simplifying assumptions, the assumptions may be regarded as adequate.

Although the inertia model is described in terms of the 11 segments of the simulation model, it should
not be regarded as an 11 segment model. Each segment is composed of a number of subsegments and
it is a simple matter to regard the head, hands and feet as individual segments and to output values
for 16 segments. Indeed the hands and feet may each be regarded as comprising two segments so that
segmental inertia parameters for 20 body segments can be calculated by the method.

Geometrical representation

Earlier models (Whitsett, 1963; Hanavan, 1964; Jensen, 1976; Hatze, 1980) have used ellipses to model
cross-sections of body segments because it was mathematically convenient to do so. Figure 1 compares a
cross-section of a thorax obtained by Cornelis et al. (1978) with the stadium shape of Sady et al. (1978)
and an ellipse. It is apparent that the stadium bears more resemblance to the thorax cross-section than
to an ellipse of equal width and depth.

Sady et al. (1978) used solids bounded by two such stadia of different dimensions to calculate volumes
of body segments. Such a procedure may be expected to give a better representation than the use of
cylindrical solids, since the cross-section of the stadium solid is permitted to vary. However, the formula
used by Sady et al. (1978) is based upon the volume of a truncated pyramid and this gives the correct
volume only when the bounding stadia have the same ratio of width to depth.

A stadium may be defined as a rectangle of width 2t and depth 2r with an adjoining semi-circle of
radius r at each end of its width (Fig. 2). The perimeter p = 4t + 2πr and width w = 2t + 2r so that
r and t may be calculated from perimeter and width using the equations: r = (p − 2w)/(2π − 4) and
t = (πw − p)/(2π − 4). It should be noted that using the perimeter and width as input measurements,
rather than depth and width, reduces the error in the estimation of cross-sectional area arising from the
use of a (somewhat) arbitrary geometrical shape (Yeadon, 1984).

A stadium solid bounded by parallel stadia (Fig. 3) is defined in Appendix 1 and it is shown that
cross-sections which are parallel to the two bounding stadia are also stadia.

Formulae for the mass M , location of mass centre z̄ and principal moments of inertia Ix, Iy, Iz about
the mass centre are derived for a stadium solid in Appendix 2. When the widths of the rectangles of the
bounding stadia are zero a stadium solid becomes a truncated cone. In such a case the formulae for the
inertia parameters become indeterminate. This difficulty is overcome by adding a very thin trapezium
to a truncated cone so that the formulae for a stadium solid can be used.

In the inertia model all body segments, with the exception of the cranium, are represented by a
number of stadium solids or truncated cones. The cranium is modelled as a semi-ellipsoid of revolution.
This solid is produced by rotating a quadrant of an ellipse with semi-axes r and h about one axis to
produce a semi-ellipsoid with base radius r and height h. Formulae for the inertia parameters of a
semi-ellipsoid are listed in standard engineering texts (e.g. Meriam, 1971).
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Figure 1: Comparison of (a) thorax cross-section (adapted from Cornelis et al., 1978), (b) stadium, (c)
ellipse.

Figure 2: A stadium is a rectangle of width 2t and depth 2r with an adjoining semi-circle at each end of
its width.

Segmentation

The body segments are sectioned into 40 solids by planes perpendicular to the longitudinal axes of the
segments (Fig. 4). The levels at which the segments are sectioned are given in Table 1.

The levels Lsi(i = 0, 8) section the torso S into eight solids si (i = 1, 8) where the solid si is bounded
by the levels Lsi and Ls(i− 1). The left arm A and right arm B are each sectioned into seven solids ai
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Figure 3: A stadium solid

and bi (i = 1, 7) while the left leg J and right leg K are each sectioned into nine solids ji and ki (i = 1, 9).
The 11 segments of the simulation model of aerial movement described in part IV of this series

(Yeadon et al., 1990) comprise the solids listed in Table 2.
For each segment the mass, location of mass centre, principal moments of inertia about the mass

centre and distance between joint centres are calculated. It is assumed that the solids comprising a
segment have coincident longitudinal axes. The values for the left and right limbs are then averaged
since the simulation model is designed to have symmetrical inertia values (Yeadon et al., 1990).

Measurements

The levels in Table 1 are measured using anthropometric calipers so that the heights of the 40 solids can
be calculated. At each level the perimeter is measured using a measuring tape. At the shoulder level
Ls4 of the torso a depth measurement is taken since it is not possible to measure the perimeter directly.
For the shoulder levels La0, Lb0 of the arms the perimeters are taken as high up the arms as possible.

The solids representing the head, arms and legs are assumed to be of circular cross-section so that
no further measurements are needed. The remaining solids of the torso, hands and feet are stadium
solids and so width measurements are taken at the boundary levels. At the heel levels Lj6, Lk6 anterior-
posterior depths rather than medio-lateral widths are measured since these values correspond to the
widths of the stadium cross-sections. The foot arch levels Lj7, Lk7 are assumed to be circular in cross-
section to permit the transition from stadia which are aligned anterior-posteriorly to stadia which are
aligned medio-laterally.

The 95 measurements taken comprise 34 lengths, 41 perimeters, 17 widths and three depths and
require between 20 and 30 min of the subject’s time.
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Table 1: The levels at which the body segments are sectioned

Torso S
Ls0 hip joint centre
Ls1 umbilicus
Ls2 lowest front rib
Ls3 nipple
Ls4 shoulder joint centre
Ls5 acromion
Ls6 beneath nose
Ls7 above ear
Ls8 top of head

Left arm A
La0 shoulder joint centre
La1 mid-arm
La2 elbow joint centre
La3 maximum forearm perimeter
La4 wrist joint centre
La5 base of thumb
La6 knuckles
La7 fingernails

Left leg J
Lj0 hip joint centre
Lj1 crotch
Lj2 mid-thigh
Lj3 knee joint centre
Lj4 maximum calf perimeter
Lj5 ankle joint centre
Lj6 heel
Lj7 arch
Lj8 ball
Lj9 toe nails

Density values

The density values used in the inertia model are taken from Dempster (1955) and are listed in Table
3 together with the corresponding solids. These values are used in preference to those obtained in the
cadaver studies of Clauser et al. (1969) and Chandler et al. (1975) since only Dempster found individual
values for shoulders, thorax and pelvis. It should be noted that the value for the density of Dempster’s
thorax segment is used with solids s3 and s4 whereas segment T of the simulation model, which has
been named the thorax segment for convenience, comprises only s3.

APPLICATION

The method was applied to three subjects (two males, one female) prior to performances of twisting
somersaults on trampoline. Table 4 compares total body masses, determined by weighing, with the
estimates obtained using the inertia model.

DISCUSSION

The maximum error of the total body mass estimates given in Table 4 is 2.3%. This value is comparable
with the value 1.8% obtained by Jensen (1978) but is much greater than the value 0.5% obtained by
Hatze (1980).
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Table 2:

Segment Symbol Solids
Chest–head C s4, s5, s6, s7, s8
Thorax T s3
Pelvis P sl, s2
Left upper arm A1 a1, a2
Left forearm–hand A2 a3, a4, a5, a6, a7
Right upper arm B1 b1, b2
Right forearm–hand B2 b3, b4, b5, b6, b7
Left thigh J1 j1, j2, j3
Left shank–foot J2 j4, j5, j6, j7, j8, j9
Right thigh K1 k1, k2, k3
Right shank–foot K2 k4, k5, k6, k7, k8, k9

Figure 4: Sectioning of the torso S, left arm A, right arm B, left leg J and right leg K into 40 solids.

When measuring torso perimeters there is the problem of changes due to breathing. In this study an
attempt was made to minimize this effect by asking the subjects to breathe shallowly. However, it may
be expected that when the lungs contain an additional one litre of air, the volume of the torso increases
by one litre and this will produce an increase in the total body mass estimate of about 1.5% for a 70
kg subject. Thus, even if the amount of air in the lungs is held approximately constant and the torso
volume estimate is accurate, there appears to be an uncertainty in the torso mass estimate of the order
of 1% without a method of determining the amount of air in the lungs. With this in mind, the errors in
the total mass estimates of this study and of Jensen (1978) are not unreasonable.

The accuracy with which the model estimates total body mass, however, does not give much indication
of the accuracy with which segmental masses and inertias are estimated. The reason for considering total
body mass is that it is the only quantity for which a direct measurement is available.
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Table 3: Segmental density values (Dempster, 1955)

Segmental density values (kgl−1)
Segment Solids Density
Head-neck s6, s7, s8 1.11
Shoulders s5 1.04
Thorax s3, s4 0.92
Abdomen-pelvis s1, s2 1.01
Upper arm a1, a2 1.07
Forearm a3, a4 1.13
Hand a5, a6, a7 1.16
Thigh jl, j2, j3 1.05
Lower leg j4, j5 1.09
Foot j6, j7, j8, j9 1.10

Table 4: Accuracy of total body mass estimates

Subject Mass (kg) Estimated mass (kg) Error
A 60.0 58.8 -2.0%
B 60.9 62.0 1.8%
C 64.3 65.8 2.3%

Since the inertia model has been designed to produce personalized segmental values for input into
a simulation model, the inertia model may be considered adequate for this purpose providing there is
good agreement between simulations and actual performances. Such evaluations will be made in parts
III and IV of this series (Yeadon, 1990b; Yeadon et al., 1990) where the effects of anthropometric and
film measurement errors will also be determined.
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Appendix 1 STADIUM SOLID

A stadium solid bounded by parallel stadia (Fig. 3) is defined as follows: let the lower bounding stadium
have parameters r0 and t0, the upper bounding stadium parameters r1 and t1 and let h be the distance
separating the stadia.

Consider a point P which lies on the boundary of the first quadrant of a stadium with parameters r
and t (Fig. 5). If P has coordinates (x,y) then:

for 0 ≤ x ≤ t, x = λt (0 ≤ λ ≤ 1) and y = r;

for x > t x = t+ r cos θ and

y = r sin θ (0 ≤ θ ≤ π/2).

A correspondence may now be defined between the points on the boundaries of the first quadrants
of the upper and lower stadia. Points on the straight sections correspond when they have equal λ
values and points on the curved sections correspond when they have equal θ values. In a similar way, a
correspondence may be defined for the remaining quadrants.
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Figure 5: A quadrant of a stadium

Suppose that P0 and P1 are corresponding points of the lower and upper bounding stadia (Fig. 3).
If p0 and p1 are position vectors of P0 and P1 relative to some origin, then the point P with position
vector p = (1 − z)p0 + zp1 lies on the line segment P0P1 when 0 ≤ z ≤ 1 and divides it in the ratio
z : (1 − z). If z is held constant and P0 and P1 move around the lower and upper stadia, the point P
moves around the boundary of an intermediate section of the stadium solid. This procedure defines the
stadium solid and it will now be shown that each intermediate section is itself a stadium and is parallel
to the bounding stadia.

Let the coordinate system (x,y,z) have origin at the centre of the lower stadium with the z axis lying
along the line joining the centres of the bounding stadia (Fig. 3).

The points P0(λt0, r0, 0) and P1(λt1, r1, h) on the straight sections correspond to P ((1 − z)λt0 +
zλt1, (1 − z)r0 + zr1, zh) which is equivalent to P (λt(z), r(z), zh) where t(z) = (1 − z)t0 + zt1, and
r(z) = (1− z)r0 + zr1.

Similarly, the points P0(t0 + r0 cos θ, r0 sin θ, 0) and P1(t1 + r1 cos θ, r1 sin θ, h) correspond to
P (t(z) + r(z) cos θ, r(z) sin θ, zh) where t(z) and r(z) are as above.

Thus, as P0 and P1 move around the bounding stadia the point P moves around a parallel stadium
which has parameters t(z) and r(z) and is at a distance zh from the lower bounding stadium.

It should be noted that although the above treatment does not assume that the z axis is normal to
the bounding stadia, only right stadium solids will be used.

Appendix 2 FORMULAE FOR THE INERTIA PARAMETERS

OF A STADIUM SOLID

The derivations of formulae for the location of mass centre, mass and principal moments of inertia of a
stadium solid are given below. Prior to consideration of the solid, expressions are derived for the second
moments of area or a stadium.

Second moments of area of a stadium

The calculation of the second moments of area of a stadium will require the evaluation of a number of
integrals. For convenience these definite integrals will be evaluated prior to the calculation of second
moments.
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∫
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=
1
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2

]1/2π

0

=
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4
π

∫

1/2π

0

sin4 θdθ =

∫

1/2π

0

1

4
(1− cos 2θ)2dθ

=
1

4

∫

1/2π

0

(1− 2 cos 2θ + cos2 2θ)dθ

=
1

4

∫

1/2π

0

[1− 2 cos 2θ + 1

2
(1 + cos 4θ)]dθ

=
1

4

[

3θ

2

]1/2π

0

=
3π

16
∫

1/2π

0

sin2 θ cos θdθ =

∫

1/2π

0

sin2 θ · d(sin θ)

=

[

1

3
sin3 θ

]1/2π

0

=
1

3
∫

1/2π

0

cos2 θ sin2 θdθ =

∫

1/2π

0

(1− sin2 θ) sin2 θdθ

=

∫

1/2π

0

sin2 θdθ −

∫

1/2π

0

sin4 θdθ

=
π

4
−

3π

16
=

π

16
.

A point lies on the boundary of the first quadrant of a stadium (Fig. 5) providing either 0 ≤ x ≤ t
and y = r or x = t+ r cos θ and y = r sin θ (0 ≤ θ ≤ π/2).

Thus the area of the stadium is A where:

1

4
A =

∫ t

0

ydx+

∫

0

1/2π

yẋdθ where ẋ =
dx

dθ

=

∫ t

0

rdx+ r2
∫

1/2π

0

sin2 θdθ

= rt+
1

4
r2π.

Thus A = 4rt+ πr2 as expected.
Let Jx, Jy and Jz be the second moments of area of the stadium in Fig. 5 about the x, y and z axes

where the z axis is orthogonal to both the x and y axes.

Jx = 4

∫

1

3
y2 · ydx =

4

3

∫

y3dx.

the integration occurring over a single quadrant. Now

∫

y3dx =

∫ t

0

y3dx+

∫

0

1/2π

y3ẋdθ

=

∫ t

0

r3dx+ r4
∫

1/2π

0

sin4 θdθ

= r3t+ 3πr4/16.
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Thus

Jx = 4r3t/3 + πr4/4,

Jy = 4

∫

x2ydx

and

∫

x2ydx =

∫ t

0

x2ydx+

∫

0

1/2π

x2yẋdθ

=

∫ t

0

x2rdx+

∫

1/2π

0

(t+ r cos θ)2 · r2 sin2 θdθ

= r[x3/3]t
0
+ r2t2

∫

1/2π

0

sin2 θdθ + 2r3t

∫

1/2π

0

sin2 θ cos θdθ + r4
∫

1/2π

0

cos2 θ sin2 θdθ

= r[t3/3] + r2t2[π/4] + 2r3t[1/3] + r4[π/16].

Thus
Jy = 4rt3/3 + πr2t2 + 8r3t/3 + πr4/4.

For a lamina the theorem of perpendicular axes states that

Jz = Jx + Jy

Thus
Jz = 4rt3/3 + πr2t2 + 4r3t+ πr4/2.

These expressions for A, Jx, Jy, Jz will be used in the derivations of the inertia parameter of a stadium
solid.

The mass and location of mass centre of a stadium solid

It has been shown that the intermediate stadium of Fig. 3 is at a distance zh from the lower bounding
stadium and has parameters r and t where r = r0 + z(r1 − r0) and t = t0 + z(t1 − t0).

Thus r and t may be expressed as r = r0(1 + az) and t = t0(1 + bz) where a = (r1 − r0)/r0 and
b = (t1 − t0)/t0. If the intermediate stadium has density D, area A(z) and thickness hδz the mass will
be DA(z)hδz so that the mass of a stadium solid of uniform density is given by

M =

∫

1

0

DA(z)hdz

The first moment of mass about the lower plane is
∫

1

0
hzDA(z)hdz and the distance z̄ of the mass

centre from the lower plane is given by:

z̄ =

∫

1

0

Dh2zA(z)dz/M.

Defining the functions F1, F2, F3 by the equations:

F1(a, b) = 1 + (a+ b)/2 + ab/3

F2(a, b) =
1

2
+ (a+ b)/3 + ab/4

F3(a, b) =
1

3
+ (a+ b)/4 + ab/5.

Area A(z) = 4rt+ πr2

= 4r0(1 + az)t0(1 + bz) + πr2
0
(1 + az)2

= 4r0t0(1 + (a+ b)z + abz2) + πr2
0
(1 + 2az + a2z2)
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so that

∫

1

0

Adz = 4r0t0(1 + (a+ b)/2 + ab/3) + πr2
0
(1 + 2a/2 + a2/3)

= 4r0t0F1(a, b) + πr2
0
F1(a, a)

M = Dh

∫

1

0

Adz.

Thus
M = Dhr0[4t0F1(a, b) + πr0F1(a, a)].

Now

zA = 4r0t0(z + (a+ b)z2 + abz3) + πr2
0
(z + 2az2 + a2z3),

so that

∫

1

0

zAdz = 4r0t0(
1

2
+ (a+ b)/3 + ab/4) + πr2

0
(
1

2
+ 2a/3 + a2/4)

= 4r0t0F2(a, b) + πr2
0
F2(a, a)

z̄ = Dh2

∫

1

0

zAdZ/M.

Thus
z̄ = Dh2[4r0t0F2(a, b) + πr2

0
F2(a, a)]/M.

Note also

z2A = 4r0t0(z
2 + (a+ b)z3 + abz4) + πr2

0
(z2 + 2az3 + a2z4),

so that

∫

1

0

z2Adz = 4r0t0(
1

3
+ (a+ b)/4 + ab/5) + πr2

0
( 1
3
+ 2a/4 + a2/5),

i.e.
∫

1

0

z2Adz = 4r0t0F3(a, b) + πr2
0
F3(a, a).

This result will be used in conjunction with the theorem of parallel axes in the next section to calculate
moments of inertia.

Moments of inertia of a stadium solid

In this section expressions are derived for the moments of inertia Ix, Iy, Iz of a stadium solid about
principle axes through the mass centre.

The moment of inertia of a stadium solid about the z axis (Fig 3) is Iz =
∫

1

0
DJzhdz where the

second moment of areas of a stadium has been obtained as

Jz = 4rt3/3 + πr2t2 + 4r3t+ πr4/2.

Thus

Iz = Dh

[

(4/3)

∫

1

0

rt3dz + π

∫

1

0

r2t2dz

+ 4

∫

1

0

r3tdz +
1

2
π

∫

1

0

r4dz

]

.
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Define

F4(a, b) = 1 + (a+ 3b)/2 + (3ab+ 3b2)/3 + (3ab2 + b3)/4 + ab3/5

and

F5(a, b) = 1 + (2a+ 2b)/2 + (a2 + 4ab+ b2)/3 + 2ab(a+ b)/4 + a2b2/5.

Now

rt3 = r0t
3

0
(1 + az)(1 + bz)3

= r0t
3

0
(1 + az)(1 + 3bz + 3b2z2 + b3z3)

= r0t
3

0
(1 + (a+ 3b)z + (3ab+ 3b2)z2 + (3ab2 + b3)z3 + ab3z4),

so that
∫

1

0

rt3dz = r0t
3

0
F4(a, b).

Similarly
∫

1

0

r3tdz = r3
0
t0F4(b, a),

whilst

r2t2 = r2
0
t2
0
(1 + az)2(1 + bz)2

= r2
0
t2
0
(1 + 2az + a2z2)(1 + 2bz + b2z2)

= r2
0
t2
0
(1 + (2a+ 2b)z + (a2 + 4ab+ b2)z2 + 2ab(a+ b)z3 + a2b2z4)

so that
∫

1

0

r2t2dz = r2
0
t2
0
F5(a, b)

and

r4 = r4
0
(1 + az)4

= r4
0
(1 + 4az + 6a2z2 + 4a3z3 + a4z4)

so that
∫

1

0

r4dz = r4
0
F4(a, a).

Thus

Iz = Dh[4r0t
3

0
F4(a, b)/3 + πr2

0
t2
0
F5(a, b)

+ 4r3
0
t0F4(b, a) + πr4

0
F4(a, a)/2].

The moment of inertia of a stadium section about the y axis (Fig. 3) is given by the theorem of
parallel axes as JyDhδz+(hz)2ADhδz where Jy is the second moment of area, D is the density, hδz the
thickness, hz the distance from the y axis and A the area.

If I0y denotes the moment of inertia of the stadium solid about the y axis (which lies in the lower
face) then:

I0y =

∫

1

0

JyDhdz +

∫

1

0

(hz)2ADhdz,

i.e.

I0y = Dh

∫

1

0

Jydz +Dh3

∫

1

0

z2Adz,

where:
∫

1

0

Jydz =

∫

1

0

(4rt3/3 + πr2t2 + 8r3t/3 + πr4/4)dz

= 4r0t
3

0
F4(a, b)/3 + πr2

0
t2
0
F5(a, b) + 8r3

0
t0F4(b, a)/3 + πr4

0
F4(a, a)/4
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using the results obtained during the calculations of Iz, and

∫

1

0

z2Adz = 4r0t0F3(a, b) + πr2
0
F3(a, a)

having been derived in the section on the calculation of z̄.
If Iy denotes the moment of inertia about a parallel axis through the mass centre then the theorem

of parallel axes gives:

Iy = I0y −Mz̄2.

Similarly, the moment of inertia I0x about the x axis is given by:

I0x =

∫

1

0

JxDhdz +

∫

1

0

(hz)2ADhdz,

ie

I0x = Dh

∫

1

0

Jxdz +Dh3

∫

1

0

z2Adz,

where

∫

1

0

Jxdz =

∫

1

0

(4rt3/3 + πr4/4)dz

= 4r0t
3

0
F4(a, b)/3 + πr4

0
F4(a, a)/4

and the moment of inertia Ix about a parallel axis through the mass centre is given by Ix = I0x−Mz̄2.
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